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We consider the spatial isosceles newtonian three-body problem, with one particle on a fixed plane, and the other two particles (with equal masses) are symmetric with respect to this plane. Using variational methods, we find a one parameter family of collision solutions of this systems. All these solutions are periodic in a rotating frame.

Introduction

The main objective of the classical Celestial Mechanics is to study the n-body problem, which consists of describing the motion of n point masses moving in the space R 3 under the action of their mutual newtonian gravitational attraction. Over the years many special types of solutions have been found by using different mathematical techniques, but not many things can be said about the global behavior of solutions. In this work we prove the existence of a one parameter family of collision solutions for the system called spatial isosceles three body problem with rotating axis of symmetry. In this problem, at all time one body is in a fixed plane, and two bodies with equal masses are symmetric with respect to the same plane. If initial velocities are chosen symmetrically, the symmetry of the configuration is preserved. Note that solutions of this isosceles problem are in fact solutions of the general three body problem. In order to describe the result, let q 1 , q 2 , q 3 denotes the position of the three body system in a three dimension euclidean space, with respective masses m 1 = m 2 = m and m 3 = µ. Introducing a cartesian coordinate system (x, y, z) in the euclidean space, such that q 1 and q 2 are symmetric with respect to the plane z = 0, the body q 3 is on the same plane z = 0 and the center of mass is at the origin the coordinates of each body can be written [START_REF] Albouy | Le probléme des n corps et les distances mutuelles[END_REF] q 1 = (x, y, z), q 2 = (x, y, -z), q 3 = (-2m µ x, -2m µ y, 0).

Therefore the configuration is completely determined by the position of one body.

Figure 1. The spatial isosceles problem with rotating axis of symmetry.

The equations of motion for the first particle is given by ( 2) 

             ẍ = -(2m + µ) x
r 12 = |q 1 -q 2 | = 2|z|, r 13 = |q 1 -q 3 | = 2m + µ µ 2 (x 2 + y 2 ) + z 2 . (3) 
Considering the re-scaling

ξ = √ kx, η = √ ky, ζ = z,
where we term

(4) k = 1 + 2m µ ,
and introducing the complex variable w = ξ + iη, system (2) can be rewritten as ( 5)

     ẅ = -(2m + µ) w (k|w| 2 +ζ 2 ) 3/2 = 2 ∂U ∂w ζ = -m 4|ζ| 3 + µ (k|w| 2 +ζ 2 ) 3/2 ζ = ∂U ∂ζ ,
where the potential U is defined by

(6) U = U (w, ζ) = m 4|ζ| + µ k|w| 2 + ζ 2
We can now state the main result of the paper.

Main Theorem. Given 0 < α < √ 2 and τ > 0, there exists a collision solution of (5) satisfying the following conditions [START_REF] Meyer | Periodic solutions of the N -body problem[END_REF] w(0

) ∈ R + , ζ(0) = 0, w(t + 2τ ) = e 2iα w(t), ζ(t + 2τ ) = ζ(t), w(2τ -t) = e 2iα w(t), ζ(2τ -t) = ζ(t)
Moreover w(t) = 0 for all t, collisions are regularized and occurs only if t is an integer multiple of 2τ , and if θ denotes the argument of w, the total variation of θ from t = 0 to t = τ is equal to α.

We observe that this solution is periodic in a frame rotating uniformly around the ζ axis with angular speed α/τ . In the fixed frame it is quasiperiodic when α and π are incommensurable, and if α/π = p/q with p/q a strictly positive rational, the solution is 2qτ -periodic. The proof of this result is variational. It consists in minimizing the Lagrange action in the class of paths starting from w ∈ R, ζ = 0 at time t = 0 and ending on w ∈ Re iα at time t = τ . One need to show that this minimizer exists, it is collision free for t = 2τ Z, and it can be extended over the full real line as a solution satisfying the statement of the Main Theorem.

Variational Setting

Equations of motion ( 2) are in fact Euler-Lagrange equations for the following Lagrangian

L(w, ζ, ẇ, ζ) = 1 2 (| ẇ| 2 + ζ2 ) + U (w, ζ),
hence it is natural to search solutions of (2) as critical points of the Lagrangian Action functional, which is defined by

A : C ac ([0, τ ], C × R) → R + ∪ {+∞}, A(w, ζ) = τ 0 L(w(t), ζ(t), ẇ(t), ζ(t))dt,
where C ac ([0, τ ], C × R) is the space of absolutely continuous curve with value in C × R.

Let Ω α denotes the space of absolutely continuous curves (w, ζ) : [0, τ ] → C × R satisfying the following conditions

w(0) ∈ R, ζ(0) = 0, w(τ ) ∈ Re iα , ζ(t) ≥ 0.
Our first result concerns the existence of a minimizer. 

K(γ n , γn )(t)dt < +∞,
and by Tonelli's Theorem, γ is an absolutely continuous curve, and in fact it is an element of Ω α , moreover

τ 0 K(γ, γ)(t)dt ≤ lim inf n→+∞ τ 0 K(γ n , γn )(t)dt,
and by Fatou's Lemma

τ 0 U (γ(t))dt ≤ lim inf n→+∞ τ 0 U (γ n (t))dt therefore A(γ) = τ 0 (K(γ, γ) + U (γ))(t) dt ≤ lim inf n→+∞ A(γ n ),
proving that A is lower semicontinuous.

Let us prove now that A is coercive over Ω α , that is to say, for every C > 0 the set

Ω α,C = {γ ∈ Ω α , A(γ) ≤ C}
is compact in the C 0 topology. By lower semicontinuity of A this set is closed, hence by Ascoli's Theorem it is sufficient to prove that Ω α,C is an equicontinuous and equibounded family of curves.

Indeed, if γ = (w, ζ) ∈ Ω α,C we have τ 0 K(γ, γ)(t) dt ≤ C,
and by Cauchy-Schwarz inequality, for every 0 ≤ s < t ≤ τ we have

γ(t) -γ(s) ≤ t s γ(ξ) dξ ≤ 2C|t -s|,
where denotes the euclidean norm on

C × R = R 3 , defined by (w, ζ) = (|w| 2 + ζ 2 ) 1/2 . This inequality shows that the Ω α,C is an equicontinuous family. Moreover, if γ = (w, ζ) ∈ Ω α,C , since ζ(0) = 0, by Cauchy-Schwarz inequality we have |ζ(t)| ≤ t 0 | ζ(ξ)| dξ ≤ √ 2Ct ≤ √ 2Cτ , ∀t ∈ [0, τ ], hence ζ C 0 ≤ √ 2Cτ .
In a similar way, let t ∈ [0, τ ] be a time where |w(t)| is maximal, and let us term α = min{α, π -α}. The sum of the distance from w(t) to the real axis and to the line Re iα is bigger or equal to |w(t)| sin α, therefore, if L(w) denotes the length of t → w(t), we have L(w) ≥ |w(t| sin α, and by Cauchy-Schwarz inequality

w C 0 = |w(t)| ≤ L(w) sin α = 1 sin α τ 0 | ẇ(t)|dt ≤ τ 1/2 sin α τ 0 | ẇ| 2 dt 1/2 ≤ (2Cτ ) 1/2 sin α .
This proves indeed that Ω α,C is an equibounded family, hence it is a compact subset. Once we know that A | Ωα is lower semicontinuous and coercive, it is easy to prove the existence of a minimizer. A direct computation shows that the path (w, ζ) defined by By the fundamental Lemma in the Calculus of Variations (see for instance [START_REF] Young | Lectures on the Calculus of variations and Optimal Control Theory[END_REF]), the paths t → (w, ζ)(t) is C ∞ on (0, τ ]. An integration by parts in [START_REF] Offin | Hyperbolicity for symmetric periodic orbits in the isosceles three body problem[END_REF] gives that γ = (w, ζ) is a solution of (5). Moreover, since δζ(τ ) and e -iα δw(τ ) can be arbitrarily chosen real numbers, we have ζ(τ ) = 0 and ẇ(τ ) ∈ Rie iα . By [START_REF] Ferrario | On the existence of collisionless equivariant minimizers for the clkassical n-body problem[END_REF] Remark. If we identify C×R with R 3 , conditions ζ(τ ) = 0 and ẇ(τ ) ∈ Rie iα have a natural interpretation : γ(τ ) is orthogonal to the plane defined by the equation Im(we -iα ) = 0.

w(t) = 0, ζ(t) = t 2/3 , t ∈ [0, τ ] is in Ω α ,
(0) = 0 and ζ(t) > 0 if t ∈ (0, τ ]. We call variation of γ = (w, ζ) any C ∞ path δγ = (δw, δζ) : [0, τ ] → C × R such that δw(0) ∈ R, δw(τ ) ∈ Re

Elimination of triple collisions

Let us denote by R = (|w| 2 + ζ 2 ) 1/2 the size of a configuration (w, ζ), that is to say the square root of the moment of inertia, and let us introduce the renormalized potential Ũ = RU . The function Ũ is homogeneous of degree 0 and invariant by rotations. It is well known that critical points of Ũ are exactly central configurations, and that the minimum of Ũ , denoted here U 0 is achieved at equilateral configurations (see for instance [START_REF] Albouy | Le probléme des n corps et les distances mutuelles[END_REF]).

Proposition 2. Given α ∈ (0, 4/ √ 3) and τ > 0, if γ = (w, ζ) is a minimizer of A| Ωα then the unique collision of γ is not a triple collision, moreover ẇ(0) is a pure imaginary number.

Proof. By Proposition 1, the unique collision of γ = (w, ζ) occurs at time t = 0. We assume, for the sake of contradiction, that the collision is a triple one, and we make a variation of γ decreasing its action. First of all, we show that if a triple collision occurs at time t = 0, the path γ is necessarily a half of an ejection-collision homothetic motion of period 2τ , where the configuration is equilateral. Indeed, if we term, by abuse of notation [START_REF] Gordon | A Minimizing Property of Keplerian Orbits[END_REF]) that the minimum of the right-hand side of ( 9) among one dimensional absolutely continuous paths R : [0, τ ] → R + such that R(0) = 0, is achieved by one half of the ejectioncollision solution of period

R(t) = (|w(t)| 2 + ζ(t) 2 ) 1/2 ,
2τ of R = -U 0 /R 2 . Moreover, if t → R(t) is such a solution, the path γ(t) = (w(t), ζ(t)) = R(t)( ŵ, ζ) is in Ω α if and only if ŵ ∈ Re iα .
In conclusion, we can say that if the minimizer γ has a triple collision at time t = 0, then γ(t) = R(t)( ŵ, ζ) is the half of an equilateral ejection-collision solution of period 2τ satisfying ŵ ∈ Re iα . Without loss of generality, by (3) we can assume that

ŵ = 3 3 + k e iα , ζ = k 3 + k .
Let us denote r(t) = |w(t)| = 3 3+k R(t), and for ǫ > 0 sufficiently small, let γ ǫ = (w ǫ , ζ ǫ ) be a variation of γ defined by

w ǫ (t) = r ǫ (t)e iθǫ(t) , ζ ǫ (t) = ζ(t) = k 3 + k R(t) = k 3 r(t)
where r ǫ (t) and θ ǫ (t) are defined in the following way

r ǫ (t) = r(ǫ) if t ∈ [0, ǫ] r(t) if t ∈ [ǫ, τ ], θ ǫ (t) = t 0 C ǫ r 2 ǫ (s) ds,
and where the constant C ǫ > 0 is chosen such that θ ǫ (τ ) = α. We observe that γ ǫ is in Ω α . The difference ∆A = A(γ ǫ ) -A(γ) between the action of γ ǫ and of γ can be written as sum of three terms : ∆A = ∆A 1 + ∆A 2 + ∆A 3 , where

∆A 1 = - 1 2 ǫ 0 ṙ2 (t) dt, ∆A 2 = 1 2 τ 0 C 2 ǫ r ǫ (t) 2 dt = α 2 τ 0 1 r 2 ǫ (t) dt and ∆A 3 = µ ǫ 0 1 kr(ǫ) 2 + ζ(t) 2 - 1 kr(t) 2 + ζ(t) 2 dt.
Let us estimates ∆A. By classical Sundman's estimates (see [START_REF] Wintner | The analytical foundations of celestial mechanics[END_REF]) we have

R(t) = R 0 t 2/3 + o(t 2/3 ), Ṙ(t) = 2 3 R 0 t -1/3 + o(t -1/3 )
where R 0 = 9U0 2 1/3 . Therefore, if we set

r 0 = 3 3 + k 1/2 R 0 we get (10) ∆A 1 = - 2 3 r 2 0 ǫ 1/3 + o(ǫ 1/3 ).
Using again Sundman's estimates we get

τ 0 dt r 2 ǫ (t) = ǫ r 2 ǫ (ǫ) + τ ǫ dt r 2 ǫ (t) = 4 r 2 0 ǫ 1/3 (1 + o(1)), hence (11) ∆A 2 = α 2 r 2 0 ǫ 1/3 8 (1 + o(1)),
and in a similar way ( 12)

∆A 3 = µ   1 √ kr(ǫ) ǫ 0 dt 1 + ζ(t) 2 kr(ǫ) 2 - 1 2 3 k ǫ 0 dt r(t)   = µ √ kr0 ( 2-3 3/2 2 )ǫ 1/3 (1 + o(1)).
Finally, from ( 10), ( 11) and ( 12) we get

∆A = - 2 3 + α 2 8 r 2 0 + µ √ kr 0 2 -3 3/2 2 ǫ 1/3 (1 + o(1)),
and this quantity is negative if 0 < α < 4/ √ 3 and ǫ is sufficiently small. This proves that if γ has a triple collision at t = 0, it cannot be a minimizer of A| Ωα , hence γ(0) is not a triple collision, that is to say, w(0) = 0. By [START_REF] Ferrario | On the existence of collisionless equivariant minimizers for the clkassical n-body problem[END_REF] we can say that t → w(t) is a C 2 function on the whole interval [0, τ ]. Let us take now a variation δγ = (δw, δζ) : [0, τ ] → C × R of γ such that δw(0) ∈ R and the support of δζ is contained in (0, τ ], in particular δζ(0) = 0. We do not ask now that the support of δw is contained in (0, τ ]. The function ǫ → A(γ + ǫδγ) is differentiable at ǫ = 0, and identity (8) still holds, but now δw(0) can be an arbitrary real number. An integration by part gives Re( ẇ(0)δw(0)) = 0, hence ẇ(0) is a pure imaginary number.

Non-vanishing of angular momentum

In this section we prove the following Proposition 3. Given α ∈ (0, √ 2), and τ > 0, if γ = (w, ζ) is a minimizer of A| Ωα , then the angular momentum C = Im( ẇw) does not vanish, and w(t) = 0 for all t ∈ [0, τ ]. This statement is in fact equivalent to say that the configuration is not all the time on a fixed plane containing the ζ axis.

Proof. Since the potential U is invariant by rotation, the angular momentum C = Im( ẇw) is conserved. Let us first show that if w(t) = 0 for some time t ∈ [0, τ ], then C is equal to zero. If w(t) = 0 for some t ∈ [0, τ ], since by Proposition 2 w(0) = 0, we can assume that t ∈ (0, τ ] is the first instant such that w(t) vanishes. The energy

H = 1 2 (| ẇ| 2 + ζ2 ) -U (w, ζ)
is still conserved. Let us denote by h the energy of the minimizer γ. Introducing a system of polar coordinates w = re iθ , we can express the angular momentum and the energy in the following way

(13) C = r 2 θ H = 1 2 ( ṙ2 + C 2 r 2 + ζ2 ) -U (re iθ , ζ), hence (14) C 2 2r(t) 2 - m 4|ζ(t)| - µ kr(t) 2 + ζ(t) 2 ≤ h
for t ∈ (0, t). This inequality implies that C = 0. Indeed, if C = 0, since r(t) = 0 (and ζ(t) = 0), the left-hand side of (14) would not be upperly bounded as t → t -.

Let us show now that assuming that w vanishes at some time t ∈ (0, τ ] (and hence C = 0), we get a contradiction. Since t → γ(t) = (w, ζ)(t) is smooth as t ∈ (0, τ ] and C = r 2 θ = 0, we can state that γ(t) is all the time in the plane defined by (w, ζ) ∈ R × R. But γ ∈ Ω α , so we have necessarily w(τ ) ∈ Re iα ; and by choice of α, this is possible if and only if t = τ , so we will assume now that w(τ ) = 0. Let 0 < ǫ < τ and let us define a variation

γ ǫ = (w ǫ , ζ ǫ ) ∈ Ω α of γ by w ǫ (t) = r ǫ (t)e iθǫ(t) , ζ ǫ (t) = ζ( τ -ǫ τ t), r ǫ (t) = r( τ -ǫ τ t)
where θ ǫ (t) is defined by

θ ǫ (t) = t 0 C ǫ r 2 ǫ (s) ds,
and C ǫ is chosen such that θ ǫ (τ ) = α. We prove that if ǫ is sufficiently small, A(γ ǫ ) < A(γ). Indeed, if we perform the change of variable s = (1 -ǫ/τ )t in the action integral A(γ ǫ ), we get

A(γ ǫ ) = 1 -ǫ τ τ -ǫ 0 ṙ2 (s) + ζ2 (s) 2 ds + 1 - ǫ τ -1 τ -ǫ 0 U (r(s), ζ(s))ds +(1 -ǫ/τ )α 2 2 τ -ǫ 0 ds r(s) 2 -1
By Proposition 1, the functions t → r(t) and t → ζ(t) are regular (in fact analytic) for t ∈ (0, τ ] and ζ(τ ) = 0. By Proposition 2, r(t) is not identically zero. Since the set r = ṙ = 0 is invariant by the flow, this means that ṙ(τ ) = 0, and in fact we have necessarily ṙ(τ ) < 0. Let us term c = -ṙ(τ ) and ∆A = A(γ ǫ ) -A(γ). A simple computation gives

∆A = -h -c 2 2 -U (0, ζ(τ )) + α 2 c 2 2 ǫ + o(ǫ) = c 2 ( α 2 2 -1)ǫ + o(ǫ).
This quantity is negative if 0 < α < √ 2, provided ǫ is choosen sufficiently small. This ends the proof.

Let γ = (w, ζ) be a minimizer of A | Ωα . Since w(t) is non-vanishing, the angle θ(t) is well defined for all t ∈ [0, τ ], and by definition of Ω α , the quantity |θ(τ )-θ(0)| can only be equal to α + mπ, or to π -α + mπ, where m is any integer. Let us define now the path γ = (re iθ , ζ), where ( 16)

θ(t) = α β t 0 |C| r 2 (s) ds, t ∈ [0, τ ].
This path γ is an element of Ω α . By ( 14) and ( 16) we get

A(γ) -A(γ) = 1 2 α 2 β 2 -1 τ 0 C 2 r 2 (t) dt < 0,
proving that γ cannot be the minimizer of A | Ωα .

Proof of the Main Theorem

In order to give a proof of the Main Theorem, we need to introduce Levi-Civita regularization of the binary collisions between q 1 and q 2 . Let us think at (w, ẇ, ζ, ζ) as independent variables on the phase space, and introduce the following Levi-Civita map (see [START_REF] Szebehely | Theory of Orbits[END_REF]) :

(17) (w, p w , u, v) → (w, ẇ = p w , ζ = u 2 , ζ = v/u) where (w, p w , u, v) ∈ C × C × (R \ {0}) × R.
If we rescale time as dt ds = 2u 2 and lift equations of motion (5) to the Levi-Civita's variables (w, p w , u, v) we get (18)

                     w ′ = 2u 2 p w p ′ w = -2(2m + µ) u 2 w [k|w| 2 +u 4 ] 3/2 u ′ = v v ′ = v 2 u -m 2u - 2µu 5 
[k|w| 2 +u 4 ] 3/2 , where ( ) ′ denotes the derivative with respect to the time variable s. In Levi Civita's variables the energy function becomes

H = 1 2 (|p w | 2 + v 2 u 2 ) - m 4u 2 - µ (k|w| 2 + u 4 ) 1/2 .
Let us fix now an energy value h. Replacing the value of energy in the fourth equation of (18) we get the vector field (18) restricted to the energy hypersurface

H = h : (19)                      w ′ = 2u 2 p w p ′ w = -2(2m + µ) u 2 w [k|w| 2 +u 4 ] 3/2 u ′ = v v ′ = 2uh -u|p w | 2 + 2µku|w| 2 [k|w| 2 +u 4 ] 3/2 .
As we can see, this vector field is no more singular for u = 0, w = 0, that is to say, double collision are regularized, and we get a natural continuation of solutions with double collision singularities.

Proof of the Main Theorem. Given 0 < α < √ 2 and τ > 0, let γ = (w, ζ) : [0, τ ] → C × R be a minimizer of A | Ωα given by Proposition 1. By Propositions 1, 2 and 3, the path γ(t) is a solution of (5) with a unique double collision (and no triple collision) at time t = 0 (i.e. ζ(0) = 0), and the w component of γ satisfies w(t) = 0 for all t ∈ [0, τ ]. Since the potential U is invariant by the orthogonal group acting on the w variable, without loss of generality we can assume that w(0) ∈ R + and that the angular momentum is strictly positive, hence by Corollary 1 the polar angle θ (i.e. the argument of w) satifies θ(0) = 0 and θ(τ ) = α. Moreover, since the instant t = τ is not a singularity of γ, this solution is well defined for t ≥ τ and it follows from Propositions 1, 3 that γ(t) = (w, ζ)(t) is indeed well defined for t ∈ [0, 2τ ], in this interval it satisfies 

  iα and δζ(0) = 0. Let δγ = (δw, δζ) be a variation of the minimizer γ = (w, ζ) with support contained in (0, τ ]. Since U is singular only at ζ = 0, the function ǫ → A(γ + ǫδγ) is differentiable at ǫ = 0, and we have (8) d dǫ ǫ=0 A(γ + ǫδγ) = τ 0 Re( ẇ δ w) + ζ δζ + 2 ∂U ∂w δw + ∂U ∂ζ δζ (t)dt = 0.

Corollary 1 .

 1 If γ = (re iθ , ζ) is a minimizer of A | Ωα , the total variation of the angle θ is equal to α, that is to say |θ(τ ) -θ(0)| = α. Proof. Suppose, for the sake of contradiction, that |θ(τ ) -θ(0)| = β > α. Since the Lagrangian L(w, ζ, ẇ, ζ) is invariant by the symmetry (w, ζ, ẇ, ζ) → (-w, ζ, -ẇ, ζ), without loss of generality we can assume that θ(0) = 0. Let us denote by C the angular momentum of γ. By previous Proposition 3, C = 0, and by (13) we have θ(t) = C/r 2 (t), therefore (15) τ 0 |C| r 2 (t) dt = β.

  -t) = e 2iα w(t), ζ(2τ -t) = ζ(t),and has a double collision at times t = 0 and t = 2τ . Let us denote by s → (w, p w , u, v)(s) the lift of t → (w, ẇ, ζ, ζ)(t) by the Levi-Civita's map (17) (such that u ≥ 0), reparametrized by the Levi-Civita's time variable s, defined by ds dt = 1 2ζ(t) ) and such that at time s = 0 the solution is in double collision. This path is indeed a (regular) solution of (19) and it satisfies the following conditions :w(0) = w(2S) p w (0) = p w (2S) u(0) = -u(2S) = 0 v(0) = -v(2S) = √ 2m,where we term S = τ 0 dt 2ζ(t) . It is clear now that the path s → (w, p w , -u, -v)(s) is a solution of equations (19), and in fact (w, p w , u, v)(s + 2S) = (w, p w , -u, -v)(s). If we come back to the original variable (w, ẇ, ζ, ζ) and to the physical time t, we get that after regularization of double collision, the solution t → (w, ζ)(t) is well defined for evary t ∈ R, and it satifies the following conditionsw(t + 2τ ) = w(t), ζ(t + 2τ ) = ζ(t),moreover (20) holds for every t ∈ R. This ends the proof of the Main Theorem.

  +U , where K is a regular Tonelli (in fact quadratic) Lagrangian, and U a singular one. Let γ n = (w n , ζ n ), n ∈ N be a sequence in Ω α such that

	we get that L = K lim inf n→+∞	A(γ n ) < +∞
	and converging uniformly to a path γ = (w, ζ). Since U is positive, we have also
		τ	
	lim inf n→+∞	0	
	Proposition 1. Let α ∈ (0, 2π) \ {π} and let τ > 0. The functional A | Ωα has a minimizer. If t → (w, ζ)(t) is such a minimizer, the unique collision occurs at time t = 0, and for t ∈ (0, τ ] it is a real solution of the isosceles three-body problem. The component t → ζ(t) is strictly increasing and ζ(τ ) = 0, moreover ẇ(τ ) is a real multiple of ie iα .
	Proof. We prove the existence of a minimizer of A | Ωα by the direct method of the Calculus of variations : we show that the the functional A | Ωα is lower semicontious (with respect to the uniform convergence) and coercive. Let us start to prove that
	A | Ωα is lower semicontinuous. It is a standard result, due to L. Tonelli, that the action functional associated to a regular Tonelli Lagrangian (i.e., C 2 , strictly convex on the velocity, and superlinear above compact subset) is lower semicontinuous with
	respect to uniform convergence (see for instance [3], Theorem 3.2.1). If we term
	K(w, ζ, ẇ, ζ) =	1 2	(| ẇ| 2 + ζ2 )

  and its action is finite, hence the infimum of A | Ωα is finite. Let γ n = (w n , ζ n ), n ∈ N be a minimizing sequence for A | Ωα . By coercivity of the functional, up to taking a subsequence we can assume that γ n converges uniformly to a path γ = (w, ζ) ∈ Ω α , and by lower semicontinuity of the functional, γ is a minimizer. Let us prove now that t → ζ(t) is non decreasing as t ∈ [0, τ ]. Assume for the sake of contradiction, that for some times 0 ≤ t 1 < t 2 ≤ τ we have ζ(t 1 ) > ζ(t 2 ).

			Let us
	define ζ by		
	ζ(t) = max s∈[0,t]	ζ(s),	t ∈ [0, τ ],

and γ = (w, ζ). It is clear that ζ(t) < 0 on a set of positive measure, and in the same set ζ(t) = 0. Moreover, by definition of ζ, we have ζ(t) ≥ ζ(t) on [0, τ ], and since the potential U (w, ζ) is increasing with respect to ζ, the action of γ is strictly smaller than the action of γ. This gives a contradiction. Let us prove now that the unique collision occurs for t = 0. Since t → ζ(t) is non decreasing, the set of t such that ζ(t) = 0 is necessarily an interval [0, τ 0 ]. But U (w, 0) = +∞, and the action of γ is finite, therefore ζ