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We study the Tan’s contact of a one dimensional quantum gas of N repulsive identical bosons
confined in a harmonic trap at finite temperature. This canonical ensemble framework corresponds
to the experimental conditions, the number of particles being fixed for each experimental sequence.
We show that, in the strongly interacting regime, the contact rescaled by the contact at the Tonks-
Girardeau limit is an universal function of two parameters, the rescaled interaction strength and
temperature. This means that all pair and correlation effects in the Tan’s contact are embedded in
the Tan’s contact in the Tonks-Girardeau limit.

I. INTRODUCTION

Many-body quantum physics is a cornerstone of mod-
ern physics and a key to understand future technologies
such as high Tc superconductivity or quantum comput-
ing. However, an accurate description of strongly corre-
lated quantum systems, for an arbitrary number of par-
ticles, is often a dare without a simple solution. Apart
from the very specific family of integrable systems [1–11]
where all observables can, in principle, be predicted the-
oretically, our knowledge is in general limited to simple
situations like two particles [12–14], solutions that hold
in the thermodynamic limit [15, 16], low energy physics
[17], or mean-field descriptions for many-body systems
[18, 19]. It is therefore quite delicate to extract general
informations such as the scaling of physical observables
with respect to the number of particles for generic situa-
tions.

For the case of quantum particles with point-like in-
teractions, short-range correlations are embedded in the
Tan’s contact CN [20–22]. This quantity, that is pro-
portional to the probability that two particles approach
each other infinitely close, determines the asymptotic
behaviour of the momentum distribution n(k), CN =
limk→∞ k4n(k), k being the momentum divided by ~.
This observable can be measured via time-of-flight tech-
niques [23–25], with radio-frequency spectroscopy [26,
27], Bragg spectroscopy [28], by measuring the energy
variation as a function of the interaction strength [24], or
by looking at three-body losses in quantum mixtures [29].
This central quantity is a function of the interaction en-
ergy, density-density correlations function, the trapping
configuration, the temperature as well as the magnetiza-
tion [30, 31], and thus depends in a non trivial way on the
nature and the number N of particles. Therefore, even
in one dimension, the behaviour of CN is not completely
clarified, especially in trapped systems, despite many the-
oretical investigations [30, 32–35]. For one-dimensional
(1D) bosons (and/or fermions) trapped in a harmonic
potential of frequency ω, it has been shown that, in the
thermodynamic limit, at zero temperature, the contact

rescaled by N5/2 is a universal function of one scaling pa-
rameter: z = aho/(|a1D|

√
N) [15, 34]. This holds also at

finite temperature, in the grand-canonical ensemble: the
contact rescaled by N5/2 is a universal function of two
scaling parameters, z and ξT = |a1D|/λDB, or equiva-
lently z and τ = T/TF [16, 36], a1D being the 1D scat-

tering length, aho =
√

~/(mω) the harmonic oscillator

length, m being the mass, λDB =
√

2π~2/mkBT the De
Broglie thermal wavelength, TF = N~ω/kB the Fermi
temperature, and kB the Boltzmann constant. However,
for systems with small number of particles, the N5/2-
scaling fails. In the zero-temperature limit [37], it is pos-
sible to change the paradigm and to introduce a different
scaling form that holds from N = 2 to infinity. At fi-
nite temperature, in the grand-canonical ensemble, the
N5/2-scaling holds for N > 10 [16]. However, corrections
at small number of particles have, to our knowledge, not
yet been studied in 1D, and the important question of
the relevance of the statistical ensemble has not been ad-
dressed. The latter is indeed a crucial point since ultra-
cold atom experiments are canonical or, more often, an
average over canonical ensembles, but not grand canoni-
cal and scaling properties are obviously strongly affected
by the statistical distribution of particles numbers. In
fact, in ultracold experiments, in each experimental se-
quence, N atoms are charged in a three-dimensional trap.
Then the atoms are separated in several light wires cre-
ated by the interference of two propagating laser beams
[38]. The atomic gas in the wires can be considered as
one-dimensional, if the interaction and thermal energies
are lower than the energy scale of the radial confinement
~ω⊥, ω⊥ being the radial harmonic oscillator frequency
[39]. Otherwise, atoms can be directly trapped in a single
1D tube with a strong radial confinement [40]. In both
cases, the relation between the 1D scattering length a1D
and the 3D one a3D is given by a1D = −a2⊥/a3D, where

a⊥ =
√

~/(mω⊥) [41].

In this paper we study the canonical Tan’s contact
for a small number of harmonically trapped Lieb-Liniger
bosons.

We show that, in the strongly interacting regime, the

http://arxiv.org/abs/1908.08714v2
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contact for N bosons at temperature T and with repul-
sive interaction, divided by the contact for the same num-
ber of bosons and temperature but in the regime of infi-
nite repulsions, is a N -independent function of z and τ .
Namely, all the non-trivial particle-number dependence
is embedded in the contact in the infinite interaction
limit, even at finite temperature, which is the main result
of this work. The regime of infinite repulsions in one-
dimension corresponds to the so-called Tonks-Girardeau
limit. In this regime, the infinite repulsions, due to the
low-dimensionality, play the role of a sort of Pauli princi-
ple so that bosons “behave” as non-interacting fermions.
Another result is that we provide an analytical expres-
sion for the N -dependence of the canonical contact in
the Tonks-Girardeau limit. Our formula is a conjecture
that works extremely well over the whole temperature
range. The consequence of these two results is that we
can explicitly express the canonical contact for N har-
monically trapped Lieb-Liniger bosons in the intermedi-
ate and strong-interaction regime (z > 1), for any value
of N and any temperature T .
The paper is organized as follows. In Sec. II we intro-

duce the physical system and define the canonical Tan’s
contact. This observable is then evaluated exactly in two
special situations: for two identical bosons at any inter-
action strength and any temperature and for N identical
bosons in the Tonks-Girardeau limit (infinite coupling).
In the general situation, namely for intermediate inter-
action strength and for N > 2, we calculate the Tan’s
contact by means of Quantum Monte Carlo (QMC) sim-
ulations. The scaling properties of the canonical contact
are then analyzed in Sec. III. After reminding the results
previously obtained, in the strongly-interacting limit, at
zero temperature [37], we analyze the large temperature
scaling of the contact in the same limit. By comparing
these two limits, we propose an explicit form of the con-
tact scaling function holding in the strongly interacting
limit and at any temperature which makes our numerical
data overlap for different number of atoms N with only
a few percent discrepancy. In Sec. IV we compare the
canonical contact with the grand-canonical one. At large
temperature the canonical and grand-canonical contacts
are both proportional to the two-bosons contact. This
does not hold at smaller temperatures. Finally, our con-
cluding remarks are given in Sec. V.

II. CANONICAL TAN’S CONTACT

We consider a gas of N identical interacting bosons of
mass m trapped in a 1D harmonic confinement. This
system is described by the Hamiltonian

H =

N
∑

i=1

(

− ~
2

2m

∂2

∂x2i
+

1

2
mω2x2i

)

+ g
∑

i<j

δ (xi − xj) ,

(1)
where the repulsive interaction strength g depends on the
1D scattering length as g = −2~2/ma1D, if a⊥ ≫ a3D

[41]. At finite temperature T , in the canonical ensemble,
the contact for N bosons, Cc

N (g, T ), can be deduced from
the free energy F by exploiting the Tan’s sweep relation
[20]

Cc
N (g, T ) = − m2

π~4
∂F

∂g−1

= − m2

π~4

∑

i e
−βEi∂Ei/∂g

−1

∑

i e
−βEi

,
(2)

where Ei is the i-th eigenenergy of the N -boson system
and β = (kBT )

−1. Cc
N (g, T ) can be exactly evaluated for

N = 2 at any value of the interaction strength g and any
temperature T , and in the Tonks-Girardeau limit g → ∞
for any N and T .
Let us underline that, analogously to the zero-

temperature case, the contact can also be calculated from
the average interaction energy that can be obtained by
the free energy from the Hellmann-Feynman theorem
〈Hint〉 = g∂F/∂g [42]. It follows [21]

Cc
N (g, T ) =

gm2

π~4
〈Hint〉. (3)

A. The two bosons system

For the two bosons system, the energy spectrum can
be calculated analytically. In this case Ei = Ecm,ℓ +
Er,j , Ecm,ℓ being the centre of mass energy with quantum
number ℓ and Er,j = ~ω(1/2 + νj) the relative energy,
with quantum number j [i = (ℓ, j)], that depends on the
interaction strength via the implicit relation [12]

f(ν) =
Γ
(

− ν
2

)

Γ
(

− ν
2 + 1

2

) = −
√
2
|a1D|
aho

, (4)

where Γ(x) is the gamma function [43]. Ecm,ℓ, differently
from the relative energy Er,j , is completely independent
on interatomic interactions as stated by the Kohn’s the-
orem [44] and then does not contribute to the contact
calculation. By applying Eq. (2), the two bosons con-
tact then takes the form

Cc
2(g, T ) =

√
8z2

πa3ho
Z−1
r

∑

j

e−β~ωνj
∂νj
∂z

=

√
32

πa3ho
Z−1
r

∑

j

e−β~ωνj
Γ
(

− νj
2 + 1

2

)

Γ
(

− νj
2

)

×
[

ψ

(

−νj
2

+
1

2

)

− ψ
(

−νj
2

)

]−1

,

(5)

where Zr =
∑

j e
−β~ωνj is the canonical relative mo-

tion partition function and ψ(x) = Γ′(x)/Γ(x) is the
digamma function [43]. In the Tonks-Girardeau limit
νj = 2j − 1 (j ≥ 1) and both Γ

(

− νj
2 + 1

2

)

= Γ(−j + 1)
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FIG. 1: Canonical Tan’s contact Cc
2(g, T ) as a function of τ =

T/TF [Eq.(5)] for different values of the interaction strength

z = aho/(|a1D|
√
N). From bottom to top: z = 0.5, 1, 2.5, 5,

and 1000. The curve for z = 1000 is indiscernable from the
contact evaluated in the Tonks limit by means of Eq. (6).

and ψ
(

− νj
2 + 1

2

)

= ψ(−j + 1) diverge for j ≥ 1. With
some algebra, it can been shown that

Cc
2(∞, T ) =

√
32

π3/2a3ho
Z−1
r

∑

j

e−β~ω(2j−1) (2j − 1)!!

2j(j − 1)!
(6)

Remark that Eq. (6) gives the known limit Cc
2(∞, 0) =

(2/π)3/2a−3
ho [37]. The canonical two-bosons contact ob-

tained by Eq. (5) is shown in Fig. 1. We have verified
that the curve for z = 1000 is essentially indiscernable
from the contact evaluated in the Tonks limit by means
of Eq. (6).

B. The Tonks-Girardeau limit

In the Tonks-Girardeau limit, where fermionization oc-
curs, the interaction strength g is ininite, namely the 1D
scattering length a1D is zero and therefore, this length-
scale disappears by making the problem more univer-
sal. Thus the contact, in this regime, does not depend
on the interactions and can be written as a function
of the corresponding fermionic two-body density matrix
ρ2F (x1, x2;x

′
1, x

′
2) [45]. More precisely, it can be shown

that

Cc
N (∞, T ) =

2

π

∫ +∞

−∞

dxF (x) (7)

where we have defined

F (x) = lim
x′,x′′→x

ρ2F (x
′, x;x′′, x)

|x− x′||x− x′′| . (8)
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FIG. 2: Canonical (empty symbols) [Eq. (7)] and grand-
canonical contact (full symbols) [46] as a function of τ for
N = 2 (violet squares), N = 3 (green circles), N = 4 (light-
blue up-triangles), and N = 5 (orange down-triangles) Tonks-
Girardeau bosons. The grand-canonical case will be discussed
in Sec. IV.

By explicitly expressing ρ2F in the canonical ensemble,
as a function of the single-particle orbitals ui(x), we get

F (x) = Z−1
∑

i1=0,∞,i2=i1+1,∞
...iNF

=iNF −1+1,∞

e
−β~ω

∑
j=1,NF

(ij+
1

2
)

∑

〈j,k〉

(

[uij (x)∂xuik(x)]
2 − 2uij (x)∂xuik(x)uik (x)∂xuij (x)

)

(9)

with

Z =
∑

i1=0,∞,i2=i1+1,∞
...iNF

=iNF −1+1,∞

e
−β~ω

∑
j=1,NF

(ij+
1

2
)
. (10)

The canonical contact Cc
N (∞, T ), as obtained by Eqs.

(7) and (9), is shown in Fig. 2 (empty symbols) for
N = 2 to 5. The data are compared with grand-canonical
ones [46] (full symbols) that will be discussed below
(Sec. IV). Remark that the computation of the contact is
more demanding in the canonical case than in the grand-
canonical one, because of several sums in (9) that simplify
in the grand-canonical case.

C. The finite interaction strength regime

In the finite interaction strength scenario for N > 2,
we rely on quantum Monte Carlo simulations to obtain
exact results. Starting from Eq. (1), we discretize the
Hamiltonian using a finite difference method and rewrite
it using second quantization, ending with the following
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bosonic Hubbard Hamiltonian

H = −t
∑

j

(

b†jbj+1 − 2nj + b†jbj−1

)

+w
∑

j

j2nj + U
∑

j

nj(nj − 1)/2. (11)

The discrete positions of the bosons are given by x =
j∆aho where ∆ is a small dimensionless parameter. We
typically used ∆ = 0.1 and checked on some simulations
that the systematic errors induced by this discretization
were smaller than the stochastic errors due to the Monte
Carlo calculations. The operators b†j and bj create or

destroy bosons on site j. nj = b†jbj is the bosonic number
operator on site j. The parameters are given by

t =
~ω

2∆2
, w =

~ω∆2

2
, U =

g

∆aho
. (12)

The Hubbard model is simulated using the stochastic
Green function algorithm [47, 48] that allows the calcu-
lation of many physical quantities for finite systems at fi-
nite temperature. The algorithm works in both canonical
and grand-canonical ensembles, although it is generally
more efficient in the former case. Grand canonical simu-
lations require the sampling of a larger space containing
different numbers of particles, which increases a lot the
correlation time of the data, as the sampling of different
N is not very efficient. Remark that, in the grand canon-
ical ensemble, it is then sometimes difficult to pinpoint
a precise value of 〈N〉 as it requires a fine tuning of the
chemical potential µ.
We will concentrate on small number of particles N ,

which gives a more thorough test of the scaling hypothe-
ses we will introduce at they should be valid for large
N .
Using this algorithm, we calculate the average interac-

tion energy 〈Hint〉 that gives access to the contact [Eq.
(3)]. We choose a system size large enough so density
becomes zero at the edges of the system. As the temper-
ature T increases, the simulations become increasingly
difficult: the density distribution of the particles becomes
wider, which means that the events where two particles
are superposed and then contributes to the interaction
energy become rare, giving a poor signal to noise ratio
for the contact calculation. Increasing interactions also
reduces the probability of double occupancies and, con-
sequently, the precision of the calculation.
These difficulties are further enhanced by the fact that,

as N increases, we will maintain fixed rescaled temper-
ature τ and interaction z to observe possible scaling be-
haviours. The temperature T and interaction g will then
scale with number of particles asN and

√
N , respectively.

These combined effects strongly limits the temperatures,
interactions, and number of particles for which we obtain
reliable results. For canonical simulations, we were able
to obtain results with a relative error better than two
per cent for rescaled interactions up to z = 2.5, rescaled

temperatures up to τ = 5 and numbers of particles up to
N = 5. Grand canonical results are more limited. For N
up to 4, we are limited to z = 1 and τ = 0.2 if we want
a precision of few percents. For N = 4, z = 1 and τ = 2,
we have relative errors of order 20%, which hardly give
meaningful information.

III. SCALING PROPERTIES

A. Zero temperature scaling

In [37] we have shown that it is possible to express the
contact for N bosons or N SU(κ)-fermions as a function
of the contact for two bosons. Indeed the reduced contact

fN (z, 0) =
CN (g(z), 0)

CN (∞, 0)
, (13)

with g(z) = 2~2
√
Nz/(maho), verifies the relation [37]

fN (z, 0) ≃ f2(z, 0), (14)

meaning that, upon rescaling of the interaction strength,
all the N -dependence of the contact is in CN (∞, 0).
Moreover it has been shown from a fit on numerical data
[37] that

CN (g(z), 0) ∼ N5/2 − γNη (15)

where γ ≃ 1 and η = 3/4 in the Tonks-Girardeau limit,
and where they are slowly varying in the strongly inter-
acting regime z > 1.

B. Large temperature scaling

In the large temperature limit, T ≫ TF , quantum cor-
relations are negligible and the contact for N bosons in
the canonical ensemble is simply given by the two-particle
contact times the number of pairs

Cc
N (g, T ≫ TF ) =

N(N − 1)

2
Cc

2(g, T ≫ TF ). (16)

In the strongly interacting limit Eq. (16) takes the ex-
plicit form (see Appendix)

Cc
N (z > 1, τ ≫ 1) =

N(N − 1)

2

2g

π3/2~ωa4ho

1√
α

(

1−
√

π

α
e1/αErfc(1/

√
α)

)

=(N5/2 −N3/2)hN (z > 1, τ ≫ 1)
(17)

with α = 4a2ho~ω/(βg
2) = τ/z2 and

hN (z > 1, τ ≫ 1) =
2z

π3/2a3ho

1√
α

(

1−
√

π

α
e1/αErfc(1/

√
α)

)

.

(18)
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In the Tonks-Girardeau limit

Cc
N (∞, τ ≫ 1) =

N(N − 1)

2

2

π3/2a3ho

√

kBT

~ω

=(N5/2 −N3/2)hN (∞, τ ≫ 1)

(19)

with

hN (∞, τ ≫ 1) =
1

π3/2a3ho

√
τ. (20)

Analogously to the zero temperature case, we can define
the function

fN(z > 1, τ ≫ 1) =
CN (g(z), T (τ))

CN (∞, T (τ))
, (21)

and we get that

fN(z > 1, τ ≫ 1) ≃ f2(z > 1, τ ≫ 1) (22)

holds in the limit T ≫ TF , with f2(z > 1, τ ≫ 1) =
h2(z > 1, τ ≫ 1)/h2(∞, τ ≫ 1).

C. Any temperature scaling conjecture

We now propose the general scaling hypothesis that
Eq. (22) holds for any temperature in the strong-
interaction limit. This is equivalent to claim that, upon
rescaling of the interaction strength and of the temper-
ature, all the N -dependence of the contact is embedded
in CN (∞, T ), for any temperature. This dependence is
quite trivial at large temperature, as it is determined by
the number of pairs, proportional to N(N − 1), and a√
N term that comes from the rescaling of the tempera-

ture with respect to the Fermi temperature. By lowering
the temperature, the contact almost freezes at T ≃ TF
and, because of quantum correlations, there is an en-
hancement of the dependence on N , from N5/2 − N3/2

to N5/2 − N3/4. This leads us to propose the following
conjecture

Cc
N (∞, τ) = h2(∞, τ)s(N) (23)

= h2(∞, τ)
(

N5/2 −N3/4(1+exp(−2/τ))
)

,

where

h2(∞, τ) = C2(∞, T (τ))/s(2) (24)

can de derived by Eq. (6). In Fig. 3 we plot Cc
N (∞, T )

[Eq. (7)], divided by s(N), as a function of τ , for cases
from N = 2 to N = 5, as well as h2(∞, τ), its high-
temperature limit h2(∞, τ ≫ 1) and its value at zero
temperature h2(∞, 0). All the data collapse on the same
curve h2(∞, τ) (continuous black curve), showing that
the conjecture (23) works extremely well.
We test now the reliability of the generalized scaling

hypothesis

fN (z > 1, τ) ≃ f2(z > 1, τ) (25)

0.1

0.2

0.3

0.4

0 1 2 3 4 5

C
c N
(∞

,T
)a

3 h
o
/s
(N

)

τ

FIG. 3: Canonical contact in the Tonks-Girardeau limit
CN(∞, T ), Eq. (7), as a function of τ , scaled by the fac-

tor s(N) = N5/2 − N3/4(1+exp(−2/τ)), see Eq. (23). Vio-
let squares: N = 2, green circles: N = 3, light-blue up-
triangles: N = 4 and orange down-triangles: N = 5. The
blue dashed line corresponds to to the high-temperature limit
h2(∞, τ ≫ 1) [Eq. (20)]. The black cross and the black

line correspond to h2(∞, 0) = (2/π)3/2a−3
ho (2

5/2−23/4)−1 and
h2(∞, τ ) [Eq.(24)] respectively.

approaching the strongly interacting regime. In Figs. 4
and 5 we plot the canonical contact, obtained from quan-
tum Monte-Carlo simulations, for the cases z = 1 and
2.5, respectively. For both figures 4 and 5, in panels
(a) the data have been rescaled by N5/2 −N3/4, in pan-
els (b) by N5/2 −N3/2, and in panels (c) by s(N). The
“zero-temperature” scaling factor N5/2 − N3/4, as ob-
tained in [37] for the Tonks-Girardeau limit, makes, at
small temperatures, the curves approach at z = 1 and
collapse at z = 2.5. The “pair scaling” term N5/2−N3/2

works well in the large temperature regime τ > 1, while
the interpolating function s(N) [Eq. (23)] allows the col-
lapse of the data in the whole temperature range, with
an incertitude of 5% for the case z = 1 (Fig. 4-c) and of
1% for the case z = 2.5 (Fig. 5-c). The validity of the
scaling hypothesis (25) is verified in Figs. 4-d and 5-d.
Remark that, as mentioned earlier, precise QMC results
are limited to small number of particles and intermedi-
ate values of τ and z. The limitation on the number
of particles is not crucial as, for large number of parti-
cles, limN→∞ s(N)/N5/2 = 1, and we recover the known
thermodynamics limit. Concentrating on small number
of particles N ≤ 5 then provides a more stringent verifi-
cation of the reliability of the scaling hypothesis (25).

IV. COMPARISON WITH THE

GRAND-CANONICAL TAN’S CONTACT

In the zero temperature limit, the grand-canonical and
canonical contacts coincide, thus, in the strongly inter-
acting regime, both scale as ∼ (N5/2 −N3/4).
But, as soon as the temperature increases, the grand-



6

0.05

0.06

0.07

0.1 1

(a)

C
c N
(z
,τ
)a

3 h
o
/(
N

5/
2
−

N
3/
4
)

τ

0.07

0.08

0.09

0.1 1

(b)

C
c N
(z
,τ
)a

3 h
o
/(
N

5/
2
−
N

3/
2
)

τ

0.06

0.07

0.08

0.1 1

(c)

C
c N
(z
,τ
)a

3 h
o
/s
(N

)

τ

0.2

0.3

0.4

0.5

0.1 1

(d)

C
c N
(z
,τ
)/
C

c N
(∞

,τ
)

τ

FIG. 4: Panels (a), (b) and (c): Cc
N(z, τ )a3

ho as a function of τ , for the case z = 1, rescaled by N5/2−N3/4 (a), N5/2−N3/2 (b),
and s(N) (c). Panel (d): fN (z = 1, τ ) as a function of τ . The points (violet squares: N = 2, green circles: N = 3, light-blue
up-triangles: N = 4 and orange down-triangles: N = 5) correspond to the QMC data. The continuous yellow line corresponds
to the two-bosons contact obtained by Eq. (5). Non visible QMC error bars are smaller than the symbol size.
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FIG. 5: Panels (a), (b) and (c): Cc
N(z, τ )a3

ho as a function of τ , for the case z = 2.5, rescaled by N5/2 −N3/4 (a), N5/2 −N3/2

(b), and s(N) (c). Panel (d): fN (z = 2.5, τ ) as a function of τ . The points (violet squares: N = 2, green circles: N = 3,
light-blue up-triangles: N = 4 and orange down-triangles: N = 5) correspond to the QMC data. The continuous yellow line
corresponds to the two-bosons contact obtained by Eq. (5). Non visible QMC error bars are smaller than the symbol size.
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FIG. 6: Canonical (empty symbols) and grand-canonical
contact (full symbols) as a function of τ for N = 2 (vi-
olet squares), N = 3 (green circles), N = 4 (light-blue
up-triangles), and N = 5 (orange down-triangles) Tonks-
Girardeau bosons. The canonical contact [Eq. (7)] is rescaled

by a factor N5/2 −N3/2, while the grand-canonical one [Eqs.

(8)-(9) in [46]] is rescaled by N5/2. The black continuous

curve corresponds to
√
τ/π3/2 [Eq. (20)].

canonical contact for an average number 〈N〉 of particles
departs from the canonical one for N particles. Indeed,
with larger numbers contributions, the grand-canonical
contact increases more rapidly than the canonical one
that is almost constant for 0 ≤ τ ≤ 0.5 (see Fig. 2 for
the Tonks-Girardeau limit case).
In the large temperature limit, in the grand-canonical

ensemble, the termN(N−1), proportional to the number
of pairs in the canonical ensemble, has to be replaced by
its average value

〈N(N − 1)〉 = 〈N2〉 − 〈N〉 = 〈N〉2. (26)

This follows from the fact that, at large T , 〈∆N2〉 ≃ 〈N〉.
By defining TF = 〈N〉~ω/kB, we find

Cgc
N (g, T ≫ TF ) =

〈N〉2
2

Cc
2 = 〈N〉5/2h2(z > 1, τ ≫ 1),

(27)
in agreement with the virial calculation [16]. Thus, in
the large temperature limit, Cgc

N (g, T ≫ TF )/〈N〉5/2 and

Cc
N (g, T ≫ TF )/(N

5/2−N3/2) collapse on the same curve

h2(z, τ ≫ 1) =
√
τ/(π3/2a3ho). This is shown in Fig. 6

for the Tonks-Girardeau limit, where we have compared
the canonical contact [Eq. (7)] and the grand-canonical
one as obtained from Eqs. (8)-(9) in [46]. Remark that
the convergence is faster for the grand-canonical contact.
The consequence of the fact that the canonical and the
grand-canonical contact are proportional to one another,
at large temperature τ ≫ 1, is that both have a maxi-
mum at τ = 1.48z2 in the strong-interacting limit [16].
The situation is different in the weak-interaction regime,
where the grand-canonical contact exhibits a maximum

0.4

0.8

1.2

0.1 1

C
c,
g
c

N
(z

=
0.
5,
τ
)a

3 h
o

τ

FIG. 7: Canonical (empty symbols) and grand-canonical con-
tact (full symbols) as a function of τ for N = 2 (violet
squares), N = 3 (green circles), N = 4 (light-blue up-
triangles) bosons. All points correspond to QMC data eval-
uated in the weakly-interacting regime z = 0.5. QMC error
bars for the canonical data are smaller than the symbol size.

at lower temperatures. This maximum, that has been
explained as the mark of the crossover between a quasi-
condensate and an ideal Bose gas [16], is not present in
the canonical case. This has been studied by means of
QMC simulations and shown in Fig. 7.

In the canonical ensemble and at low interactions the
contact decreases with increasing temperature because,
as particles occupy individual excited states, the cloud of
particles spreads and the interaction energy is lowered.
This happens when the temperature is large enough to
overcome the ~ω gap between the ground and excited
states, which explains why there is almost no variation
at low temperature.

In the grand canonical ensemble, the same effect will of
course take place and yields to the same decrease of the
contact at high temperature. However, at low tempera-
ture, another phenomena occurs: the probability to have
a number of particles that is larger than 〈N〉 increases
with temperature. This gives larger contributions to the
interaction energy and explains the initial increase of the
contact at low temperatures.

As Eq. (22) holds even in the grand-canonical ensem-
ble, one may wonder if the generalized scaling hypothe-
sis (25) is still valid in this ensemble. In Fig. 8 we plot
the quantity Cgc

N (z, τ)/Cgc
N (∞, τ) for the case z = 1 and

N = 2, 3 and 4 and τ ≤ 2, Cgc
N (z, τ) having been cal-

culated by means of QMC simulations and Cgc
N (∞, τ) by

means of Eqs. (8)-(9) in [46]. We observe that, for small
and intermediate temperatures, in the intermediate inter-
actions regime, the curves remain different, instead of the
collapse observed in the canonical case (see Fig. 4(d)).
Our scaling hypothesis then fails in this case of intermedi-
ate interactions, as the grand-canonical Tonks-Girardeau
contact does not embed the full 〈N〉-dependency for these
intermediate interactions. We were not able to test this
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FIG. 8: Cgc
N (z = 1, τ )/Cgc

N (∞, τ ) as a function of τ . The
points (violet squares: N = 2, green circles: N = 3, light-
blue up-triangles: N = 4) correspond to the QMC data.

scaling hypothesis in the grand canonical ensemble at
larger interactions as QMC simulations become increas-
ingly difficult.

V. CONCLUSION

In this paper we have shown that the canonical con-
tact for N , harmonically trapped, Lieb-Liniger bosons,
at any temperature, in the repulsive strongly interacting
regime, can be written as a function of the two-bosons
contact and the contact for N Tonks-Girardeau bosons.
The first can be easily calculated and we provide an an-
alytical formula for the second for any number of bosons
and temperature. This enlightens the dependence of the
contact on the number of pairs at large temperature and
the effects of correlations at low temperature. Moreover,
it supplies a scaling function, in the canonical ensemble,
for any number of particles N ≥ 2 and any temperature
in the strong interacting regime. We have proven our
theory for small number of bosons (2 ≤ N ≤ 5) where
corrections with respect to the known thermodynamic
limit are more important. We have been informed that
these results may also hold true for a 1D homogeneous
Bose gas. This can be deduced from the results recently
presented in [49]. In this paper the authors show that
in the strongly interacting limit Cc

N = 4mNPH/~
2. The

force PH is expressed as PH = n3fH(zH , τH), where zH =
(na1D)−1 is the rescaled interaction strength for the ho-
mogeneous system of linear density n, τH = T/TF,H is
the rescaled temperature (TF,H being the Fermi temper-
ature for the homogeneous system), and fH is a universal
function of zH and τH . From this it can be deduced that
Cc

N (zH > 1, τH)/Cc
N (∞, τH) is also a universal function,

which is equivalent for an homogeneous system of the
scaling relations found in the trapped case.
Finally we discuss the difference between the canoni-

cal and grand-canonical contacts. At large temperature
these quantities are both proportional to the two bosons
contact, and the proportionality factor depends on the
number of pairs in the canonical ensemble and the av-
erage number of pairs in the grand-canonical one. The
main difference between the grand-canonical and canon-
ical cases is that, at small and intermediate tempera-
tures, the grand-canonical contact for 〈N〉 bosons can-
not be written as a function of the 〈2〉-bosons contact
and the contact for 〈N〉 Tonks-Girardeau bosons, as far
as we can test it with the QMC simulations in the in-
termediate interaction regime. Namely, at variance from
the canonical case, the grand-canonical contact for 〈N〉
Tonks-Girardeau bosons seems not to embed the depen-
dence for the average number of particles 〈N〉. Indeed our
scaling hypothesis fails as far as we can test it with the
QMC simulations in the intermediate interaction regime.
Our work can be relevant for experiments with a

small number of particles [50, 51]. From a concep-
tual point of view, it is an important step forward in
understanding the effects of correlations and interac-
tions in finite-temperature harmonically trapped one-
dimensional bosons, as well as in enlightening the role of
the particle-number fluctuations. The extension to the
case of multi-component systems is not straightforward
and will be the subject of a further study.
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Appendix A: Two-body contact in the strong

interaction and large temperature limit

We start with Eq. (5)

Cc
2 = −m

2ω

π~3
Z−1
r

∑

n

e−β~ωνn
∂νn
∂g−1

. (A1)

It can be shown [16] that, in the strongly interacting limit
z > 1, the solutions of Eq. (4) are given by

νn ≃ 2

π
acot(2

√
2n+ 1g−1

~ωaho) + 2n, (A2)

with n ≥ 0. This approximation (A2) becomes more
precise at large values of n. Thus (A1) reads

Cc
2 =

4Z−1
r

π2a3ho

∑

n

e−β~ωνn
√
2n+ 1

1 + 4(2n+ 1)(~ωahog−1)2
. (A3)



9

By replacing in the exponential νn with its value in the
Tonks-Girardeau limit, νn = 2n+ 1, and exploiting that

∫ ∞

0

√
x

1 + xb2
e−β~ωxdx

=
1

(β~ω)3/2

√
π

α

(

1−
√

π

α
e1/αErfc(1/

√
α)

)

,

(A4)

with α = b2/(~ωβ) = 4a2ho~ω/(βg
2), we have that

Cc
2 =

2g

π3/2~ωa4ho

1√
α

(

1−
√

π

α
e1/αErfc(1/

√
α)

)

.

(A5)

Remark that Eq. (A5) is valid only in the large temper-
ature limit where replacing the sum with an integral is
a valid approximation. Hence, in the Tonks-Girardeau
limit, the contact reduces to

lim
g→∞

Cc
2 =

2

π3/2a3ho

√

kBT

~ω
. (A6)
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