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Abstract

This paper aims at proposing robust methods to optimize nonlinear energy sinks (NES) used for the mitigation of
friction-induced vibrations due to mode coupling instabilities. The study is based on a mechanical system composed of
two NES coupled to the well-known two-degrees-of-freedom Hultèn’s model. In such an unstable system coupled with
NES, it is usual to observe a discontinuity in the steady-state amplitude profile which separates the parameter space
into two parts corresponding respectively to the mitigated and unmitigated regimes. The discontinuity is predicted by
a methodology previously developed by the authors and based on Multi-Element generalized Polynomial Chaos. The
method allows to determine the Propensity of the system to undergo a Harmless Steady-State Regime (PHSSR). The
objective of the present work is therefore to maximize the value of the PHSSR to obtain a robust optimal design of the
NES. To this end, several stochastic optimization problems are presented that take into account the dispersion of the
uncertain parameters using two approaches; in the first one, the parameters of the NES are considered as deterministic,
and in the second one they are also supposed uncertain but with a known probability law.
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1. Introduction

Friction-induced vibrations rank among the major is-
sues that friction systems may face. This phenomenon
can result from the generation of Limit Cycle Oscillations
(LCO) induced by dry friction, which are explained by the
coupling of two modes of the system (Oden and Martins
(1985); Fritz et al. (2007); Hervé et al. (2008)). Given the
parametric uncertainties present in friction systems, it is
very difficult to design them so that they always have sta-
ble behaviors. It is therefore necessary to use strategies to
attenuate vibrations when they appear. As a way to model
this phenomenon, the well-known two-degrees-of-freedom
Hultèn’s model (Hultén (1997, 1993)) has been widely used
in the past.

Nonlinear Energy Sinks (NES) are nonlinear passive vi-
bration absorbers which consist in a spring mass damper
with a strong nonlinear stiffness (usually cubic as is the
case in this work). The NES can adapt themselves to
the Primary Structure (PS) without being tuned to a spe-
cific frequency. Their operation is based on the concept
of Targeted Energy Transfer (TET) which has become
an important passive control technique for reducing or
eliminating unwanted vibrations Vakakis and Gendelman
(2001); Vakatis et al. (2008). The design and optimiza-
tion of NES constitute a very dynamic field of research.
Recently, a lot of work has for example been produced
concerning the study of new configurations and technolo-
gies allowing/enhancing TET (Tian et al. (2021); Xiong

et al. (2021)), the analysis of the underlying dynamics of
the coupled system (Bergeot (2021); Habib and Romeo
(2021); Bergeot et al. (2020)), the deterministic optimiza-
tion of NES (Geng et al. (2021); Khazaee et al. (2019)),
the stochastic optimization of NES Pidaparthi and Mis-
soum (2018, 2019), the coupling of the NES to an energy
harvester (Fang et al. (2021); Karama et al. (2021); Kar-
ličić et al. (2021)) or the use of a NES as an energy har-
vester (Zhou et al. (2014); Li and Li (2021)), etc. Among
the many research subfields about NES, the present work
takes place within the framework of robust optimization
of NES when the latter have uncertain parameters and are
used to mitigate Limit Cycle Oscillations (LCO).

The mitigation of LCO by NES has also been widely
studied in the past. The first work reported in this frame-
work concerns the LCO mitigation of the Van der Pol os-
cillator (Lee et al. (2006)). In the field of friction-induced
vibrations mitigation, Bergeot et al. (2017) analyzed the
behavior of a Hultèn’s model coupled to two ungrounded
NES; the same model in considered in this work.

Lately, special attention has been paid to the optimal
design of NES in a deterministic context. Nguyen and
Pernot (2011) have studied the effectiveness of a NES to
attenuate free oscillations of a single degree-of-freedom os-
cillator. The optimization procedure consisted in studying
the influence of the NES damping on the efficiency of the
energy transfer from the primary system to the NES. Wang
et al. (2019) presented multi-objective designs of a track
NES and a single-sided vibro-impact track NES used as
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effective control devices to mitigate the seismic response
of high-rise buildings. In Qiu et al. (2019) a design criteria
for optimally tuned Vibro-Impact NES to control vibration
under periodic and transient excitation has been proposed.
Oliva et al. (2017) developed an approximate design ap-
proach based on the use of the Statistical Linearization
Technique, and an accurate empirical formulation linking
the NES optimal parameters to the characteristics of the
main structure and the random excitation.

More recently, the optimization of NES under uncer-
tainties has also been considered. Boroson (2015) has
introduced the “discontinuity in the effectiveness” of the
NES, i.e., the fact that the effectiveness can change from a
high value to a low value following a small perturbation of
the design parameters or of the initial conditions. In Boro-
son et al. (2017), the optimal design of several parallel NES
configurations for maximum mean efficiency has been in-
vestigated. It has been shown again that the variation of
some system parameters or of the initial conditions gen-
erates a discontinuity on the energy shape of the system.
An optimization algorithm based on the Support Vector
Machine (SVM) technique and a kriging meta-model have
been used to predict this discontinuity according to the
dispersion of some uncertain parameters. Khazaee et al.
(2019) studied the stochastic optimization of multiple NES
(configured in parallel and in series) attached to a simply
supported pipe conveying fluid. The results show that the
optima obtained from stochastic optimization are much
more robust than those obtained from deterministic op-
timization. Pidaparthi and Missoum (2018, 2019) per-
formed optimization of NES under uncertainties in the
context of attenuating self-sustained vibrations of an air-
craft wing created by aeroelastic instability (which is also
due to mode coupling). Depending on the nonlinear prop-
erties of the system, the latter may undergo LCO that are
either supercritical or subcritical. In this case the bifurca-
tion diagram of the system (which represents the ampli-
tude of the LCO as a function of the airflow velocity over
the wing) may exhibit two types of discontinuities, respec-
tively due to the operation of the NES, and to the gener-
ation of subcritical LCO. Using again the SVM technique
and a kriging meta-model, several stochastic optimization
problems have been presented in order to maximize the
average reduction of the LCO amplitude.

Various probabilistic approaches may be used to study
the propagation of uncertainties in the deterministic model
(DM) of a mechanical system. A review of the numeri-
cal methods dedicated to the stochastic prediction can be
found in Nouy (2009). Efficient methods such as the gener-
alized Polynomial Chaos (gPC) or the Multi-Element gen-
eralized Polynomial Chaos (ME-gPC) have been developed
as a less costly alternative to the common Monte Carlo
approach. These methods have been for example used to
perform a stochastic analysis of the dynamic behavior of
friction systems (Nechak et al. (2011, 2012, 2013, 2018);
Sarrouy et al. (2012, 2013); Trinh et al. (2016); Snoun et al.
(2020)).

In this paper, two original optimization methods un-
der uncertainties, based on polynomial chaos theory, are
developed for the robust design of two ungrounded NES
used to mitigate LCO due to mode coupling instability in
the Hultèn’s model, which is the primary structure (PS).
Bergeot et al. (2017) classified the steady-state response
regimes in two main categories related to the dispersion of
some uncertain parameters: the mitigated regimes (harm-
less situations) and the unmitigated regimes (harmful sit-
uations). In the context of instability mitigation by means
of NES, the LCO amplitude profile as a function of a given
bifurcation parameter usually presents a discontinuity be-
tween these two regimes, which makes the NES potentially
very sensitive to uncertainties. In Snoun et al. (2020),
this discontinuity is predicted by means of a ME-gPC
based method. This allows to determine the Propensity
of the system to undergo a Harmless Steady-State Regime
(PHSSR), which is defined as the probability for the sys-
tem to undergo a mitigated regime. The aim of this paper
is therefore to maximize the PHSSR value to obtain a ro-
bust optimal design of the NES with a low computational
cost. For this purpose, several stochastic optimization
problems are presented for a PS having uncertain param-
eters, in which the NES parameters are either considered
as deterministic, or are also supposed uncertain but with
a known probability law.

The article is organized as follows. In Section 2, the two
degrees-of-freedom Hultèn’s model coupled to two NES is
presented. In Section 3, the possible steady-state regimes
of the coupled system are studied, and the PHSSR is de-
fined. Section 4 describes the polynomial chaos theory
and recalls the stochastic optimization algorithm used to
compute the PHSSR. The optimization formulation under
uncertainties is described in Section 5, and the results are
presented in Section 6. Finally, conclusions are given in
Section 8.

2. The friction system under study

The studied mechanical system is similar to that previ-
ously used by the authors in Bergeot et al. (2017); Snoun
et al. (2020). It is recalled hereafter for the sake of clarity.

2.1. The primary system
The primary system (PS) consists in the two degree-of-

freedom (DOF) Hultèn’s phenomenological model (Hultén
(1997, 1993)). This simple model can reproduce the mode-
coupling phenomenon and is composed of a mass m held
against a moving strip. The contact between the mass and
the strip is modeled by two plates supported by two differ-
ent springs, with linear components k1 and k2 and cubic
components kNL

1 and kNL
2 , and two dampers with damp-

ing coefficients c1 and c2 (see Fig. 1). We assume that the
friction coefficient is constant and that the strip moves at
a constant velocity. The relative velocity between the strip
velocity and dx1/dt or dx2/dt is supposed to be positive,
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Figure 1: The mechanical model. (a) Mechanical system with NES;
(b) Zoom on NES1; (c) Zoom on NES2.

and the friction contact is modeled by the Coulomb’s law,
i.e. FT = µFN where FT is the tangential friction force,
FN is the normal force and µ is the friction coefficient.
Using Newton’s second law the equations of motion, that
constitute the primary system in this work, are derived as
follows:

mẍ1 + c1ẋ1 + k1x1 − µk2x2 + kNL
1 x3

1 − µkNL
2 x3

2 = 0 (1a)

mẍ2 + c2ẋ2 + k2x2 + µk1x1 + µkNL
1 x3

1 + kNL
2 x3

2 = 0. (1b)

2.2. Mechanical model with Nonlinear Energy Sinks
Two strongly cubic and identical ungrounded NES with

masses mh, damping coefficients ch and cubic stiffnesses
kNL
h , are attached on the primary system (see Fig. 1).

Introducing the NES displacements h1(t) and h2(t) in
Eq. (1) leads to the following equations of motion of the

coupled system

ẍ1 + η1ω1ẋ1 + ω2
1x1 − µω2

2x2 + φ1x
3
1 − µφ2x

3
2+

ηhω1 (ẋ1 − ḣ1) + ξh (x1 − h1) + φh (x1 − h1)3 = 0
(2a)

ϵḧ1 + ηhω1 (ḣ1 − ẋ1) + ξh (h1 − x1) + φh (h1 − x1)3 = 0
(2b)

ẍ2 + η2ω2ẋ2 + ω2
2x2 + µω2

1x1 + µφ1x
3
1 + φ2x

3
2+

ηhω1 (ẋ2 − ḣ2) + ξh (x2 − h2) + φh (x2 − h2)3 = 0
(2c)

ϵḧ2 + ηhω1 (ḣ2 − ẋ2) + ξh (h2 − x2) + φh (h2 − x2)3 = 0,
(2d)

where ηi = ci/
√
mki (with i = 1,2) are the relative damping

coefficients, ωi =
√
ki/m are the natural angular frequen-

cies, φi = kNL
i /m; as for the NES parameters, ϵ = mh/m

is the mass ratio between the NES and the primary struc-
ture, ξh = kh/m, ηh = ch/

√
mk1 and φh = kNL

h /m. Because
strongly cubic NES are considered, one has ξh ≪ φh. In
general, the mass ratio ϵ is in the range 0.01−0.1 as in the
present paper.

3. Possible steady-state regimes

Four main types of steady-state regimes (SSR) may
be generated when one or several NES are attached on a
primary system which undergoes an LCO: complete sup-
pression of the instability, mitigation through Periodic Re-
sponse (PR), mitigation through Strongly Modulated Re-
sponse (SMR) or no mitigation. Those four regimes can
also be observed on the studied system (2) (Bergeot et al.
(2017)), and are presented in Fig. 2 which shows for each
case the displacements x1(t) - with and without NES at-
tachments - with respect to time. The regimes described
above are classified into two categories depending on whether
the LCO is considered as mitigated (Figs. 2(a), 2(b) and
2(c)) or not (Fig. 2(d)).

In this work the Quantity of Interest (QoI) under con-
sideration is the amplitude AwNES

x1
of the variable x1 in

the system with NES (2) and within a steady-state regime.
It is defined as follows

AwNES
1 =

max [xSSR
1 (t)] −min [xSSR

1 (t)]
2

, (3)

where xSSR
1 (t) is the times series of the variables x1 ob-

tained from the numerical integration of the coupled sys-
tem (2) within the steady-state regime. For comparison
purposes, the amplitude AwoNES

1 of the system without
NES (1) is also computed.

The time integration of system (2) (resp. (1)) is per-
formed between tb = 0 and te = 4 seconds and the ampli-
tude AwNES

1 (resp. AwoNES
1 ) is computed in the interval

[0.9te te] in which we assume that the system has reached
its steady-state regime.
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Figure 2: Comparison between time series x1(t) resulting from the numerical integration of the friction system with and without NES. (a)
Complete suppression, µ = 0.16; (b) Mitigation: PR, µ = 0.18; (c) Mitigation: SMR, µ = 0.2; (d) No mitigation, µ = 0.22. The set of parameters
Eq. (4) has been used.

Using the following set of parameters

ω1 = 2π100 (rad⋅s−1), ω2 = 2π85 (rad⋅s−1),
η1 = 0.02, η2 = 0.06,
φ1 = 105 (N⋅kg−1⋅m−3), φ2 = 0 (N⋅kg−1⋅m−3),
ϵ = 0.05, ξh = 0.001 (N⋅kg−1⋅m−1),

ηh = 0.02, φh = 1.4 ⋅ 105 (N⋅kg−1⋅m−3),

(4)

the amplitudes AwNES
1 and AwoNES

1 are plotted as functions
of the friction coefficient µ in Fig. 3. The specific values
of µ denoted as µwo

b and µw
b correspond to the Hopf bifur-

cation points without and with the NES attachments, re-
spectively. The four steady-state regimes described above
are visible on the Figure, which highlights a discontinuity
(or jump) in the profile of AwNES

1 . For increasing values
of µ, this discontinuity corresponds in general to the tran-
sition from the SMR to the no suppression regime and
separates mitigated regimes from unmitigated ones. The
value of µ at the discontinuity is called mitigation limit

0 µwo
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µml
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No mitigationLinear stability
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Figure 3: Amplitudes AwNES
1 and AwoNES

1 as functions of the friction
coefficient µ. The set of parameters Eq. (4) has been used.

and is denoted as µml.
The Propensity to be in a Harmless Steady-State Regime
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(PHSSR) (Snoun et al. (2020)) can be computed from the
mitigation limit µml. The PHSSR is the probability of
obtaining a mitigated regime given the probability laws
governing the dispersion of the primary system parame-
ters. Here, only µ is considered as uncertain and it is
assumed to follow a uniform probability law within the in-
terval [0, µe = 0.4]; the PHSSR is then simply defined as

PHSSR = ∫
µml

0

1

µe
dµ = µml

µe
. (5)

4. Multi-Element Polynomial Chaos based algo-
rithm to detect a discontinuity

The ME-gPC method previously developed by the au-
thors in Snoun et al. (2020) to locate the discontinuity in
the QoI profile is recalled in Section 4.2. Elements of the
Polynomial Chaos theory are first presented in Section 4.1.

4.1. Elements of the Polynomial Chaos theory
4.1.1. Generalized Polynomial Chaos (gPC)

Let us consider a dynamical system with r uncertain
physical parameters βj (j = 1, . . . , r) assumed to be uni-
formly distributed within a given space ∏r

i=1[ai, bi], and
let ξj (j = 1, . . . , r) be the independent random variables
within the space [−1 1]r, linked to βj by

βj(ξj) =
aj + bj

2
+ bj − aj

2
ξj , (j = 1, . . . , r). (6)

The gPC theory (Wiener (1938); Cameron and Martin
(1947); Xiu and Karniadakis (2002)) states that the system
output variable X(ξ1, ..., ξr), called the quantity of Interest
(QoI), may be approximated by a truncated orthogonal
polynomial function series as

X(ξ1, ..., ξr) ≈
Np

∑
j=0

x̄jϕj(ξ1, ..., ξr), (7)

where ϕj(ξ) are orthogonal polynomials which represent
the stochastic part of the process, whereas x̄j are the gPC
coefficients that take into account the deterministic part of
the process. In this paper, according to the Askey-scheme
(Askey and Wilson (1985)), the orthogonal polynomials
ϕj(ξ1, ..., ξr) are built from Legendre polynomials because
the uncertain parameters follow a uniform probabilistic
law. From Xiu and Karniadakis (2002), the number of
terms Np + 1 of the expansion is given by

Np + 1 =
(p + r)!
p!r!

, (8)

where r is the number of uncertain parameters and p is
the order of the gPC. To obtain the approximated values
of the QoI X, the coefficients x̄j of the truncated series (7)
must be computed. To that end, the non-intrusive regres-
sion method (Berveiller et al. (2006)) is used in this paper.

In this method, the gPC coefficients are built from Q val-
ues of the QoI X. The corresponding Q simulations may
be performed at points chosen with the Latin Hypercube
Samples (LHS) method (McKay et al. (1979)) that will be
referred to as the Numerical Experimental Design (NED)
in this paper. A minimum of Q = Np simulations is re-
quired but in practice, Q = kNp simulations are used, with
k a small integer usually equal to 2, 3 or 4.

4.1.2. Multi-Element Generalized Polynomial Chaos (ME-
gPC)

When the QoI is nonlinear, high polynomial orders may
be required to reduce the approximation error. Thus, when
the number of uncertain parameters r is high, the number
of simulations required to compute the gPC coefficients
may be excessive, leading to a prohibitive computational
cost. An alternative is to split the vector ξ = (ξ1, ..., ξr)
into a collection of m non-intersecting elements and to use
a low order polynomial approximation on each element.
That is the basic idea behind the ME-gPC Wan and Kar-
niadakis (2005).

The local physical variables βk
j , in the kth element

∏r
i=1[aki , bki ], are expressed in terms of independent uni-

form random variables ξkj in [−1,1]r through

βk
j =

bkj + akj
2

+
bkj − akj

2
ξkj . (9)

Consequently, Legendre polynomials can be used lo-
cally and a gPC expansion developped in each element as
follows:

Xk(ξ̄k) ≈
Np

∑
j=0

x̄k,jϕj(ξ̄k), (10)

where Xk(ξ̄k) is the random process corresponding to the
kth element.

From the gPC theory, the approximated local mean
X̂p,k and variance σ2

p,k in the kth element can be expressed
analytically from the gPC coefficients as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X̂p,k = x̄k,0

σ2
p,k=

1

2r

Np

∑
j=1

x̄2
k,j⟨ϕ2

j ⟩.
(11)

Several criteria have been proposed in the literature for
the convergence of the ME-gPC algorithm. They depend
on the aim of the ME-gPC. The criteria chosen in this
study are presented in the next section.

4.2. Detection of a discontinuity in the QoI with the ME-
gPC

This section recalls the method based on the ME-gPC
and proposed in Snoun et al. (2020) to locate a discontinu-
ity in a Quantity of Interest (QoI) derived from the DM of
a mechanical system. The aim of the method is not neces-
sarily to obtain an accurate representation of the QoI, but
to locate precisely the discontinuity, i.e. to know the values
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of the uncertain parameters for which the discontinuity in
the QoI profile appears.

The underlying principle of the method is that the
variance of a QoI that contains a discontinuity is higher
than that of a QoI that does not contain any discontinuity.
Therefore, if the discontinuity lies in a given element of the
stochastic parameter space, the variance of the ME-gPC
expansion in that element will be high. From these consid-
erations a ME-gPC algorithm has been built, in which at
each step and for each element the local variance σ2

p,k, com-
puted directly from the gPC coefficients using Eq. (11), is
compared to a threshold θ1. If for a given element k

σ2
p,k ≥ θ1, (12)

it is assumed that the discontinuity lies within this ele-
ment. The latter is then divided by two in each direction of
the stochastic space in order to locate more accurately the
discontinuity. On the contrary, if the condition Eq. (12) is
not satisfied, the element k is supposed not to contain the
discontinuity and is removed from the algorithm.

The threshold θ1 is chosen so that the variance of the
element which contains the discontinuity always satisfies
the condition Eq. (12). Therefore, two other criteria are
introduced to stop the algorithm. The first one is the
minimum element size Jmin defined as

Jmin = θ2J0, (13)

where J0 is the size of the initial element corresponding to
the whole stochastic parameter space and θ2 is a percent-
age. At a given iteration i, the retained elements of size Ji
are actually divided into two equal parts in each direction
of the stochastic space if the following condition

Ji ≥ Jmin (14)

holds. It is worth recalling that all the elements at it-
eration i have the same size Ji because at each step the
division is performed in each direction of the stochastic. If
the condition (14) does not hold, the algorithm is stopped
and we assume that the discontinuity in the QoI profile
lies within the remaining elements.

In Section 6, a comparison is performed with a refer-
ence method that needs N simulations of the DM to locate
a discontinuity in the QoI profile. Therefore, the proposed
method is only effective if the number of numerical sim-
ulations N ′ required to obtain the gPC coefficients in all
the elements is smaller than N . Consequently, the second
criterion is that N ′ should verify

N ′ ≤ N, (15)

otherwise the algorithm is stopped.
The algorithm is summarized in Fig. 4. At the first

step, only one element is present (i.e. the whole stochastic
parameter space) and for a given iteration the parameter
space has been divided into K elements during the previ-
ous iterations. At each iteration, the gPC coefficients are

Consider the  iteration in which the stochastic 
parameter space is divided into  elements, 

(for the first iteration we have ).

ith

K
K = 1

- Build the PC expansion for the each  elements ( ), 
 (  simulations of the DM are needed to built the  PC 

expansions). 
- Calculate the variance  and the size  of the elements.

k k = 1,…, K
N′ K

σ2
p,k Ji

N′ ≤ N

Consider the first element ( ).k = 1

σ2
p,k ≥ θ1

Ji ≥ Jmin

Each of the  elements is divided into 2 in each 
direction of the stochastic parameters space.

K′ 

 and .i = i + 1 K = 2rK′ 

k = K

STOP 
The discontinuity has 

been located.

Remove the  
element from 
the algorithm.

kth

k = k + 1
We assume that the 

discontinuity in the QoI 
profile is in  remaining 

elements.  
K′ 

STOP 
The discontinuity has not 
been located in general.

 elements remain at the 
exit of the loop in .

K′ 
k

Figure 4: Algorithm of the proposed method based on the ME-gPC.

computed for the K elements and we check if the corre-
sponding computational cost is larger than the reference
one (see Eq. (15)). If that is the case, the algorithm is
stopped and in general the discontinuity in the QoI pro-
file has not been located. If Eq. (15) holds, we check the
variance in each of the K elements (see Eq. (13)). If it
is smaller than the threshold θ1, the element is removed
from the algorithm. If it is larger, it is kept and K ′ el-
ements remain at the exit of the loop in k. If Eq. (14)
does not hold, the algorithm is stopped and we assume
that the discontinuity in the QoI profile lies within the K ′

remaining elements. If Eq. (14) holds, then each of the K ′

elements is divided into two parts in each direction of the
stochastic parameter space, then a new iteration begins
with K = 2rK ′.
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As for the reference method, the detection of the dis-
continuity can be performed by the so-called Jump Cri-
terion (JC). To be considered as an effective jump, the
difference between the amplitude at the right of the jump,
denoted as A(µ+ml), and the amplitude at the left, denoted
as A(µ−ml), must be greater than the half of A(µ−ml), i.e.

JC = A(µ+ml) −A(µ−ml)
A(µ−ml)

⩾ 1

2
. (16)

As an example, Fig. 5 shows the last iteration of the al-
gorithm applied to the system (2) for θ1 = 0.7⋅10−3, θ2 = 1%
and p = 1. The Reference curve is similar to that displayed
in Fig. 3. One can see that the last interval obtained with
the ME-gPC method contains the discontinuity observed
on the reference.

Figure 5: Last iteration of the detection algorithm when the friction
coefficient µ is uncertain, with θ1 = 0.7 ⋅ 10−3, θ2 = 1% and p = 1;
reference curve obtained from Fig. 3.

5. Optimization strategy under uncertainties

This section focuses on the optimization methodology
proposed to maximize the PHSSR defined in Section 3.
Two NES parameters are retained as the design parame-
ters to optimize: the damping coefficient ηh and the non-
linear stiffness φh. The uncertain parameter is again the
friction coefficient µ. Following Boroson et al. (2017); Pi-
daparthi and Missoum (2019), the problem is treated in
two different ways depending on whether the physical de-
sign parameters ηh and φh are deterministic or stochastic.

5.1. Deterministic design variables
In this case, the parameters to optimize are directly

the physical design parameters which are assumed to be
known with certainty. The objective of the method is to
find the optimal values of the NES parameters xd that
maximize the PHSSR value. For this purpose, the PHSSR

is determined in the space of uncertain parameters xu for
each value of xd ∈ [x(min)

d x
(max)
d ]. The maximum of the

PHSSR is then detected, which corresponds to the optimal
value of xd. The method can be summarized as follows:

Maximize PHSSR (A(xd, xu))
Subject to x

(min)
d ⩽ xd ⩽ x(max)

d

where xd = {ηh, φh},
xu = {µ}

(17)

where

• A(xd, xu) is the amplitude of the displacement of the
coupled system (2) defined by Eq. (3) (from now on
the amplitude is simply written A instead of AwNES

1

to lighten the notations); it depends on both the
uncertain parameters xu and the design variables xd;

• x
(min)
d and x

(max)
d are the minimum and maximum

values of the design variables xd respectively; the
optimal values of the design parameters are searched
within the intervals [x(min)

d x
(max)
d ], called design in-

tervals.

5.2. Stochastic design variables
The physical design parameters are considered here to

be random with a known probability law. This case is
closer to a real situation, as it is known in particular that
obtaining an exact value of a damping coefficient is al-
most impossible. The parameters to be optimized are then
statistical characteristics of these physical parameters (for
instance their means or variances) and are called hyper-
parameters. In this study the hyperparameters considered
are the means η̂h and φ̂h of the damping coefficient and of
the cubic stiffness of the NES, respectively.

The optimization process consists in dividing the de-
sign space into subspaces. In each subspace a draw of N
values of the design parameters is performed according to
their probability laws (in this work we use uniform laws).
For each of these N values the PHSSR is calculated and
the optimal value of xd (here of η̂h or φ̂h) corresponds to
the subspace where the mean of the N PHSSR values is
maximum. This can be summarized as follows:

Maximize E[PHSSR (A(xd, xu))]
Subject to x

(min)
d ⩽ xd ⩽ x(max)

d

where xd = {η̂h, φ̂h},
xu = {µ}

(18)

where

• E is the value of the mathematical expectation (the
mean) of all PHSSR evaluations;

• η̂h is the mean of the NES damping coefficient values;

• φ̂h is the mean of the NES cubic stiffness values.
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6. Results for deterministic design variables

As explained before, the first method of NES optimiza-
tion considers that the NES parameters are deterministic
and constitute therefore directly the design variables to
optimize.

6.1. Optimization of the NES damping coefficient
In this section, we consider first that the design space

is a one-dimensional space according to the variable ηh,
represented by the interval [0,0.04]. The optimization
problem (17) is therefore solved with xd = ηh ∈ [0,0.04]
with the other parameters given Eq. (4). The results are
expressed in terms of computational cost, on the one hand,
and of precision compared to the reference method, on the
other hand. For this purpose, the following quantities are
introduced:

• µmax
ml is the maximum value of the mitigation limit

µml, and corresponds to the maximum value of the
PHSSR, denoted as PHSSRmax. The mitigation limit
is here searched within the interval [0,0.4]. The
PHSSR value estimated by the ME-gPC method is
determined using the upper bounds of the last inter-
vals found by the algorithm presented in Fig. 5. The
precision of the corresponding µmax

ml value is therefore
given by:

µmax
ml ±

∆µ

µmax
ml

. (19)

For the reference method, ∆µ is given by the dis-
cretization step of the design space, whereas ∆µ =
0.4θ2, whith θ2 defined by Eq. (13), for the ME-gPC
method.

• EPHSSRmax is the relative error of the maximum PHSSR
obtained with the ME-gPC method (PHSSRmax

ME-gPC)
compared to the maximum PHSSR value obtained
with the reference method (PHSSRmax

ref ), and is de-
fined as follows:

EPHSSRmax =
∣PHSSRmax

ME-gPC −PHSSRmax
ref ∣

PHSSRmax
ref

. (20)

• ηopt
h is the optimal value of the NES damping co-

efficient, i.e. the value for which µmax
ml , and thus

PHSSRmax, are obtained. Since the design space is
discretized with a step ∆ηh, the optimal value is ex-
pressed as follows

ηopt
h ± ∆ηh

ηopt
h

. (21)

• Err is the relative error of the optimal design value
ηopt
h obtained with the ME-gPC method, compared

to that obtained with the reference method:

Err =
∣(ηopt

h )ME-gPC − (ηopt
h )ref∣

(ηopt
h )ref

. (22)

6.1.1. Reference optimization
The reference value of the optimal NES damping co-

efficient, denoted as (ηopt
h )ref, is obtained by solving (17)

where the amplitude A(xd, xu), and thus the mitigation
limit, directly result from the numerical simulation of (2).
The design space for ηh [0,0.04] is uniformly discretized
into 51 values. To reduce the computational cost, the miti-
gation limit µml and the PHSSR are first roughly estimated
for each ηh value using only 1000 values of the friction co-
efficient µ ∈ [0,0.4] and applying the criterion (16). Fig. 6
shows the resulting evolution of the PHSSR as a function
of ηh. This first step enables the locating of the interval
- here [0.0208,0.028] - in which the optimal value of the
design parameter (ηopt

h )ref lies. In this interval the PHSSR
is maximum (PHSSRmax = 50.10% ± 0.19%) but constant
due to the too coarse discretization in µ. To refine this ref-
erence result, the PHSSR is then calculated in the design
interval ηh ∈ [0.02,0.03] with the same discretization step
for ηh as previously, but now with 10 000 values of µ to
determine the mitigation limit for each value of ηh. The
total number of simulations needed to obtain the reference
value is therefore equal to 50×1000+10×10000 = 150000.

ηh

0 0.01 0.02 0.03 0.04

P
H
S
S
R

35

40
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50

Figure 6: Result of the first step of the reference optimization pro-
cedure: PHSSR as a function of ηh, for φh = 140 000 N⋅kg−1⋅m−3.

Fig. 7 shows the new PHSSR as a function of ηh. In this
case, (µmax

ml )ref = 0.2004±0.02% which gives (PHSSRmax)ref =
50.1%±0.02%. The corresponding optimal design value of
the damping coefficient is (ηopt

h )ref = 0.0240 ± 3.33%.

6.1.2. Optimization with the ME-gPC method
In the proposed approach, the optimal value of the

NES damping coefficient, denoted as (ηopt
h )ME-gPC, is still

obtained by solving (17), but the amplitude A(xd, xu)
and the mitigation limit (17) are now determined by the
method based on the ME-gPC.

Three optimization procedures are applied with a gPC
order p = 1, a variance threshold θ1 = 2 ⋅ 10−3 and three
values of the element size threshold: θ2 = 1%, 0.1% and
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Figure 7: Result of the second step of Reference optimization:
PHSSR as a function of ηh, for φh = 140 000 N⋅kg−1⋅m−3.

0.001%. The results of this ME-gPC based optimization
are presented in Tab. 1, along with the reference results
for comparison.

Fig. 8 displays the variations of the PHSSR as func-
tions of ηh respectively obtained with the reference method
and the three ME-gPC methods with θ2 = 1%, 0.1% and
0.001%. For θ2 = 1% the number of simulations is equal to
4324, the optimal value is (ηopt

h )ME-gPC = 0.0241 ± 15.14%
and the maximum value of the corresponding PHSSR is
50.78%, implying an error compared to the reference solu-
tion EPHSSRmax = 1.35%. In the case of θ2 = 0.1%, although
the new value of θ2 has no influence on ηopt

h , it changes the
maximum value of the PHSSR to PHSSRmax

ME-gPC = 50.09%
which induces a relative error EPHSSRmax = 0.02%. This
error is lower than the previous one (with θ2 = 1%) but
the number of simulations has increased and is now equal
to 5165. For θ2 = 0.001% the optimal value becomes
(ηopt

h )ME-gPC = 0.0237 ± 3.33%, implying a relative error
Err = 1.25% compared to the reference value, which is
higher than the errors in the previous cases. This is not
illogical since the error is calculated according to the mid-
points of the intervals. Nevertheless, the interval obtained
with θ2 = 0.001% is much narrower (±3.33%) than that ob-
tained with θ2 = 0.01% (±15.14%), and contains the value
resulting from the reference method. The total number
of simulations is in this last case equal to 7026, which re-
mains 22 times smaller than the number needed with the
reference method.

The plateaus observed in Fig. 8 are due to the fact
that for two close values of ηh the mitigation limits are
found in the same element. They are related to the value
of the threshold θ2: the lower it is, the more accurate the
localization of the mitigation limit is, with in counterpart
an increase of the computational cost. The precision is
therefore driven by the value of the threshold θ2.

Finally, with a computational cost much lower than the

reference one, the proposed approach proves efficient to
identify the value of the optimal NES damping coefficient
while taking into account the dispersion of the friction co-
efficient.

6.2. Optimization of the NES nonlinear stiffness
The aim of this section is to find the optimal value

of the cubic stiffness of the NES φh assumed here to be
deterministic. The damping coefficient value ηh is here set
to 0.024. Similarly to the previous section, the following
quantities are defined:

• φopt
h is the optimal value of the NES cubic stiffness

for which µmax
ml , and thus PHSSRmax, are obtained.

It may be again expressed with respect to the dis-
cretization step ∆φh of the design space as

φopt
h ± ∆φh

φopt
h

. (23)

• Err is now the relative error of the optimal design
value φopt

h obtained with the ME-gPC method, com-
pared to that obtained with the reference method:

Err =
∣(φopt

h )ME-gPC − (φopt
h )ref∣

(φmid
h )ref

. (24)

6.2.1. Reference optimization
The same strategy has been applied for the reference

optimization of the NES cubic stiffness φh. First, to get
an idea of the shape of the PHSSR as a function of φh, a
small number of simulations is performed with a discretiza-
tion step equal to 10 on the design space φh ∈ [0,900 000]
N⋅kg−1⋅m−3. For each value of φh the PHSSR is computed
using 1000 values of µ within the interval [0,0.4]. Fig. 9
shows the resulting evolution of the PHSSR as a function
of φh. The mitigation limit appears to decrease monotoni-
cally with the cubic stiffness value. The optimal value φopt

h

is therefore the lowest value of φh for which the jump crite-
rion (16) is met and is found equal to 100 000 N⋅kg−1m−3.

The next step then consists in focusing on a reduced de-
sign space composed of the lowest values of φh in order to
understand the dynamic behavior of the system for these
values and to refine the optimization result. The retained
design interval φh ∈ [0,150 000] N⋅kg−1⋅m−3 is uniformly
discretized into 100 values, and for each one the mitigation
limit is directly computed from (2) using again 1000 values
of µ within [0,0.4] interval. The number of simulations is
thus equal to 100 × 1000 = 100000.

Fig. 10 shows the evolutions of the jump criterion (16)
and of the PHSSR as functions of φh, respectively. For
low values of φh (φh ∈ [0 46970] N⋅kg−1⋅m−3 a jump ex-
ists but, as mentioned before, we consider that the dif-
ference between the amplitudes of the limit cycles be-
fore and after the jump is too small for the concerned
regimes to be qualified as mitigated. The difficulty of
this optimization problem is then to find the lowest value
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Table 1: Comparison between the reference optimization and the ME-gPC optimization considering deterministic design variables. The design
parameter is ηh. The reference results are obtained as described in Sect. 6.1.1.

Nb of sim-
ulations

Computational
time PHSSRmax EPHSSRmax ηopt

h Err

Reference 150000 2.15 days 50.10% ±
0.02%

– 0.0240 ± 3.33% –

ME-gPC
(θ1 = 2 ⋅ 10−3
and θ2 = 1%)

4324 1.70 hours 50.78% ±
1.97%

1.35% 0.0241 ± 15.14% 0.41%

ME-gPC
(θ1 = 2 ⋅ 10−3

and θ2 = 0.1%)
5165 2.06 hours 50.09% ±

0.2%
0.02% 0.0241 ± 15.14% 0.41%

ME-gPC
(θ1 = 2 ⋅ 10−3

and
θ2 = 0.001%)

7026 3.23 hours 50.09% ±
0.02%

0.02% 0.0237 ± 3.33% 1.25%

(a) (b)

Figure 8: Comparison between the optimization strategies based on the reference method and the ME-gPC for ηh ∈ [0 0.04] with φh = 140 000
N⋅kg−1⋅m−3. (a) PHSSR and (b) Zoom of the PHSSR. The reference results are obtained as described in Sect. 6.1.1.

of φh for which the discontinuity jump is high enough.
It is clear that the solution depends on the value of the
threshold for the jump criterion (here 50%). The op-
timal value here is therefore (φopt

h )ref = 46970 ± 3.22%
N⋅kg−1⋅m−3, which corresponds to the maximum PHSSR
value PHSSRmax = 52.25%±0.19%. The PHSSR curve ex-
hibits again stationary phases linked to the discretization
step for µ. Indeed, for two close values of φh, the discon-
tinuities in the amplitude profiles as functions of µ appear
for very close µ values whose difference is smaller than the
discretization step.

6.2.2. Optimization with the ME-gPC method
We denote by (φopt

h )ME-gPC the optimal value of the
NES cubic stiffness coefficient obtained by solving (17)
where the amplitude A(xd, xu) and the mitigation limit
are assessed using the ME-gPC based method.

The gPC order is again set to p = 1 and the mitiga-
tion limit, as explained before, is approached by the up-

per bound of the last element found. Tab. 2 compares
the results obtained with this ME-gPC method, for sev-
eral thresholds values θ1 and θ2, to those arising from the
reference procedure (in which, as detailed in the previous
section, the values of φh are taken from the design space
[0,150000] N⋅kg−1⋅m−3 which is uniformly discretized).

Fig. 11 shows the evolution of the PHSSR as a function
of φh for θ1 = 3.5 ⋅ 10−3% and θ2 = 0.1%.

For a given value of the threshold θ2, it can be observed
from Tab. 2 that the precision of the results depends on the
jump threshold θ1. Indeed, when the value of θ1 increases,
the error PHSSRmax decreases from 3.15% to 1.68% and
the error Err decreases from 29.03% to 3.22%. Another
benefit of increasing θ1 is that it reduces the number of
required simulations, as can be seen in Tab. 2. However,
for higher values of θ1, the ME-gPC method appears un-
able to detect the discontinuity in the amplitude profile,
as the jump in the amplitude values becomes lower than
the threshold θ1, which makes the research of the opti-
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Table 2: Comparison between the reference optimization and the Me-gPC based optimization considering deterministic design variables. The
design parameter is φh. The reference results are obtained as described in Sect. 6.2.2.

Nb of
simulations

Computational
time PHSSRmax EPHSSRmax φopt

h Err

Reference 100000 1.49 days 52.25% ±
0.19%

– 46970 ± 3.22% –

ME-gPC
(θ1 = 3.3 ⋅ 10−3
and θ2 = 1%)

6652 2.64 hours 53.90% ±
1.86%

3.15% 33333 ± 4.50% 29.03%

ME-gPC
(θ1 = 4.2 ⋅ 10−3
and θ2 = 1%)

5817 2.31 hours 53.13% ±
1.88%

1.68% 39394 ± 3.40% 22.51%

ME-gPC
(θ1 = 4.8 ⋅ 10−3
and θ2 = 1%)

5706 2.25 hours 53.13% ±
1.88%

1.68% 45454 ± 3.33% 3.22%

ME-gPC
(θ1 = 3.5 ⋅ 10−3
and θ2 = 0.1%)

7023 2.96 hours 52.34% ±
0.19%

0.35% 46970 ± 3.22%% 0%

Figure 9: PHSSR as a function of φh for ηh = 0.024 and φh ∈

[0 900000] N⋅kg−1⋅m−3. The mitigation limits are assessed using
the reference method.

mum θ1 value difficult. Another way to reduce the error
levels is to increase the value of the precision threshold
θ2. The optimum value of the jump detection threshold
θ1 depending on the precision threshold θ2, the optimum
pair of thresholds is finally found as θ1 = 3.5 ⋅ 10−3 and
θ2 = 0.1 %. The corresponding relative errors are 0.19 %
for PHSSRmax and Err = 0 % for φopt

h , while the num-
ber of simulations has increased from 5706 to 7023. It is
therefore observed that the precision level depends on the
accepted computational cost. In this study, the final com-
putational cost (7 023) with the ME-gPC method remains
much weaker than that of the reference method (100 000).
Remark: as in section 6.1 for the optimization of the NES

JC

PHSSR

Figure 10: Evolutions of the Jump Criterion (JC) and of the PHSSR
as functions of φh obtained with the reference method.

damping coefficient, identical values of PHSSRmax may
be observed with the ME-gPC method. The widths of
the plateaus decrease when the precision threshold θ1 is
reduced.

7. Results for stochastic design variables

The second optimization technique considers that the
NES parameters are also uncertain with a known proba-
bility law. Thus, the design variables to be optimized are
not directly the NES parameters but one of their statis-
tics called hyperparameters. In this work, the design pa-
rameters follow uniform probability distributions and the
considered hyperparameter is the mean x̃d. Regarding the

11



Figure 11: PHSSR as a function of φh for ηh = 0.024 and φh ∈

[0 150000] N⋅kg−1⋅m−3. The thresholds are respectively: θ1 = 3.5 ⋅
10−3 and θ2 = 0.1%. The reference results are obtained as described
in Sect. 6.2.2.

system parameters, as previously only the friction coeffi-
cient µ is assumed to be uncertain.

7.1. Optimization of the NES damping coefficient
7.1.1. Reference optimization

In this section, the optimization problem (18) is solved
with a single design variable (hyperparameter) defined as
the mean η̂h of the NES damping coefficient ηh, which
is a stochastic parameter following a uniform law. The
NES cubic stiffness is fixed and equal to φh = 140 000
N⋅kg−1⋅m−3. The design space is divided into NI = 5 inter-
vals as shown in Tab. 3. For each interval the lower and
upper bounds are determined as follows: ηinf

h = η̂h − 0.1η̂h
and ηsup

h = η̂h + 0.1η̂h where η̂h is the mean. The mean
values are chosen so that the upper bound of one interval
coincides with the lower bound of the next interval.

In each interval, Nd = 10 random samples of damping
coefficient values ηh are drawn according to the uniform
probability law. For each of these 10 samples, the miti-
gation limit and the PHSSR are determined directly from
the numerical simulation of (2) using 10000 values of the
friction coefficient µ. The objective function to be maxi-
mized is now the mean E[PHSSR] of the 10 PHSSR values
obtained in each interval.

Tab. 3 shows the reference results of the η̂h optimiza-
tion. For each interval, the mean of the 10 samples of ηh is
calculated and compared to the theoretical η̂h value in or-
der to validate the number of samples. The mean PHSSR
value E[PHSSR] is also indicated, along with the error on
E[PHSSR] for a confidence level of 99%. The resulting
values (errors lower than 0.15%) show that the number of
samples Nd = 10 of ηh in each interval is sufficient.

Fig. 12 displays the evolutions of E[PHSSR], PHSSRmax

and PHSSRmin as functions of η̂h. In this case, the maxi-

mum value of the objective function is 50.07%, which cor-
responds to an optimal theoretical value of η̂h equal to
0.0237. The number of simulations is equal to 5 × 10 ×
10000 = 500000.

7.1.2. Optimization with the ME-gPC method
Tab. 4 shows the results of the optimization of η̂h by

the ME-gpC based method. The gPC order is again chosen
as p = 1, θ1 is set to 1 ⋅10−3 and two values of θ2 are tested:
θ2 = 1% and θ2 = 0.001%. The design space is the same as
for the reference optimization and the same quantities are
considered.

Tab. 5 compares the results obtained with the three
strategies (reference optimization and ME-gPC based opti-
mizations with θ2 = 1% and θ2 = 0.001%). The correspond-
ing evolutions of E[PHSSR], PHSSRmax and PHSSRmin

according to η̂h are displayed in Fig. 12.
In the case of θ2 = 1%, the number of simulations is

equal to 4613, leading to a computational cost reduction
of 98.98%. The maximum value of the objective function is
here 50.78%, which corresponds to the same optimal value
η̂h = 0.0237 as for the reference case. The relative error
of the maximum PHSSR mean value with respect to the
reference is EE[PHSSR]max = 1.41%.

For θ2 = 0.001%, the number of simulations is increased
to 8006, which still induces a high computational cost re-
duction of 98.38%. The maximum value of the objective
function is equal to that of the reference case, 50.07%,
leading to a relative error EE[PHSSR]max = 0%. The corre-
sponding optimal value of η̂h is again equal to 0.0237.

As for the optimization with deterministic design vari-
ables, it is again shown that a proper choice of the pre-
cision threshold θ2 enables the reduction of the error lev-
els. However, an error reduction leads to an increase of
the required simulation number (from 4613 to 8006), and
thus the retained precision level depends on the accepted
computational cost. In both cases presented above, the
computational costs with the ME-gPC optimization re-
mains much weaker than that of the reference method (500
000). Moreover, it can be noticed that the optimal values
of the mean of ηh, η̂h = 0.0237, and of the PHSSR mean,
E(PHSSR) = 50,07%, are the same as those obtained with
the deterministic optimization. This result is logical be-
cause the curve of the PHSSR as a function of ηh varies
very little around the optimal value. Thus, the PHSSR
mean remains practically constant.

7.2. Optimization of the NES nonlinear stiffness
7.2.1. Reference optimization

The last optimization problem proposed in this paper
(still represented by (18)) considers a single design vari-
able (hyperparameter) φ̂h which is here the mean of the
NES nonlinear stiffness φh; similarly to the previous opti-
mization problem, φh is a stochastic parameter supposed
to follow a uniform law. The NES damping coefficient ηh
is set to 0.024.
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Table 3: Results of the reference optimization (see Sect. 7.1.1). The design parameter is η̂h.

[ηinf
h , ηsup

h ]
Theoretical
mean η̂h

Mean of the
10 samples

of ηh

E[PHSSR]
(%)

Error on
E[PHSSR] for a
confidence level

= 99% (%)

[0.0117,0.0143] 0.0130 0.0129 48.36 0.1417
[0.0143,0.0175] 0.0159 0.0161 49.31 0.1086
[0.0175,0.0214] 0.0194 0.0193 48.85 0.0220
[0.0214,0.0261] 0.0237 0.0234 50.07 0.0005
[0.0261,0.0319] 0.0290 0.0284 49.90 0.0277
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Figure 12: Evolutions of E[PHSSR], PHSSRmax and PHSSRmin as functions of η̂h obtained with the reference method, the ME-gPC based
method with θ2 = 1 %, and the ME-gPC based method with θ2 = 0.001 %. The black segments denote the limits of the intervals. The
reference results are obtained as described in Sect. 7.1.1.

Table 4: Results of the optimization with the ME-gPC method. The design parameter is η̂h.

θ2 = 1 % θ2 = 0.001 %

[ηinf
h , ηsup

h ]
Theoretical

mean

Mean of
the 10

samples of
ηh

E[PHSSR]
(%)

Error on
E[PHSSR]

for a
confidence

level = 99%
(%)

E[PHSSR]
(%)

Error on
E[PHSSR]

for a
confidence

level = 99%
(%)

[0.0117,0.0143] 0.0130 0.0129 48.82 0.2833 48.37 0.1423
[0.0143,0.0175] 0.0159 0.0161 49.84 0.1776 49.32 0.1091
[0.0175,0.0214] 0.0194 0.0193 50.07 0.0994 49.85 0.0224
[0.0214,0.0261] 0.0237 0.0234 50.78 0 50.07 0.0005
[0.0261,0.0319] 0.0290 0.0284 50.15 0.1765 49.90 0.0280

The methodology is similar to that of the previous
section with a design space divided into NI = 5 inter-
vals as shown in Tab. 6. The lower and upper bounds
of the intervals are again defined as φinf

h = φ̂h − 0.1φ̂h and
φsup
h = φ̂h + 0.1φ̂h, where the mean value φ̂h is chosen so

that the upper bound of one interval coincides with the
lower bound of the next interval.

As previously, Nd = 10 random samples of stiffness val-
ues φh are drawn in each interval according to the uniform
probability law, and for each sample the mitigation limit
and the PHSSR are directly determined from the numer-
ical simulation of (2) using 10000 values of the friction

coefficient µ. The objective function to be maximized is
the mean E[PHSSR] of the 10 PHSSR values obtained in
each interval.

In section 6.2 it has been shown that the PHSSR is a
decreasing function of φh, which implies that the optimal
value is the lowest value of φh for which the jump criterion
(16) is met. It is therefore possible that a part of the inter-
val where this optimal value lies (in concrete terms here,
some of the 10 samples in the first interval [38438,46980]
N⋅kg−1⋅m−3) corresponds to φh values for which the jump
criterion (16) is not respected. In that case, 10 new sam-
ples of φh values are generated in the part of the interval
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Table 5: Comparison between the reference optimization and the ME-gPC based optimization. The design parameter is η̂h. The reference
results are obtained as described in Sect. 7.1.1.

Nb of sim-
ulations

Computational
time

Computational
cost

reduction(%)
E[PHSSR]max EE[PHSSR]max η̂opt

h

Reference 500000 7.86 days - 50.07% ±
0.02%

– 0.0237

ME-gPC
(θ1 = 1 ⋅ 10−3
and θ2 = 1%)

4613 1.92 hours 98.98 50.78% ± 2% 1.41% 0.0237

ME-gPC
(θ1 = 1 ⋅ 10−3

and
θ2 = 0.001%)

8006 3.29 hours 98.38 50.07% ±
0.02%

0% 0.0237

(here [38438,46980]) for which (16) is satisfied.
Tab. 6 shows the reference results of the φ̂h optimiza-

tion. Similarly to the previous section, the mean of the 10
samples φh is calculated for each interval and compared
to the theoretical φ̂h value. The mean value E[PHSSR]
is also indicated, along with the error on E[PHSSR] for
a confidence level of 99%. With very low error levels
(lower than 0.03%), the number of φh samples Nd = 10
in each interval is again found sufficient. This reference
optimization has required a simulation number equal to
5 × 10 × 10000 = 500000.

The evolutions of E[PHSSR], PHSSRmax and PHSSRmin

according to φ̂h are displayed in Fig. 13. In this case, the
maximum value of the objective function is 52.32% which
corresponds to an optimal value of φ̂h equal to 46678. The
very low error on the E(PHSSR) for a 99% confidence level
obtained in this case is due to the fact that the PHSSR
values are close in the interval.

7.2.2. Optimization with the ME-gPC method
Tab. 7 shows the results of the optimization of φ̂h

based on the ME-gPC, with again a gPC order p = 1,
θ1 = 4.8 ⋅ 10−3 and two values of θ2: θ2 = 1% and θ2 =
0.001%. The design space is discretized as for the ref-
erence optimization. For several intervals the error on
E[PHSSR] for a confidence level of 99% is null, meaning
that the 10 PHSSR values corresponding to the 10 samples
are identical. The evolutions of E[PHSSR], PHSSRmax

and PHSSRmin according to φ̂h for the cases θ2 = 1% and
θ2 = 0.001% are visible in Fig. 13 along with the reference
results.

The comparison of the different strategies to optimize
the NES nonlinear stiffness (that is, the reference opti-
mization and the two ME-gPC based optimizations with
θ2 = 1% and θ2 = 0.001%) is presented in Tab. 8. In
the case of θ1 = 4.8 ⋅ 10−3 and θ2 = 1%, the number of
simulations is equal to 3248, leading to a computational
cost reduction of 99.21%. The maximum value of the ob-
jective function is 52.73%, which corresponds to an opti-
mal value of φ̂h equal to 46678 N⋅kg−1⋅m−3, and the rel-
ative error on the maximum value of the PHSSR mean is

EE[PHSSR]max = 1.5%.
When θ1 = 2 ⋅ 10−3 and θ2 = 0.001%, the number of

simulations is increased up to 6947, inducing a slightly
reduced computational cost reduction of 98.30%. The
maximum value of the objective function is now 52.33%,
the optimal value of φ̂h 46678 N⋅kg−1⋅m−3, and the rel-
ative error on the maximum value of the PHSSR mean
EE[PHSSR]max = 0.09%.

The conclusions given for the optimization of the damp-
ing coefficient with the ME-gPC based method hold here:
the choice of the precision threshold θ2 enables the control
of the error levels but impacts the computational costs,
which remain however much lower than that with the ref-
erence method (500 000 simulations).

8. Conclusion

In this paper, the robust optimization of NES used
to mitigate limit cycles of a friction system with an uncer-
tain friction coefficient has been studied. The optimization
strategy is based on the maximization of the propensity of
the system to be in an attenuated regime (PHSSR), which
constitutes the objective function of the problem. Two
original approaches are proposed, depending on whether
the parameters of the NES are considered as determin-
istic or as uncertain, but with a known probability dis-
tribution. In each case, two optimization strategies are
developed, that consist in evaluating the objective func-
tion by either a deterministic reference optimization or by
a method based on the Multi-Element generalized Poly-
nomial Chaos (the so-called ME-gPC method). The com-
parison between the two methods shows the efficiency of
the ME-gPC method to significantly reduce the computa-
tional cost while keeping a good accuracy compared to the
reference optimization.

These optimization approaches have been applied to
determine the optimal values of the NES parameters to
maximize their ability to passively attenuate limit cycle
of oscillations. Concerning the NES nonlinear stiffness,
the optimal value is the lowest value for which the dis-
continuity jump is considered as high enough. Concerning

14



Table 6: Results of the reference optimization (see Sect. 7.2.1). The design parameter is φ̂h.

Theoretical
mean φ̂h

Mean of 10
samples of

φh

E[PHSSR]
(%)

Error on
E[PHSSR] for a

confidence level =
99% (%)

[38438,46980] 42 709 46678 52.32 0.0004
[46980,57420] 52200 52992 51.95 0.0299
[57420,70180] 63800 62746 51.53 0.0296
[70180,85776] 77978 78942 51.07 0.0095
[85776,104837] 95306 94876 50.76 0.0200

40 000 60 000 80 000 100 000
50.5

51.0
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Figure 13: Evolutions of E[PHSSR], PHSSRmax and PHSSRmin as functions of φ̂h with the reference method, the ME-gPC based method
with θ2 = 1 % and the ME-gPC based method with θ2 = 0.001 %. The black segments denote the limits of the intervals. The reference results
are obtained as described in Sect. 7.2.1.

Table 7: Results of the optimization with the ME-gPC method. The design parameter is φ̂h.

θ2 = 1 % θ2 = 0.001 %

[φinf
h , φsup

h ]
Theoretical
mean φ̂h

Mean of the
10 samples

of φh

E[PHSSR]
(%)

Error on
E[PHSSR]

for a
confidence

level = 99%
(%)

E[PHSSR]
(%)

Error on
E[PHSSR]

for a
confidence

level = 99%
(%)

[38438,46980] 42709 46678 52.73 0.4721 52.33 0.0007
[46980,57420] 52200 52992 52.34 0 51.91 0.0148
[57420,70180] 63800 62746 52.10 0.2230 51.48 0.0399
[70180,85776] 77978 78942 51.56 0 51.09 0.0105
[85776,104837] 95306 94876 51.09 0.2599 50.76 0.0206

the NES damping coefficient, the curve representing the
PHSSR as a function of the damping coefficient is nonlin-
ear and presents a maximum corresponding to the opti-
mal NES damping value. However, the variations of the
PHSSR near the optimal value are very small, which makes
it more difficult (but also less crucial) to precisely locate
this optimal value.

The general nature of the proposed strategy suggests
that it could be used for the robust optimization of any
vibration absorber, providing that the transition from the
attenuated state to the non-attenuated state passes through

a discontinuity in the amplitude profile of the system as a
function of the bifurcation parameter considered.

In future works, several issues should be tackled. First,
as one of the difficulties of the proposed approach is to
choose relevant values for the thresholds, it could be inter-
esting to develop automatically adaptive thresholds. An-
other issue lies in the extension of the proposed method
to several uncertain parameters. It can also be envisaged
to study the efficiency of the method for a model with a
higher number of degrees of freedom.
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Table 8: Comparison between the reference optimization and the optimization with the ME-gPC method. The design parameter is φ̂h. The
reference results are obtained as described in Sect. 7.2.1.

Nb of sim-
ulations

Computational
time

Computational
cost

reduction
(%)

E[PHSSR]max EE[PHSSR]max φ̂opt
h

Reference 500000 7.53 days - 52.32% ±
0.02%

– 46678

ME-gPC
(θ1 = 4.8 ⋅ 10−3
and θ2 = 1%)

3248 1.42 hours 99.21 52.73%± 1.9% 1.50% 46678

ME-gPC
(θ1 = 2 ⋅ 10−3

and
θ2 = 0.001%)

6947 3.06 hours 98.30 52.33% ±
0.019%

0.09% 46678
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