
HAL Id: hal-03537535
https://hal.science/hal-03537535v1

Submitted on 2 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inside Quasimodo: Exploring Construction and Usage of
Commonsense Knowledge
Julien Romero, Simon Razniewski

To cite this version:
Julien Romero, Simon Razniewski. Inside Quasimodo: Exploring Construction and Usage of Common-
sense Knowledge. CIKM ’20: The 29th ACM International Conference on Information and Knowledge
Management, Oct 2020, Virtual Event Ireland, France. pp.3445-3448, �10.1145/3340531.3417416�.
�hal-03537535�

https://hal.science/hal-03537535v1
https://hal.archives-ouvertes.fr


InsideQuasimodo: Exploring Construction and Usage of
Commonsense Knowledge

Julien Romero
julien.romero@telecom-paris.fr

LTCI, Télécom Paris, Institut Polytechnique de Paris
Palaiseau, France

Simon Razniewski
srazniew@mpi-inf.mpg.de

Max Planck Institute for Informatics
Saarbrücken, Germany

ABSTRACT
Quasimodo [10] is an open-source commonsense knowledge base
that significantly advanced the state of salient commonsense knowl-
edge base construction. It introduced a pipeline that gathers, nor-
malizes, validates and scores statements coming from query log
and question answering forums. In this demonstration, we present
a companion web portal which allows (i) to explore the data, (ii) to
run and analyze the extraction pipeline live, and (iii) inspect the
usage of Quasimodo’s knowledge in several downstream use cases.
The web portal is available at https://quasimodo.r2.enst.fr.

KEYWORDS
datasets; knowledge base; visualisation; commonsense

1 INTRODUCTION
Commonsense knowledge (CSK) is a recurring theme of AI intro-
duced in 1960 by McCarthy [7]. Researchers such as Doug Lenat
focused their entire career on this area [4, 5]. More recently, deep
learning models and their limits raised the question of explain-
ability and the urge to develop new systems with knowledge at
their heart. Marcus [6] advocates the development of a hybrid,
knowledge-driven, cognitive-model-based approach to create ro-
bust artificial intelligence. He claims that crisp knowledge, and in
particular commonsense knowledge will have a fundamental role
to play.

Recently, we [10] introduced the commonsense knowledge base
Quasimodo. The system leverage human curiosity expressed in
query logs and question answering forums to extract common-
sense, and crowdsourcing experiments showed that it significantly
outperformed existing resources like ConceptNet in terms of cov-
erage. In this paper, we introduce a companion web portal which
enables a comprehensive exploration of Quasimodo’s content and
its construction. In particular, our contributions are:

(1) Development of a scalable architecture for knowledge base
visualisation;

(2) Visualisation of the extraction pipeline of Quasimodo;
(3) Implementation of several applications on the Quasimodo

data.

First, we review in Section 2 the state of the art of the methods
used to display knowledge graphs for the main public knowledge
bases. Then, we briefly recall what Quasimodo is and how it works
in Section 3. We introduce the companion web portal of Quasi-
modo in Section 4, and present the demonstration experience in
Section 5. This web portal is composed of several parts: an explorer,
a visualisation for the extraction pipeline, a SPARQL endpoint and

applications such as question answering or games like Play Taboo!
and Codenames.

2 PREVIOUS WORK
We present here some existing system for knowledge base visuali-
sation. Most of them allow exploring the raw content and provide
a SPARQL endpoint—however, very few focus on applications.

The most typical way to display a knowledge base is to print it as
a table composed of three columns: Subject, predicate, object. Con-
ceptNet [12], WebChild [13], TupleKB [3], Atomic [11], Comet [1]
and Quasimodo [2] provide a CSV file in that style. Often, it is
convenient to group the statements by subject on a separated page,
and thus to omit the first column. We also regularly observe that
systems tend to group the statements by predicates.

There existmore exotic ways to display a knowledge base. Yago [9]
chooses to give a glimpse to the relations attached to a given subject
through a star-shaped graph. Their companion web portal displays
an SVG of this graph. The graph structure is very natural when
we deal with knowledge bases. Some third-party websites such as
Geneawiki1 or the Wikidata Graph Builder2 use this representation
to display relations between entities. However, due to the size of the
graphs, it becomes tough for a human to find relevant information.

In our system, we choose to use a table representation where we
added additional columns such as the polarity (positive or negative)
of a statement, an attached modality (e.g. sometimes, always, never)
or a score.

Many systems also provide a simple search interface. More inter-
estingly, some give access to a SPARQL endpoint to write complex
queries. Finally, the websites offer an easy way to download data
in different formats. We provide all these functionalities.

Third-party web portals generally provide the applications as-
sociated with a knowledge base. For example, Inventaire3 uses
Wikidata to extract information about books and The Art Browser4
uses Wikidata to display art information. Wikidata groups various
projects related to their website5, and in particular about visu-
alisation. In this paper, we include several applications near the
data visualisation, which can make the user more familiar with the
knowledge base.

1https://tools.wmflabs.org/magnus-toolserver/ts2/geneawiki/
2https://angryloki.github.io/wikidata-graph-builder/
3https://inventaire.io
4https://openartbrowser.org
5https://www.wikidata.org/wiki/Wikidata:Tools

https://quasimodo.r2.enst.fr
https://tools.wmflabs.org/magnus-toolserver/ts2/geneawiki/
https://angryloki.github.io/wikidata-graph-builder/
https://inventaire.io
https://openartbrowser.org
https://www.wikidata.org/wiki/Wikidata:Tools


Figure 1: Quasimodo extraction pipeline.

3 QUASIMODO
Quasimodo is a commonsense knowledge base generated from
query logs and question answering forum. It uses a pipelined archi-
tecture.

The extraction pipeline is detailed in the original paper [10] and
is summarized in Figure 1. We recall here the main steps.
Candidate Generation. We extracted from query logs (through
the autocompletion of Bing and Google) and question answering fo-
rums (Answers.com, Reddit, Quora) why and how questions. Then,
we turned them into statements and used OpenIE techniques to
extract triples. Next, we normalise these triples by using several
methods such as the lemmatisation of the subject and the predicate,
the removal of noisy words or the elimination of personal terms.
CorroborationWe compared the statements to external sources
to confirm (or not) the correctness. For example, we checked how
often the predicate and the object appear on the Wikipedia page of
a given subject. We also used image tags and captions to find links
between a subject and an object.
Ranking We combined the signals from all sources using a super-
vised algorithm to obtain a score for each fact. Then, we generated
additional metrics that take into account the structure of the knowl-
edge base.
Grouping The statements are bi-clustered by subject-object and
predicate to normalise them. This step is explained in more details
in [8] and so will not be part of this demo.
ResultingDataAs ofMay 2020, Quasimodo is composed of approx-
imately four million statements for over 95.000 different subjects,
making it more than ten times bigger than ConceptNet. In [10], it
was shown that its precision is significantly higher than Webchild,
and that its recall significantly exceeds all other commonsense
knowledge bases.

4 QUASIMODOWEB PORTAL
ARCHITECTURE

Wepacked our demo as aweb portal, accessible at https://quasimodo.
r2.enst.fr. We use Nginx to manage connections, obtain HTTPS
accesses and perform reverse proxy to the internal components.

To make our system scalable and reusable, we decomposed it
into Docker containers. Docker containers are light and indepen-
dent packages that contain everything to run an application. A
developer can use them as building blocks for more complex appli-
cations deployed on a single or several computers. Our application
runs on a single machine, and so a docker-compose file is used
to link the entire system. Our system can be deployed on several
computers as it is compatible with solutions such as Kubernetes
that automatically scale each container according to its needs.

Let us enumerate the different containers present in the appli-
cation. First, we wrote the core of the web portal (we call it the
back-end) in Python using Flask. Flask is a lightweight micro web

framework which comes with numerous additional packages. The
back-end module orchestrates all the actions. In particular, it is
linked to a container encapsulating a PostgreSQL database which
stores Quasimodo. It is also linked to a container running a Redis
database and which is used as a Job Queue (see Section 5.2). An
arbitrary number of asynchronous workers on separated containers
can connect to this job queue and execute tasks. Finally, we also
have a particular container hosting a SPARQL endpoint: Oxigraph.

A user accesses our companion web portal through a front end
which uses Bootstrap4 and simple HTML, CSS and Javascript. The
SPARQL endpoint is also accessible independently of the web portal.
We summarise the general architecture of the web portal in Fig. 2.

We tested most of the components of our system using the Pytest
library and Selenium. Selenium is a framework to emulate a browser
such as Chrome or Firefox. The code is freely accessible on Github6
where all the containers and the docker-compose file are also avail-
able. Finally, we used Jenkins to run a pipeline of tests ensuring the
validity of each component. This pipeline gets executed every time
the git repository receives a push. A Docker container encapsulates
the pipeline which runs the tests.

The web portal, the asynchronous workers and the SPARQL
endpoint run on a single virtual machine which has access to 8
Virtual CPU of 2.6GHz and 16GB of RAM.

5 DEMONSTRATION EXPERIENCE
5.1 Exploring and Searching Commonsense

Knowledge
The data is stored using a relational database (PostgreSQL) which
provides a fast way to retrieve information. We use a single table
to store all statements, with columns for subject, predicate, object,
modality, polarity, example sentences and metrics (scores).

We provide a simple visualisation for the statements in Quasi-
modo as a table containing columns for the subject, predicate, ob-
ject, modality, polarity (is it a positive or a negative statement) and
scores. In difference to KBs with fixed predicates, like Wikidata or
ConceptNet, we organize the open predicate space by sorting state-
ments by scores. Besides, we added the possibility to give positive
or negative feedback about a statement, which could be used to re-
fine supervised models. We also implemented a page per statement
to display all information about it, and in particular the sentences
that generated the statement and which sources they were derived
from.

To traverse its content efficiently, a search function is available,
which allows filtering the statements by subject, predicate, object
and polarity. The search returns the number of matching statements
and a table displaying them as explained above. In Figure 3, we
show the top statements for the subject "elephant".

5.2 Extraction Pipeline Visualization
Quasimodo introduces an extraction pipeline to extract and pro-
cess commonsense knowledge from various sources. In Section 3,
we briefly presented this extraction pipeline. Each module in this
workflow is itself composed of several sub-modules for performing
specialized tasks. The reader can find a list of these components

6https://github.com/Aunsiels/demo_quasimodo

https://quasimodo.r2.enst.fr
https://quasimodo.r2.enst.fr
https://github.com/Aunsiels/demo_quasimodo


HTML
Front	End

Flask
Back	End

Redis
Job	Queue

Quasimodo
Worker

Quasimodo
Worker

PostgreSQL

Oxigraph
SparQL
Endpoint

DISTANT	SERVER
DOCKER	COMPOSE

CONTINUOUS	INTEGRATION

Jenkins

Github

Pytest Selenium

Nginx

Figure 2: The web portal architecture.

Figure 3: Top Quasimodo statements for elephants.

in the original paper [10] and in the code provided with it.7 This
extraction pipeline, however, is very dense, and it can be not easy to
understand the effect of each part. The present web portal therefore
gives further insights into the entire process. In particular, we offer
the possibility to run the extraction pipeline for a given subject. As
most extraction sources must answer in a limited time, we launch
the extraction pipeline in an asynchronous task using Redis Queues.
Redis is an in-memory NoSQL database storing key-value couples.
When we want to get the extraction pipeline information for a sub-
ject, we push a new job on a queue. Then, idle workers specialized
in extraction pipeline execution come and read the pending task
and start the extraction pipeline. Once they are done, they write
back the details of the execution in the queue. They record these
details every time a module or sub-module is executed, providing
insights even if the extraction pipeline is still running.

The workers are based on the code given with Quasimodo and
are encapsulated inside Docker containers. So, they can easily be
duplicated, even on separated machines.

The back-end of the web portal has access to the status of the
jobs and the currently available information. We display the details
of the extraction pipeline on a web page showing the different
stages of the extraction pipeline and the statements which are
generated, modified or deleted. Besides, we also print the time spent
7https://github.com/Aunsiels/CSK

Figure 4: Top-level view of the extraction pipeline visualiza-
tion.

in each module and sub-modules. The information of the extraction
pipeline can be very dense, even for a single subject. So, the user
has to choose in the interface a particular sub-module to display.
We display the results as a table for the statements which were
created, modified or deleted by the considered step. Figure 4 shows
the beginning of the extraction pipeline of the subject elephant.

We intentionally omitted the scoring phase as it must access
all generated statements, for all subjects. Executing the extraction
pipeline for a given subject takes approximately 30 minutes on our
machine.

5.3 SPARQL Endpoint
We offer a SPARQL UI and endpoint https://quasimodo.r2.enst.fr/
sparql. The UI is available on the web portal, and the endpoint
is callable by any program. Nginx orientates the query to detect
whether we are accessing the SPARQL interface or the main web
portal. Indeed, we put these two components on two separated
containers. We dockerised Oxigraph8, a SPARQL endpoint written
in Rust which is also used by Yago. It has the advantage to be very
easy to use and very fast. We transformed our data into N-triples,

8https://github.com/Tpt/oxigraph

https://github.com/Aunsiels/CSK
https://quasimodo.r2.enst.fr/sparql
https://quasimodo.r2.enst.fr/sparql
https://github.com/Tpt/oxigraph


at the cost of losing information such as the modality, the polarity
and the scores.

5.4 Play Taboo!
Taboo is a game in which a player must make other players guess
a word without using a list of forbidden words. In this demo, we
provide an interface to play Taboo with Quasimodo. When a user
starts a new game, the web portal sends him a card. Then they must
use a chat interface to give clue words to Quasimodo. Every time
the user presses the Make a Guess button, the system tries to a find
a relevant word.

The algorithm used in the back end is simple. First, the database
is filtered using the words given by the user. Then, we group the
results by subjects, and we aggregate the scores using a sum or a
max function, for example. We finally return the best subject, under
the condition that we never tried it before.

In addition to this game, we also provide the functionality to
generate Taboo cards for any subject. We perform this generation
by taking the most relevant objects associated with a subject by
combining the scores.

5.5 Codenames
Codenames is a game designed by Vlaada Chvátil. It opposes two
teams that must find their special agent before the other team. The
agents are hidden behind codenames, which are simple words. Each
team has a spymaster which must give a clue to the rest of the team
(the operatives) to help us reveal the spies. For example, a spymaster
can say blue, 2 to help its companion guess the words sky and sea.
The choice of the word must be made very carefully not to discover
the agents of the other team.

In 2019, the Foundation of Digital Games conference hosted a
competition: The Codenames AI competition9. However, we were
not able to find the results of this competition. The presenters
suggested that people should use word embeddings. This solution
can be powerful whenwemakeAI play against each other. However,
the clues can become incomprehensible for humans.

Instead, we propose a solution based on Quasimodo to gener-
ate clues. We consider that the words to guess are subjects. Then,
we take the object associated with the more subjects that has a
score above a certain threshold and does not appear for the wrong
subjects.

In the demonstration scenario, the user plays the role of the
operative. He receives clues and must click on the potential agents.
He plays against a bot which simply guesses one right word per
turn. Vlaada Chvátil suggests this strategy for games with two
players.

5.6 Multiple-Choice Question Answering
As in the original paper, we added the possibility to perform ques-
tion answering using only Quasimodo, i.e. we do not have an un-
derlying language model. We used the same algorithm: Given a
question, an answer and a knowledge base, we generate a set of
features based on the connections between the words in the knowl-
edge graph. Then, using the same training data as in Quasimodo, we
train a linear classifier to predict a score for each answer. We reused
9https://sites.google.com/view/the-codenames-ai-competition

the code provided with Quasimodo and added an interface to ask a
question and give possible answers. Then, the system provides a
score for each answer and displays them.

6 CONCLUSION
With this demonstration, we give insights into the commonsense
knowledge base Quasimodo. The user can access in a user-friendly
way to the raw data of Quasimodo. Besides, more details are given
about the generation of the statements, making the entire process
completely transparent. Finally, we showcased applications such as
Taboo to prove the value of the database. Quasimodo is a scalable
system to mine commonsense knowledge based on a general and
adaptive extraction pipeline. We hope that this work will provide a
better understanding of the system and the data so researchers can
keep building on top of it, either on the application side or on the
system side by proposing new extensions.

REFERENCES
[1] Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Çe-

likyilmaz, and Yejin Choi. 2019. COMET: Commonsense Transformers for Auto-
matic Knowledge Graph Construction. In ACL.

[2] Yohan Chalier, Simon Razniewski, and Gerhard Weikum. 2020. Joint Reasoning
for Multi-Faceted Commonsense Knowledge. AKBC (2020).

[3] Bhavana Dalvi, Niket Tandon, and Peter Clark. 2017. Domain-Targeted, High
Precision Knowledge Extraction. In TACL.

[4] Douglas B Lenat. 2019. What AI can learn from Romeo and Juliet.
https://www.forbes.com/sites/cognitiveworld/2019/07/03/what-ai-can-learn-
from-romeo--juliet/. Accessed: 2020-04-25.

[5] Douglas B Lenat, Mayank Prakash, and Mary Shepherd. 1985. CYC: Using
common sense knowledge to overcome brittleness and knowledge acquisition
bottlenecks. AI magazine (1985).

[6] Gary Marcus. 2020. The Next Decade in AI: Four Steps Towards Robust Artificial
Intelligence.

[7] John McCarthy. 1960. Programs with common sense. RLE and MIT computation
center.

[8] Koninika Pal, Vinh Thinh Ho, and Gerhard Weikum. 2020. Co-Clustering Triples
from Open Information Extraction. In CoDS-COMAD.

[9] Thomas Pellissier Tanon, GerhardWeikum, and Fabian M. Suchanek. 2020. YAGO
4: A Reason-able Knowledge Base. In ESWC.

[10] Julien Romero, Simon Razniewski, Koninika Pal, Jeff Z. Pan, Archit Sakhadeo, and
Gerhard Weikum. 2019. Commonsense properties from query logs and question
answering forums. In CIKM.

[11] Maarten Sap, Ronan LeBras, Emily Allaway, Chandra Bhagavatula, Nicholas
Lourie, Hannah Rashkin, Brendan Roof, Noah A Smith, and Yejin Choi. 2018.
Atomic: An atlas of machine commonsense for if-then reasoning. AAAI (2018).

[12] Robyn Speer and CatherineHavasi. 2012. ConceptNet 5: A large semantic network
for relational knowledge. In Theory and Applications of NLP.

[13] Niket Tandon, Gerard de Melo, and Gerhard Weikum. 2017. WebChild 2.0: Fine-
grained commonsense knowledge distillation. In ACL.

https://sites.google.com/view/the-codenames-ai-competition
https://www.forbes.com/sites/cognitiveworld/2019/07/03/what-ai-can-learn-from-romeo--juliet/
https://www.forbes.com/sites/cognitiveworld/2019/07/03/what-ai-can-learn-from-romeo--juliet/

	Abstract
	1 Introduction
	2 Previous Work
	3 Quasimodo
	4 Quasimodo Web Portal Architecture
	5 Demonstration Experience
	5.1 Exploring and Searching Commonsense Knowledge
	5.2 Extraction Pipeline Visualization
	5.3 SPARQL Endpoint
	5.4 Play Taboo!
	5.5 Codenames
	5.6 Multiple-Choice Question Answering

	6 Conclusion
	References

