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IF Introduction

sn IWHVD iF vndu UD ws the (rst to otin n symptoti formul for the numer of integers up to given numer tht re sum of two oE prime squresF re used nlytil methodD whih involves onsidering the squreroot of some nlytil funtion nd voiding its pole through rnkel ontourF vterD this proedure ws further developed y rF helnge nd eF elerg llowing them to otin symptoti for prtil sums of rithmeti funtions whose hirihlet series n e written in terms of omplex powers of the iemnn ζEfuntionF his is now often referred to s the elergEhelnge methodF sn VD fFF vevin nd eFF p%nle% estlished the logrithmi density of the sme set y n elementry rgument under more generl onE ditionsF hen omined with the erlier method of iF irsing IVD s ws done in IQD this leds to the determintion of the nturl density s wellF sn IUD tFEF erre used vndu9s method to exmine severl other ses nd deployed it to enompss not only the min term ut lso n symptoti deE velopmentD leding to etter error termF ixtending the vevin nd p%nle% pproh in similr fshion would llow for more generl hypotheses s wellF his is the im of the present pperF o express our resultsD we tke nonEnegtive multiplitive funtion f ndD following vevin nd p%nle%D we ssoite to it the funtion Λ f (n) whih is H when n is not prime power nd whih is otherwise de(ned y the forml power expnsionX

@IA k≥0 Λ f (p k ) p ks = k≥1 f (p k ) log p p ks / k≥0 f (p k ) p ks .
e rell some of its properties in etion PF o hndle the uniformity in our resultD we rell tht we use f = O * (g) to men tht |f | ≤ g nd PHIH Mathematics Subject Classication. rimryX IIxQUF Key words and phrases. verge ordersD multiplitive funtionsF I P yvssi eweÉD evse ihxyeD exh ssue rewe f = O A,h,κ (g) to men tht |f | ≤ C(A, κ, h)gD where the onstnt C(A, h, κ) depends only on the stted prmetersF rere is our min theoremF heorem IF Let f be a non-negative multiplicative function. Assume that, for some integer h ≥ 0, one has

@r h A ∀Q ≥ 1, m≤Q Λ f (m) m = κ log Q + η 0 + O * (A/ log h (2Q))
for some constants κ ≥ 0, A and η 0 . We further assume that |η 0 | ≤ A. Then there exist constants C and (a k ) 1≤k≤h such that, when X ≥ 3, we have

n≤X f (n) n (log n) h+1 = C(log X) κ+h+1 1 + a 1 log X + . . . + a h (log X) h +O A,κ,h (log X) κ (log log(3X)) (h+2)(h+1) 2
, where

C = 1 Γ(κ + 1) p≥2 1 - 1 p κ ν≥0 g(p ν ) p ν .
e hve sme error term for the sum

n≤X f (n) n log X n h+1 .
e n lso otin n≤X f (n) n (log n) k for ny k ∈ {0, . . . , h} with n erE ror term O((log log X)

(h+2)(h+1) 2
/(log X) h+1-k )D y summtion y prtsD ut some dditionl log log X term my pper in the development when κ is n integerD whih is why we stte our result in this mnnerF he nonEnegtive ssumption is not essentil in our methodD nor is the ft tht f is rel vlued @ut κ hs to e rel numerAD we my insted ssume tht

@PA n≤X |f (n)| (log X) κ *
for some prmeter κ * nd modify our error term O((log X) κ (log log X) c ) to O((log X) κ * (log log X) c )F his is for instne the pth hosenD when h = 0 in heorem IFI of the ook S y rF swnie nd iF uowlskiF e did not try to optimize the power of log log(3X) tht ppersF st is likely tht no suh term should e present in ftD ut in prtieD when our ssumption holds for h ≥ 1D it holds for ny hF sing the result for h + 1 removes this prsiti ftorF o mesure the reltive strength our theoremD let us mention thtD with h = 1 for instne nd µ is the woeius funtionD it gives us proof tht the estimte p≤X (log p)/p = log

X + c + O(1/ log X) implies tht n≤X µ(n)/n
(log log X) 3 / log XF he se h > 1 yields nother proof of the results of eF uienst in TF e rsqri yhi visxEpe sxvi sf riyiw Q eF qrnville nd hF uoukoulopoulos onsidered similr question in RD our hypotheses re in some ple wekerD s we onsider verges of f (p)/p rther thn verges of f (p) nd no oundedness ondition on f (p) is sked forD ut we require tht f is nonEnegtiveF rowever the min di'erene truly omes t the methodologil levelX our proof stys in the relm of rel nlysis while qrnville nd uoukoulopoulos use omplex nlysis round the erron summtion formulF he reders my lso onsult ITD ppF IVQ! IVS y eF elergD IH y wFF wurty nd xF rdhD nd W y F woree nd rFtFtF te iele on relted issuesF he proof relies on reursion on hF st is however esier to ssume more omplete hypothesisF eursion rypothesis @for hAF For each ∈ [0, h + 1], there exists a polynomial P of degree such that

@QA n≤X f (n) n (log n) = P (log X) + O (log log X) (h+1)(h+2) 2 (log X) κ .
e show during the proof tht we my s well ssume similr hypothesis with (log(X/n)) rther thn (log n) X this is onsequene of the funtionl reltion we prove t the eginning of our proofD see @IIAF he vevinEp%nle% heorem gives proof of this lim when h = 0 @nd even etter s the log log(3X) is sent in this theoremAF e provide in etion V survey of the proofF xottionF e set for typogrphil simpliity g

(n) = f (n)/nF xextD for nonEnegtive integer j de(ne @RA G j (X) = n≤X g(n) log j (X/n), G 0 (X) = G(X).
por k ≥ 0D we de(ne

H k (log X) = G k (X)F
eknowledgmentsF his pper strted in PHIV when the (rst nd third uthors were invited y the sndin ttistil snstitute of helhi under geE (pr progrm SRHIEeF st ws ontinued when these uthors were visiting tokholm in erly PHIW nd then in tuly of the sme yer when oth (rst nd seond uthors were invited y the wx lnk snstitute in fonnF st ws (nlized in PHPI when the (rst uthor ws invited y the russdorf snstitut für wthemtik in fonn nd the seond one ws invited y the wx lnk snstitute in fonnF hese odies re to e thnked wrmly for providing suitle onditions without whih this piee of work would surely hve died in our drwersF PF On the function Λ f vet F denotes the forml hirihlet series of f D nmely

F (s) = n≥1 f (n) n s .
xote tht iuler produt formul gives

F (s) = p≥2 1 + k≥1 f (p k ) p ks .
yn tking the logrithmi derivtive of F (s)D we (nd tht

- F (s) F (s) = p≥2 k≥1 f (p k ) p ks log(p k ) 1 + k≥1 f (p k ) p ks -1 = p≥2 Z p (s) log p.
purtherD expnding the seond produt in Z p (s) nd hnging the order of summtion we (nd tht

Z p (s) = k≥1 kf (p k ) p ks r≥0 (-1) r ≥0 k 1 +k 2 +...+kr= f (p k 1 ) • • • f (p kr ) p s = m≥1 1 p ms k+k 1 +...+kr=m (-1) r kf (p k )f (p k 1 ) • • • f (p kr ) . husD @SA - F (s) F (s) = n≥1 Λ f (n) n s , where @TA Λ f (p m ) = k+k 1 +...+kr=m (-1) r kf (p k )f (p k 1 ) • • • f (p kr ) log p nd Λ f (n) = 0 when n is not prime powerF xote tht Λ f (p m ) depends only on the lol ftor of F (s) t prime pF sn prtiulr Λ 1 (p m ) = Λ(p m )F woreoverD when f (p m ) = 1 p∈P D we hve Λ f (p m ) = Λ(p m ) • f (p m ) @here 1 X = 1 if X is
true nd 0 otherwiseAF por exmpleD let us selet P = {p ≡ 1 (mod 4)}F es mentioned oveD the de(nition of Λ f (p m ) depends only on the lol ftor t prime pD hene we redily see tht

Λ f (p m ) = Λ(p m ) for p ≡ 1 (mod 4) nd 0 otherwiseF xote tht when f is supported on squreEfree integersD we get Λ f (p m ) = (-1) m-1 f (p) m log pF
vemm IF Let k, h be two non-negative real numbers. Then for any k ≤ h, there exists a constant η k , such that, under assumption @r h A we have

@eA n≤Q Λ f (n) log k n n = κ k + 1 log k+1 Q + η k + E k,h (Q),
where

E k,h (Q) 1/ log h-k (2Q) for k < h and E h,h (Q) log log(3Q).
Proof. henote the sum on the left hnd side of @eA y S k (Q)F hen using prtil summtionD we hve

S k (Q) = S 0 (Q) log k Q -k Q 1 S 0 (t) log k-1 t dt t .
purtherD when k < hD we my pply @r h A to get

S k (Q) = κ k + 1 log k+1 Q + η 0 log k Q -η 0 k Q 1 log k-1 tdt t -k ∞ 1 S 0 (t) -κ log t -η 0 log k-1 tdt t + O 1 log h-k Q + ∞ Q d log t log h-k+1 t , whene S k (Q) = κ k + 1 log k+1 Q + η k + O(1/ log h-k (2Q))
s nnounedF enlogous rgument gives the result for k = hF QF Generalizations of Λ f e will use the next formul severl timesF vemm P @pà di fruno pormulAF We have

d n f (g(x)) dx n = m 1 ,m 2 ,••• ,mn≥0, m 1 +2m 2 +•••+nmn=n n! m 1 !m 2 ! • • • m n ! f (m 1 +m 2 +•••+mn) (x) n j=1 g (j) (x) j! m j .
rere is omintoril identityD whih is n immedite orollry of IRD heorem PFID itself eing strightforwrd onsequene of the pà di fruno pormulF vemm QF Let F be a function and denote Z F = -F /F . We have

F (h+1) = F i≥1 ik i =h+1 (h + 1)!(-1) i k i k 1 !k 2 ! • • • (1!) k 1 (2!) k 2 • • • k i Z (i-1)k i F . Notation Z (i-1)k i F denotes the (i-1)-th derivative multiplied k i times by itself. Proof. his is n immedite orollry of IRD heorem PFI with F = 1/G nd hene Z F = -Z G F hen h = 1D this gives F = F (Z 2 F -Z F )F e thus de(ne @UA n≥1 Λ f,h (n) n s = (-1) h i≥1 ik i =h h!(-1) i k i k 1 !k 2 ! • • • (1!) k 1 (2!) k 2 • • • k i Z (i-1)k i F so tht f log h = f Λ f,h
. hen f = 1 1D these funtions hve their origin in the work of eF elerg IS round n elementry proof of the rime xumer heoremF hey hve een generlized s ove y iF fomieri in ID see lso the ppers Q nd P y tF priedlnder nd rF swnieF snidentllyD vemm Q gives nonEreursive desription of the funtions Λ h = Λ 1 1,h D something tht is missing from the forementioned worksF T yvssi eweÉD evse ihxyeD exh ssue rewe vemm RF Let θ 1 and θ 2 be two functions on the integers that satisfy, for

i ∈ {1, 2}, n≤X θ i (n) = C i (log X) d i + Q i (log X) + O(1/(log 2X) h-d i )
where

d i ≥ 1, Q i is a polynomial of degree at most d i -1 and h is some xed parameter. Then mn≤X θ 1 (m)θ 2 (n) = C 1 C 2 d 1 !d 2 ! (d 1 + d 2 )! (log X) d 1 +d 2 + Q(log X) + O 1 (log 2X) h-d 1 -d 2 ,
where Q is a polynomial of degree at most

d 1 + d 2 -1.
Proof. e use the hirihlet ryperol pormulF e split the vriles t

√

X to get the nnouned error termF sn order to ompute the min termD it is enough to onsider

S = n≤X θ 1 (n)C 2 log X n d 2
.

en integrtion y prts gives us

S = C 2 n≤X θ 1 (n)d 2 X/n 1 (log t) d 2 -1 dt t = C 2 d 2 X 1 n≤X/t θ 1 (n)(log t) d 2 -1 dt t ,
so tht the prinipl prt of the min term is given y

M = C 1 C 2 d 2 X 1 log X t d 1 (log t) d 2 -1 dt t = C 1 C 2 d 2 (log X) d 1 +d 2 1 0 (1 -u) d 1 u d 2 -1 du = C 1 C 2 d 1 !d 2 ! (d 1 + d 2 )! (log X) d 1 +d 2
y the lssil evlution of the iuler etEfuntionF yn iterting the previous lemmD we get the next oneF vemm SF Let (θ i ) i≤r be r functions on the integers that satisfy,

for i ∈ {1, • • • , r}, n≤X θ i (n) = C i (log X) d i + Q i (log X) + O(1/(log 2X) h-d i ),
e rsqri yhi visxEpe sxvi sf riyiw U where d i ≥ 1, Q i is a polynomial of degree at most d i -1 and h is some xed parameter. Then

m 1 •••mr≤X i≤r θ i (m i ) = i≤r C i d 1 ! • • • d r ! (d 1 + • • • + d r )! (log X) d 1 +•••+dr + Q(log X) + O 1 (log 2X) h-d 1 -•••-dr ,
where Q is a polynomial of degree at most

d 1 + d 2 + • • • + d r -1.
vemm TF Under @r h A, we have

n≤X Λ f,k (n) n = κ(κ + 1) • • • (κ + k -1) k! (log X) k + Q(log X) + O log log(3X) (log 2X) h+1-k .
where Q is polynomial of degree at most k -1.

Proof. vemm S tells us tht the sum reds

@VA n≤X Λ f,k (n) n = i≥1 ik i =k k! k 1 !k 2 ! • • • (1!) k 1 (2!) k 2 • • • i κ k i i! k i i k i (log X) k k! + Q(log X) + O log log(3X) (log 2X) h+1-k . he min term simpli(es into i≥1 ik i =k 1 k 1 !k 2 ! • • • i κ k i i k i (log X) k .
he iEth derivtive of g(x) = -κ log(1 -x) is (i -1)!κ/(1 -x) i so tht κ/i is lso g (i) (0)/i!F he pà di fruno pormul for the kEth derivtive of exp(g(x)) = (1 -x) -κ tells us tht

i≥1 ik i =k k! k 1 !k 2 ! • • • i κ k i (i(1 -x) i ) k i = κ(κ + 1) • • • (κ + k -1) (1 -x) κ+k .
e evlute this equlity t x = 0F

RF Auxiliary results

vemm UF For k ≥ 1 we have G k (X) = k X 1 G k-1 (t) dt t .
Proof. xotie tht y simple hnge of vrile t = log(u/n) we hve

1 k log X n k = log(X/n) 0 t k-1 dt = X n log u n k-1 du u .
sing the ove together with the de(nition of G k we diretly ompute

X 1 G k-1 (t) dt t = n≤X g(n) X n log t n k-1 dt t = 1 k n≤X g(n) log X n k = G k (X) k s limed in the lemmF
rere is diret onsequene of the previous lemmD on relling tht

H k (log X) = G k (X)F vemm VF When ∈ {0, . . . , }, we have H ( ) k (u) = k! (k -)! G k-(e u ).
vemm WF When k ≥ 0, we have

n≤e u g(n)(log n) k = u k+1 k! (H k (u)/u) (k) .
Proof. his lemm is true for k = 0F por k = 1D we (nd tht

u 2 (H 1 (u)/u) (1) = uH 1 (u) -H 1 (u) = n≤e u g(n) u -(u -log n) s requiredF por generl kD write n≤e u g(n)(log n) k = n≤e u g(n) u -log e u n k = 0≤j≤k k j u j (-1) k-j G k-j (e u ) = 0≤j≤k k j u j (-1) k-j (k -j)! k! H (j) k (u).
e next notie tht

d du 1 u = (-1) ! u +1 so tht n≤e u g(n)(log n) k = u k+1 k! 0≤j≤k k j (-1) k-j (k -j)! u k-j+1 H (j) k (u) = u k+1 k! (H k (u)/u) (k)
s nnounedF e rsqri yhi visxEpe sxvi sf riyiw W SF Approximate solutions of an Euler differential equation sn II nd uilding on hF op nd qF s IPD op nd ugn studied perturtion of n iuler di'erentil equtionD sy

@WA u r y (r) (u) + 0≤i≤r-1 b i u i y (i) (u)
for funtion y tht is in C r (I) for some intervl I ⊂ [0, ∞)F yn looking more losely t their work whih goes y itertionD one sees tht the lst derivtive does not need to e ontinuous provided one my integrteD nd so my e simply absolutely continuous on every subinterval of IF e denote this lss y C r-(I)F e next need seond modi(tion of their workF por ny c ∈ ID ny omplex numer α nd ny suitle funtion ϕD they onsider

Φ * α,c (ϕ)(x) = x α x c u -α ϕ(u) du u .
lese notie tht op nd ugn forgot this hnge of vrile tht is neessry etween their heorems PFI nd PFQF his explins our nottion Φ * rther thn the Φ tht these two uthors hveF e hve dded the index c to their nottion nd we my in ft tke c = ∞ @nd reverse the order of integrtion s usulAF e selet r prmeters c 1 , . . . , c r D some of them mye e in(niteF pollowing op nd ugnD we onsider the root λ 1 , . . . , λ r of the eqution

@IHA b 0 + 1≤s≤r λ(λ -1) • • • (λ -s + 1)b s = 0.
e lso selet funtion S in C r (I)F ith these nottionsD here is the version of IID heorem PFQ tht we shll useF vemm IHF Let ϕ : ϕ) exists and is nite. Then for every y ∈ C r-(I) satisfying

I → [0, ∞) be such that Φ * λr,cr • • • • • Φ * λ 1 ,c 1 (
∀u ∈ I, u r y (r) (u) + 0≤i≤r-1 b i u i y (i) (u) -S(u) ≤ ϕ(u)
there exists a solution y 0 of

u r y (r) (u) + 0≤i≤r-1 b i u i y (i) (u) = 0
with the property

∀u ∈ I, |y(u) -y 0 (u)| ≤ Φ * λr,cr • • • • • Φ * λ 1 ,c 1 (ϕ)(u).
TF A differential equation yn using vemm Q nd TD we get

n≤X g(n)(log n) h+1 = n≤X g(n) κ(κ + 1) • • • (κ + h) (h + 1)! log X n h+1 @IIA + Q(log(X/n)) + O(log log(3X)) .
heneD y our reursion hypothesis in hD we get

@IPA n≤X g(n)(log n) h+1 = κ(κ + 1) • • • (κ + h) (h + 1)! G h+1 (X) + P (log X)(log X) κ + O((log X) κ (log log X) (h-1)h 2 )
for some polynomil P of degree t most hF rere we hve used the reursion hypothesis with (log X/n) k F st is preisely iqution @IPA tht llows us to swith esily from one form of our hypothesis to the otherF hen h = 1D so h -1 = 0D we do not hve power of log log XF e my express the leftEhnd side y vemm WD getting our (rst fundE mentl formulX

@IQA u h+1 H h+1 (u) u (h+1) = (κ + h)! (κ -1)! H h+1 (u) u + (h + 1)!P (u)u κ-1 + O(u κ-1 (log u) h(h-1) 2 
),

where we use the shortut

(κ + h)! (κ + h -j)! = (κ + h) • • • (κ + h -j + 1).
his is n Euler di'erentil equtionF es mentioned eforeD it my e reE dued to liner di'erentil eqution with onstnt oe0ients with the hnge of vriles u = e v D ut we shll skip this step nd use n lredy mde resultF st is tehnilly lerer to (rst extrt 9simplifying term9 nd this is our (rst stepF implifying the equtionF ine we my ssume tht the polynomil P hs no onstnt oe0ientD we set

(h + 1)!P (u) = 1≤s≤h q s u s .
e de(neD for 0 ≤ s ≤ h -1D the rel numer a s y

(κ + s)! (κ -1)! - (κ + h)! (κ -1)! a s = q s-1 .
e then hek tht K(u) = 0≤s≤s-1 a s u s+κ stis(es

u h+1 K (h+1) (u) = (κ + h)! (κ -1)! K(u) + (h + 1)!P (u)u κ-1 .
xote tht we ould hve dded ny monomil a h u h+κ to K(u)F prom the pproximte di'erentil eqution to the ext oneF e de(ne W (u) = H h+1 (u)u -1 -K(u)F his funtion stis(es

u h+1 W (h+1) (u) = (κ + h)! (κ -1)! W (u) + O(u κ-1 (log u) h(h-1) 2 
).

e re in good onditions to use vemm IHF et the eginningD we should onsider the roots

λ 1 = κ + h, • • • , λ r of the eqution λ(λ -1) • • • (λ -h) = κ(κ + 1) • • • (κ + h) tht re suh tht λ i > κ -1F et ϕ(u) = Cu κ-1 (log 2u) h(h-1) 2
for lrge enough onstnt CD so tht

u h+1 W (h+1) (u) - (κ + h)! (κ -1)! W (u) ≤ ϕ(u).
e (nd tht

Φ * λ i ,c i (ϕ)(u) = Cu λ i u c i t (κ-1-λ i )u log(2t) h(h-1) 2 dt .
hen κ-λ i > 0D we selet c i = 1 nd get tht Φ * λ i ,c i (ϕ)(u) u κ-1 log(2u)F hen κ -λ i < 0D we selet c i = ∞ nd get sme resultF here remins the se κ = λ i where we selet c i = 1 nd get further power of log uF fy vemm IHD there exist prmeters

C 1 , • • • , C r suh tht W (u) - 1≤s≤r C s u λs ≤ u κ-1 (log 2u) h(h+1) 2
.

et this levelD we still hve not proved tht the relevnt roots λ s tht hve nonEzero oe0ient C s re of the form κ + h -F prom W to H h+1 F he determintion of W vi @TA goes to H (h+1) h+1 y @TA nd the de(nition

W (u) = H h+1 (u)u -1 -K(u)F e thus otin tht n≤X g(n)(log n) h+1 = i C i (log X) θ i + O (log X) κ (log log(3X)) h(h+1) 2 
where the sequene (θ i ) is the union of the one of λ s nd of κ + h, κ + h -1, . . . , κD oming from K(u)F fy our funtionl eqution @IPAD we hve similr development when we reple (log n) h+1 y (log X/n) h+1 F UF Ruling out the parasiting solutions hen h = 1D the two roots re κ + 1 nd -κF vemm IH then implies tht we n (nd a nd b suh tht

|W (u) -au κ+1 -bu -κ | u κ-1 log(2u).
his redues to |W (u) -au κ+h | u κ-1 log(2u) when κ ≥ 1/2F fut wht hppens when κ < 1/2 c e stility remrkF essume we hve nonEnegtive multiplitive funE tion f tht stis(es the ssumptions of our heorem IF essume further we hve distint exponents κ

0 = κ, κ 1 , . . . , κ r ≥ κ suh tht n≤X f (n) n log X n h+1 = 0≤s≤r C s (log X) h+1+κs +O((log X) κ (log log(3X)) C )
for some nonEzero onstnts C 0 , . . . , C r nd C ≥ 0F elet positive inteE ger K nd onsider the funtion τ K tht ounts the numer of KEtuples of divisorsD so tht τ 2 is the usul divisor funtionF xext we onsider the multiE plitive funtion f τ K tht eqully stis(es the ssumptions of heorem ID though with κ + K insted of κF fy the hirihlet ryperol pormulD we (nd tht

n≤X (f τ K )(n) n log X n h+1 = 0≤s≤r ≥0, h+1+K+κs->κ-1 C s, (log X) h+1+K+κs- + O((log X) K+κ (log log(3X)) C )
for some onstnts C 0 , . . . , C r F his tells us tht the set of exponents for f τ K is κ 0 + K, . . . , κ r + KF vet κ s denotes the lrgestD if it existsD of the κ i 9s tht is not of the form κ + h minus some integerF hen the oe0ient C s,0 omes from the min term of

C s n≤X τ K (n) n log X n h+1+K+κs nd is thus nonEzero multiple of C s F
qenerl seF sn generl the disussion of previous susetion ppliesX we only need to onsider the roots of λ of

R h (λ, κ) = λ(λ -1) • • • (λ -h) -κ(κ + 1) • • • (κ + h)
tht re suh tht R h (λ + K, κ + K) = 0 when K is positive integerF his leds to polynomil in K of degree h + 1 tht vnishes t these points (λ, κ)F he oe0ient of K h is (h + 1)λ -(1 + 2 + . . . + h -1) -(h + 1)(κ + h) + (1 + 2 + . . . + h -1)

nd sine it vnishesD we must hve λ = κ + hF sn shortX only integer trnsltes of κ my pperD nd this onludes the proof of heorem IF ipiixgi IQ VF Technical remarks he vevinEp%nle%9s eginningD nmely the link etween n≤x g(n) log n nd n≤x g(n) where g(n) = f (n)/nD hs hd mny pplitionD so it is worse providing sketh of the present methodF hen h = 1 nd f is reE strited to squreEfree integersD our method relies on the identity @s notied immeditely fter vemm QAX yur usge of Λ f thus voids the oprimlity onditions tht soon eome true omintoril hurdlesF hen y vemm S @or vemm TAD we pproxE imte the sum of the two sums over primes ove y κ(κ + 1)(log Y ) 2 + c(log Y ) + O(log log 3Y ) nd we notie tht

(log n) 2 = log X -log X n 2 = (log X) 2 -2(log X) log X n + log X n 2 .
his gives us (log X) 2 G 0 (X) -2(log X)G 1 (X) + G 2 (X) = κ(κ + 1)G 2 (X)

+ O(G 0 (X) log log 3X).

e then onvert this in n pproximte di'erentil eqution in H 2 of iuler9s typeD iFeF it n e redued to n pproximte liner di'erentil equtionD for whih one n prove deformtion resultsF

  2 ≤X/m f (p 1 )f (p 2 )(log p 1 )(log p 2 ) p 1 p 2 + p≤X/m f (p)(log p) 2 p + error.e similr eqution ould e rehed y notiing thtD y the elerg pormullog 2 = 1 1 (Λ log +Λ Λ)D we hve n≤X f (n) n (log n) 2 = m≤X f (m) m p 1 p 2 ≤X/m, (p 1 p 2 ,m)=1f (p 1 p 2 )(log p 1 )(log p 2 )

Q tF priedlnder nd rF swnieF yn fomieri9s symptoti sieveF snX Ann. Sc. Norm. Sup. (Pisa) S @IWUVAD ppF UIW!USTF R endrew qrnville nd himitris uoukoulopoulosF feyond the vh method for the prtil sums of multiplitive funtionsF snX Ramanujan J. RWFP @PHIWAD ppF PVU!QIWF issnX IQVPERHWHF doiX 10.1007/s11139-