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ABSTRACT

This paper deals with the upscaling of multicomponents two-phase flow in porous media. In this paper,
chemical potential equilibrium at the interface between both phases is assumed to be described by a
linear partitioning relationship such as Raoult or Henry’s law. The resulting macro-scale dispersion
model is a set of two equations related by a mass transfer coefficient and which involves several
effective coefficients. These coefficients can be evaluated by solving closure problems over a
representative unit-cell. The proposed model is successfully validated through direct analytical and
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numerical calculations.

1. Introduction

Two-phase flows in porous media with liquid-liquid or liquid-
vapor phase exchange appear in a large number of situations such
as chemical reactors, nuclear safety devices, transport in petro-
leum reservoirs, aquifer contamination, desalination processes by
way of distillation.

In such a system, a liquid phase f is in contact with another
phase, referred to as the y-phase. Molecules may be exchanged at
the fy-interface, and we will assume that, at this boundary, the
phases are at thermodynamic equilibrium. This equilibrium gen-
erally leads to a concentration jump at the fy-interface. Transfer
in the interface neighborhood leads to concentration fields as
schematically depicted in Fig. 1

In this paper we are interested in the macro-scale description
of such flows in a porous medium, as represented in Fig. 2. More
precisely, we will narrow our interests to the averaging of the
mass transport equation for a given species A. A complete
description would also requires to develop the macro-scale
momentum balance equations, etc... We will assume that density
and viscosity variations are small so the two-phase flow problem
can be decoupled from the transport problem of the chosen
chemical species, provided the change in saturation is very slow
SO a quasi-static analysis may be carried on for momentum
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transport. This two-phase flow problem has received a lot of
attention in the literature, and we refer the reader to Whitaker
(1986), Auriault (1987) for some indication on the averaging
problem. At this point, we may focus our attention on the
transport problem for a given species in order to develop a
macro-scale dispersion equation taking into account the mass
exchange at the interface. In a previous paper on such a problem
(Quintard and Whitaker, 1994), we called it “active dispersion” by
opposition to “passive dispersion” corresponding to the flow of a
chemical species without exchange or reaction at the phase
interface.

In the case of film flow, the mass transfer modelling at the
interface liquid-gas has received a lot of attention. To character-
ize this mass transfer, the authors usually define local mass
transfer resistances within each phase and an overall mass
exchange coefficient (Taylor and Krishna, 1993). The latter is a
combination of both local resistances according to an association
in series. Numerous models evaluating the local resistance exist
in the literature. Among the most widely used in chemical
engineering, we can quote the Lewis and Whitman double film
theory (Lewis and Whitman, 1924) who postulated that the local
mass transfers occur in a thin layer on each side of the inter-
face, the Higbie’s penetration model (Higbie, 1935) or also the
Danckwerts surface renewal theory (Danckwerts, 1970). In these
two last models, the mass transfer is assumed to be controlled by
the rate of surface renewal: after a time the surface elements are
swept away and replaced by a fresh surface. Both models involve
unsteady-state diffusion. These models are commonly used in
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Fig. 1. Concentration field near the fy-interface for species A.

Fig. 2. Averaging volume.

regular engineering practice. They are even relatively accurate if
the real conditions (especially geometry and flow parameters) are
compatible with the film flow picture. However, in many complex
geometries, it is impossible to predict an independent picture of
the flow along the interfaces. The boundary layers, if this concept
itself is relevant, are the results of a complex flow that must be
solved accurately. Therefore, a porous medium theory cannot
make the prior assumption that a simple film flow exists, or a
simple boundary layer exists.

We will not make such assumptions here and will develop a
more general theory in the continuity of the works of Quintard
and Whitaker (1994) and of Coutelieris et al. (2006). In a sense it is
also an extension of the paper by Bousquet-Melou et al. (2002)
who studied active dispersion in mushy zones (in the case of the
solidification of a binary mixture). We mention here that Bekri
and Adler (2002) tackle the dispersion problem in multiphase
flow with a different approach based on the combination of an
Immiscible Lattice Boltzmann algorithm and random walks. In the
first paper, a macroscopic model describing the flow of a two-
phase, binary mixture was obtained from the pore-scale equations
using a volume averaging upscaling method. Since thermody-
namic equilibrium for a binary mixture forces the concentration at
the interface to be a function of temperature and pressure only,

and not of the composition, transport of species A in one phase can
be solved almost independently from the other phase problem.
The resulting averaged equation is a dispersion equation with a
mass exchange coefficient. The main effective parameters are the
dispersion tensor and the mass-exchange coefficient. However,
some additional terms such as velocity-like coefficients are also
introduced in the macro-model. They suggest in particular that the
macroscopic convective velocity is modified by the presence of the
other phase. An important limitation of the model that we will try
to overcome in this paper is that the development was limited to
the case of a quasi-steady ffy-interface.

This theory was extended in the paper by Coutelieris et al.
(2006) to multicomponent mixtures through the introduction of
partitioning equilibrium condition at the fy-interface, in the
limited case of an immobile non-aqueous liquid phase and a
flowing aqueous phase. Coutelieris et al. (2006) focused their
attention on the mass exchange coefficient. It is calculated
through a multi-region closure problem involving partitioning
relationships at the interface of these regions. In both papers, one
phase is treated as a rigid phase. In addition, the interface velocity
is assumed to be very small and negligible so the flow of matter
relative to the interface velocity may be neglected in comparison
with the interfacial diffusive flux.

In the present paper, we extend these theoretical results to a
more general case of two-phase multicomponent systems. The
two phases are mobile, contrary to the above cited papers, and we
fully develop the dispersion and the mass exchange effects. In
addition, in the spirit of the work by Chella et al. (1998), the
upscaling methodology is improved with respect to the interface
movement, which is not neglected in the proposed full model.

The paper is organized as follows. The volume averaging
method is applied to the microscopic, pore-scale equations that
govern the system in order to develop a macro-scale model for a
homogeneous porous medium. We consider that local mass non-
equilibrium, i.e. averaged concentrations are not necessarily
linked by the micro-scale equilibrium interface relationship. This
results into two macroscopic equations involving dispersion
tensors, additional convective transport terms and a mass
exchange term; all these effective properties being influenced
by the mass transfer process. These effective coefficients can
entirely be determined by three closure problems defined over a
unit-cell representative of the porous medium. A closed form of
the total mass transfer rate is also proposed.

To better understand the results and validate the approach, in
the last section we consider the case of the falling film along a
vertical fixed wall. In this case, the closure problems can be solved
analytically in the fully developed film regime. The obtained
effective dispersion coefficients in the literature are in good
agreement with the falling film theory results and the mass
exchange coefficient corresponds to the Lewis and Whitman
double film theory (Lewis and Whitman, 1924). Moreover, we
compared with success the macro-scale model with a direct
numerical simulation of the pore-scale model.

2. Pore scale problem

The pore-scale problem under consideration corresponds to
the mass transfer of a component A in a two-phase flow system.
The two phases, f# and 7, flow through a porous medium (the
o-phase is the solid phase). The general problem is in fact
composed of momentum equations, mass balance equations for
each species and an energy equation. In principle there is a full
coupling between these balance equations, especially through
terms involving the velocity of the interface. One may imagine
situations for which this coupling is very strong: for instance,



intense boiling of water in a nuclear debris bed with very rapid
thermal transient is likely to produce a big rate of phase change
that may corresponds to huge exchange of enthalpy and momen-
tum between phases. To our knowledge this full problem has not
been solved from an upscaling point of view. For instance, how
the mass exchange rate affects the macro-scale momentum
balance equation is an open question. However, there are also
situations for which the interface may be quasi-static for the
relaxation phenomena associated to momentum and energy
exchanges. This is the case in distillation columns for which the
industrial target tends to reach quasi-steady situations. In such
cases, one may admit that:

1. the temperature is quasi-uniform over a representative unit-
cell;

2. for a given interface position, the viscous relaxation of the
velocity fields is rapid compared to the interface characteristic
velocity.

As a consequence, the mass, momentum and energy equations
may be solved in a sequential manner. In this case, the unit-cell
velocity fields and the temperature are known input variables for
the multicomponent mass balance problem. Therefore, the two
velocity fields are supposed to be known in this section develop-
ment and we will not consider the resolution of the two-phase
flow problem. One can refer to Whitaker (1986, 1994), Auriault
(1987), Lasseux et al. (1996) or Lasseux et al. (2008) for further
details on the upscaling of two-phase flows in porous media with
quasi-static interfaces. For small mass exchange rates as dis-
cussed above, the resulting equations, i.e. generalized Darcy’s law
and the various improvements, may be probably used as such. We
leave open in this paper the upscaling in the case of big mass
exchange rates.

The total mass transfer process is described by the following
boundary value problem:

opg

ra +V.(p,;vﬁ) =0in Vg 1
BC1 vy =0 at Ay, )
BC2 g, (pp(Vs—Wp)) = Mg, (0, (V)= Wp,)) at Ag, &)
BC3 v, =0 at A;s “4)
ap, .

at' +V.(p},v~,) =0inVy, 5)

In this problem, we assume a no-slip boundary condition at the
interface with the rigid porous structure. In these equations, wyg,
represents the velocity of Ag,, the interface between the ff-phase
and the y-phase.

Many approaches can be found in the literature to model
diffusion problems for multicomponent gas mixtures (Taylor and
Krishna, 1993). Indeed, Maxwell-Stefan equations were used in a
previous paper to deal with multicomponent “passive” dispersion
in porous media (Quintard et al., 2006). As an intermediate step in
the upscaling process, the diffusive fluxes were written under the
form of generalized Fick’s law, which may be obtained from
Maxwell-Stefan equations (Taylor and Krishna, 1993; Quintard
et al., 2006) but also from irreversible thermodynamics consid-
eration (see for instance Giovangigli, 1999). However, the com-
plexity of such equations make their resolution and their
upscaling difficult in the perspective of this paper about two-
phase flow situations. To avoid these difficulties, in this paper we
will use an effective diffusivity method, which offers a good

approximation in many situations of pratical interest. It consists
in the definition of an effective diffusivity Dg, such that the rate of
diffusion Jg, of species A in the fi-phase depends on the species
concentration gradients through the simple expression

Jon=—pDpaVgs; A=1,23... (6)
where D, is some characteristic diffusion coefficient of species A

in the -phase mixture. Therefore, the transport of the component
A is described by the following convection-diffusion problem:

0P pa .

ot + V(pﬂw/mv,;) = V(p/;D/;AVCO/gA) mn Vﬁ (7)
BC4 n,;a.pﬁD/gAVw/;A =0 at .A/;a ®)
BC5 ny(,.p.),DyAVco}.A =0 at Ay, 9)

BC6 n,.(0s0pa(Vp—Wp,)—ppDpaVrga)

= nﬁ*,“(p;,rw",'A(V“/ _w/iy)_pyDyA waA) at A/}y (10
BC7 pipa(wpa) = Wya(ya) at Ag, (amn
apyw”y’A .

— +V.(p, V) = V.(p.),.D;,AwaA) iny, (12)

where pg, is the chemical potential associated to species A in the
p-phase. It is assumed in our development that the chemical
potential equilibrium at the interface is linearized to a partition-
ing relationship (like for instance Henry’s law or Raoult’s law):

wpp =Hpawya (13)

In this paper, the molecular effective diffusivity coefficients (Dga
and D,s) and the partitioning coefficient (Ha) are considered
constant in space and in time. This question (at least for the
variation of the diffusion coefficients with composition) has been
discussed in Quintard et al. (2006). Moreover, it is assumed that
all the physical properties of the fluids do not change strongly
with temperature. Therefore, the coupling with the energy equa-
tion is not discussed here and belongs to the sequential treatment
outlined in the introduction of this section.

3. Volume averaging

In this paper, we follow the developments in Quintard and
Whitaker (1994) and Coutelieris et al. (2006) who used the
method of volume averaging (Whitaker, 1999) to derive the
macro-scale equations. We recall in this section the main defini-
tions and theorems necessary to develop the macroscopic model
from the pore-scale equations. We consider the averaging volume
as illustrated in Fig. 2.

For a function y; associated with the -phase, we define the
average as

Chyy = %,/Vﬂn//ﬁ dv (14)

and the intrinsic phase average as

=g [ v as)
BV

Both are linked by

> =apChyp>? with gy = 27 a6)

where Vy is the volume of the -phase contained in the volume V
and &g is the volume fraction of the f-phase.



The phase variable ¢z can be expressed following Gray's
decomposition (Gray, 1975) as

Y=<Wl +i, 17

The volume averaging theory requires the use of the following
approximation:

Py>=0 (18)

In order to get the macro-scale equations in terms of intrinsic
phase averages, we will apply the following spatial and temporal
averaging theorems

1 1
\% =V +—/ ng, dA+—/ ng\y, dA 19
7y P> Vs, sV g Vs, s (19)

ot

Wy oYy 1 1
< >— Fra.y Aﬁonﬁa-wﬁzrl//ﬁ dA=3; /A /ﬁ_nﬁy-wﬁv‘/’/f dA

(20)

The integrals in the equalities express the interfacial effects
typical of porous media physics. The solid phase is considered
to be inert in our analysis, therefore wg, = 0. Moreover, applying
the spatial averaging theorem (Eq. (19)) to 5 =1 leads to the
very useful lemma

VS[;Z—l/ ng dA (21
V4,
Here, Az denotes all the surfaces in contact with the -phase (i.e.

Aps and Ag,) and the normal ny represents either mg, or mg,.
These notations will be adopted for the rest of this paper.

3.1. Total mass balance equations

The mere application of the volume averaging theorems to the
continuity equations (Eq. (1)) and (Eq. (5)) leads to

5<P/;> 1 .
+V.(ppvp o)+ f/ ng,.pp(Vg—Wg) dA=0inVy;  (22)
at V4,
o p, .
$Py2 +V.({p, vy D)+ l/ n,.0,(V,;—Wg,) dA=0inV,  (23)
ot v v Ag, g 7 ! !

As indicated in the introduction, we suppose the fluid densities p
and p, constant within the averaging volume V (p; = {pg ># and
p, = <{p,>"). It must be remembered that this does not mean that
the fluid densities will not vary at the macroscale. Moreover, we
define the total mass exchange rate ri1 according to

.1
m= 9/ n/f7,.pﬁ(v,;—w,;7,) dA (24)
Ag,

Hence, using the boundary condition (Eq. (3)), we obtain the
following macroscopic form of the total mass transport equation

o€ L.
gtp” +Vi(py<Vgy) =~ in Vg (25)
%Py LG p. <uyyy =t in W, 26)
ot My 7 - 7

In the next sections, we will propose a closed form of the mass
rate of evaporation .

3.2. Species mass balance equation

We will now form the average transport equation for Eq. (7)
by successive applications of the volume averaging theorems.

We have

0ppDpa>

1
a +Vipglwpavp )+ v ‘/A/hnﬁ«,v-P/;CUﬁA(V/rW/Jy) dA

1
=V. <pﬂD/mV<wﬁA> +5 /A ﬁnﬁpﬂDﬁAwb’A dA>

1 r
-+ 7/ nﬁ‘pﬁDﬁAVwﬁA dA (27)
VJa,

We search a transport equation in terms of the intrinsic
average mass fraction <wﬁA>ﬁ. Using Gray’s spatial decomposi-
tion for wy, and vy and the definition (wpa> = &g wpa>”, one
can eventually obtain for the left hand side of Eq. (27)

8epp g pp dP -
I 4 Ve o V> D)+ Vip g <))
1
+T)/ Illga,,.pﬁCL)ﬁA(V137W/;«/) dA (28)
Apgy

A similar operation for the right hand side leads to

V.DpaleppV < pa > +pyCpa P Veg)

+V.Dgy

1/ 1/
/} ~
— [/ n w dA+—/ ngp g dA
V/Aﬁ 3P < Dpa> v/, BPEW pA ]
17
+*/ nﬁ.pﬁDﬁAVw/;A dA (29)
v Ay

Considering now the spatial lemma (Eq. (21)) and defining the
mass transfer rate for the component A by

. 17/
my = T/ /A nﬁy.(pﬁwﬁA(vﬂ—w/;«/,)—p/;D/;AVw/;A) dA 30)
ARy

The previous equation can be written as

0egpp{ Wpa P

p +V~(8/z,0/;<wﬁA>ﬁ<Vﬁ>ﬁ)+V~(Pﬁ {Dpavp >)
—_———

dispersion term

1 N .
=V. S/XPﬁD/fAV<U\)[£A>B+T)/A ngpsDpadpa dA | —1itg (31
5

tortuosity term

A similar development for the convection-diffusion equation in
the y-phase gives

08,0, Ly >" N N R
B A 0y, €T U5+ Ve, iy )
| - .
=V. <£~,pyDMV<wM>r —+ T;/ nn,pyDMwn,A dA) +1i14 (32)
A,

At this stage of the development, the averaged transport equa-
tions are not under a closed form since mass fraction deviations
having microscopic length-scale are still present. The classical
strategy is to derive a problem that governs the deviations, then
to represent them in terms of average quantities (the so-called
closure problem), and, finally, to insert these representations into
the conservation equations (Egs. (31) and (32)) to get the closed
form of the averaged equations. In order to obtain a convenient
form for the closure problem, we continue the development by
the introduction of the Gray’s decomposition of wp, in the



evaporation rate of species A. The right hand side of Eq. (31)
becomes

esV.(Dpap V< pa )+ (Vep).ppDpa V< wpa P

+V.

1 . .
DﬁA ]—//A nﬁpﬁw/m d.A:| —m< WpA >/f—(V£ﬁ).p[,D/;AV<coﬁA>”
B

1 N 1 -
v nm,.pﬁw,m(v,;—wﬁy) dA+ ]_// n,;.pﬂDﬁAVcoﬁA dA  (33)
Agy Ap

Using the macroscopic form of the continuity equation (Eq. (25))
in the left hand side of Eq. (31) leads to

0L Wpa P
N

+eppp VPV Cpa P+ V(D paVis > )~ opa P
(34
Finally we obtain
a¢wpm’

— +P/;<V/f>B~V<wﬁA>B+SE1V~(Pﬁ<@/m‘7ﬁ>)

= VpDpaV<pa>P)+e5'V.

1 -
D[fAvA/f“[fpﬂw/fA dA}

-1

e S—l .
— % nﬁy.p/;w,m(vﬁ—wﬁy) dA+ %/ l'l/;.pﬂD/;AV(UﬁA dA
Ay Ag
(35
4. Closure

The aim of this section is to develop the relationships between
spatial deviations and average quantities in order to close the
macroscopic model.

4.1. Differential equation for the concentration deviations

We are now ready to derive a governing differential equation
for the deviations. We first recall the original convection-diffusion
equation in a non-conservative form

ow
Pp atﬁA +ppVp.Vpa = V.(psDpaVerpa) 68

By subtracting Eq. (35) from Eq. (36) and considering Gray’s
decomposition Eq. (17), we obtain the following equation for the
spatial deviation of the mass fraction

om . - - o
Pg afA +p[3v/f~vw/fA+pﬂV/;.v<CU/gA>ﬂ—8ﬁlv‘(pﬁ<0)lmvﬁ>)

. 1 N
= V.(pﬂDﬁAVwﬁA)—sg] V. <V/A n/;p/;D/;Aa)/gA d.A)
B

-1

&5l . € .
L nmpﬁwﬁA(vﬁ—wﬁy) dA—%/A n,;.p/,D/;AVw/;A d.A
) B

+
V /a4,
37

When the pore scales and the macroscopic scales are separated,
the classical following assumption is available

1 17
V.f/n Dyudd dA<f/n DyaVér ya dA 38
(V.A,, pPpDpa pa > v [, PPy Om (38)

Numerous other simplifications such as stationarity or the omis-
sion of the dispersion term are generally made in the literature.
However, in our development, we will keep these terms and
make assumptions later. Therefore, we consider the following

differential equation for the -phase :
source
o) st
PBT/J)A +p,;v,;.ch,;A+p/;V5.V<cuBA>”
—&5' V(P {DpaVp )= V.(psDpa VD pp)
g5l h

3 ~ e N
T n,;;,.p,;w/m X (V/;—Wﬁy) dA_/T/ n/;.p,;DﬁAVw/_gA dA
Apy Ag

(39

Similarly for the y-phase, we have

source

awy,q
Pt
~&; V.0, {D3aVy )= V.(0,D;a VD)

el g i el p i
S < - da--- /A DAV dA

~ ——
+ PV VD a+ p 0. Va7

(40)

We can use the decomposition given by Eq. (17) with Egs. (8), (9),
(11) and (13) in order to develop the following boundary condi-
tions for this deviation problem

N6 0DV pp = —Mpg.paDpaV<wpa YV at Agg 41)
source
5. 0,04 VD34 = —Ny6.0,D,a V< ya »7 at Ayg (42)
source
D pa = Ha@pa+(Ha 0,0 )7 —Cpa P at Ag, (43)
—_———— —
source source
source source

ng, (5 < @pa > P Vg—Wp,)—ppDpa V< pa>P)
+0, (P @ pa(Vp—Wp,)—ppDpa VD )
=Ng,.(0,Dya(Vy =W, ) =0, Dya VD ya)
+0,. (0, {Wya > 7 (V=W )=, Dya V< wya )7) at Ag, (44)

source source

In addition, we have the additional condition that the averages
of the deviations must be zero

(payP=0;

In order to solve the closure problem in a representative region
of the porous medium instead of considering the entire macro-
structure, we consider the model of a spatially periodic system.
Hence, we add the following periodic conditions to this deviation
problem

(" =0 (45)

Dpa(r+1) = Dpa(r);  Dya(r+1) = Dpa(r); 1=1,2,3 (46)

At this point, it is important to remember that by comparison
to the work by Coutelieris et al. (2006), we have kept the
following important features:

e terms involving (vg—wyg,) have been kept in the analysis,
e velocity in the y-phase is not neglected.

4.2. Closure problems

There are four non-homogeneous terms (V {wg,a SBov¢ wpa>7,
<w,;A>” and {w,4>”) in the previous equations. Following the
work by Quintard and Whitaker (1994) and Coutelieris et al.
(2006), it is possible to depict the mass fraction deviations in
terms of a linear combination of these source terms thus



providing the following representation:

(Z)/;A = b/;/}V((,O/;A >ﬁ+bm.V<wM >7+S/3/3 <(U[;A >ﬁ+$/37 <CU~/A 7
47

Dy =1, Va7 +byp. V Cpa P 455, (0 Y7 +5,5 0pa >
(48)

where the closure variables bgg, bg,, by, bys, Sgg, Sp,, Syy and s,
satisfy four closure problems.

The next step of our development is to establish the mathe-
matical problems that will allow us to determine all the closure
variables. These closure problems will be solved over a periodic
representative unit-cell. They are found out by substituting the
previous closure forms (Egs. (47) and (48)) into the deviations
problem of Section 4.1.

Here we focus on the treatment of the V.(p;{®paVp>) term.
The insertion of the closure form of @g, in this term yields

Vsl DpaVip>) = VP <Vpspp ><@pa>P)+V.(p s <Vpsp > <o d?)
+ V(< Vgbgp> V<wpa )+ V. (ps Vb > V<) (49)
We notice that the first term of this sum be written as

Vipp<Vpspp> <opad?) = py Vs>V <opa P

+ <w/)’A>/;V-(pﬁ<‘~’ﬁsﬂ/j>) (50)
From the assumption of separation of scales one can deduce that
{Wpa >ﬁv~(pﬁ Vg ) < PlVpSpp . V< mpa P (51
and
V(< Vgbgp>. V<wpa>P) < py<Vpsps > V< wpa P (52)

Finally, we can consider the following approximations:

Vs DpaVip>) = pp<Vpspp> V<pa>P+pgUgsg, > Va7
(53)

Vi(py < @yaVy ) = Py (V383 >V {0y >+, (V5555 .V Copa P
(54)

The identification of each term involving V<{wpa>”, V<wua)?,
m 5# and {w,a>" provides the four closure problems as
developed in Appendix A.

At this point, we have achieved the following tasks:

e we have obtained macro-scale equations in which several
properties appear which depend on some pore-scale closure
problem,

e the closure problems allow to map the concentration devia-
tions onto macro-scale concentrations and gradients (similar
relations exist for the velocity deviations).

The closure problems are time-dependent because of the
evolution of the interface (term involving wy, and Ag,(x,t)), and,
also, because of the accumulation terms. Macro-scale equations
and pore-scale closure problems are fully coupled, which in fact
leads to memory (history) effects. Is it possible to simplify these
closure problems in order to decouple macro and pore-scale
problems? Considering that the diffusion term near the interface
is dominant versus the flux proportional to ng,.(vg—wpg,) and that
the mass fraction field relaxes faster than the evolution of the
interface, a first possibility could be to discard all terms involving
ng,.(Vg—Wyg,) and the accumulation term in the closure problems.
The coupling between the macro and pore-scale equations
remains through the evolution of the interface A, (x,t). Therefore,
even after having removed the ng,.(vs—wyg,) and the accumula-
tion terms, the effective properties are associated to a specific

time and the underlying realisation of the pore-scale geometry.
This way is a classical difficulty found in geochemistry, or for
any other applications involving changing pore-scale geometry.
However, if various positions of the interface can be identified in
the process in an univoque manner, for instance as a function of
the phase volume fractions, then the closure-problems can be
solved independently from the macro-scale equations and the
effective properties may be tabulated as a function of the volume
fractions. In this way, the macro-scale equations can be solved
using these correlations for the effective properties without the
need for a fully coupled solution of the macro-scale equations and
the micro-scale closure problems. This kind of development,
which is the one practically usable, is detailed in the next section.

4.3. Simplified closure problems

For the moment, only few assumptions have been made. First,
we have considered that the volume density of both f and y
phases does not vary within the representative volume V. Then,
according to the assumption of separation of scales, we simplified
the differential equation for the mass fraction deviations con-
sidering Eq. (51).

We now consider additional assumptions in order to simplify
the closure problems as described at the end of the preceding
section. First, we neglect the spatial and temporal variations of
the volume fractions. Then, since the time scales are also
separated, it is convenient to consider quasi-steady closure
problems. Moreover, in the closure problems flux terms involving
(vg—wyp,) are neglected in front of the diffusive fluxes. For
instance, Eq. (A.28) in Problem III becomes

l‘l[g},.pﬁDﬂAVS[gﬂ = nﬂy.pyDyAVs.,ﬁ at Ay, (55)

According to this last hypothesis, the liquid—vapor mass exchange
rate i is neglected in the closure problems. As an important
consequence, Problems IIl and IV are identical with respect to the
factor Hy. Therefore, we can easily demonstrate that

sp=—sp=Ha'sp, (56)

Sy = HZ1SW = —S-y/g (57)

we also have
oA :Xyﬁ :H;1Xﬁy (58)

in which o4 will appear in the macro-scale equation as a mass
exchange coefficient, as detailed in the next section. Because of the
definition of oy, the problem defining the s; and s, mapping
variables involves integro-differential equations. To solve this
kind of problem, it is convenient, following ideas put forth in
Quintard and Whitaker (1994), to carry out the following decom-
positions:

Sﬁ =1 —‘,—S%OCA (59)

sy =590 (60)

The new variable 5}} and sg? satisfy the following Problem A
Problem A

PpVp-Vsh=V.(psDpaVsh+ej' (61)
and

PV, Vs) = V.(p,D,aVs))—e, ! (62)
with the boundary conditions

Ng,.pDpaVsh =0 at Ay, (63)
n,,.0,D,4Vs) =0 at Ay, (64)



sj = Has) at Ay, (65)

ng,.p;DpaVsh =g, p.D,xVs) at Ag, (66)

s+l =spr):  Sr+ly=s)r); =123 (67)

(shyf=—L: (0310 68)
B oy’ y

With the above assumptions, and considering that v, =0, we
recover the problem studied by Coutelieris et al. (2006). The
condition that the average of s; is zero allows to determine the
mass exchange coefficient o4 (Eq. (68)).

A similar strategy is adopted for the bgs and b,; fields by
introducing the following decompositions in Problem I:

by = b~ g (69)

by =By~ (70)

We can easily verlfy that l//ﬁﬁ and y,; are solutions of the previous
problem A and b/jﬁ and b,/j satisfy the following boundary value
problem

Problem B:

PV Vb= V.(0Dpa VB + PV = pVp+p gt (v,;s?;— CUpsh> ﬂ)

(71)
and
Py me—V(p D,AVb 2p) = Pyoa(VyS, —<v sy> ") (72)
with the boundary conditions
N,.0;Dpa Vbl = —MgepDga at Ay, (73)
n,,.0,D0,, Vb, =0 at Ay, (74)
by, = Hyb¥; at Ay (75)
NP pDpa Vb=, p, D Vb)) = —Mg pyDps At Ay (76)
o> — - (pdyi—0 77
<bgg> =" Kby’ = (77)
bYy(r+1) =bgy(r): Br+l) =00y i=1,23 (78)

Similarly, the following decomposition applied to Problem II:

b, yy = b/y +. Uy (79)

h/jy = bgy + lﬁ/;}.ll/;y (80)

leads to the following problem.

Problem C:

pﬁv,;.Vbz}.—V‘(pﬁDﬂAVb?,y) = pﬁHAOCA(<\~//;S?; >/Z—V/3$2>)—pﬁHAV[;
(81)

and

PV VD), —V.(0,D,a VD0 )+ 0.V = p, Haota({ V5257 —v,s9)  (82)

with the boundary conditions

n/;g.pﬁD,;AVb%y =0 at A/;o- (83)
n'yo'.p,yD'yAvb,?y = —ﬂyo—pyD«/A at .Ayg (84)

bjj, = Habl, at Ay (85)

N, pDsa Vb, —0g,.0,D,a VB, = —ng p.Dos at Ay (86)
B =S by =0 87)

by (r+l)=bY (r): b (r+l)=b) () =123 (88)

As previously, one can check that i, and v, satisfy Problem A.

The constraints Eqgs. (68), (77) and (87) in the previous
problems allow the calculation of the mass exchange coefficient
o and the velocity-like coefficients ug, and u,.

5. Closed form of the averaged equations

Given representations Egs. (47) and (48) for the deviations @ s
and @, and the above simplifications, we can now obtain a
closed form of the macroscopic transport equations of the species
A. For that purpose, we inject these representations in the
Egs. (31) and (32). In order to clarify the notations, the averaged
quantities are denoted as Qpu=<wpdf, Qa= w7,
Vg = <vg) and V, = (v, >. The macroscopic -phase equation in
a conservative form is

0epp pQ2pa
% +V.(ppRpaVp) + V.(epp s Ef(HaQya—2p))
accumulation convection convection correction
= V.(sﬂpljgzﬂ.vgm)+V.(8/;pﬁ2;y.VQM)— ma (89)

dispersion dispersion correction mass exchange

In this equation the velocity-like coefficient, Eﬁ, is defined by

~ 1
Ej = <vﬁsﬁ>/f_7/ nsDpasy dA (90)
BJ A

and the effective dispersion tensors take the following form

1 ~
2;/)’ :D/fAl‘F V_ﬁ/A n/fD/I'Ab/fﬁ d‘A_<vﬂb/fﬁ>/{ (91)
5
1 ~
D= Vg /A ngDgaby, dA—(Vghy, >" ©2)
J Ay

The closed form of the mass rate of evaporation of the A-compo-
nent reads

My =—1,5.VQpa+1p, VQ 4 +0a(Haya—2pn) (93)
The establishment of this result will be detailed in the next

section.
For the y-phase, we obtain

et V. V. %
T VP24V + V(& B (Ha 2 a—CQpa))

= V.(svpyrQ?‘/.VQyA) + V'('g”i'p}rg*/}.VQﬂA) it o

= D
where
E} = (Uys, >"f’_l/ n,D;ss, dA o5
o v, [, P
2* = D}rAI+ Vi/ n«,DyAb;,y dA— <‘~’ybw >}, 06
= v 4,
] <y "

D* — Ek/fg nyDyAby/f dA— <v7b.}, 57 o

All these effective coefficients are entirely determined by the
resolution of the three closure problems detailed in the previous
section. Note that some cross terms appear in these macro-scale



equations. They suggest that the transport process in one phase is
influenced by the presence of the other phase.

6. Closed form of the mass rate of evaporation

In this section, we develop a closed form of the mass rate of
evaporation. We recall the definition of the mass exchange rate of
species A

. 1
Ty = v/A ng,.(0pWpa(Vg—Wpg,)—pDpaVags) dA (98)
Py
We note that it can also be written as
. 1 1
my = —/ l‘lﬂy.p/}w[m(vlng/g},-) d.A*—/ nﬁ.pﬁDﬁAVwﬁA dA (99)
Va4, Va4,

The insertion of Gray’s decomposition in this relationship leads to
g =1 wpa>P +pDpa(Vey).V Cwpa P
1 . 1 -
+ —/ nﬁy.pﬁ(}\)/m(Vﬁ—W’/j;;) dA—— n/;.pﬁDﬁAVw/jA dA
Vay, Vg
(100)

When we replace the deviations @ g4 and @, by their representa-
tions (Egs. (47) and (48)) and by using the definition of Xgg, Xp,,
ugg and ug, (see Appendix A) we have

Mg =m<wpa P +pDpa(Vep). V< wpa S rugs Vwp»?

+ll[3},-.v< (,L)m>7 +Xﬁﬁ<CU/3A>ﬁ+X/;7<COyA>y (101)

Using the relations Egs. (A.11) and (A.33) we finally get

Mg = —,5.V<@pa > P+, VCwun >7 X5 Copa P+ Xy Copn >
102)

It must be emphasized that this expression is the full expression
that can be used if one wants to solve the coupled averaged
equations/closure problems. If we now consider the simplifica-
tions previously discussed, the volume mass exchange rate of
species A becomes

My = —UV/)’.V.Q/)’A +uﬁy.VQ),A + OCA(HAQW;A—Q[}A) (1 03)

Here we see that the exchange term is not only calculated by the
somehow classical term os(HaQ2,4—Qg,), but requires also the
introduction of the extra convective terms. These terms are not
necessarily negligible, especially for simple unit cells, as was
illustrated by Golfier et al. (2002) in the case of flow in a
capillary tube.

If necessary, we can calculate the total mass transfer rate, m,
by summing the mass exchange rate of all the species in the
system

= "ritg
A

(104)

7. Discussion

At this point, we have developed a comprehensive macro-scale
model and the associated closure problems from the microscopic
problem describing the transport of a chemical species in a two-
phase system obeying a partitioning relationship. In fact two-
models are available:

1. A fully macro-scale/micro-scale coupled model in which no
particular assumption is made on the evolution of the
py-interface. Of course, while solving these problems is a very
complicated task, this result is of fundamental importance
because it gives information on the potential impact of non-
negligible interface movements on macro-scale transport

equations. This represents an important extension of the work
by Quintard and Whitaker (1994) and Coutelieris et al. (2006).

2. A simplified version in which this interface velocity terms
have been discarded. The large-scale transport equation for
species A has the same structure as in the previous model.
However, the macro-scale/micro-scale equations are somehow
uncoupled this time, in the sense that effective properties may
be calculated from the closure problem provided the position
of the interface is know.

Concerning the comparison of this work with the results of
Quintard and Whitaker (1994) and Coutelieris et al. (2006), we
may add the following comments:

e Like in Coutelieris et al. (2006), the overall upscaling procedure
yields two-macro scale equations linked by a mass exchange
term. We developed a full closure to determine this term: it
depends on a classical exchange term as pointed out by
Coutelieris et al. (2006) and also on additional convective
terms. The existence of such extra terms when dealing with
active dispersion was already suggested in Quintard and
Whitaker (1994). They indicate that the macroscopic convec-
tive velocity is modified by the presence of the other phase. In
this work we have emphasized the importance of these extra
terms in the mass rate of evaporation of each species and
therefore in the overall mass transfer process.

e Moreover, the averaged equations involve dispersion cross
terms, which were not present in the previous works.

8. Application to a two-phase film flow

In order to understand the implications of the theoretical
developments presented in this paper from a quantitive point of
view, we analyze below the classical film two-phase flow pro-
blem. Only the simplified version of the closure problems will be
used here.

8.1. Analytical solutions of the closure problems

In this section we consider the 2D stratified flow of two phases
as represented in Fig. 3. In this case, the velocity fields correspond
to the classical Poiseuille two-phase flow. The unit-cell is simply a
cross-section of the system, with the velocity fields perpendicular
to the section and the three closure problems A, B and C can be
solved analytically.

First we focus on the mass exchange coefficient o4. The
resolution of Problem A gives the following relationship:

1 L (Hpel N &gl
oA 3 p}'DTA pﬁDﬂA
This result has to be compared to the overall mass exchange
coefficient Koy for the interface transfer (Taylor and Krishna,
1993). It can be estimated as the association in series of the mass
transfer coefficients kg4 and k;4 in the f-phase and in the y-phase
1 _Ha 1
Kov = kyn  kga

(105)

(106)

Unit-cell

i ¥ — phase
B— phase

Fig. 3. Geometry.



The form of our mass transfer coefficient given by relation
Eq. (105) is coherent with the Lewis and Whitman double film
theory. Indeed, according to their theory, the resistance to the
mass transfer is located in two films on each side of the interface
where the thermodynamic equilibrium occurs. The thickness of
each film is, respectively, 6, and 64. They estimate the transfer
coefficients kgs and k4 by the following equations:

PpDpa X _ PyDia

Kpn = o koa = =5

(107)

However, it must be noticed here that J, and o4 are not known
a priori. They are in fact solutions of the transport problem. The
advantage of the theory proposed in this paper is that the closure
problems offer a way to incorporate the transport characteristics,
for any unit-cell shape, without relying on a priori solutions like
the ones postulated in many film theories.

Table 1 compares the mass transport coefficient obtained in
the present case (Eq. (105)) with the ones found by Quintard and
Whitaker (1994) and Coutelieris et al. (2006). Since the closure
problem introduced by Quintard and Whitaker (1994) accounts
for only one phase, the resulting coefficient is only a function of
the mass transfer resistance within this phase. Moreover, we note
that in this special configuration, the results are similar for the
exchange coefficient calculated by Coutelieris et al. (2006) and the
one given by Eq. (105). Indeed in this special case of a stratified
unit-cell Py - Vso 0 in Eq. (62), and, therefore both closure
problems by Coutelieris et al. (2006) and Problem A are identical.
We must emphasize that most of the time it is not the case.

Then, we solve Problems B and C in order to obtain analytical
expressions for the dispersion tensors Dﬁﬂ' Dﬂﬂ, D;}' and Df:,/,. The
solution being very complex, we solve using Taylor's series
expansions assuming that the thickness of the f-phase is very
small in comparison with the one of the y-phase. This simplifica-
tion corresponds to the assumption of a f-phase film flow, i.e.

&p K&y (108)
We introduce the dimensionless parameter ¢ as
D,
_ P (109)
PpDpa
and the Péclet numbers of the f and y phases as
CvgyPL <vy)7L
Pe, — : = 110
P~ "Dpa ' Dy (110)
We obtain, - D :
iD%,.i 2
BB
Dy =1+ 155P ereh+0(eh) (111)
iD},j 1
By _ L 2
Dy» 8Pe/;8ﬁ+0(8ﬁ) (112)
Table 1

Comparison of the mass exchange coefficient expression in the case of the
stratified unit-cell.

Quintard and Whitaker Coutelieris et al. Present work

(1994) (2006)

Coupled No Yes Yes

phase

y-Phase No No Yes

mobile

1 2L gl LHpesL el \ L(Hasl el
A 3 ppDpa 3\pyDa  pgDpa) 3\p,Dya  pyDpa

iDji 7

Dpn lZOPeﬂgﬁ +O(€/j) (113)
J D/;/;J 3

5 +O 3 114

Dy, (ep) (114)

Note that Eq. (111) is similar to the dispersion relationship
calculated by Asbjernsen (1973) and Prenosil (1973) in the case of
the Taylor diffusion in falling liquid films. The additional disper-
sion tensors are given below.

-Djy
iD* i 72 D
/ﬁ /f A _ . 3
"D,,  4800H, <9P <DyA> 2PegP e}) +0(ep) (115)
iDTﬁj Fﬁ 9Pe /iA _2Pe. —‘,-0(82) (116)
D, — 120m, \ (b, ) 2Fer )+ 0
Lt - Pey+0 117
Dy 5 SOH ep+0(z}) (117)
iDii
D & 2H +0(ef) (118)
by
By vER sA 5
=——+"_(58Pe Pe —51Pe +O(g ) 119
Dpa 48009~ < / ﬂ(p )) p (119)
2 B ~Pe;+0(e}) (120)
Dga 1209 TP
IDj1_ (58Pe ~51Pe <D” >>+O(s ) (121)
Dya 80¢> #\D,a $
iDj, 1 5
- == +0(¢ 122
Dga 2¢7! ) (122)
-Dj,
LA 8 (1444pe 2049 (2 pez_704 (21 pe,p
D, 11200 &= (D,A> ej— <D/ ) esPe;
+0(ep) (123)
Y BA 2
D,a  120H, 8"( IPey (D, )+2P e >+O(8ﬁ) (124)
iDi, i 1 Dya
—DyA = —% ( 179Pey <D3A> + 182Pe~,,.> +0(ep) (125)
i
D~ te2m, &p+0(}) (126)

8.2. Numerical validation

In this section we control the validity of the approach devel-
oped in this paper by a comparison between our macro-scale
model and a direct numerical simulation (DNS) of the pore-scale
model. For our simulations, we used the COMSOL Multiphy-
sics™3.5a finite elements toolbox. First, we consider the geome-
try depicted in Fig. 3. The unit-cells are the vertical cross-section
of this geometry. We consider an established two-phase flow, and
the py-interface is assumed to be motionless. Initially, the mass



fractions are equal to zero. The boundary conditions are

e at the inlet: wpgy =0.2 and w4 =0.15,
e at the outlet: a convective flux condition,
e at the wall: a zero flux condition.

In these numerical simulations, the velocity field and the mass
fraction fields are, respectively, computed by solving the steady-state
Navier-Stokes equations (using quadratic Lagrange elements for the
velocities and linear for pressure) and the pore-scale problem
(Egs. (7)- (12)). The advection-diffusion equations are solved using
a quadratic Lagrange element formulation. The linear systems are
solved using the direct solver UMFPACK based on the Unsymmetric
MultiFrontal method. The resulting fields are plotted in Fig. 4 for the
steady state and particular choices of various parameters. One may
identify here two regions: one entrance region near the inlet where
the concentration field evolution is rapid, with a characteristic length-
scale smaller than the unit-cell characteristic length. Elsewhere, one
see a much smoother solutions which is more appropriate for the
periodicity boundary conditions used in the closure problems. This
point will be discussed again later, when comparing the macro-scale
predictions.

The fields are averaged over cross-sections to provide the 1D
evolution of macro-scale mass fractions. These averaged fields are
then compared to the ones obtained from the macro-scale model.
Before solving the macro-scale equations, we solved the closure
problems on a unit-cell as described in Fig. 3.

First, we have investigated the dispersion value i.D",f;,;.i/D[;A
according to the f-phase thickness by solving the closure pro-
blems for different Péclet numbers. Results are plotted in Fig. 5.
They are compared to the analytical formula obtained in the
previous section (Eq. (111)) and to the Taylor-Aris dispersion
coefficient when the phases are treated separately (Quintard and
Whitaker, 1994). As was expected for small liquid-phase thick-
nesses, the analytical result and the simulations fit well.

Then, since all the effective properties are known, we can
finally solve the macro-scale equations over a 1D geometry with
the same length and boundary conditions as the one of the DNS

Fig. 4. Direct numerical simulation at steady-state for Hy = 1.0, Peg = 3.8, Pe, = 35.

100 . . T . .
Analytical, two phases —
Analytical, one phase (Quintard 1994) -------
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Fig. 5. Dispersion coefficient in the f-phase.

geometry. For the first simulation, the Péclet numbers considered
are, respectively, Pey=1.2 and Pe,=11.2. The mass fractions
along the x-axis when the steady state is reached are plotted in
Figs. 6 and 7 is an elution curve in both DNS and macro-
model cases.

The actual (DNS) and theoretically predicted mass fraction
fields are in very good agreement.

We redo the same operations for higher Péclet number (Pej = 12
and Pe, = 112). Simulation results are exposed in Figs. 8 and 9.

While the overall agreement is fairly good, one sees an increasing
discrepancy between the theoretical model and the DNS results, for
the phase at high Péclet numbers, and near the domain entrance.
These phenomena suggest the following remarks:

1. It is well known that the mass exchange coefficient calculated
from DNS varies sharply near the entrance to reach a constant
value after a characteristics length depending on the Péclet
number,

2. Using periodicity conditions for the closure problems implies
that we are working in the established regime. The resulting
constant effective properties do not catch the effects occuring
near the entrance region. Indeed, by definition, the volume
averaging procedure assumes slow variation of the averaged
properties which is definitely not the case in such area. Better
approximation of the macro-scale mass fraction field in the
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Fig. 6. Concentration profiles along the tube at steady state (Hy =1.0, Peg =12,
Pe, =11.2).
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Fig. 7. Elution curve (Hy =1.0, Pey =12, Pe, =11.2).
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Fig. 9. Elution curve (Hy =1.0, Pey =12, Pe, =112).

entrance region would require introducing some non-local
theory that would express the mass exchange coefficient (and
possibly change the other effective properties) as a function of
the distance from the inlet boundary. For instance this kind of
approach has been developed in Kechagia et al. (2002). An
alternate solution could be to keep a micro-scale description in
the entrance area coupled to the macro-scale model far enough
from the entrance boundary (see an example for heat transfer
in Batsale et al., 1996). Another approach could be to modify
the entrance boundary condition to reflect the impact of the
entrance boundary. In this latter example the macro-scale
concentration field in the entrance region is less accurate than
with the two others proposed techniques.

3. In terms of time evolution, it is well known that a first-order
two-equation model has some limitations and that it does not
catch all the characteristic times of the real flow. A more
thorough discussion of these questions can be found in Davit
et al. (2010).

9. Conclusion

At this point, we have developed a comprehensive macro-scale
model with closure for the general case of the multicomponent

flow of two phases in a porous medium, with the restriction that
equilibrium is described by a partitioning coefficient. The initial
structure of the coupled macro/micro problems has been
obtained with a minimum of assumptions, in particular retaining
transient terms and terms involving the velocity of the interface.
Decoupled solutions were obtained by specifically neglecting
these terms. These results represent a generalization of the work
by Quintard and Whitaker (1994) and Coutelieris et al. (2006).
Moreover, the present model takes into account the motion of
both phases. In addition, some new effective terms appear in the
macro-scale equations.

The theory was successfully tested against pore-scale DNS
results for the simplified case of a stratified two-phase flows in a
2D tube and we have recovered some classical laws used in
chemical engineering.

However, all the developments made in this work used the
underlying assumptions that the flow regime is laminar. We
know that turbulent regimes could modify the results obtained
herein. We could tackle this problem using the ideas put forth in
Cherblanc et al. (2007) and Pinson et al. (2007), who include
turbulence effects inside a non-linear dispersion coefficient. This
will be done later in a forthcoming paper where closure problems
will be solved on more realistic pore scale geometries. Moreover,
it should be interesting to confront the present upscaling process
with a case involving a moving interface.

Nomenclature

ot intrisic average for the i-phase

D) superficial average

& volume fraction of the i-phase

V volume defining the unit-cell (m?)

Vi volume of the i-phase within the unit-cell (m?)

Jia rate of diffusion of species A in the i-phase (kg/m?/s)

Dia diffusion coefficient of specie A in the i-phase
mixture (m?/s)

Wip mass fraction of specie A in the i-phase mixture

{wia> superficial spatial average of wj,

(wy !, intrinsic spatial average of wis

Qia

Dia spatial deviation of wj,

Di density in the i-phase (kg/m>)

V; velocity of the i-phase (m/s)

vt intrisic spatial average of v; (m/s)

{v;», V; superficial spatial average of v; (m/s)

\' spatial deviation of v; (m/s)

wg, velocity of the fy-interface (m/s)

Hia chemical potential of species A in the i-phase

Hy partitioning coefficient of species A

m overall mass rate of evaporation (kg/m>/s)

ma mass transfer rate for species A (kg/m>/s)

by closure variables mapping V< w;># (m)

b;, closure variables mapping V<{w, »” (m)

Sip closure variables mapping {wg N

Siy closure variables mapping <{w, »”

si, 2, closure variables

oy exchange coefficient for species A (kg/s)

Kov exchange coefficient for species A (kg/s)

Xij exchange coefficient for species A (kg/s)

u; velocity-like coefficient for species A (m/s)

k. mass transfer resistance of species A in the i-phase
(kg/s)

D* dispersion tensors for species A (m?/s)

ij



E} velocity-like coefficients for species A (m/s)

Pe; Péclet number in the i-phase

O; film thickness in the i-phase (m)

L length of the unit-cell (m)

¢ dimensionless parameter defined as p,Dya/pgDga

Appendix A. Full closure problems

The mass fraction deviations mapping described by Egs. (47)
and (48) leads to four closure problems. They are simplified in
Section 4.3.

Problem I (mapping onto V< wga >) :

ob N i
Pp=ag TPVt PVSps—pp VS + PV

= V.(psDpaVbyp)+e5 gy (A1)
by Vb v 7 =V.(p,D,nVb 1
v o TPV VPP VSy=p, (OSyp 5 = V(0 Dya Vyp) + €T
(A2)

with the boundary conditions
Ng,.0pDpaVbys = —Mg;pDpa at Ags (A3)
ny,;.pyDyAbe,g =0 at .Ayg (A4)
b/;/; = HAby/; at .A/gy (AS)
~NpDga+ 1, (0 bV —Wp,)—ppDpa Vbyp)

=gy (P by (Vy =W )—p, Dy Vbyp) at Ag, (A6)
(bl =0; <(by>7"=0 (A7)
bﬁ[}(r+ )= b/;ﬁ(r); b.,,;(r+li) = bV,;(r); i=1,2,3 (A.8)

and

1 1
Upp = 7/ nm,.pﬁb,;/;(v/;—w/;y) d.A—f/ n/;.pﬁDﬂAVb,;/g dA (A.9)
v Apy v Ap

u,; = l/ nz,ﬁ.p},b,ﬁ(vy—wﬁy)dA_l/ n,.0,D,4Vb,s dA  (A.10)
4 Apy v Ay

The integration of the fy-interface boundary conditions Eq. (A.6)

results in
—W,s =ugs+pDpaVeg (A1)

Problem II (mapping onto V<, >"):

obg, N _
Pg af Lot VsV, + P Vs <V P = V.(pDga Vb)) 25 g,
(A12)
and
Py DI;[, 0,5 Vb 4 0,y —p. (VS > +p},\~l«/ = V.(pyDyA wa)-i—&;]u},-y
(A.13)
with the boundary conditions
nﬁg.pﬁDﬁAVbM =0 at Aﬁu’ (A14)
n-y,,.p;,D.,AVbw =—Nyep,Dya at Ayo (A.15)
b/j“/ = HAb"y",' at A}ﬁ (Al 6)
50,050 +15.(0, by (Vy =W, 5)— 0, D;a Vb))
= n,,/;.(pﬁbﬂy(v,;—w,;y)—pﬁDﬁAVbﬁy) at A, (A17)

(bp,>P=0; <by>7"=0 (A.18)

by, (r+1)=bg,(r); by,r+l)=by,r); i=1,23 (A.19)

and
uﬁﬂ,:l/ n,gy.pﬁbﬂn(vﬂ—wﬂg)dA—l n;.03Dpa Vb, dA
TV 4, / VJa, ’
(A.20)

1 1
T— / n,.0,b,, (V,—W,) dA— - / n,.p,D,aVb,, dA  (A21)
V' A v Ay

The integration of the fy-interface boundary conditions Eq. (A.17)
results in

—ug, =Wy, +p,D;a Ve, (A.22)
Problem Il (mapping onto <wﬂA>ﬁ):
os
Py ag +0pVp-Vsps = V-(PDpa V) + 5" Xy (A23)
and
up Vs, 5 = V.(0,D,a V. S1X A24
Py ot TPV VSyp = '(py VA S“//5)"'87 7B (A24)
with the boundary conditions
n,;a.pﬁD[;AVs/;/; =0 at A/;,; (A25)
nyo‘-pyDyA Vsn/,/g =0 at .A«/vg (A.26)
Spp = HAS}./;—l at .A/;}- (A27)
Dy Pp(V—Wisy) + Ty (PSpp(Vs—Wisy) =P pDa Vp)
= n/;v.(p./syﬁ(vh,—w,;.,)—p,/,D},Astﬁ) at Ag, (A.28)
CsppdP =05 (5507 =0 (A.29)
sﬁ,;(r+li)=sﬁ/;(r); syﬁ(r+li)=s.},/g(r); i=1,2,3 (A.30)
and
X—l/nps(v—w)dA—l/npD Vspp dA
BE= 5 4y, By-Pp2pp\Vp By v 4 B-F A VBB
(A.31)
X L d L D4 Vs, d A32
= /A /f?ﬂy/i-PyS),-/f(Vy—W/fy) A—g " ny.0,D4Vs,s dA  (A32)

The integration of the fy-interface boundary conditions Eq. (A.28)
results in

7Xy/; =X/}/;+m (A.33)

Problem IV (mapping onto {wys>7) :

0Sg,
Pp a—/tj* +0pVp.Vsg, = V.(psDpaVsp)+e5" X, (A34)
and

0Syy
Py PV VS = V0,0, Vsp)+e; " X,y (A35)
with the boundary conditions
nl;o-.pﬂD/jAVSﬁy =0 at Aﬁo’ (A36)
Ny5.0,D;4 Vs, =0 at Ayg (A37)
Sy =Hylsp,—1 at Ag, (A.38)
.0, (Vy=Wi) +1y5.(0, 85, (V, =Wy )— 0, D4 VSy)

= n}vﬂ-(pﬁsﬂy(vﬂ7Wﬁy)7pﬁDﬂAV5[3}') at .Aﬁ«/ (A.39)



(87 =05 (s> =0 (A.40)

Syy(r+1) =551 sp,(r+1) =sp,(n); i=1,2,3 (A41)

and

17/ 1
Xpy=1 / 050, Sy (V) =Wy ) dA— = / n,.0,D,4Vs,, dA  (A42)
VSa, Via, '

1 1
Xg, = —/ N0 pSpy (Vg —Woyp) dA——/ ng.ppDpaVsg, dA  (A43)
v Ap v Ag

The integration of the fy-interface boundary conditions Eq. (A.39)
results in

Xgy = —Xpp+10 (A44)
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