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Abstract: Two fractional chaotic maps, Lu and Chen fractional chaotic maps, have been analyzed using 

an innovative predictor-corrector method based on a non-uniform grid. An original chaotic law to control 

the grid size at each iteration has been introduced.  The choice of the non-uniform grid was shown to play 

a fundamental role to obtain chaotic behavior for a larger fractional parameter range, while decreasing 

the computational time. The obtained results show that the complexity of the resulting fractional chaotic 

system in terms of Lyapunov exponents, Fourier transforms and chaos robustness is sensitive to the 

choice of the grid and can be considerably improved by the proposed method. 
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1. INTRODUCTION 

Nonlinear fractional maps have been mostly studied to 

describe and analyse the behaviour in electric and magnetic 

phenomena, Chua’s memristors, fractional order electronic 

circuits (Petras, 2021), mechanics, thermodynamics and 

generally in many fields of physics (Uchaikin, 2013) etc. In 

mechanics of materials, much progress has been made to 

describe the viscoelasticity of complex materials by nonlinear 

fractional differential equations and to model composite 

materials behaviour (Krasnobrizha, et al., 2016).     

At the same time, fractional chaotic maps have been less 

studied from a different perspective: taking advantage of the 

fractional derivative to achieve robust chaos, while increasing 

the parameter range for which chaotic behaviour exists. To 

deal with this issue, we need to define first the criteria to 

evaluate the features of the fractional chaotic map. From 

chaotic dynamics point of view, Lyapunov exponents (LEs) 

have been used as chaoticity quantifiers to evaluate the speed 

of divergence of two neighbouring trajectories initialised 

close to each other. It is considered that bigger Lyapunov 

exponent will give rise to higher complexity.  

In the numerical implementation of fractional chaotic maps, 

the method to solve the fractional derivative is clearly of 

utmost importance. Here many related issues arise, from the 

choice of the numerical method for solving the fractional 

derivative equation, to the choice of the step size inside the 

method itself.  

In this work, we deal with chaotic (i.e., nonlinear) fractional 

map, and the chosen approach has been the classical 

predictor-corrector approach (Diethelm, 2002), with the 

novelty here to use a variable step with very promising 

results as it will be shown hereafter.  

Last but not the least, when comparing fractional and integer 

order chaotic maps, the fractional derivative plays the role of 

an additional parameter. This is an advantage for some 

applications, where increasing the number of parameters may 

be an interesting feature. For instance, in cryptography where 

the parameters constitute the encryption key, adding more 

parameters would increase the size of the key, and therefore 

improve the security of the whole system (longer the key, 

longer the time to break it). 

It should be noticed that the precision of the numerical 

calculation is not the crucial issue in our work, the emphasis 

being given to find the biggest parameter range for which 

chaotic behaviour can exist.  

2. PRELIMINARIES 

2.1  Fractional calculus 

Various definitions for fractional calculus exist (Riemann-

Liouville definition, Grunwald-Leinikov definition and etc.) 

and they are equivalent under certain conditions (Poldubny, 

1999). 

To provide a general idea on this topic, we give here 

fractional integral under Riemann-Liouville (RL) definition 

and fractional derivatives under Caputo definition in equation 

(1) and (2) with fractional order α , respectively. 
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a and t in equation (1) and (2) are the bounds of operators; n 

in equation (2) is the smallest integer greater than α; () 
denotes the Euler Gamma function as follows, 
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2.2  Fractional chaotic system 

Fractional systems are dynamic systems that can be modelled 

by fractional deferential equations. The system equation can 

be expressed as follows,  
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where αi denotes the fractional derivatives for i-th differential 

equation, xi(0) stands for the initial condition and fi is in 

general a nonlinear function. The system is commensurate if 

all αi hold the same value, otherwise, the system is 

incommensurate. 

The fractional chaotic systems on the other hand are the 

dynamic systems with fractional derivatives which exhibit 

chaotic behaviour. It is found that the chaotic behaviour of 

many integer-order derivative chaotic systems can be 

preserved after extending them to fractional orders (Petráš, 

2011). Hence, in our following work, the fractional chaotic 

systems adopted are obtained though extension from classical 

integer order derivative chaotic functions.  

3. PROPOSED MODIFIED CORRECTOR-PREDICTOR 

METHOD BASED ON NON-UNIFORM GRID  

The proposed numerical calculation method for fractional 

systems is based on ABM fractional Corrector and Predictor 

method (Diethelm, 2002). The original method makes use of 

the equivalence between the analytical property of fractional 

differential equations with initial condition problem of 

Caputo type and Volterra integral equation. The numerical 

approximated solutions xh(tj)(j=1,2,…n) are calculated 

assuming a uniform grid { tn = nh: n= 0, 1, … , N} with some 

integer N and h := T / N employed. 

Unlike the classical approach which is calculated with a fixed 

step size h, we propose an original non-uniform grid to vary 

the step size in each iteration. We do not go into details of the 

formula deducing, since it is the same as the classical ABM 

method which can be found in the paper of Diethelm and 

only give out the deduced simplified next states calculation 

equations in (5)-(8). Bearing in mind that the fractional 

derivatives in the equations are smaller than 1. 
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In equation (5), h(n) is the non-uniform grid space (step size) 

taking a value from 0.001 to 0.005 with a gap of 0.001; f is 

the system function, Γ() is the gamma function given in (3), 

and parameter a takes the form as follows,  
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X ( 1)P n +  in equation (5) denotes the predicted value of X( 1)n +  

and is formulated as, 
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where parameter b holds the following form, 
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It is worth mentioning that in all the above equations, X(n+1) 

and X ( 1)P n +  stand for the state vectors with state components. 

The number of components is equal to the dimension of the 

system adopted. 

To determine the variable step, we introduce an external map 

to construct a switching mechanism. We choose the chaotic 

skew tent map which holds the form as in (9) due to the fact 

that the states of the map are uniformly distributed in the 

range of (0,1) and exhibit chaotic behaviour (More 

information on this map can be find in paper of Qiao, et al., 

2020). The phase space diagram of skew tent map with 

control parameter equal to 0.4 is given in Fig 1. 
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The variable step h(n) is then determined by the following 

equation, 
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In the following section, our proposed variable step size 

method is applied to numerically calculate two 3D fractional 

system. The chaoticity of the maps is discussed. 

4. SIMULATOINS AND ANALYSIS  

4.1  Fractional chaotic systems adopted for simulation 

Fractional chaotic Chen and Lu systems are described by the 

 
Fig. 1. Phase portrait and histogram of skew tent map p 

equals 0.4, initial condition for histogram is Xst(0) = 0.3 
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In the above equations, βc and βl are the commensurate 

fractional derivatives of fractional Chen and Lu system 

smaller than 1, respectively; (ac, bc, cc) and (al, bl, cl) are the 

parameters of the systems.  

The phase portrait of the two systems are generated applying 

the non-uniform grid discussed in the previous section and 

their phase space diagrams are given in Fig.2 with fractional 

derivative order 0.9. The control parameter p and initial 

condition Xst(0) for the skew tent map are set to 0.4 and 0.3 

respectively to acquire the variable step size h(n).  For the 

fractional Chen map, the parameters are set to pc = (35, 3.2, 

28), and the initial condition is fixed at (-9,-5,14). Whereas 

for the fractional Lu map, the parameters and initial condition 

are chosen as pl = (al, bl, cl) = (36, 3, 20), and (x1(0), x2(0), 

x3(0)) = (0.2,0.5,0.3).    

In the following, the chaoticity of the fractional maps is 

discussed and compared in terms of bifurcations, Lyapunov 

Exponents (LEs) (obtained through iterations as given in 

paper of Danca, et al,2018) and etc.  

4.2  Analysis of singularities  

To begin with, we calculate from analytical point of view the 

fixed points of the systems. Knowing that equilibrium of the 

fractional systems and their stability can be preserved with 

fractional derivative orders, the equilibria of fractional 

systems can be obtained using the same method as used in 

the case of classical integer order derivative system. With the 

given parameters pc and pl, we obtained three equilibrium 

points for Chen system  ( )1 0, 0, 0  cE = , ( )2 -8.1976, -8.1976, 21  cE = , 

( )3 8.1976, 8.1976, 21  cE =  and three for Lu system ( )1 0, 0, 0  lE = , 

( )2 -7.7460, - 7.7460, 20  lE =  and ( )3 7.7460, 7.7460, 20  lE = .   

The singularity of the equilibria can also been acquired 

through conventional method by calculating the eigenvalues 

of the Jacobian matrix of the righthand sides of the system 

equations at the equilibria, and the results are given in Table 

1. λc and λl in the table stand for the eigenvalues of the two 

systems. (Parameters pl = (al, bl, cl) = (36, 3, 20) for Lu system 

and pc = (35, 3.2, 28)) for Chen system as adopted before).  

4.3  Lyapunov exponent results 

We analyzed first the LEs of fractional Chen system for 

different fractional derivative orders applying classical 

uniform grid ABM corrector predictor, and compared with 

our proposed algorithm. The map has been evaluated on 55 

values ranging from 0.45 to 1 with a discrepancy of 0.01. For 

each fractional derivative orders, 106 states have been 

generated and the LEs have been calculated throughout the 

iterations. The LE values for the last iteration were processed 

and combined together to form the LE spectrum curve given 

 

Fig. 2. Phase space of fractional Chen and Lu systems with fractional derivative order 0.9 

Table 1. Equilibria of Chen and Lu system and their singularity 

System Equilibrium 
Eigenvalue Types of 

singularity λ1 λ2 λ3 

Fractional 

Chen 

system 

(0,0,0) -35 28 -3.2 Saddle 

(-8.1976,-8.1976,21) -18.7738 4.2869+15.2376i 4.2869-15.2376i Saddle Focus 

(8.1976, 8.1976,21) -18.7738 4.2869+15.2376i 4.2869-15.2376i Saddle Focus 

Fractional 

Lu system 

(0,0,0) -36 20 -3 Saddle 

(-7.746,-7.746,20) -22.6516 1.8258+13.6887i 1.8258-13.6887i Saddle Focus 

(7.746, 7.746,20) -22.6516 1.8258+13.6887i 1.8258-13.6887i Saddle Focus 
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Eigenvalue Types of 

singularity λ1 λ2 λ3 

Fractional 

Chen 

system 

(0,0,0) -35 28 -3.2 Saddle 

(-8.1976,-8.1976,21) -18.7738 4.2869+15.2376i 4.2869-15.2376i Saddle Focus 

(8.1976, 8.1976,21) -18.7738 4.2869+15.2376i 4.2869-15.2376i Saddle Focus 

Fractional 

Lu system 

(0,0,0) -36 20 -3 Saddle 

(-7.746,-7.746,20) -22.6516 1.8258+13.6887i 1.8258-13.6887i Saddle Focus 

(7.746, 7.746,20) -22.6516 1.8258+13.6887i 1.8258-13.6887i Saddle Focus 

 

 

 

     

 

 

Fig. 3. Lyapunov exponent and Bifurcations for Chen maps with fractional order βc varying from 0.45 to 1 applying 

classical method and proposed non-uniform grid method 

 in Fig. 3. 

It can be seen from the figure that for both methods, using 

uniform and non-uniform grid, among the three LEs, the LE 

for x1 direction is greater than 0, indicating that the 

trajectories are expanding along this direction. From the 

obtained LE values, it can be concluded that for the fractional 

derivative ranging from 0.52 to 1(non-uniform grid) and 0.54 

to 1(uniform grid), the system remains chaotic. One can also 

notice that, the LE obtained through our proposed method 

exceeds zero at a smaller fractional derivative order 

compared to that of the classical uniform grid predictor-

corrector method. This indicates that with our proposed 

method, the fractional derivative range for the map to be 

chaotic is enlarged. The same conclusion can also be detected 

from the bifurcation diagrams. In the diagram, the fixed focus 

can be observed with fractional order smaller than 0.52 for 

our proposed method and 0.54 for uniform grid calculation 

method. After order 0.52 (0.54 for uniform grid), the 

bifurcation reveals the chaotic behavior.  

It should be noticed here that our concern in this work was 

not to obtain a better approximation of the original fractional 

chaotic system (eq. (11) and eq. (12)) but to select a method 

allowing to achieve chaotic behaviors for a larger parameter 

range, which is an interesting feature in some applications 

such as cryptography or pseudo-chaotic number generators.   

We also give here the simulation results of fractional Lu map 

for a clearer comparison between the two calculation 

methods. The LEs for fractional order from 0.55 to 1 with a 

discrepancy of 0.01 are calculated and plotted for both 

methods in Fig.4(a). A clear gap can be observed between the 

red line (uniform grid) and blue line (non-uniform grid) 

where the latter crosses the horizontal line (LE equals 0) 

between fractional derivatives orders of 0.56 and 0.57, while 

the former crosses the line between 0.6 and 0.61. This is also 

in accordance with our previous findings which indicates that 

the implementation of non-uniform would enable to enlarge 

the fractional order parameter range for which the system 

preserves its chaotic properties. 

Additional to the fractional derivatives, we have also 

analysed the impact of the other control parameters. 

Comparative results on the LEs obtained by our proposed 

non-uniform grid calculation method and by the classical 

fractional ABM Predictor Corrector method are presented in 

Table 2 for Chen and Lu systems. For fractional Chen system, 

we have evaluated 50 successive values in the range of [20, 

45], [1, 11], [20, 45] for its control parameters ac, bc, and cc, 

respectively (Change only one at a time, holding the others 

unchanged). The number of values whose LEs are greater 

than 0 among the 50 evaluated values have been acquired. 

For fractional Lu map, evaluation of 50 successive values in 

the range of [20, 45], [0, 10], [20, 45] for its control 

parameters al, bl, and cl has also been conducted. It can be 

observed from the table that our proposed method possesses 

more LEs greater than 0 for all the parameters as well as the 

fractional orders. This indicates that our proposed calculation 

method also introduces extra control parameter range for the 

system to be chaotic. 

Knowing that the applied LE calculation method is only a 

qualitative measurement of chaotic properties for fractional 

order systems, we also calculate the percentage of the number 

of LEs obtained applying our method which exceeds that of 

the classical approach for a rough idea of the enhancement of 

chaoticity. The results are also given in Table 2. It can be 

concluded that for the evaluated parameter values who have 

LE greater than 0, the proposed method gives a LE which 

exceeds that of the classical method no less than 70% of the 

time. 

4.4  Time response and other results 

To further evaluate the calculation methods and justify LE 

results from another perspective, we ‘synchronized’ the states 
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Table 2. LE results for Chen and Lu system with different parameters and fractional orders 

Systems 
Parameter and 

Range 

Number 

of value 

estimated 

Number of LEs greater than 0 

(% in total value estimated values) 
Proposed > Classical  

(greater in LE value) 

(%) 
Uniform Non-uniform 

Chen 

map 

βc 0.45 to 1 55 46(84%) 48(87%) 89% 

ac 20 to 45 50 48(96%) 49(98%) 80% 

bc 1 to 11 50 39(78%) 43(86%) 78% 

cc 20 to 45 50 49(98%) 50(100%) 70% 

Lu map 

βl 0.55 to 1 45 38 (84%) 42(93%) 89% 

al 20 to 45 50 41(82%) 45(90%) 92% 

bl 0 to 10 50 48 (96%) 49(98%) 90% 

cl 20 to 45 50 37(74%) 39(78%) 97% 

 
of the Lu system calculated through the two methods by 

identifying and matching the states with identical time stamps 

(199961 ‘synchronized’ states out of 106 iterated states). The 

last 150 ‘synchronized’ states are plotted out in Fig. 4(b), (c) 

and (e) which show in the time domain the evolution of the 

different system dynamics according to the grid choices.  

These figures confirm the analysis based on the LE (Fig. 

4(a)), for which with uniform grid, the system is not chaotic 

when the fractional derivative order βl is smaller than 0.61, 

whereas with our proposed non-uniform gird, the system 

states exhibit chaotic behaviour at fractional derivative order 

starting at 0.57. One can also observe from the y-coordinates 

of red and blue lines in Fig. 4(b) and 4(c) that for order 0.56, 

both methods reach at the same point (-7.746, -7.746, 20), as    

well as the states obtained through uniform grid calculation 

method for order 0.57 (red line in Fig. 4(c)). This indicates 

that under the given initial conditions and parameters pl = (36, 

3, 20), (x1(0), x2(0), x3 (0)) = (0.2,0.5,0.3), at fractional orders 

where there is no sign of chaos, after sufficient iterations, the 

trajectories converge towards the fixed points 2
lE  as obtained 

from analytical study. The phase portrait of the attractors in 

Fig. 4(e) and (f) also confirms the coherence. There is only a 

fixed point for order 0.57 for the uniform grid method 

whereas for order 0.61 both methods possess LEs greater 

than 0, the phase portraits are chaotic and exhibit similar 

shape. 

After matching the states for the same time instants from the 

uniform and non-uniform grid, we acquired the difference 

between the two attractors obtained for Lu system. The time 

response of the difference (last 150 states) and the phase 

portrait (last 10000 states) for βl = 0.7 are given in Fig. 5(b) 

and (c). For this fractional order the system behavior is 

always chaotic independently of the grid choice. A new 

distinguished pattern is generated which could be considered 

as a new system possessing chaotic properties. The fast 

Fourier Transformation of the system is also acquired by 

employing the nonuniform FFT function integrated in 

MATLAB. And the results for order 0.7 is given in Fig. 5(a). 

4.5  Computational time 

The computation time applying both methods for fractional 

Chen and Lu system are recorded and shown in the table (run 

with MATLAB R2018b). It can be observed that our 

proposed method takes less computational time with respect 

to the classical one (106 iterations).  

Note that achieving higher precision in the numerical 

calculation was not the objective of this work. The purpose 

was to investigate the robust chaos appearing for a large 

range of parameter values with a higher chaoticity. As for the 

applications, the maps obtained through our proposed non-

uniform grid have been tested in a coupling with another 

fractional double-humped logistic map for the design of 

fractional pseudo chaotic random generator in paper Yang et 

al. (2020). Very good statistical results in terms of 

randomness have been achieved. 

5.  CONCLUSION 

In this paper, we proposed a non-uniform grid calculation 

method based on classical fractional ABM corrector-

predictor method using variable step sizes obtained from an 

external skew tent map. The proposed method based on 

chaotic threshold for fractional differential equations is not 

limited to the specific examples of fractional Lu and Chen 

systems. It may be generalized to other linear or nonlinear 

fractional function f.  

The advantages of the proposed method are that it is faster 

and easily implementable, and it is not more complex for 

application than the original uniform grid predictor-corrector 

method. At the same time, the parameter and fractional 

derivative ranges for which chaos can be observed have been 

increased, and the chaoticity in terms of LE is higher. The 

expected potential applications are numerous such as 

designing systems requiring robust chaos, or chaos-based 

encryption schemes with larger set of parameters required to 

achieve higher security. Further analysis based on coupled Lu 

and Chen fractional chaotic systems obtained by non-uniform 

grid are currently under investigation. 

Table 3. Computational time 

System 
Computation time (s) for 106 iterations 

Uniform Grid Non-uniform Grid 

Chen 1171.511 1084.5942 

Lu 1142.0571 1029.2975 
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     (a) LEs comparision for x1 component             (b) Time response of last 150 points (βl =0.56)         (c) Time response of last 150 points (βl =0.57)  

 
(d) Time response of last 150 points (βl =0.61)         (e) Attractors of last 10000 states (βl =0.57)             (f) Attractors of last 10000 states (βl =0.61) 

Fig. 4. Comparison of LEs for x1 component; time response for Lu system with fractional order 0.56, 0.57 and 0.61; 

Phase portrait of the attractors obtained from proposed non-uniform method and classical uniform approach 

 

(a) FFT results for Lu system (order 0.7)       (b) Time response of difference between two methods        (c) Phase portrait of the difference 

Fig. 5. Simulation results for Lu system with fractional derivative order 0.7 
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