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Abstract: The High-Resolution Imaging Science Experiment (HiRISE) onboard the Mars Reconnais-
sance Orbiter provides remotely sensed imagery at the highest spatial resolution at 25-50 cm/pixel
of the surface of Mars. However, due to the spatial resolution being so high, the total area covered
by HiRISE targeted stereo acquisitions is very limited. This results in a lack of the availability of
high-resolution digital terrain models (DTMs) which are better than 1 m/pixel. Such high-resolution
DTMs have always been considered desirable for the international community of planetary scientists
to carry out fine-scale geological analysis of the Martian surface. Recently, new deep learning-based
techniques that are able to retrieve DTMs from single optical orbital imagery have been developed
and applied to single HiRISE observational data. In this paper, we improve upon a previously
developed single-image DTM estimation system called MADNet (1.0). We propose optimisations
which we collectively call MADNet 2.0, which is based on a supervised image-to-height estimation
network, multi-scale DTM reconstruction, and 3D co-alignment processes. In particular, we employ
optimised single-scale inference and multi-scale reconstruction (in MADNet 2.0), instead of multi-
scale inference and single-scale reconstruction (in MADNet 1.0), to produce more accurate large-scale
topographic retrieval with boosted fine-scale resolution. We demonstrate the improvements of the
MADNet 2.0 DTMs produced using HiRISE images, in comparison to the MADNet 1.0 DTMs and the
published Planetary Data System (PDS) DTMs over the ExoMars Rosalind Franklin rover’s landing
site at Oxia Planum. Qualitative and quantitative assessments suggest the proposed MADNet 2.0
system is capable of producing pixel-scale DTM retrieval at the same spatial resolution (25 cm/pixel)
of the input HiRISE images.

Keywords: 3D mapping; digital terrain model; DTM; topography; small-scale; high-resolution; Mars;
deep learning; HiRISE; HRSC; ExoMars; Oxia Planum

1. Introduction

High-resolution digital terrain models (DTMs) have always been considered as a
key geospatial data product for studying a planetary surface such as Mars. For example,
DTMs derived from the Mars Express’s 12.5-25 m/pixel High-Resolution Stereo Camera
(HRSC) [1] are able to provide topographic context of a large area, whilst DTMs derived
from the Mars Reconnaissance Orbiter (MRO) 6 m/pixel Context Camera (CTX) [2] and
the ExoMars Trace Gas Orbiter (TGO) 4-6 m/pixel Colour and Stereo Surface Imaging
System (CaSSIS) [3] allow us to study moderately finer scale topography at the decametre-
scale. Moreover, for a small percentage of the Martian surface, DTMs derived from the
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MRO 25-50 cm /pixel High-Resolution Imaging Science Experiment (HiRISE) [4] targeted
stereo acquisitions are able to reveal detailed topographic information of surface features
or processes at metre-scale. The high-resolution DTMs from HiRISE have become an
invaluable resource for the international community of planetary scientists to carry out
geological analysis of the Martian landscapes.

However, due to the spatial resolution being very high, the surface coverage of HiRISE
observations is rather limited. According to the product coverage shapefile (https://ode.
rsl.wustl.edu/mars/coverage/ODE_Mars_shapefile.html, accessed on 15 October 2021)
released on 2 September 2021, the existing HiRISE images have a total coverage of 3.405% of
the Martian surface (see Figure 1). The total coverage of HiRISE targeted stereo acquisitions
is lower—currently being 0.316%. This means with traditional photogrammetric methods,
only 0.316% of the Martian surface can possibly be mapped into 3D at a high- resolution of
about 1 m/pixel. For example, the publicly available NASA Planetary Data System (PDS)
1-2 m/pixel HiRISE DTMs (https://www.uahirise.org/dtm/, accessed on 15 October
2021) currently have a total surface coverage of 0.0297%. However, deep learning-based
techniques have recently been developed that are able to retrieve DTMs using only a
single HiRISE observation as input [5-7]. Using deep learning-based single-image DTM
retrieval methods, ultra-high-resolution (25-50 cm/pixel) 3D information can now be
derived “on-demand” for the remaining 3.098% area of the Martian surface, in which case,
meaning scientific analysis that is reliant on high-resolution 3D will become feasible in
these remaining areas.

HiRISE coverage
(on 2 Sep. 2021)
M PDS DTM
~ Stereo pairs
| Images

Figure 1. Global coverage of HiRISE images, targeted stereo pairs, and existing PDS DTMs released on 2 September 2021.

In this work, we build on our previous development of the Multi-scale Generative
Adversarial U-Net based single-image DTM estimation system (MADNet; hereafter re-
ferred to as MADNet 1.0) [6] and propose several key modifications to the original network
architecture and the processing pipeline to improve the results and to resolve the issues that
are summarised in Section 2.1 of this paper. We propose the new MADNet 2.0 system that
employs a simplified and optimised single-image DTM estimation network for pixel-scale
DTM retrieval together with a coarse-to-fine reconstruction scheme on top of the DTM
inference process. A new set of training data is constructed using selected PDS HiRISE
DTMs and iMars CTX DTMs [8] which are available through the ESA’s Guest Storage Facil-
ity [9] (https://www.cosmos.esa.int/web/psa/ucl-mssl_meta-gsf, accessed on 15 October
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2021). We demonstrate the new MADNet 2.0 system with single-view HiRISE images over
the ExoMars Rosalind Franklin rover’s landing site at Oxia Planum [7,10]. The HRSC and
CTX DTM mosaics over the same area (described in [7]) that are co-aligned with the Mars
Global Surveyor’s Mars Orbiter Laser Altimeter (MOLA) [11,12] global areoid DTM (https:
/ /planetarymaps.usgs.gov/mosaic/Mars_ MGS_MOLA_DEM_mosaic_global_463m.tif, ac-
cessed on 15 October 2021), are used as the baseline reference data. Qualitative assess-
ments using colourised and shaded relief DTMs, and quantitative assessments using
semi-automated crater size-counting, and automated slanted-edge image sharpness mea-
surements, are provided for the resultant MADNet 2.0 DTMs, in comparison with the PDS
HiRISE DTMs and the MADNet 1.0 HiRISE DTM mosaic product that was produced and
described in [7]. In addition, DTM profile and difference measurements are performed
for sub-areas to show the height accuracy of the resultant MADNet 2.0 HiRISE DTMs, in
comparison with the PDS HiRISE DTMs and the reference CTX DTM.

MADNet 2.0 resolves major issues of the MADNet 1.0 system and produces high-
quality topography retrieval at the same spatial resolution of the input image (i.e., pixel-
scale topography retrieval). Figure 2 shows an example of side-by-side comparisons of
one of the 25 cm/pixel input HiRISE images, the 1 m/pixel PDS DTM, the 50 cm/pixel
MADNet 1.0 DTM, and the 25 cm/pixel DTM that is produced by the proposed MADNet
2.0 single-image DTM estimation system.

'PDSDTM

-

Figure 2. A side-by-side view example of the 25 cm/pixel HiRISE (ESP_003195_1985_RED) image, 1 m/pixel PDS DTM,
50 em/pixel MADNet 1.0 DTM (from [7]), and the resultant 25 cm/pixel MADNet 2.0 DTM (colourised and hill-shaded).

The layout of the rest of the paper is as follows. In Section 1.1, we review previous work
in the field of single-image deep learning-based height/depth estimation. In Section 2.1,
we summarise the overall workflow and key remaining issues with the MADNet 1.0 system.
This is followed by a discussion of the proposed changes and justifications for the MADNet
2.0 system in Section 2.2 and network training details in Section 2.3. In Section 2.4, we
introduce the datasets and the experiments. Results are qualitatively demonstrated in
Section 3.1 and quantitative assessments are provided in Section 3.2 and in Section 3.3 where
we present profile and DTM difference measurements. In Section 4.1, we demonstrate
the extensibility of the MADNet 2.0 system using a single HRSC image and the MOLA
DTM as inputs to produce a high-quality pixel-scale HRSC DTM. This is followed by a
brief discussion of the remaining limitations and future work in Section 4.2 before the
conclusions are drawn in Section 5.
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1.1. Previous Work

Although photogrammetry and multi-view stereo have a long history in the field of
computer vision, height or depth from a single-view image (excluding traditional pho-
toclinometry [13-15]) only started being considered feasible in recent years, alongside
the great success of the development of deep learning techniques, wherein the term for
single-image DTM/height/depth estimation is generally referred to as “monocular depth
estimation” (MDE). With a variety of potential applications in the fields of robotics, au-
tonomous driving, virtual reality, and etc., several hundreds of MDE methods/networks
have been proposed [16-19] over the last 7 years. In terms of training mechanisms, these
MDE methods can be classified into supervised methods, requiring ground truth depth
image for training, and unsupervised methods, using 3D geometry and requiring only
multi-view images as inputs. For ground-based applications, MDE networks are generally
trained with outdoor or indoor scenes [20-22] either with ground truth measured by LI-
DAR (Light Detection and Ranging) for supervised learning or with multi-camera or video
inputs for calculation of the underlying 3D geometry for unsupervised learning.

In terms of the supervised methods, the earliest successful experiments of applying
convolutional neural networks (CNNs) to address MDE was reported in [23,24], wherein
the authors proposed a multi-scale CNN architecture, a scale-invariant mean squared error
(MSE) and the gradients of the differences (in horizontal and vertical directions) based loss
functions. Following these, fully CNNs and residual networks were proposed in [25-27]
to address MDE, as well as using the Berhu loss function [28] to improve the efficiency
and accuracy of the MDE models. Exploring the continuous characteristics of the neigh-
bouring depth with semantic segmentation, [29-32] combined CNN with the conditional
random field (CRF) models and semantic image segmentation to improve their MDE re-
sults. More recently, architectures based on the generative adversarial networks (GAN) [33],
the encoder-decoder style U-net [34], and the selective attention-based networks, have all
shown positive impacts on resolving MDE. Some of the representative methods of these
can be found in [35,36] for GAN-based approaches, in [37,38] for U-net-based approaches,
and in [39,40] for selective attention-based approaches.

In terms of the unsupervised methods, early breakthrough work was reported
in [41,42], wherein the two groups of authors employed the disparity network and the
pose network, to regress the transformations between stereo views (namely, “MDE from
stereo consistency”) and between neighbouring continuous frames (namely, “MDE from
multi-view”), respectively. Following these, the authors in [43,44], proposed the use of the
structural similarity index measurement (SSIM) [45] based appearance loss, the disparity
smoothness loss, and the auto-masking loss to overcome a variety of issues caused by using
only the photogrammetric loss. For “MDE from stereo consistency”, traditional methods of
visual odometry and photogrammetry are typically employed [46-48], while on the other
hand, optical flow methods are generally employed for “MDE from multi-view” [49-51].
Similar to the supervised MDE methods, GANs were also introduced into unsupervised
MDE methods, using reconstructed/reprojected views and real views as the inputs for
training the discriminator network [52-54].

In addition to the above, some other work focused on the topic of “depth comple-
tion” [19], which is different but directly relevant to MDE, aiming at improving the quality
of the MDE results. These works generally refer to MDE denoising [55,56] and MDE
refinement [57,58]. More recently, new depth completion methods, such as depth super-
resolution [59-62] using subpixel convolutional layers, and multi-resolution fusion [63,64]
using content-adaptive depth merging networks, have also shown fairly good impacts on
MDE, producing high-quality depth maps with effective spatial resolutions that are very
close to those of the input images.

In contrast to the ground-based MDE tasks, single-image DTM estimation tasks using
Mars orbital imagery [5-7] is different in many aspects. Firstly, the sizes of the target
input images are different. For example, a HiRISE image (gigapixel) is much larger in size
than a typical ground-based input image (megapixel). This results in extra procedures
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being required for spatial tiling, mosaicing, as well as multi-scale reconstruction to perform
single-image DTM estimation tasks. Secondly, the viewpoints are different, resulting in
the typical “global depth cues” that are used in MDE, such as linear perspective, object
size and occlusion in relation to object position, texture density, atmospheric effects, being
limited or non-existent in single-image DTM estimation tasks. Thirdly, the complexity and
appearance of objects/features are different. In general, the surface features on Mars orbital
imagery are structurally continuous, resulting in a reduced conflict for keeping structural
consistency and bringing out high-frequency details. For example, keeping the object
border clear and distinctive is always challenging in ground-based MDE tasks, because
of the conflicting interests in keeping the large-scale depth continuous (e.g., a scene of a
room or road) whilst making the local depth discrete (e.g., around object borders), but this
is considered to be a minor issue in single-image DTM estimation tasks for Mars as the
topography of the surface is always “continuous”.

2. Materials and Methods
2.1. The MADNet 1.0 System and Summary of Existing Issues

Of particular relevance to this work, we previously proposed the MADNet 1.0 single-
image DTM estimation system [6] using supervised learning and multi-resolution 3D
co-alignment. The network core is based on a relativistic GAN framework [65,66] with the
generator network based on the adaptively weighted multi-scale U-nets [34]. The overall
processing chain of the MADNet 1.0 system is illustrated in Figure 3. It takes a co-registered
higher resolution image and a lower resolution reference DTM as inputs, and uses image
tiling, multi-scale relative height inference, height reconstruction of each tiled inference
output, 3D co-alignment with respect to the reference DTM, and DTM tile mosaicing to
produce an output DTM at half the resolution of the input image. For multi-scale relative
height inference, the MADNet 1.0 generator uses three U-nets in parallel, operating at
different image resolutions, each of which contains a stack of the dense convolution blocks
(DCBs) [67] and up-projection blocks (UPBs) [27], and are merged with adaptive weights
for estimation of a relative height map for each input image tile.

Input image

Reference DTM Output DTM

‘ Image tiling H

Multi-scale Single-tile DTM - | R P
relative height inference reconstruction co-ag J =

N

Figure 3. Simplified flow diagram of the MADNet 1.0 single-image DTM estimation system described in [6]. N.B. lighter

coloured boxes represent the inputs and/or outputs.

MADNet 1.0 results were demonstrated to be optimal, compared to DTM products
processed using major photogrammetric pipelines for HRSC, CTX, CaSSIS, and HiRISE
DTM processing, in terms of overall quality and effective resolution, as well as the process-
ing speed [6,7]. However, there are four main issues with the MADNet 1.0 system, which
are explained as follows, and demonstrated in detail in Section 3.1 with comparisons with
the improved MADNet 2.0 results.

(a) Degraded (or weakened) topographic variation/feature at the intermediate scale
between the scales of the input image and reference DTM. This is due to the fact
that large-scale (relative to the input image) topographic cues cannot be perceived by
the trained model using the small-sized (512 x 512 pixels) tiled input. This missing
information may also not be recoverable from the reference DTM if it is not large
enough in scale for the lower-resolution reference DTM. This is generally not an
issue if we use a reference DTM that has a spatial resolution close to (<3 times) the
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(b)

(©)

(d)

resolution of the input image. However, if there is a large resolution gap between the
input image and reference DTM, intermediate-scale topographic information of the
MADNet 1.0 result is likely to be missing or inaccurate.

Inherited large-scale (relative to the input image) topographic errors or artefacts.
Although we should always use a high-quality or pre-corrected DTM as the lower-
resolution reference, some small-scale (relative to the reference DTM) errors are
inevitable, and consequently, small-scale errors on the lower-resolution reference
DTM can potentially become large-scale errors in the higher-resolution output DTM.
Building and refining the MADNet 1.0 DTMs progressively using multi-resolution
cascaded inputs could minimise the impact of the inherited photogrammetric errors
and artefacts [7], but the issue cannot be fully eliminated, and the issue could be-
come more obvious alongside enlarged resolution gap between the input image and
reference DTM.

Inconsistent performance (mainly found for high-frequency features) on the DTM
inference processes of different tiles of the full-scene input. The effect of this issue is
that some of the resultant DTM tiles are sharper and some of the resultant DTM tiles
are smoother, and consequently, all these resultant DTM tiles cannot be seamlessly
mosaiced together without producing obvious artefacts. Even the smoother ones may
still appear to be sharper in comparison to any photogrammetric results, and such
issues will still cause discontinuities for local topographic features. Moreover, if there
are large and frequent differences in sharpness of adjacent DTM tiles, this creates a
patterned gridding artefact on the final DTM result.

Tiling artefacts caused by incorrect or inconsistent inference of large-scale slopes
of neighbouring tiles. Due to the memory constraint of a graphics processing unit,
the size of the tiled input for inference is limited, and consequently, a large image
(e.g., HiRISE) needs to be divided into tens of thousands of tiles. As there are not
enough “global height cues” within each input image tile, the predicted large-scale
topographic information (e.g., a global slope) is highly likely to be incorrect or inaccu-
rate. 3D fitting and overlapped blending were used in [7] to correct the large-scale
error and minimise the impact of the inconsistent large-scale topography of adjacent
tiles. However, minor height variations (typically being of the order of ~10 cm) still
exist at the joints of neighbouring tiles on steep slopes.

2.2. The Proposed MADNet 2.0 System

In this paper, we propose the MADNet 2.0 single-image DTM estimation system

that is based on the MADNet 1.0 system, but with three key modifications to overcome
the aforementioned issues and produce pixel-scale DTM retrieval. The flow diagram
of the proposed MADNet 2.0 system is shown in Figure 4, highlighting (in yellow) the
modifications, in comparison to the MADNet 1.0 system. The three modifications are listed
and described as follows.

Input image Reference DTM Output DTM
Multi-scale Optimised relative Single-tile DTM Multi-scale \I
image tiling height inference reconstruction 3D co-alignment |

J

Figure 4. Flow diagram of the proposed MADNet 2.0 single-image DTM estimation system showing the same details as the

flow diagram of the MADNet 1.0 system, in Figure 3, with changed components indicated in yellow. N.B. lighter coloured

boxes represent the inputs and/or outputs.
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(a) The coarse-scale and intermediate-scale U-nets of the MADNet 1.0 generator are
removed in MADNet 2.0.

There are two reasons for this change. Firstly, as previously explained, global height
cues for large-scale features of a large image cannot be perceived by the network with
small, tiled inputs, and subsequently, the coarse-scale and intermediate-scale inferences
are usually incorrect. Figure 5 shows an example of the inference output from a single
tiled input with MADNet 1.0, where the large-scale topography of the raw inference
output incorrectly portrays that the high ground is at the bottom of the image. After
3D co-alignment using the reference DTM, the high ground is corrected to the top-left
corner of the image. However, even the large-scale topographic information can always
be corrected via the subsequent 3D co-alignment process using a reference DTM, the
multi-scale approach is considered unstable and rather redundant for the orbital image
DTM estimation tasks. Secondly, due to the surface features seen in Mars orbital imagery
being structurally continuous, global and local height cues are not necessarily needed to be
separately considered. This is different from MDE using perspective views of indoor or
outdoor scenes, where local depth cues from occlusions and global depth cues from linear
perspectives need to be separately treated. It should be noted that any large-scale height
variations (e.g., large-scale slopes that are spatially much bigger than the size of the input
tile) are also removed from the training datasets so that more local features can be targeted
and learnt by the network (please refer to Section 2.3).

Figure 5 shows the MADNet 1.0 and MADNet 2.0 results from a single input image
tile (512 x 512 pixels) of a HiRISE image. We can observe that the aforementioned issue
of the large-scale topography of the MADNet 1.0 inference output being incorrect (from
bottom to top for high to low) and is not co-aligned with the large-scale topography that
is shown in the PDS HiRISE DTM and MADNet 2.0 DTM (from top-left to bottom-right
for high to low). Without being constrained by the coarser scale inference introduced by
MADNet 1.0, the MADNet 2.0 inference output shows more details of local features. In
addition, we can observe from the MADNet 1.0 DTM result that the large-scale topography
still does not agree with the MADNet 2.0 DTM and PDS HiRISE DTM, even though all of
the three HiRISE DTMs are co-aligned with the same CTX reference DTM using the same
method. This is due to the coarse-scale inference of MADNet 1.0 being incorrect, which has
a negative impact on the subsequent 3D correction process.

(b) The fine-scale U-net of the MADNet 1.0 generator is optimised, adding an extra block
of UPB [27] with concatenation operation at the decoder end, and using the output of
each convolution layer (before the pooling layer) of the encoder, instead of using the
output of each pooling layer of the encoder, for concatenation with the corresponding
output of each UPB of the decoder.

With this proposed network optimisation, MADNet 2.0 is now capable of producing
pixel-scale inference, i.e., the output DTM has the same spatial resolution as the input
image, instead of being half of the input resolution with MADNet 1.0. The network
architecture of MADNet 2.0 is shown in Figure 6. The MADNet 2.0 generator network
has an identical structure for its encoder arm with the fine-scale U-net of the MADNet
1.0 generator [6], consisting of a feature extraction layer (7 x 7 kernel, 64 feature maps,
stride 2) and a max-pooling layer (3 x 3 kernel, stride 2), followed by a sequence of four
DCB [67]—convolution (1 x 1 kernel, stride 1, and with increasing numbers of feature
maps of 64, 128, 256, ... )—pooling layers (2 x 2 kernel, stride 2), which is then connected
to its decoder arm. The decoder arm of the proposed MADNet 2.0 generator network
consists of a sequence of five convolution (3 X 3 kernel, stride 1, and with decreasing
number of feature maps)—UPB [27]—concatenation (with the corresponding output of
each convolution layer from the encoder) layers and followed by a final reconstruction
layer (3 x 3 kernel, stride 1). Other than the changes made on the decoder network, we use
the same relativistic adversarial training procedure [65,66] and total loss function that is a
weighted sum of the gradient loss, Berhu loss [28], and adversarial loss, detailed in [6].
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pixel PDS HiRISE image

MADNet 1.0 inference

MADNet 2.0 inference

PDS HiRISE DTM hill-shaded MADNet 1.0 DTM hill-shaded

Figure 5. An example of the MADNet 1.0 and MADNet 2.0 results from a single input image tile from HiRISE
(ESP_003195_1985_RED). 1st row: input HiRISE image tile, initial height map inferences (values range from 0 to 1)
from MADNet 1.0 and MADNet 2.0; 2nd row: PDS HiRISE DTM (DTEEC_003195_1985_002694_1985_1L01) cropped for
the same area, final DTM results from MADNet 1.0 and MADNet 2.0; 3rd row: hill-shaded (azimuth: 225°; altitude: 30°;
vertical exaggeration: 1) relief image of the PDS HiRISE DTM, MADNet 1.0 DTM, and MADNet 2.0 DTM.

(c) A coarse-to-fine multi-scale reconstruction process is implemented on top of the DTM
estimation network.

There are two reasons for adding the coarse-to-fine reconstruction module. Firstly,
with the proposed coarse-to-fine reconstruction process, intermediate-scale topographic
information, which was reliant on the reference DTM in MADNet 1.0, can now be indepen-
dently and more accurately retrieved in MADNet 2.0. The MADNet 1.0 system [6] only
spatially slices the input image, and consequently, if there is a large resolution gap between
the input image and the reference DTM, the intermediate-scale and large-scale topographic
information that propagates across multiple DTM tiles could be missing or inaccurate (see
Figure 7 for some examples). This is because each individual DTM tile is being predicted
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Generator Network

Input Image

independently without being guided by its neighbouring content or global context. It
should be noted that the MADNet 1.0 multi-scale reconstruction approach within the DTM
estimation network cannot address this issue because it is targeted on a single tile. Secondly,
the proposed coarse-to-fine reconstruction process can potentially reduce the inherited
artefacts from the reference DTM. With multiple-scale reconstruction, artefacts from the
reference DTM can be gradually rectified and their impact on the final fine-scale DTM is
therefore weakened through each of the coarser-scale reconstruction processes.

Discriminator Network
o
Convolludon Convoluti Convoluti
Concatenate I.Mll.l.l I.RllLU

H

Concatenate J

Convolution Convolution
= Dense Convolutional Block
Concatenate LRelU (ocB)
l N
ES cocier A
| . RelU
Convolution Convolution
LRelU
— '
H
| BN
Convolution RelU \
] BN Convolution
Convoluti J
nvolution
o
l [ [
Convolution Layer
] L T Pty

I Dense Convolutional Block (DCB)

[ Up-Projection Block (UPB)

I Concatenate

| Batch Nomalisation (BN)
Rectified Linear Unit (ReLU)

Convolution

MTTHTIIT

1]

Convolution

Concatenate Sigmoid
Unpooling

Leaky ReLU (LReLU)
Fully Connected (FC)
Sigmoid

@  Elementwisc Sum

Output Scaler

Figure 6. MADNet 2.0 network architecture.

Figure 7 demonstrates the issue of not having the proposed coarse-to-fine reconstruc-
tion process; intermediate-scale and large-scale topographic information could be lost or
be inaccurate, as such information is solely retrieved from the low-resolution reference
DTM in MADNet 1.0. For example, we can observe that even though the small-sized
craters are satisfactorily retrieved (indicated with the blue arrows) with MADNet 1.0 (in
comparison to the PDS HiRISE DTM), the medium- and large-sized craters appear to be
blurred and smooth (indicated with the red arrows) with MADNet 1.0 (in comparison to
the PDS HiRISE DTM and MADNet 2.0 results).

In MADNet 2.0, the coarse-to-fine reconstruction module is implemented as follows.
Firstly, the input image is downscaled by 16 times and 4 times, then spatially tiled, and
each image tile is processed into a DTM tile (inference) using the pre-trained MADNet 2.0
generator. Secondly, all the coarse-scale DTM tiles are corrected (using the same 3D co-
alignment method [6,7,68] that is employed in the MADNet 1.0 system) with respect to the
input reference DTM and mosaiced together to produce a low-resolution DTM (1/16 times
the input image resolution). Thirdly, all the intermediate-scale DTM tiles are corrected with
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respect to the low-resolution DTM produced at the previous step and mosaiced together to
produce an intermediate-resolution DTM (1/4 times the input image resolution). Finally,
all the fine-scale DTM tiles are corrected with respect to the intermediate-resolution DTM
produced at the previous step and mosaiced together to produce the final high-resolution
DTM, having the same resolution as the input image.

Shaded relief of MADNet 1.0 DTM  Shaded relief of MADNet 2.0 DTM  Shaded relief of PDS HiRISE DTM

Figure 7. Examples of HiRISE (ESP_003195_1985_RED) image crops and the hill-shaded (azimuth: 225°; altitude: 30°;
vertical exaggeration: 1) relief images from the MADNet 1.0 DTM, MADNet 2.0 DTM, and PDS HiRISE DTM, showing
that the intermediate-scale and large-scale topographic information (red arrows) are missing or smoothed out for MADNet
1.0 DTMs, whereas the fine-scale topographic information (blue arrows) is well-retrieved for both the MADNet 1.0 and
MADNet 2.0 DTMs.
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2.3. Network Training

The two sets of training data that were used for training of the MADNet 1.0 [6] network
consist of 4200 resampled HiRISE ortho-rectified image (ORI) crops (at 4 m/pixel) and DTM
crops (at 8 m/pixel) for the first-stage training, and 15,500 resampled HiRISE ORI crops (at
2 m/pixel) and DTM crops (at 4 m/pixel) for the second-stage training. These were formed
from 450 publicly available PDS HiRISE DTMs and ORISs, each of which was resampled to
match the effective resolution of the photogrammetric DTMs (roughly between 4 m/pixel
and 8 m/pixel) and spatially sliced into 512 x 512 pixels (ORI) and 256 x 256 pixels (DTM)
crops to match the data dimensions of the network input and output.

As described in Section 2.2, the coarse-scale and intermediate-scale U-nets have been
removed in MADNet 2.0, and consequently, the two-stage training process is no longer
needed. We have therefore formed a single new training dataset consisting of 4 m/pixel
resampled HiRISE ORI and DTM crops, 2 m/pixel resampled HiRISE ORI and DTM crops,
and in addition, 36 m/pixel downsampled CTX ORI and DTM crops from the 2300 publicly
available iMars (http:/ /www.i-mars.eu/, accessed on 15 October 2021) CTX DTMs and
ORIs [8,9] are now included (available at https:/ /www.cosmos.esa.int/web/psa/UCL-
MSSL_iMars_CTX_v1.0, accessed on 15 October 2021), all with an identical tile size of
512 x 512 pixels.

In this work, we noticed that even though the HiRISE training datasets used in [6]
were roughly screened to remove lower-quality DTMs, there are still about § of them
that are either affected by different types of artefacts or lack high-frequency details. We
found that not only the quality of each PDS HiRISE DTM is quite varied, but sometimes,
different parts of the same image have different DTM quality. The issue of some of the
HiRISE DTMs having a lower quality is not necessarily associated with the quality of the
corresponding stereo input images, nor does it appear to be related to a certain type of
surface feature. We can still observe varied DTM quality (see Figure 8 for examples of
these) for the same type of surface feature with similar image quality. Such lower quality
training DTM samples prolong the training process and have a negative impact on the
accuracy of the inference output.

Figure 8. Examples of the training samples (before screening) showing the lower quality DTMs (1st and 3rd columns) and

the higher quality DTMs (2nd and 4th columns). The mean SSIM values for the images and their corresponding shaded
relief images of the DTMs (using the same lighting elevation azimuth angles) are 0.2609, 0.461294, 0.2985, 0.5398 from left to
right. It should be noted that both the 1st and 2nd columns, and 3rd and 4th columns show similar surface features with

similar image quality but with completely different DTM quality. N.B. the DTM crops were rescaled for a range from 0

(black) to 1 (white).

It should be noted that down-sampling of the training DTMs produced from pho-
togrammetric methods (i.e., PDS HiRISE DTM and iMars CTX DTM sub-image tiles) helps
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bring their nominal resolution closer to their effective resolution in order to train the net-
work to perform per-pixel image-to-height inference. The down-sampling or averaging
process also helps to remove some of the high-frequency photogrammetric artefacts so that
we don’t need to remove a training crop that has a few erroneous pixels during screening.
The fixed spatial resolutions (2 m/pixel, 4 m/pixel, 36 m/pixel) of the training dataset
have a reasonable coverage from high-resolution to low-resolution images of the existing
Mars orbital imagers, and we do not observe any differences in the inference performance
of test datasets that have different spatial resolutions (e.g., 12.5 m/pixel HRSC images or
25 cm/pixel HiRISE images), according to the HiRISE and HRSC tests of this work, as
well as the CaSSIS, CTX, HiRISE tests in the previous work [6,7]. This is the basis for deep
learning-based methods to produce better DTMs than using photogrammetric methods,
even though photogrammetric DTMs were used for training the model. For instance, after
successful training of the down-sampled and screened data, the network has learnt how
to produce the best DTM result for an “artefact-free” output for comparably larger-sized
features (e.g., craters with diameter larger than 100 m using 4 m/pixel images and DTMs),
then the learnt parameter sets can be used to produce the most realistic DTM result for simi-
lar features that are much smaller in size (e.g., craters with diameter smaller than 10 m from
0.25 m/pixel images), where many artefacts may appear using photogrammetric methods.

In this work, we further screened the 4 m/pixel and 2 m/pixel HiRISE training
samples (total 19,700 ORI-DTM pairs before screening), as well as the 36 m/pixel CTX
training samples (total 13,800 ORI-DTM pairs before screening), using the hill-shaded
relief samples, which show more qualitative details. The screening process is assisted
with batch calculation and sorting of the mean SSIM values between a smoothed (using
bilateral filtering) version of each image crop and the hill-shaded relief crop, from which
we empirically found that the lower quality DTM crops tend to have a lower mean SSIM
value. We prepared the new training dataset in five steps summarised as follows.

(a) Firstly, we batch hill-shade the HiRISE and CTX DTMs using the same illumination
parameters as the image, resample the ORIs, DTMs, and hill-shaded relief images
(into 4 m/pixel and 2 m/pixel sets for HiRISE and 36 m/pixel set for CTX), spatially
slice them into 512 x 512 pixel crops, and then rescale all the DTM crops into relative
heights of [0, 1].

(b) Secondly, large-scale height variations (e.g., global slopes) are removed from all DTM
crops by subtracting each of the DTM crops with a heavily smoothed version (1/20
downsampled and then bicubically interpolated) of the DTM crop itself (considering
this to be a strong low-pass filter), in order to minimise the information flow (during
training) of the large-scale height variations that are not generally indicated within
the small, corresponding ORI crop.

(c) Thirdly, a bilateral-filtered set of the ORI crops is created, and the mean SSIM values
between all corresponding filtered ORI crops and hill-shaded relief crops are calcu-
lated. Subsequently, the ORI and DTM samples are sorted in descending order of
their mean SSIM values to assist the manual screening process.

(d) Fourthly, we perform visual screening using the sorted hill-shaded relief samples,
focusing on the training samples that have higher mean SSIM values (larger than 0.4).
Subsequently, we form the filtered training dataset with 20,000 pairs of ORI and DTM
crops, which are then visually checked that the various surface features contained
in [6] are still sufficiently included.

(e) Finally, we apply data augmentation (i.e., vertical and horizontal flipping) to form the
final training dataset containing 60,000 pairs of ORI and DTM crops with identical size
of 512 x 512 pixels but at various scales (i.e., 2 m/pixel, 4 m/pixel, and 36 m/pixel).
N.B., we make this high-quality image-height training dataset openly available in the
Supplementary Materials.

The selected 60,000 training pairs of DTM and ORIs were fed into the network in the
final training process to produce the training model that is used to produce the results
presented in this paper. It should be noted that at the initial network training and test stage,
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Ground-truth

MADNet 1.0

MADNet 2.0

1000 training pairs (without data augmentation) were randomly selected to form the test
dataset. Root mean squared errors (RMSEs) and mean SSIMs between the test predictions
and ground-truth height maps are used as the evaluation metrics and are periodically
monitored throughout the initial training process. Figure 9 shows five randomly selected
examples (i.e., Test-1, -2, -3, -4, -5) of the test results from MADNet 1.0 and MADNet 2.0
in comparison to the input images and ground-truth height maps from the test dataset.
RMSEs and mean SSIMs for the five presented examples are summarised in Table 1. We
observe that the MADNet 2.0 results have a lower RMSE compared to the MADNet 1.0
results in general, except for one outlier for Test-2. This shows the test results from MADNet
2.0 has an improved pixel-wise similarity with respect to the ground-truth, in comparison
to the test results from MADNet 1.0. For mean SSIM, MADNet 2.0 outperforms MADNet
1.0 for the five examples. This indicates the structural features from the MADNet 2.0 test
results being more realistic with respect to the ground-truth, in comparison to the MADNet
1.0 test results. The total averaged RMSEs and mean SSIMs for 1000 test pairs for MADNet
2.0 are 1.0545 m and 0.904 respectively. In contrast, the total averaged RMSEs and mean
SSIMs for 1000 test pairs for MADNet 1.0 are 1.1495 m and 0.857 respectively.

Test-5

Figure 9. Examples of MADNet 1.0 and MADNet 2.0 inference results, i.e., relative heights in the range from 0 (black) to 1
(white), in comparison to the input images and ground-truth height maps from the test dataset.
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Table 1. RMSEs and mean SSIMs of the MADNet 1.0 and MADNet 2.0 test results with respect to the
PDS ground-truth for the five exemplar areas that are shown in Figure 9.

Test-1 Test-2 Test-3 Test-4 Test-5
RMSE (m) 1.0892 0.8920 1.3501 1.2575 1.1727

MADNet 1.0
Mean SSIM 0.9169 0.9308 0.7222 0.8702 0.7823
RMSE (m) 0.9985 0.9286 1.1526 1.0999 1.1580

MADNet 2.0
Mean SSIM 0.9235 0.9391 0.9253 0.8971 0.7851

2.4. Datasets and Experiments Overview

In this work, we base our experiments on the 25 cm/pixel HiRISE images. We demon-
strate with five single-strip HiRISE images over the ExoMars Rosalind Franklin rover’s
landing site at Oxia Planum [7,10], where we previously produced the large area co-aligned
DTM mosaics using HRSC, CTX and HiRISE [7]. These include a 25 m/pixel HRSC DTM
mosaic, a 12 m/pixel CTX DTM mosaic, and a 50 cm/pixel HiRISE DTM mosaic, covering
an area of 197 km x 182 km, an area of 114 km x 117 km, and an area of 74.3 kmm x 86.3 ki
over Oxia Planum, respectively. We employ the CTX DTM mosaic that is co-aligned with
HiRISE, HRSC, and MOLA, as the baseline reference, for the HiRISE experiments with
MADNet 2.0. The five test HiRISE images (ESP_003195_1985_RED, ESP_036925_1985_RED,
ESP_037070_1985_RED, ESP_039299_1985_RED, and ESP_042134_1985_RED) are selected
for being overlapped with the existing PDS HiRISE DTMs and the existing MADNet 1.0
HiRISE DTM mosaic. Figure 10 shows an overview of the five test HiRISE images and the
reference CTX DTM of this work.

It should be noted that both the MADNet 1.0 and the MADNet 2.0 systems are trained
with a spatial subset of the published PDS HiRISE ORI-DTM pairs that cover as much as
possible of the known Martian surface features and that are of high quality. The training
dataset is ~75% of the available PDS HiRISE DTM products after the manual screening
process described in [6], and the spatial percentage is further slimmed down to ~35% of
the available PDS HiRISE products after the stricter screening process described in this
work (please refer to Section 2.3). For the five test HiRISE images, two of them (image ID:
ESP_003195_1985_RED_A_01_ORTHO and ESP_039299_1985_RED_A_01_ORTHO; DTM
ID: DTEEC_003195_1985_002694_1985_L01 and DTEEC_039299_1985_047501_1985_L01)
were partially (31 out of 40 and 13 out of 65 cropped 512 x 512 pixels regions for the two
HiRISE ORI-DTM pairs) included in the training dataset. The other three test HiRISE
images, i.e., ESP_036925_1985_RED, ESP_037070_1985_RED, and ESP_042134_1985_RED,
are not included in the final training dataset. For CTX, the study area is not covered by
any of the published iMars CTX DTMs (see https:/ /www.cosmos.esa.int/web/psa/UCL-
MSSL_iMars_CTX_v1.0, accessed on 15 October 2021).

The overall processing chain of the MADNet 2.0 system is described in Section 2.2.
For this experiment, MADNet 2.0 takes each of the five 25 cm/pixel HiRISE test images
and the 12 m/pixel CTX DTM mosaic as inputs and follows nine processing steps that are
briefly listed as follows.

(@) Produce two downscaled versions of the input HiRISE image at 1 m/pixel and
4 m/pixel, respectively.

(b) Spatially slice the 25 cm/pixel, 1 m/pixel, and 4 m/pixel HiRISE images and produce
overlapping image tiles at the size of 512 x 512 pixels.

(c) Perform batch relative height inference for all image tiles from (b) using the pre-trained
MADNet 2.0 model to produce initial inference outputs at 25 cm/pixel, 1 m/pixel,
and 4 m/pixel.

(d) Perform height rescaling and 3D co-alignment for the 4 m/pixel inference outputs
from (c) using the input CTX DTM mosaic as the reference.

(e) Mosaic the co-aligned 4 m/pixel DTM tiles from (d).
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(f) Perform height rescaling and 3D co-alignment for the 1 m/pixel inference outputs
from (c) using the mosaiced 4 m/pixel DTM from (e) as the reference.

(g) Mosaic the co-aligned 1 m/pixel DTM tiles from (f).

(h) Perform height rescaling and 3D co-alignment for the 25 cm/pixel inference outputs
from (c) using the mosaiced 1 m/pixel DTM from (g) as the reference.

(i) Mosaic the co-aligned 25 cm/pixel DTM tiles from (h) to produce the final 25 cm/pixel
output HiRISE DTM.

Q ¢ 25

A

=N
24.8°W 24.2°W 24.0°W

Figure 10. An overview of the test HiRISE images superimposed on the basemap MADNet 1.0 CTX DTM mosaic at Oxia
Planum. The red boxes show locations of the zoom-in views (from area-A to area-]) that are illustrated in Section 3.1. The
blue boxes show locations of the crater counting areas (from area-K to area-O) that are demonstrated in Section 3.2.

In terms of evaluation and assessments of these results, we do not repeat the mea-
surements of 3D co-alignment and image co-registration accuracy that were thoroughly
studied in [7]. We provide a qualitative demonstration of overall quality and resolu-
tion, as well as the effectiveness of MADNet 2.0 for resolving the four issues that are
described in Section 2.1. We also provide quantitative assessments of the effective resolu-
tion of the DTM results. In particular, we employ an automatic crater detection method
(https:/ /pycda.readthedocs.io/en/latest/index.html, accessed on 15 October 2021) with
manual corrections, for crater counting and size analysis, as well as the slant-edge analysis
that is described in [69], using the hill-shaded relief images of the DTM results, for quan-
titative assessments of the effective resolution of the resultant DTMs. In addition, DTM
profile and difference measurements are performed for five sub-areas to show the height
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differences of the MADNet 2.0 HiRISE DTMs, the PDS HiRISE DTMs, and the MADNet
1.0 CTX DTM mosaic (the baseline reference).

3. Results
3.1. Qualitative Assessments

MADNet 2.0 not only provides improved DTM quality and effective resolution but
also resolves the major issues (see Section 2.1) arising from MADNet 1.0. In this section,
we demonstrate the efficacy of the proposed MADNet 2.0 system with visual inspections,
focusing on the areas with the aforementioned issues. We compare the resultant 25 cm/pixel
MADNet 2.0 DTMs with the 50 cm /pixel MADNet 1.0 HiRISE DTM mosaic [7] and the
publicly available 1 m/pixel PDS HiRISE DTMs. We illustrate with two small exemplar
areas (locations shown in Figure 10 for the 10 areas from area-A to area-]) for each of the
five test HiRISE images (see Section 2.4). N.B. to examine full-strip HiRISE DTM results,
please refer to the Supplementary Materials.

Figure 11 shows two zoom-in views (area-A and area-B—refer to Figure 10 for the
locations) of the MADNet 2.0, MADNet 1.0 and PDS DTMs from the HiRISE image
ESP_036925_1985_RED. Area-A shows a larger and shallower crater (~180 m diameter
and ~6 m deep) with a smaller and deeper crater (~80 m diameter and ~10 m deep) in the
centre. In general, we can observe improved details from the MADNet 1.0 and MADNet
2.0 DTMs in comparison to the PDS DTM. However, the large-scale topography from
MADNet 1.0 appears to be over-smoothed (refer to issue (b) of Section 2.1), whereas the
MADNet 2.0 DTM contains much richer large-scale and intermediate-scale topographic
information, which agrees with the photogrammetric result from the PDS DTM. Some
small tiling issues (refer to issue (d) of Section 2.1) can also be seen from the top and
bottom part of the hill-shaded relief image of the MADNet 1.0 result for area-A, but this
is not shown with MADNet 2.0. Area-B shows a few connected small craters (~50-150 m
diameter and ~6-8 m deep). The MADNet 2.0 DTM has shown the sharpest retrieval for
both the large-scale structures and the fine-scale details.

Figure 12 shows two zoom-in views (area-C and area-D—refer to Figure 10 for the
locations) of the MADNet 2.0, MADNet 1.0 and PDS DTMs from the HiRISE image
ESP_003195_1985_RED. Area-C shows a large shallow crater (~180 m diameter and ~6 m
deep) with rippled features in the centre accompanied by a small crater (~50 m diameter
and ~4 m deep) at the bottom. We can observe from Figure 12 that the topography of the
larger shallow crater of area-C is almost unrecognisable from the MADNet 1.0 result (refer
to issue (a) of Section 2.1), whilst the topography of the smaller crater has been similarly
retrieved by both the MADNet 1.0 and MADNet 2.0 systems. On the other hand, the issue
of having a different state of quality and sharpness of adjacent DTM tiles (refer to issue (c)
of Section 2.1), which can be observed from the hill-shaded relief image of the MADNet
1.0 DTM (shown as distinguishable squares with different level of high-frequency details),
has been significantly improved with the proposed MADNet 2.0 system. As shown in
the MADNet 2.0 result, the joints of the adjacent DTM tiles are seamless and their quality
and resolution are consistent. Area-D shows a mostly flat terrain. We can observe the
improvement on effective resolution as more high-frequency details can be seen from the
MADNet 2.0 result with better large-scale variations that agree with the PDS HiRISE DTM.

Figure 13 shows two zoom-in views (area-E and area-F—refer to Figure 10 for the
locations) of the MADNet 2.0, MADNet 1.0 and PDS DTMs from the HiRISE image
ESP_037070_1985_RED. Area-E shows a small hill (~300 m wide and ~60 m high) with
some tiny craters (~20 m diameter and ~3 m deep) on the top and linear features on the
slope. In general, we can observe increasing levels of detail from the PDS DTM, to the
MADNet 1.0 DTM, and to the MADNet 2.0 DTM. There is an obvious tiling artefact (refer
to issue (d) of Section 2.1) that can be seen as a thin shallow channel, on the steep slope of
the hillside, at the bottom part of the hill-shaded relief image of the MADNet 1.0 result.
This issue has been addressed in MADNet 2.0 as such a tiling artefact is not observed
anywhere on these results. On the other hand, the issue of adjacent DTM tiles having
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different quality and sharpness (refer to issue (c) of Section 2.1) can also be observed from
the MADNet 1.0 result, in comparison to the MADNet 2.0 result, wherein the issue is not
observed. Area-F shows several small craters (~10-30 m diameter and ~5-8 m deep) with
linear features on the surface. These fine-scale features are shown in the hill-shaded relief
image of the MADNet 2.0 DTM, visually at a similar resolution to that of the input HiRISE
image, whilst they are almost invisible from the PDS HiRISE DTM. The local inconsistency
of small-scale details (refer to issue (c) of Section 2.1) can be observed from the MADNet
1.0 result, whilst for MADNet 2.0, the DTM quality is more spatially consistent.

HiRISE image PDS DTM and shaded relief MADNet 1.0 DTM and shaded relief MADNet 2.0 DTM and shaded relief

Figure 11. Examples of zoom-in views of the 1 m/pixel PDS HiRISE DTM, 50 cm/pixel MADNet 1.0 DTM, and 25 cm/pixel
MADNet 2.0 DTM, produced from a single HiRISE image (ESP_036925_1985_RED).
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HiRISE image PDS DTM and shaded relief MADNet 1.0 DTM and shaded relief MADNet 2.0 DTM and shaded relie!
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Figure 12. Examples of zoom-in views of the 1 m/pixel PDS HiRISE DTM, 50 cm/pixel MADNet 1.0 DTM, and 25 cm/pixel
MADNet 2.0 DTM, produced from a single HiRISE image (ESP_003195_1985_RED).

Figure 14 shows two zoom-in views (area-G and area-H—refer to Figure 10 for
the locations) of the MADNet 2.0, MADNet 1.0 and PDS DTMs from the HiRISE im-
age ESP_039299_1985_RED. Area-G shows two small, connected hills (~400 m wide and
~70 m high) with some tiny craters (~15-30 m diameter and ~5-7 m deep) on the peak and
on the hillside. In general, we can observe significant improvements in effective resolution
between the MADNet 1.0 DTM and the PDS DTM, and also between the MADNet 2.0 DTM
and the MADNet 1.0 DTM. The MADNet 2.0 result shows the best fine-scale retrieval, and
in addition, shows a more realistic large-scale retrieval of topography in comparison to the
MADNet 1.0 result, wherein the large-scale topography of the area is over-smoothed and
considered incorrect by looking into the HiRISE image. The large-scale error observed from
the MADNet 1.0 result is an inherited artefact (refer to issue (b) of Section 2.1) from the CTX
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reference DTM where the topography of the two connected hills was not correctly retrieved.
This issue is rectified in MADNet 2.0 with the proposed coarse-to-fine reconstruction pro-
cess. Area-H shows a medium-sized crater (~180 m diameter and ~16 m deep) surrounded
by many linear features and small craters (~15-25 m diameter and ~3-9 m deep). We
observe significant improvements in DTM quality and effective resolution, as well as the
quality of the large-scale topography from the MADNet 2.0 result, in comparison to the
MADNet 1.0 result and the PDS DTM. Affected by the reference CTX DTM and not utilising
the large-scale information (refer to issue (a) and (b) of Section 2.1), the 3D shape of the
crater shown in the MADNet 1.0 DTM looks incorrect in comparison to the HiRISE image.
This issue is not observed in the MADNet 2.0 result.

HiRISE image PDS DTM and shaded relief MADNet 1.0 DTM and shaded relief MADNet 2.0 DTM and shaded relief

Figure 13. Examples of zoom-in views of the 1 m/pixel PDS HiRISE DTM, 50 cm/pixel MADNet 1.0 DTM, and 25 cm/pixel
MADNet 2.0 DTM, produced from a single HiRISE image (ESP_037070_1985_RED).
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HiRISE image PDS DTM and shaded relief MADNet 1.0 DTM and shaded relief MADNet 2.0 DTM and shaded relief
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Figure 14. Examples of zoom-in views of the 1 m/pixel PDS HiRISE DTM, 50 cm/pixel MADNet 1.0 DTM, and 25 cm/pixel
MADNet 2.0 DTM, produced from a single HiRISE image (ESP_039299_1985_RED).

Figure 15 shows two zoom-in views (area-I and area-J—refer to Figure 10 for the
locations) of the MADNet 2.0, MADNet 1.0 and PDS DTMs from the HiRISE image
ESP_042134_1985_RED. Area-I shows a comparably flat terrain with many small rocks and
fine-scale features. We can observe an increasing level of fine-scale details in the order
of the PDS DTM, MADNet 1.0 DTM, and MADNet 2.0 DTM. Individual rocks and small
features are mostly recognisable from the MADNet 2.0 result, whilst not seeing any of the
aforementioned MADNet 1.0 artefacts. Area-] mainly shows three small craters (~20-25 m
diameter and ~2—4 m deep), which are generally considered difficult for photogrammetry
to produce good quality results. We can observe that the topography of the three small
craters is completely missing from the PDS HiRISE DTM, whilst in the MADNet 1.0 DTM,
the topography of the three craters is successfully retrieved but with a smoothed appear-
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ance and affected by the issue of adjacent DTM tiles having different quality and sharpness
(refer to issue (c) of Section 2.1). The MADNet 2.0 result shows the best overall quality with
more consistent large-scale topography retrieval and fine-scale details with a similar level
of details with the HiRISE image.

HiRISE image PDS DTM and shaded relief MADNet 1.0 DTM and shaded relief MADNet 2.0 DTM and shaded relief
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Figure 15. Examples of zoom-in views of the 1 m/pixel PDS HiRISE DTM, 50 cm/pixel MADNet 1.0 DTM, and 25 cm/pixel
MADNet 2.0 DTM, produced from a single HiRISE image (ESP_042134_1985_RED).

3.2. Quantitative Assessments

HiRISE is currently the highest-resolution orbital imaging instrument around Mars,
and consequently, the effective resolution of any HiRISE derived high-resolution DTMs are
difficult to be quantitatively measured without any high-resolution ground-truth being
available. In this paper, we use semi-automated crater size-counting and slanted-edge
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sharpness analysis to assess quantitatively the effective resolution of the resulting DTMs.
The two experiments are described as follows.

For crater size-counting, the number of recognisable small craters and the size of the
smallest recognisable craters, from a DTM or hill-shaded relief, are key indicators to the
quality and effective resolution of the DTM. We apply an open-source crater detection tool
(https:/ /pycda.readthedocs.io/en/latest/index.html, accessed on 15 October 2021) for
initial automated detection and collection of size (diameter) statistics of the craters using the
hill-shaded relief image of the MADNet 2.0, MADNet 1.0, and PDS HiRISE DTMs, as well
as using the corresponding HiRISE images. We then manually validate the detection results
to exclude any false-positives and to add any true-negatives. Five selected crater-rich areas
(from area-K to area-O; locations as shown in Figure 10) are used, each from one of the five
test HiRISE images (see Section 2.4), to perform the crater size-counting experiment.

Figure 16 shows an example of the automatically detected craters (in the red circles)
with manually removed false-positives (in the blue circles) and manually added true-
positives (in the green circles), over a 250 m x 250 m area (area-K—refer to Figure 10 for
the location) on the HiRISE image and the hill-shaded relief images of the DTMs generated
from (ESP_003195_1985_RED). We can observe that many more small- and medium-sized
(diameter < 40 m) craters are revealed from the MADNet 1.0 and MADNet 2.0 DTMs in
comparison to the PDS DTM. In particular, MADNet 2.0 is able to retrieve about 80% of
the small-sized craters (diameter < 10 m) and more than 95% of the medium-sized craters
(diameter between 10 m and 40 m) that are shown in the HiRISE image. In comparison
to MADNet 1.0, MADNet 2.0 has much better performance for the retrieval of small-
sized craters (diameter < 20 m) and has similarly good performance for the retrieval of
the small-to-medium-sized craters (diameter between 20 m and 40 m). Affected by the
aforementioned artefacts (refer to Section 2.1), some of the medium-sized craters (diameter
between 40 m and 160 m) are degraded and not shown on the MADNet 1.0 DTM, whereas
the MADNet 2.0 DTM shows good agreement, for the medium- and large-sized craters
(diameter > 40 m), with the HiRISE image.

Figure 17 shows an example of automatically detected craters (in red circles) with man-
ually removed false-positives (in blue circles) and manually added true-positives (in green
circles), over a 500 m x 500 m larger area (area-L—refer to Figure 10 for the location) on
the HiRISE image and the hill-shaded relief images of the DTMs (ESP_036925_1985_RED).
We can observe that MADNet 1.0 has successfully retrieved around 50% of the total craters
that are shown on the HiRISE image and most of the missing ones are for the small-sized
craters (diameter < 10 m). In contrast, MADNet 2.0 has successfully retrieved around 75%
of the total craters that are shown in the HiRISE image, and in particular for the retrieval
of small-sized craters (diameter < 10 m), MADNet 2.0 shows much better performance
in comparison to MADNet 1.0. For the retrieval of the medium-sized craters (diameter
between 10 m and 40 m) and large-sized craters (diameter > 40 m), MADNet 2.0 and
MADNet 1.0 show similarly good performance for this example.

Figure 18 shows an example of the automatically detected craters (in red circles) with
manually removed false-positives (in blue circles) and manually added true-positives (in
green circles), over a1 km X 1km larger area (area-M—refer to Figure 10 for the location) on
the HiRISE image and the hill-shaded relief images of the DTMs (ESP_037070_1985_RED).
In this example, we can observe that MADNet 2.0 is able to retrieve more than 60% of
the craters that are shown on the HiRISE image, in comparison to about 30% and 10% of
successful retrieval from MADNet 1.0 and the PDS DTM, respectively. The major difference
between MADNet 2.0 and MADNet 1.0 is the retrieval of the small-sized craters (diameter
< 10 m). For the retrieval of the medium- and large-sized craters (diameter > 10 m),
MADNet 2.0 shows similar performance as MADNet 1.0. For the medium-sized craters
(diameter between 10 m and 40 m), MADNet 2.0 is capable of retrieving about 100% of the
craters that are shown on the HiRISE image, whereas MADNet 1.0 is capable to retrieve
about 95%. For the large-sized craters (diameter > 40 m), both MADNet 2.0 and MADNet
1.0 have retrieved 100% of the craters that are shown on the HiRISE image.
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Figure 16. Crater detection and size-number counting from HiRISE image and the hill-shaded relief images of the PDS
DTM, MADNet 1.0 DTM, and MADNet 2.0 DTM, over a 250 m x 250 m cropped area (area-K of ESP_003195_1985_RED).
N.B. automatically detected craters are in red circles; manually excluded false-positives are in blue circles; manually added
true-positives are in green circles.
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Figure 17. Crater detection and size-number counting from HiRISE image and the hill-shaded relief images of the PDS
DTM, MADNet 1.0 DTM, and MADNet 2.0 DTM, over a 500 m x 500 m cropped area (area-L of ESP_036925_1985_RED).
N.B. automatically detected craters are in red circles; manually excluded false-positives are in blue circles; manually added
true-positives are in green circles.
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Figure 18. Crater detection and size-number counting from HiRISE image and the hill-shaded relief images of the PDS
DTM, MADNet 1.0 DTM, and MADNet 2.0 DTM, over a 1 km x 1 km cropped area (area-M of ESP_037070_1985_RED).
N.B. automatically detected craters are in red circles; manually excluded false-positives are in blue circles; manually added

true-positives are in green circles.

Figure 19 shows an example of the automatically detected craters (in red circles) with
manually removed false-positives (in blue circles) and manually added true-positives (in
green circles), over a 1.5 km x 1.5 km large area (area-N—refer to Figure 10 for the location)
on the HiRISE image and the hill-shaded relief images of the DTMs (ESP_039299_1985_RED).
We can observe that MADNet 2.0 has retrieved about 60% of the craters that are shown on
the HiRISE image. The MADNet 1.0 DTM shows a lower quality for this HiRISE image in
comparison to the other scenes. The major difference between MADNet 2.0 and MADNet
1.0 is the retrieval of the small-sized craters (diameter < 10 m) and medium-sized craters
(diameter between 20 m and 40 m).

Figure 20 shows an example of the automatically detected craters (in red circles) with
manually removed false-positives (in blue circles) and manually added true-positives (in
green circles), over a 500 m x 500 m area (area-O—refer to Figure 10 for the location) on
the HiRISE image and the hill-shaded relief images of the DTMs (ESP_042134_1985_RED).
In this example, we can observe that MADNet 2.0 has achieved the best over the afore-
demonstrated test areas. More than 90% of the craters that are shown on the HiRISE image
are successfully retrieved by MADNet 2.0, compared to the retrieval rate of about 40% and
15% from MADNet 1.0 and PDS DTM, respectively. In particular, MADNet 2.0 is able to
retrieve 100% of the medium- and large-sized craters (diameter > 20 m), with only a few
small-sized craters (diameter < 20 m) not being revealed.

Although the crater detection and size-number counting experiments show somewhat
varied results for the five test areas, we can observe in general that MADNet 2.0 has
doubled the performance from MADNet 1.0. Most of the small-to-medium-sized craters
(diameter > 20 m) are successfully retrieved by MADNet 2.0, and on average, about 75%
of the small-sized craters (diameter <10 m) can be retrieved by MADNet 2.0. Considering
some of the small craters are very shallow and are therefore not easily recognisable in the
hill-shaded relief images, MADNet 2.0 DTMs have shown a very similar effective detection
rate in comparison to the input 25 cm/pixel HiRISE images.
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Figure 19. Crater detection and size-number counting from HiRISE image and the hill-shaded relief images of the PDS
DTM, MADNet 1.0 DTM, and MADNet 2.0 DTM, over a 1.5 km x 1.5 km cropped area (area-N of ESP_039299_1985_RED).
N.B. automatically detected craters are in red circles; manually excluded false-positives are in blue circles; manually added
true-positives are in green circles.
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Figure 20. Crater detection and size-number counting from HiRISE image and the hill-shaded relief images of the PDS
DTM, MADNet 1.0 DTM, and MADNet 2.0 DTM, over a 500 m x 500 m cropped area (area-K of ESP_042134_1985_RED).
N.B. automatically detected craters are in red circles; manually excluded false-positives are in blue circles; manually added
true-positives are in green circles.
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In the next assessment, we employ slanted-edge sharpness analysis, using the in-house
ELF tool (automated image sharpness measurement via Edge Spread Function (ESF), Line
Spread Function (LSF), and Full Width at Half Maximum (FWHM)) [69] that was previously
developed for assessing Earth Observation image effective resolution and sharpness. ELF
takes a lower-resolution target image and a higher-resolution reference image as inputs,
using automated edge detection and profile extraction, and automated calculation and
filtering of ESF and LSEF, to calculate the averaged FWHM of all LSFs from all available
high-contrast slanted edges that are automatically extracted from the inputs. A detailed
description of the ELF workflow can be found in [69]. Mean FWHM (M-FWHM) is a key
metric for measuring image effective resolution. For example, the larger the M-FWHM
value is, the more pixels are involved for a high-contrast slanted-edge to change its intensity
values (e.g., from black to white or from white to black), and subsequently, the lower the
image effective resolution.

In this work, we use the HiRISE images as the “higher-resolution” references and use
the hill-shaded relief images of the MADNet 2.0 DTMs and MADNet 1.0 DTMs as the
“lower-resolution” targets. It should be noted that the PDS DTMs are excluded from this
assessment, as it is almost impossible to find any common slanted edges (valid candidates)
from the PDS DTMs and the corresponding HiRISE images, due to the huge differences in
effective resolution. For each of the five test HiRISE images (refer to Section 2.4), we extract
four crops (namely test-1, test-2, test-3, and test-4 in Table 2) centred at visually selected
large-sized and steep craters (diameter ~200 m), where the image shows a high-contrast
crater outline and the DTM has a steep slope (see area-H of Figure 14 as an example)
resulting in a high-contrast crater outline on the corresponding hill-shaded relief image.
Results of the ELF measurements are summarised in Table 2. To examine the test images
and detailed plots from the ELF tool, please refer to the Supplementary Materials.

The averaged M-FWHM values shown in Table 2 (the last column), indicate the
number of pixels that are needed for representation of a sharp peak in the DTMs. The total
averaged M-FWHM values from the 20 test areas of HiRISE, MADNet 1.0, and MADNet
2.0 are 3.128 pixels, 4.122 pixels, and 3.416 pixels, respectively. As we use the hill-shaded
relief image of a DTM to compare against a real image, the total averaged M-FWHM
values cannot be directly used to calculate the effective resolution of the DTMs. However,
M-FWHM is still considered to be an effective indicator for comparing two DTM results
and show how close their spatial resolutions are to the reference images. In this experiment,
a lower M-FWHM value represents a sharper view of the hill-shaded relief image, and
also, a closer M-FWHM value between the hill-shaded relief image and the HiRISE image
represents a closer effective resolution between the DTM and the HiRISE image. We
can observe from Table 2, there are significant improvements on effective resolutions of
the MADNet 2.0 DTMs in comparison to the MADNet 1.0 DTMs for all five test HiRISE
images. MADNet 2.0 has achieved better results for the HiRISE scenes of ESP_003195_1985
(target/reference M-FWHM: 3.56/3.20), ESP_036925_1985 (target/reference M-FWHM:
3.13/3.296), and ESP_042134_1985 (target/reference M-FWHM: 3.84/3.06), than the other
two scenes. This is consistent with the assessment results using crater size-counting. To
compare the difference between MADNet 2.0 and MADNet 1.0 results, the HiRISE scenes of
ESP_039299_1985 (MADNet 2.0/MADNet 1.0 M-FWHM: 4.66/5.18) and ESP_042134_1985
(MADNet 2.0/MADNet 1.0 M-FWHM: 3.84/4.71) have shown the largest improvement
between the MADNet 1.0 and MADNet 2.0 results. In general, the very similar averaged
M-FWHM values from MADNet 2.0 and the reference HiRISE image for all five test images
indicates the achieved effective resolution of the MADNet 2.0 DTM is fairly close (~91.6%
according to the total averaged M-FWHM values of the 20 test regions) to the resolution of
the HiRISE images.
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Table 2. Summary of the ELF measurements of the HiRISE image, hill-shaded relief images of the MADNet 2.0 and MADNet 1.0 DTMs, for the four pre-selected areas for each of the five

test HiRISE images.
Test-1 Test-2 Test-3 Test-4
HiRISE ID Avg. M-FWHM
Extracted M-FWHM Extracted M-FWHM Extracted M-FWHM Extracted M-FWHM in Pixels
Edges Edges Edges Edges
HiRISE Image - 2.98 - 4.35 - 3.10 - 2.36 3.20
MADNet 1.0
ESP_003195_1985 shaded relief 83 3.26 37 6.05 301 490 89 4.57 4.45
MADNet 2.'0 83 3.01 58 4.85 301 3.98 89 241 3.56
shaded relief
HiRISE Image - 292 - 2.90 - 2.70 - 3.32 2.96
MADNet 1.0
ESP_036925_1985 shaded relief 117 3.46 395 417 162 3.79 216 422 391
MADNet 2.'0 117 3.22 395 3.01 162 2.92 216 3.35 3.13
shaded relief
HiRISE Image - 3.74 - 3.67 - 3.13 - 391 3.61
MADNet 1.0
ESP_037070_1985 shaded relief 92 3.94 13 4.32 277 5.07 21 4.84 4.54
MADNet 2.'0 92 4.03 17 4.77 277 3.16 25 453 412
shaded relief
HiRISE Image - 3.58 - 2.76 - 3.16 - 2.95 3.11
MADNet 1.0
ESP_039299_1985 shaded relief 122 6.48 22 4.70 80 5.95 52 3.58 5.18
MADNet 2.'0 122 6.21 22 2.84 84 6.12 54 3.46 4.66
shaded relief
HiRISE Image - 294 - 2.83 - 3.38 - 3.10 3.06
MADNet 1.0
ESP_042134_1985 shaded relief 64 6.77 248 3.16 169 5.52 20 3.40 471
MADNet 2.0 65 3.25 248 3.08 172 5.69 49 3.33 3.84

shaded relief




Remote Sens. 2021, 13, 4220

28 of 40

3.3. DTM Profile and Difference Measurements

According to the qualitative assessments presented in Section 3.1, we observe that
the very-fine-scale 3D features retrieved by the MADNet 2.0 system correlate with the 2D
features that are displayed in the HiRISE images. This demonstrates that the MADNet 2.0
system does not “invent” any small-scale features which do not exist in the image and the
existing retrieval is visually realistic. However, given the absence of any high-resolution
“ground-truth” topographic data, it is not feasible to directly measure the correctness of the
MADNet 2.0 HiRISE DTMs with respect to “true elevations” or to judge if the very-fine-
scale 3D features are correct. We are aware that there exist photoclinometric HiRISE DTMs
at similar spatial resolution and photogrammetric DTMs derived from rover stereo imagery
at even higher spatial resolution (for very small areas up to a range of 5m around stopping
points along the rover traverse). However, both photoclinometry and photogrammetry
have their own issues/artefacts (e.g., overshoot/undershoot with photoclinometric DTMs,
matching inaccuracy and camera model/triangulation uncertainties with photogramme-
try), and consequently, the resultant photoclinometric and photogrammetric heights cannot
be considered as sufficiently accurate even when they could have higher spatial resolution.
Therefore, these DTMs cannot be used to justify the “true correctness” of the MADNet 2.0
DTMs. In other words, the closer the deep learning-based DTMs are to the photoclino-
metric or photogrammetric DTMs, doesn’t necessarily mean that the deep learning-based
DTMs are closer to “the truth”.

Nevertheless, the profile and DTM difference measurements presented in this section
should provide the readers with an insight into the “upper bound” and “lower bound” of
the differences between the MADNet 2.0 HiRISE DTMs, the PDS HiRISE DTMs, and the
referencing CTX DTM. We perform these profile measurements using the last five areas that
were demonstrated in Section 3.1, i.e., area-F (in Figure 21), area-G (in Figure 22), area-H
(in Figure 23), area-I (in Figure 24), and area-] (in Figure 25). For each of the five areas, four
DTM profiles are measured, including one longer profile to demonstrate the differences
between the HiRISE DTMs and the referencing CTX DTMs (i.e., large-scale topography),
and three shorter profiles to detail the differences between the PDS HiRISE DTMs and the
MADNet 2.0 HiRISE DTMs (i.e., small-scale topography). Note that if the profile is too
short (less than 75 m) for the three shorter profiles, the CTX profiles are excluded in order
to show more details for the differences of the higher-resolution HiRISE DTMs.

We observe that in general the three measured DTMs are well correlated with each
other but show different levels of detail. For large-scale topography, the MADNet 2.0
HiRISE DTMs and reference CTX DTM have differences between +2 m (for area-F), be-
tween —3 m and +48 (for area-G, wherein the reference MADNet 1.0 CTX DTM has failed
to retrieve the small hills), between —8 m and +6 m (for area-H), between —1 m and +2 m
(for area-I), and between +3 m and +7 m (for area-], wherein this could either be a small-
scale error for the CTX DTM or a large-scale error for the HiRISE DTM). For small-scale
topography, we can observe that there are much more fine-scale details (e.g., craters and
linear peaks) present in the profiles of MADNet 2.0 HiRISE DTMs. However, to decide
whether the fine-scale details are artefacts or real surface features, we need to refer to the
original HiRISE images. As previously discussed, most of the fine-scale features that we
can observe from the MADNet 2.0 DTMs are also present in the DTM profiles and can be
observed in the original HiRISE images. Even though we cannot define their accuracy, the
height differences between the MADNet 2.0 HiRISE DTMs and PDS HiRISE DTMs are
comparably minor. They are between +1 m (for area-F), between —3 m and +5 m (for area-
G), between —1 m and +1.5 m (for area-H), —0.9 m and +1.3 m (for area-I), and between
£1 m (for area-]). These height variations are reasonable for the small-scale features (e.g.,
small craters) that are shown on the original HiRISE image.

The difference maps between the MADNet 2.0 HiRISE DTMs and PDS HiRISE DTMs,
as well as the difference maps between the MADNet 2.0 HiRISE DTMs and the reference
CTX DTM, for the above discussed five areas (i.e., area-F, -G, -H, -1, -]; extents are slightly
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different due to re-cropping), are shown in Figure 26. Table 3 shows the mean and standard
deviations of these difference maps. For the differences between the MADNet 2.0 HiRISE
DTMs and the reference CTX DTM, we can observe that except for one outlier for area-
G, wherein the CTX DTM has failed to show the topography of the hills, the rest of the
four areas have shown a fairly good correlation with means less than 5 m and standard
deviations less than 3 m. For the differences between the MADNet 2.0 HiRISE DTMs and
PDS HiRISE DTMs, we can observe highly correlated means with standard deviations less
than 0.5 m for four areas, i.e., area-F, -H, -1, -], and a slightly higher standard deviations as
1.073 m for area-G, which is due to the fact that the quality of the reference CTX DTM is
very poor in this area.
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Figure 21. DTM profile measurements of the 1 m/pixel PDS HiRISE DTM, the 25 cm/pixel MADNet 2.0 DTM, and the
12 m/pixel MADNet 1.0 CTX DTMs (the reference DTM) for area-F (location is shown in Figure 10). N.B. all profile
measurements begin from the labelled side of the profiles lines that are shown on the image and DTMs to the other end of
the lines.
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Figure 22. DTM profile measurements of the 1 m/pixel PDS HiRISE DTM, the 25 cm/pixel MADNet 2.0 DTM, and the
12 m/pixel MADNet 1.0 CTX DTMs (the reference DTM) for area-G (location is shown in Figure 10). N.B. all profile
measurements begin from the labelled side of the profiles lines that are shown on the image and DTMs to the other end of
the lines.
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Figure 23. DTM profile measurements of the 1 m/pixel PDS HiRISE DTM, the 25 cm/pixel MADNet 2.0 DTM, and the
12 m/pixel MADNet 1.0 CTX DTMs (the reference DTM) for area-H (location is shown in Figure 10). N.B. all profile
measurements begin from the labelled side of the profiles lines that are shown on the image and DTMs to the other end of
the lines.
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Figure 24. DTM profile measurements of the 1 m/pixel PDS HiRISE DTM, the 25 cm/pixel MADNet 2.0 DTM, and
the 12 m/pixel MADNet 1.0 CTX DTMs (the reference DTM) for area-I (location is shown in Figure 10). N.B. all profile
measurements begin from the labelled side of the profiles lines that are shown on the image and DTMs to the other end of

the lines.
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Figure 25. DTM profile measurements of the 1 m/pixel PDS HiRISE DTM, the 25 cm/pixel MADNet 2.0 DTM, and
the 12 m/pixel MADNet 1.0 CTX DTMs (the reference DTM) for area-] (location is shown in Figure 10). N.B. all profile
measurements begin from the labelled side of the profiles lines that are shown on the image and DTMs to the other end of

the lines.

Table 3. Statistics (mean and standard deviations) of the DTM difference maps that are shown in Figure 26.

Area-F Area-G Area-H Area-1 Area-]
MADNet 2.0 HiRISE DTM Mean 0.001 m —0.013m —0.20m —0.005 m —0.003 m
: Standard
PDS HiRISE DTM Deviation 0.289 m 1.073 m 0.435 m 0.297 m 0.304 m
MADNet 2.0 HiRISE DTM Mean 0.076 m 6.059 m 1.155m 0.292 m 4.868 m
CTX reference DTM Standard 0.601 m 16.381 m 2.804 m 1218 m 0.886 m

Deviation
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Figure 26. DTM difference maps of the five exemplar areas (i.e., area-F, -G, -H, -, -J; extents are slightly different due to
re-cropping). 1st row: difference maps between the MADNet 2.0 HiRISE DTMs and the PDS HiRISE DTMs; 2nd row:
difference maps between the MADNet 2.0 HiRISE DTMs and reference CTX DTM.

4. Discussion
4.1. MADNet 2.0 without Photogrammetric Inputs

Previously, we demonstrated the MADNet 1.0 multi-resolution DTM products using
HRSC, CTX and HiRISE [7], wherein we started from a reference MOLA-corrected HRSC
photogrammetric DTM, i.e., the HRSC MC-11W level 5 DTM mosaic (available at http:
/ /hrscteam.dlr.de/HMC30/MC11W/, accessed on 15 October 2021). The 50 m/pixel
HRSC photogrammetric DTM was employed because it could provide better large-scale
topographic input for the 25 m/pixel MADNet 1.0 HRSC DTM, in comparison to using
the 463 m/pixel MOLA DTM. Theoretically, the MOLA DTM can always be used as
the reference DTM in MADNet 1.0 for any HRSC processing, just like we can use the
12 m/pixel MADNet 1.0 CTX DTM as the reference DTM for the HiRISE processing (the
resolution gap between MOLA DTM and HRSC image is similar to the resolution gap
between CTX DTM and HiRISE image). However, the results are expected to be more or
less affected by the aforementioned issues (refer to Section 2.1). With MADNet 2.0, large
resolution gaps between the input image and reference DTM can now be better handled,
as demonstrated with the HiRISE examples shown in this paper. This can be similarly
applied for the single-input-image HRSC DTM estimation using the global MOLA DTM as
the reference input.

Figure 27 shows an example of the 12.5 m/pixel MADNet 2.0 HRSC DTM result
(using MOLA DTM as the reference), in comparison to the previous 25 m/pixel MADNet
1.0 HRSC DTM result [7] (using the HRSC MC-11W DTM as the reference). It should
be noted that the referencing HRSC MC-11W DTM was 3D co-aligned with respect to
the global MOLA areoid DTM on top of the standard official HRSC level 4 and level 5
DTM production procedure using bundle adjustment and sequential photogrammetric
adjustment [70,71]—for details of the 3D co-alignment process, please refer to [7,68]. We
can observe from Figure 27 that not only the large-scale topography is unaffected by using
the MOLA DTM as the reference for MADNet 2.0, but also, the quality and resolution of
the small-scale topography is greatly improved compared to the MADNet 1.0 result. For
each single surface feature that appears on the input HRSC image, MADNet 2.0 is able to
produce pixel-scale retrieval of surface topography.
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HRSC MC-11W level 5

HRSC MC-11W level S DTM mosaic (HMC_11W20_DAS)

MADNet 1.0 DTM (inputs: HMC_11W24_ND5 and HMC_11W20_DAS5)

ORI mosaic (HMC_11W24_ND5)

MADNet 2.0 DTM (inputs: HMC_11W24_NDS5 and MOLA)

f

Figure 27. An example of the 12.5 m/pixel MADNet 2.0 HRSC DTM result (using MOLA areoid DTM as the reference), in
comparison to the 25 m/pixel MADNet 1.0 HRSC DTM result [7] (using the HRSC MC-11W DTM as the reference) and the
50 m/pixel photogrammetric HRSC MC-11W DTM. This example area is centred at 24.865° W, 18.385° N over Oxia Planum.

We would like to emphasise that the MADNet 2.0 HiRISE DTMs presented in this
paper are only derived from single input HiRISE images. The CTX reference DTMs are
solely used to rescale the “relative heights” into “absolute heights”. The CTX reference
DTMs themselves were produced with single input CTX images with an HRSC reference
DTM, whilst the HRSC reference DTM was produced with a single input HRSC image using
an existing (official) HRSC DTM mosaic as the reference. However, as demonstrated in this
section, the HRSC reference DTM (for CTX processing) can also be produced using the
MOLA DTM as the reference DTM. The MOLA DTM is also required for photogrammetry
to adjust the inaccurate camera triangulation results into “absolute heights”. This means
with MADNet 2.0 we are not reliant on any existing DTM products produced from the
same input source. Therefore MADNet 2.0 should not be considered as a “DTM refinement”
method. The overall MADNet 2.0 DTM retrieval process can be achieved via a coarse-to-
fine approach, starting from the MOLA reference DTM, a single input lower-resolution
image (e.g., HRSC), a single input medium-resolution image (e.g., CTX/CaSSIS), and a
single input high-resolution image (e.g., HiRISE).

4.2. Limitations and Future Work

There are two limitations to the proposed MADNet 2.0 system. Firstly, the coarse-
to-fine reconstruction module used in MADNet 2.0 is comparably time-consuming as it
involves multiple stages of the 3D co-alignment processing, and consequently, MADNet 2.0
system is about 2-3 times slower in speed, in comparison to the MADNet 1.0 system. Even
though the DTM inference process only takes a few minutes (using the Nvidia® RTX3090
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graphics processing unit) to complete for a full HiRISE scene (i.e., 6000-12,000 inference pro-
cesses are needed), the associated tiling, geo-referencing, height-rescaling, 3D co-alignment,
and tile mosaicing processes require an extra few hours to complete. In particular, the 3D
co-alignment process takes about 85% of the total processing time. In the future, one of the
key targets is to explore deep learning-based methods for non-rigid 3D co-alignment and
merging of multi-scale DTMs in order to speed up the overall process. Secondly, having a
higher resolution inference output (from the half resolution of the input image in MADNet
1.0 to the same resolution of the input image in MADNet 2.0) sometimes result in image
noise and artefacts being interpreted as small-scale topographic features with the MADNet
2.0 system. An example of this can be found from Figure 2, wherein the HiRISE image
shows some linear noise at the centre of the crater, and consequently, the higher resolution
MADNet 2.0 DTM has captured this as linear topographic features (they are not very
obvious, but are shown at the centre of the crater). In the future, either pre-denoising or
post “depth completion” methods could be explored to resolve this issue.

It is always considered desirable to understand the accuracy of a high-resolution
planetary DTM, especially for the DTMs that are produced by deep learning, which is
much newer than photogrammetry or photoclinometry. However, the only ground truth
available for Mars topography is the MOLA profile that has a very low spatial resolution
(~330 m/pixel horizontally; ~1 m vertically) [11]. Consequently, measuring the accuracy
of the resultant MADNet 2.0 HiRISE DTMs is not considered feasible (see discussions in
Section 3.3) for the time being. In the absence of any high-resolution ground-truth of Mars
topography, we can only measure the “relative accuracy” of the MADNet 2.0 HiRISE DTM
via intercomparisons with DTMs built from different instruments (e.g., CTX, CaSSIS, or
rover/helicopter imagery for the robotic sites) or with DTMs built by different methods
(e.g., photogrammetry [7,71,72] or photoclinometry [73-76]—for general discussions about
the advantages and disadvantages of photogrammetry, photoclinometry, and deep learning-
based DTM retrieval methods, please refer to [6]). In this paper, we demonstrate with
profile measurements that the large-scale differences between the MADNet 2.0 HiRISE
DTM and CTX reference DTM are considered minor, and also, the small-scale differences
between the MADNet 2.0 HiRISE DTM and PDS HiRISE DTM are even smaller. In the
future, we would plan to look at the rover/helicopter imagery of the landing sites of the
robotic missions, to better understand the “relative accuracy” of the MADNet 2.0 DTMs.
In addition, we plan to apply MADNet 2.0 on repeat HiRISE observations, in the future,
to assess the robustness of the method with static features but also to pursue studies
on topographic changes that were not considered feasible with non-simultaneous stereo.
However, it should be noted that we were able to produce seamless DTM mosaics using
overlapping MADNet 1.0 DTMs produced from different overlapping images (for HiRISE
and CTX) [7], which to some extent demonstrated robustness of the original MADNet 1.0
system with repeat views.

5. Conclusions

In this paper, we proposed the MADNet 2.0 single-image DTM estimation system
that improves on the MADNet 1.0 system to resolve several issues of the latter system
and to achieve better DTM quality and effective resolution. A new training dataset is
constructed using selected, publicly available PDS HiRISE DTMs and iMars CTX DTMs for
the new MADNet 2.0 model. Quantitative assessments using RMSEs and mean SSIMs are
provided for the HiRISE test dataset to show efficacy of the proposed MADNet 2.0 network,
compared to the MADNet 1.0 network. Followed by these, we demonstrated the proposed
MADNet 2.0 system with single-view HiRISE images over the ExoMars Rosalind Franklin
rover’s landing site at Oxia Planum. Visual comparisons and quantitative assessments
are provided in comparison with the PDS HiRISE DTMs and the MADNet 1.0 HiRISE
DTM mosaic product. The qualitative assessments demonstrate that MADNet 2.0 has
effectively resolved the key issues from MADNet 1.0 and is capable of producing improved
DTM quality. The quantitative assessments using crater size-counting and slanted-edge
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sharpness measurements demonstrate the effective resolution of the MADNet 2.0 DTM
is very close to the effective resolution of the input image. In addition, DTM profile and
difference measurements of the resultant MADNet 2.0 HiRISE DTMs, compared to the
reference CTX DTM and the PDS HiRISE DTMs, have shown fairly good relative accuracy
for both the large-scale and small-scale topography.

Supplementary Materials: The following are available online at https://liveuclac-my.sharepoint.
com/:f:/g/personal /ucasyta_ucl_ac_uk/Ejgzx305fKFHv-fv_2]JIlvsBHAnfMc908cgp3jl8UaXasg?e=
SuMMOG, full-resolution figures, MADNet 2.0 HiRISE DTMs, reference CTX DTM, training dataset,
and the slanted-edge measurements.
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