
HAL Id: hal-03537524
https://hal.science/hal-03537524

Submitted on 20 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Analysis and Comparison of Sequence
Identification Algorithms in IoT Context

Pierre-Samuel Greau-Hamard, Moïse Djoko-Kouam, Yves Louët

To cite this version:
Pierre-Samuel Greau-Hamard, Moïse Djoko-Kouam, Yves Louët. Performance Analysis and Com-
parison of Sequence Identification Algorithms in IoT Context. Sensors & Transducers., 2021. �hal-
03537524�

https://hal.science/hal-03537524
https://hal.archives-ouvertes.fr

Performance Analysis and Comparison of Sequence

Identification Algorithms in IoT Context

P. -S. GREAU-HAMARD
1,2

, M. DJOKO-KOUAM
1,2

 and Y. LOUET
2

1 Informatics and Telecommunications Laboratory, ECAM Rennes Louis de Broglie, Campus de Ker-

Lann, 2 Contour Antoine de Saint-Exupéry, 35170 Bruz, France

2 Signal, Communication, and Embedded Electronics (SCEE) team, Institute of Electronic and

Telecommunications of Rennes (IETR) – UMR CNRS 6164, CentraleSupélec, Campus de Rennes,

Avenue de la Boulaie, 35510 Cesson-Sévigné, France

E-mail: {pierre-samuel.greau-hamard, moise.djoko-kouam}@ecam-rennes.com,

Yves.Louet@centralesupelec.fr

Abstract: In the fast developing world of telecommunications, it may prove useful to be able to analyse any

protocol one comes across, even if it is unknown. To that end, one needs to get the state machine and the frame

format of the protocol. These can be extracted from network and/or execution traces via Protocol Reverse

Engineering (PRE). In this paper, we aim to evaluate and compare the performance of three algorithms used as

part of three different PRE systems of the literature: Aho-Corasick (AC), Variance of the Distribution of

Variances (VDV), and Latent Dirichlet Allocation (LDA). In order to do so, we suggest a new meaningful

metric complementary to precision and recall: the fields detection ratio. We implemented and simulated these

algorithms in an Internet of Things (IoT) context, and more precisely on Zigbee Data Link Layer frames. The

results obtained clearly show that the LDA algorithm outperforms AC and VDV.

Keywords: Protocol Reverse Engineering, AC, VDV, LDA, Performance Comparison.

mailto:Yves.Louet@centralesupelec.fr

1. Introduction

With the ever growing development of

telecommunications, and especially Internet of

Things (IoT), a lot of new protocols are constantly

appearing. In order to know what they are used for,

we need to understand how they work.

In this paper, we place ourselves in the context of

a communicating object coming into an unknown

environment and wanting to establish a

communication with the existing networks. To that

end, the object needs to have 'generic', or 'multi-

standard' behavior, i. e. to be able to adapt itself to

whichever standard is used in the target environment.

It is the same goal as the one pursued by Software

Defined Radio, except that in our case, we propose to

learn the unknown protocol of the environment, and

not just identify it from a database.

This is the goal of Protocol Reverse Engineering

(PRE), a family of techniques which aims at

reconstructing the frame formats and/or the state

machine of a target unknown protocol through

analyzing execution traces and/or network traces.

There is no precisely defined procedure to

perform PRE, but the most encountered one [1] is a

five-step process. (i) Firstly, the radio traffic is

intercepted and the frames issued by the targeted

protocol are isolated. (ii) Next, the meaningful binary

sequences (features) of these frames are identified,

(iii) and then the frames are grouped by format via

the use of these features. (iv) Within each group,

sequence alignment is performed, and, finally, (v) the

frame formats and/or the state machine of the

targeted protocol are reconstructed.

In this paper, we focus solely on the second step,

the identification of remarkable sequences. This step

aims at reducing the quantity of information needed

to label a frame. This is achieved by identifying the

remarkable sections of the frames, i. e. in our case by

spotting the recurring sequences and their positions.

Such sequences are most probably keywords. Our

goal is to evaluate and compare the performance of

different techniques achieving this, in order to obtain

useful data for choosing a technique or a family of

techniques to be used in a real-life system. To this

end, we selected the Variance of the Distribution of

Variances (VDV) [2], Aho-Corasick (AC) [3], and

Latent Dirichlet Allocation (LDA) [4] techniques.

The simulation context in which we will simulate

the performance of these techniques lies in the

analysis of Data Link Layer (DLL) frames of the

Zigbee protocol.

Most of the surveys in the PRE domain involve

comparing a rather narrow range of tools and their

approaches without delving into the exact mechanics

or presenting their performance, like in [5]. However,

some of them are more exhaustive, and present in

detail the techniques used by the tools [6] and the

protocols they are able to reverse engineer [7].

Nevertheless, these surveys do not refer to the

performance of the different tools in a quantifiable

way, and they also do not present the individual

performance of the techniques used in each tool.

Such an approach is legitimate, as they browse a

wide range of PRE tools, but this is where the

particularity of our paper stands. We select only three

techniques as opposed to the dozens present in the

previous surveys, and we evaluate their performance

through simulations, which has not been done in the

previous papers.

This article is an extended version of the paper

presented at the ASPAI' 2020 conference [8], with

more detailed explanations of the compared

techniques, and complementary simulation results.

The rest of this paper is organized as follows:

section 2 presents the theory related to the three

techniques studied; in section 3, we simulate and

compare them; and finally, we conclude in section 4.

2. State of the Art of the Three

Techniques

In this section, we present the principle and

mechanisms of each of the sequence identification

techniques, as well as the practical algorithms

designed from them to fit our context.

2.1 Variance of the Distribution of Variances

This technique aims at statistically identifying in

a population the parts which offer the least

variability. The following presentation is based on

the approach proposed by A. Trifilò et al [2].

The VDV technique considers a population

formed of groups of individuals. The latter are

themselves composed of elements which can take

different numerical values. Fig. 1 illustrates this

assumed data structuring.

The technique unfolds in five steps:

 For each group, calculating the average, then

the variance of the value of each element

across all the individuals in a given group.

Fig. 1. Structuring of the data (=population) considered by

the VDV technique

 Across groups, calculating the average, then

the variance of these variances.

 Retaining the elements whose variance of

the variances is less than a given filtration

threshold.

Algorithm 1 in Fig. 2 presents this process under

the form of a pseudo-code algorithm.

The actual algorithm used in our context derives

from the technique above, with some modifications.

The groups of individuals previously considered

are now replaced by flows composed of DLL frames

to be analysed, and the base unit is switched from

element to 'token', a n-bit long position slot on the

frames which can assume different sequences of n

consecutive bits. These equivalences are summarized

in Table 1.

To be able to detect fields regardless of their

position, all the possible tokens obtainable from a

frame are created.

The filtration threshold actually used for filtering

() is not a fixed value, but a value proportional

to the average variance of the variances. The

proportionality coefficient is called filtration

threshold coefficient (
), and the formula

linking and
 is:

 , (1)

with the variance of the variances of token i.

The frames being collected on a radio link, it is

not possible to clearly identify flows, so we create

them by randomly attributing frames to flows

following a discrete uniform law.

To enable the detection of fields of different

lengths, the algorithm is executed many times, for

different values of n, i.e. token lengths, and all the

single sequences extracted from these runs are kept

for metrics computation.

The successive steps of the process are illustrated

in Fig. 3.

The parameters of the algorithm are as follows:

 Maximal length of the sequences searched

(token length)

 Filtration threshold value

 Number of generated flows

2.2 Aho-Corasick

This technique was designed by A. Aho and M.

Corasick in order to identify a string of characters in

a text [3]. However, its use can be extended to

identify any pattern composed of a sequence of

elements taking values from a discrete finite space.

The search is then run on a sequence of these

elements whose length is superior or equal to the

targeted pattern. The following presentation is based

on the approach proposed by Y. Wang et al. [9].

The particularity of AC is that it is based on a

state machine to optimize the processing speed.

This machine is represented as a tree, with each of

its states described by the character to be read to

access this particular state. This automaton is ruled

by three functions :

 A transition function g, defining the next

state of the machine, depending on the

current state and the character read, when

the latter is relevant in regards to the strings

searched

 A failure function f, defining the next state

of the machine, depending on the current

state, when the character read is not relevant

in regards to the strings searched

 An activity function o, defining the word(s)

finishing on a state of the machine,

depending on the current state

The technique operates in two major steps:

 Constructing the state machine based on the

strings to search in the text.

 Scanning the whole text character by

character, and notifying, for each character,

Table 1. Summary of equivalent terms for the VDV

algorithm

General term used in the

technique explanation

Equivalent term used in our

study case

Population Data Link layer trace

Group Flow

Individual Frame

Element Token

Fig. 2. VDV pseudo-code algorithm

the strings ending on that character.

Algorithm 2 in Fig. 4 presents this process under

the form of a pseudo-code algorithm.

Fig. 5 illustrates a sample state machine, built for

searching the following strings: pit, it, pity, and paw.

Each circle represents a state. The letter written

on each state corresponds to the one to be read to

access this state. The empty state is the root of the

tree. The thick straight lines materialize the

transitions ruled by function g. They are traveled

through only in the root to leaves direction. The thin

curved lines materialize the transitions ruled by

function f. They are traveled through only in the

leaves to root direction. The thicker circles on some

Fig. 3. Illustration of the VDV algorithm applied to our study case

states mean that one or multiple strings, specified

next to the states, end on these states.

The actual algorithm used in our context derives

from the one above, with some modifications.

The text considered in the AC technique is now

replaced by the DLL trace to be analysed, and the

base unit is switched from character to bit. Moreover,

the strings to be identified are now all the possible n-

bit sequences. These equivalences are summarized in

Table 2.

An occurrence counter of the sequences was

added, in order to perform filtering. The sequences

under a threshold proportional to the average

number of appearances of any sequence considering a

uniform distribution are filtered out. is given

by:

 , (2)

with n the number of bits of the trace, L the length of

the sequences searched, and
 the proportionality

coefficient called filtration threshold coefficient. This

filtering is done to keep only the frequent enough

sequences.

The sequences with a similarity level superior to a

given threshold are fused. By fusion, we mean that in

a group of similar enough sequences, we retain the

one best representing all the other ones. We achieve

that through unsupervised ascendant hierarchical

clustering of the sequences, using the similarity as the

distance metric, defined by:

, (3)

with X and Y representing any two sequences, l(X,Y)

the average length of X and Y, and ed(X,Y) the

minimal edition distance between X and Y, i. e. the

minimal number of operations to apply on one of the

sequences to obtain the other one. All the sequences

being the same length, the average length of X and Y,

l(X,Y), equals those of X and Y.

To enable the detection of fields of different

lengths, the algorithm is executed many times, for

different values of n, i.e. lengths of sequences, and all

the single sequences extracted from these runs are

kept for metrics computation.

The parameters of the algorithm are as follows:

 Maximal length of the sequences searched

Table 2. Summary of equivalent terms for the AC

algorithm

General term used in the

technique explanation

Equivalent term used in our

study case

Text Data Link layer trace

String Flow

Character Frame

Fig. 5. Illustration of an AC technique example state

machine

Fig. 4. AC pseudo-code algorithm

 Filtration threshold value

 Fusion threshold value

2.3 Latent Dirichlet Allocation

This technique comes from the machine learning

domain of Information Retrieval (IR), which aims at

modeling a text mathematically, in order to extract its

meaning. It was designed with the objective to

identify latent topics from a document corpus, and to

associate terms coming from a dictionary to them.

However, its use can be extended to regrouping

sequences of single elements taking values in a finite

discrete space, from a collection of data. The

following presentation is based on the approach

proposed by Y. Wang et al [10].

The name Latent Dirichlet Allocation stems from

the fact that the model uses Dirichlet as the a priori

law of the latent variables (topics) allocated to the

observed variables (words). Practically, the Dirichlet

law is used to generate a probability vector

characteristic of a multinomial law, from a vector of

concentration parameters. These parameters have

values varying from 0 to +∞, 0 meaning that

probabilities of the generated probability vector will

be 0 or 1 (before normalization) and +∞ meaning

probabilities will be equal to 0.5 (before

normalization). 1 means that the a priori is in fact that

there is no a priori, i. e. probabilities can take any

value between 0 and 1 with equal probability. The

Dirichlet law was chosen for its conjugacy property

with the multinomial law which is used for

classification (like LDA). Conjugacy of Dirichlet law

and multinomial law means that if the latent variables

follow a Dirichlet a priori law, their a posteriori law

will be multinomial.

The LDA technique is first and foremost a

generative model for a corpus based on a Bayesian

network; the actual implemented algorithm is

deduced from it upon inference.

Let us introduce the necessary notions and

parameters needed to understand the generative

model and the inference based on it:

 a word w is an element taking value from a

dictionary v gathering all the known

vocabulary.

 a document m is a set of words w, modeled

by a vector.

 a corpus W is a set of documents m,

modeled by a vector.

 a term t is the base element of the

vocabulary.

 V is the set of terms of the dictionary or its

cardinal.

 K is the set of topics desired or its cardinal.

 M is the set of documents in the corpus or its

cardinal.

 α and β are the Dirichlet prior parameters of

the topics over documents and the words

over topics distributions, respectively.

 ξ is the parameter of the Poisson law

determining the number of words in each

document.

⃗⃗⃗⃗ ⃗ is the vector characterizing the topics

distribution for the document m.

 {
⃗⃗⃗⃗ ⃗}

 is the matrix characterizing

the topics distribution over the documents.

 ⃗⃗⃗⃗ ⃗ is the vector characterizing the terms of v

distribution for the topic k. { ⃗⃗⃗⃗ ⃗}
 is

the matrix characterizing the terms

distribution over the topics.

 represents the number of words in

document m.

 represents the word of document

m. The vector ⃗⃗⃗⃗ ⃗⃗ represents the words of

document m. The vector of vectors
 ⃗⃗⃗⃗ , represents the words of the corpus.

 represents the topic associated to the

 word of document m. The vector ⃗⃗⃗⃗ ⃗
represents the topics respectively attibuted

to each word of document m. The vector of

vectors ⃗⃗ , represents the topics

respectively attributed to each word of the

corpus.

Let us illustrate the structures of the vectors of

vectors ⃗⃗⃗⃗ and ⃗⃗ with a random example corpus and

three latent subjects considered. We precise that ⃗⃗ is

filled-in with random topics ids which do not reflect

what LDA would really do (outside random

initialization). We consider the three following

documents in the example corpus:

 Document 1 : This is an example

 Document 2 : The documents do not have

all the same number of words

 Document 3 : The matrices are vectors of

vectors

 ⃗⃗⃗⃗

[

]

 ⃗⃗

[

]

In LDA, we consider that a corpus is a set of

documents, each of those being composed of a

random number of words, where the number is drawn

following a Poisson law of parameter ξ. Each of the

words takes a value within the dictionary.

In the generative model, to begin, Θ and Φ are

randomly generated following a Dirichlet law of

parameters α and β, respectively.

Firstly, for each word to be generated of each

document to be generated, the topic associated to it is

randomly drawn following a multinomial law

parameterized by Θ, knowing the document the word

is in. Next, the value of the word is drawn from the

dictionary, following a multinomial law

parameterized by Φ, knowing the previously drawn

topic associated with the word.

The generative process of the documents

according to LDA is described in Algorithm 3 in Fig.

6, and summarized on the plate diagram in Fig. 7.

The arrows represent the causality links

(probability laws) linking the random variables,

represented as circles. The zones delimited by dashed

rectangles materialize the different sets of elements

composing the corpus:

 The topics k

 The documents m

 The words n

The dashed circles correspond to the latent

variables, or hidden variables, in opposition to the

observed and known variables. The hatched circle is

the final, observed variables generated by the model:

the words present in the corpus.

It is to be noted that α and β are matrices, and ξ is

a vector, but in the LDA generative algorithm, they

are expressed as scalars, as we consider all the

elements within each of them to be equal. When the

actual α, β, and ξ are used, they are generated by

replicating the scalar values as many times as needed.

Moreover, ξ does not have any use outside the

generative algorithm, so it will not be mentionned

anymore.

The goal of the LDA technique is to infer the

terms over topics and topics over documents

distributions, i. e. the matrices Φ and Θ, from the

corpus of documents.

Given the parameters α and β, and a document m,

the joint probability of all the observed variables

(⃗⃗ ⃗⃗ ⃗⃗) and hidden variables (⃗⃗ ⃗⃗
⃗⃗ ⃗⃗ ⃗) concerned by

m is given by:

 (⃗⃗⃗⃗ ⃗⃗ ⃗ ⃗⃗⃗⃗ ⃗
⃗⃗⃗⃗ ⃗ |) ∏

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (|
⃗⃗⃗⃗ ⃗) (

⃗⃗⃗⃗ ⃗|) , (4)

where
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ represents the probability vector of the

matrix Φ associated to , the topic associated to

the nth word of document m.

The joint probability of ⃗⃗ ⃗⃗ ⃗⃗ and ⃗⃗ ⃗⃗ is obtained by

integrating over
⃗⃗ ⃗⃗ ⃗ and Φ:

 ⃗⃗⃗⃗ ⃗⃗ ⃗ ⃗⃗⃗⃗ ⃗ ∬ (
⃗⃗⃗⃗ ⃗|) ∏

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (|
⃗⃗⃗⃗ ⃗)

⃗⃗⃗⃗ ⃗. (5)

The marginal distribution of ⃗⃗⃗⃗ ⃗⃗ is obtained by

summing ⃗⃗⃗⃗ ⃗⃗ ⃗ ⃗⃗⃗⃗ ⃗ over all the possible values

of , i. e. all the topics K:

Fig. 7. Plate diagram of the LDA generative model

Fig. 6. LDA pseudo-code generative algorithm

 ⃗⃗⃗⃗ ⃗⃗ ∬ (
⃗⃗⃗⃗ ⃗|) ∏ ∑ (|

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗) (|
⃗⃗⃗⃗ ⃗)

⃗⃗⃗⃗ ⃗

 ∬ (
⃗⃗⃗⃗ ⃗|) ∏ ∑ (|

⃗⃗⃗⃗ ⃗)
⃗⃗⃗⃗ ⃗

 (6)

The joint probability of all words in the corpus

and their associated topics is given by:

 ⃗⃗ ⃗⃗ ∏ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗
 . (7)

The marginal probability of all the words in the

corpus is given by:

 ⃗⃗ ∏ ⃗⃗⃗⃗ ⃗⃗
 . (8)

We aim at computing the a posteriori distributions

of ⃗⃗ , Φ, and Θ, given the words ⃗⃗ observed.

However, Φ and Θ can be computed directly from the

distribution of ⃗⃗ , so we consider only the latter. The

target distribution is consequently as follows:

 ⃗⃗ ⃗⃗
 ⃗⃗ ⃗⃗

 ⃗⃗

∏ ⃗⃗⃗⃗ ⃗⃗ ⃗ ⃗⃗⃗⃗ ⃗

∏ ∑ ⃗⃗⃗⃗ ⃗⃗ ⃗ ⃗⃗⃗⃗ ⃗

 (9)

This distribution is intractable because of its

denominator being a sum over K
M

 terms. It will

therefore be estimated through Gibbs sampling [11].

The Gibbs sampling technique comes from

observing that it is impossible to simultaneously infer

all the latent variables of the model (i. e. the topics).

Random initialization. So, instead, one at a time, their

distributions are inferred conditionally to all the other

ones, then a new realization of the inferred

distribution is drawn. When repeating this operation

over all the variables a large number of times, theory

shows that the realizations drawn (i. e. the sample)

eventually converge towards what would be sampled

from the target distribution. Then, the properties of

the distribution can be statistically computed from

the sample.

Applied to the LDA, Gibbs sampling unfolds in

the following two steps:

 The initialization, where the words are

randomly given associated topics

 An iterative process during which, for each

word wm,n, the probability to get each of the

topics for this word given the topics

attributions to all the other words of the

corpus is computed. The obtained

probability vector parameterizes a

multinomial law, which is used to draw a

new topic for the word wm,n. This step is

repeated until a stopping criterion is

reached.

We can then compute the terms over topics and

topics over documents distributions, i. e. the matrices

Φ and Θ, from the vectors of vectors ⃗⃗⃗ and ⃗⃗ . We

can finally make a decision on which words to

associate to which topics and which topics to

associate to which documents based on Φ and Θ.

Fig. 8 illustrates the principle of Gibbs sampling

applied to LDA. To that end, we define the following

terms:

 The vector of vectors of the topics

associated to the words,

 ⃗⃗ { }
, with M the number

of documents and n(i) the number of words

of document i

 The vector of vectors of the topics

associated to the words to which the word

wi,j is excluded,

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ { }

 The vector of vectors representing the

corpus, ⃗⃗⃗⃗ { }

Fig. 8. Algorigram of the Gibbs sampler procedure

 The vector parameterizing the multinomial

distribution of the topic , associated to

the word wi,j,
⃗⃗ ⃗⃗ ⃗⃗ ⃗ {

 }

 N, the number of iterations of the algorithm

(a possible stopping criterion)

The perplexity [12] expresses the ability of a

model to generalize to unknown data. It is defined as

the reciprocal of the geometric mean by element of a

test corpus likelihood, given the model with its

current parameters (which change at each learning

iteration).

More practically, in the case of the LDA, it is the

inverse of the average likelihood by word of the test

corpus given the current state of the matrices Φ and

Θ. The perplexity is expressed as follows :

 ∏ ⃗⃗⃗⃗ ⃗⃗

 . (10)

The information conveyed by the perplexity on

the quality of the learned model can be interpreted as

follows: for a given word slot, the probability to

obtain with this model the word actually present in

the test corpus will be the inverse of the perplexity.

This probability is to be compared to that of a draw

from a uniform law over all the words of the

dictionary.

We will now present in Algorithm 4 in Fig. 9 the

learning procedure of the LDA model via Gibbs

sampling, leading to the obtention of ⃗⃗ , Θ, and Φ,

given the observed corpus W, the number of

keywords assumed K, the dictionary v, and the

Dirichlet a priori parameters α and β.

The notation –i means all elements of the

considered ensemble, except the one in position i.

The actual algorithm used in our context derives

from the above, with some modifications.

The documents considered in the LDA technique

are replaced by the DLL frames to be analysed, so the

corpus consequently becomes the DLL trace. The

topics are replaced by keywords of the protocol, and

the words by n-grams, groups of n consecutive bits.

The n-grams having no natural delimiters, like spaces

for words, all the possible n-grams obtainable from a

frame are created. The terms become the different

possible sequences of n bits. These equivalences are

summarized in Table 3.

The dictionary is composed of all the possible n-

grams with n bits.

The gradient of perplexity between two iterations

is used as the stopping criterion of the Gibbs sampler.

The perplexity P of a learning corpus W is practically

calculated as follows:

∑ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗

∑ , (11)

with M the set of frames from the learning DLL trace,

 the number of n-grams in the DLL frame m, and

 ⃗⃗⃗⃗ ⃗⃗ ∏ ∑

, (12)

with V the set of the single n-grams, K the set of the

keywords, and
 the number of occurrences in

document m of the single n-gram t.

We calculate the perplexity gradient between

two consecutive time indexes n-1 and n as follows:

Table 3. Summary of equivalent terms for the LDA

algorithm

General term used in the

technique explanation

Equivalent term used in our

study case

Corpus Data Link layer trace

Document Frame

Topic Keyword

Word N-gram

Term N-bits sequence

Fig. 9. LDA pseudo-code learning algorithm via Gibbs

sampling

. (13)

The sampling continues as long as the perplexity

gradient is above a threshold defined as the maximal

perplexity gradient divided by the number of frames

in the DLL trace.

Once the matrices Θ and Φ are calculated, for

each keyword, the n-grams with the highest

appearance probabilities are selected. For that

purpose, the n-grams are ordered by descending

probabilities, then iterated through, calculating the

gradient within each pair of consecutive n-gram

probabilities. Mathematically, if we consider a

keyword k, and its associated n-gram distribution

vector, ⃗⃗⃗⃗ ⃗, in descending order, the probability

gradient of a n-gram in position [] is:

. (14)

The first n-gram is always selected, and the others

are selected if their probability gradient is under the

threshold defined as the maximal probability

gradient.

 To enable the detection of fields of different

lengths, the algorithm is executed many times, for

different values of n, i.e. n-gram lengths, and all the

single sequences extracted from these runs are kept

for metrics computation.

The parameters of the algorithm are as follows:

 Maximal length of the sequences searched

(n-grams length)

 Number of latent keywords assumed

 Maximal perplexity gradient value

 Maximal probability gradient value

 α a priori Dirichlet parameter

 β a priori Dirichlet parameter

3. Comparative Simulations

In this section, we present the metrics (including

new ones proposed in this paper) used to quantify the

performance of the algorithms, as well as the

parameterization for the simulations. We then discuss

the results produced.

3.1. Performance Metrics

In order to define the metrics quantifying the

performance of the algorithms, we introduce the

notions of sequence, field, and matching condition as

follows:

 Sequence: a sequence s is characterized by

its length l, value v, and the set of its

positions { } . A sequence is then

represented by . The list of the

detected sequences { } is given by the

identification algorithms.

 Field: a field c is characterized by its

possible lengths L, characteristic values V

(null if absent), and possible positions

 { } . A field is then represented by

 . The list of the fields { } is

obtained from the Zigbee specification. A

field can be either detectable () or

not detectable ().

 Matching condition: the sequence

and the field match if the

following property is verified:

{

 (15)

As metrics, we first use a tradeoff between

precision and recall, the F score [13] which is the

harmonic mean of the two. This metric quantifies the

quality of the sequence detection, i. e. the

performance of the algorithm. It is given by:

, (16)

with P the precision, quantifying the part of what was

correctly detected from the totality of what was

detected, given by:

, (17)

with the true positives, which are the sequences

correctly detected, and the false positives, which

are the sequences incorrectly detected.

R is the recall, quantifying the part of what was

correctly detected from what was supposed to be

detected, given by:

, (18)

with the false negatives, which are the sequences

incorrectly not detected.

Each sequence counts as one true positive if its

properties match at least one detectable field, it

counts as one false positive in all other cases.

The number of false negatives is equal to the

difference between the number of remarkable

sequences across all fields and the number of true

positives.

In addition to the quality of the sequence

detection, we want to quantify the quality of the field

detection, as it is more reprensentative of the

usefulness of the algorithm.

To the best of our knowledge, a metric serving

that purpose does not exist, so we introduce our own,

the fields detection ratio. It quantifies the detected

information of a field, and comes in three different

forms: for lengths, for values, and for

positions.

Let us consider { } the set of

sequences matching at least one field, and

 , a generic field, with { } ,

 { } , { } , and I the set of all

existing fields, and a generic sequence.

 (
)

 (

)

 (

)

 (19)

are, respectively, the ratios between the number of

possible lengths, values, and positions of detected

and the total number of possible lengths, values, and

positions of , with
 { },

 { },

 {

 }.

For each of the previous ratios, the average over

all fields is calculated as follows:

 ∑

 , (20)

with representing the different ratios presented in

(19).

These averages are the metrics we use for our

simulations.

3.2. Simulation Context

In order to evaluate the performance of the

algorithms VDV, AC, and LDA, we simulate them

with a DLL trace of a protocol widespread in the IoT:

Zigbee [14]. This protocol is based on the standard

IEEE 802.15.4 [15], widely used in the IoT for

physical and data link layers.

The DLL traces to be analysed are generated by

randomly creating frames from a data frame formats

base we created according to Zigbee specification.

The trace generation process is run at each single

simulation, so the traces analysed are never the same

(although they respect the same statistical properties).

The traces are then processed by the algorithms in an

offline procedure.

The comparative simulation was done in two

steps. (i) Observing the influence of each of the

algorithms parameters by simulating them over an

arbitrary but wisely chosen parameters set domain.

(ii) Choosing the best performing parameter set

among all the ones simulated, and comparing the

performance achieved.

This method allowed us to get parameter sets

yielding good performance, but not the best that

could be achieved by the algorithms. This is due to

the fact that we used a simple optimization approach,

considering that all the parameters influence the

algorithms in an independent manner.

We chose to simulate all the algorithms with a

number of frames varying from 1 to 1000 to see the

impact of the trace size on the performances, with a

logarithmic increment to cover the domain with

fewer points. We limited ourselves to 1000 frame

traces for processing power and memory usage

limitations of our simulating hardware.

We know that most of the sequences to be found

in the test datasets have a length inferior or equal to 8

bits. We also observed a steep increase in the

processing time when looking for up to 16-bit

sequences, the longest actually present in the

datasets. Therefore, the maximal length of the

sequences searched will vary from 1 to 8 bits by

power of two increments.

Note that each curve point is calculated by

averaging over 100 runs of the simulation

corresponding to this point parameter set.

The metrics presented in the results graphs will be

the following ones:

 The precision of the detected sequences

 The recall of the detected sequences

 The F score of the detected sequences

 The average fields lengths detection ratio

(only for the comparison of the best

performances)

 The average fields values detection ratio

(only for the comparison of the best

performances)

 The average fields positions detection ratio

(only for the comparison of the best

performances)

3.3. Study of VDV parameters influence

We first run our implementation of the VDV

algorithm with a series of parameter sets to study

their influence.

Table 4 summarizes the parameters used for the

simulations of the VDV algorithm.

In the graph Fig. 10, we can see first of all that

the precision of the VDV algorithm is inversely

proportional to the maximal length of the sequences

searched. This can be explained by the fact that the

longer the sequences searched are, the more different

sequences can be detected, and therefore the lower

their respective numbers of appearances are, so the

statistical thresholding is less efficient, hence the

increase in false positives.

Table 4. Summary of the VDV algorithm simulation

parameters

Parameters

Sequences

length

influence

Flows

number

influence

Filtration

threshold

influence

Number of

frames

1 to 1000,
logarithmic

increment

1 to 1000,
logarithmic

increment

1 to 1000,
logarithmic

increment

Sequences

length

1 to 8, power

of 2 increment
8 8

Number of

flows
10

5 to 30,

increment of 5
10

Filtration
threshold

1 1

0.0001 to 1,

power of 10

increment

We can also a notice a rapid increase in precision

with the number of frames in the DLL trace, when

the latter is low (below 10 frames). This behaviour is

to be expected, as the algorithm uses statistical

filtering, which only makes sense on large samples.

However, there is also a collapse in precision when

the trace becomes large (above 100 frames). This is

due to the fact that as the size of the trace increases,

the variance decreases, so it becomes more difficult

to discriminate the sequences to be detected with the

filtration threshold, resulting in an increase in false

positives and a decrease in true positives.

It can be seen from the graph in Fig. 11 that the

recall of the VDV algorithm is proportional to the

maximal length of the the sequences searched. This

seems logical, since as the length increases, it

becomes possible to detect more remarkable

sequences present in the DLL trace.

There is also a similar behaviour to that of the

precision in relation to the number of frames in the

trace, which can be explained by the same reasons.

From the graph in Fig. 12, we can conclude that

for 10 flows and a filtation threshold of 1, the

maximal length of the the sequences searched

maximising the performance of the VDV algorithm is

4 bits, as we favor the large DLL traces.

The precision curves of the VDV algorithm

parameterised by the number of flows generated

within it will not be presented as this parameter

seems to have no influence on this metric.

The graph in Fig. 13 can be split into three parts

along the axis of the number of frames of the DLL

trace. Below 20 frames, the recall of the VDV

algorithm is inversely proportional to the number of

frames. This is due to the fact that the variance

calculations performed within each flow lose their

meaning if the flows contain too few frames,

resulting in better coverage for a lower number of

flows.

From 20 to 100 frames, the performances are

approximately equivalent, as this is an intermediate

area between small and large traces.

From 100 to 1000 frames, the recall is

proportional to the number of flows, because by

increasing the diversity of the flows, full advantage is

taken of the two-level variance calculation

performed.

We also notice a behaviour relative to the trace

size identical to that of the previous curves in Fig. 10

and Fig. 11, which can be explained by the same

reasons.

The F score curves being no more interesting than

the precision curves, we can say that for a maximal

length of the sequences searched of 8 and a filtation

threshold of 1, the best number of flows is 30 or

more, as we favor the large DLL traces.

Fig. 11. Recall of the VDV algorithm relative to the trace

size and parameterized by maximal sequence length

Fig. 13. Recall of the VDV algorithm relative to the trace

size and parameterized by the number of flows

Fig. 10. Precision of the VDV algorithm relative to the

trace size and parameterized by maximal sequence length

Fig. 12. F score of the VDV algorithm relative to the trace

size and parameterized by maximal sequence length

The graph in Fig. 14 shows that the precision of

the VDV algorithm is inversely proportional to its

filtration threshold. This is due to the fact that as the

filtration threshold decreases, only those sequences

with the lowest variance of the variances are retained,

and this is usually a detectable sequence.

The same behaviour with respect to the number of

frames is observed, similar to all other performance

curves of the VDV algorithm, but it can be seen that

the value of the filtration threshold is indeed the

parameter influencing the critical size of the DLL

trace above which performance collapses. It would

probably have been more appropriate to tie this

threshold to the number of frames in the trace.

The identical precision regardless of the filtration

threshold for a trace of less than 10 frames is related

to the fact that the variance is so big that a large

proportion of the tokens are detected, and therefore

there are a lot of false positives.

We can observe on the graph in Fig. 15 the

collapse in performance when the filtration threshold

is too high, characteristic of our implementation of

VDV. However, we can also confirm that a threshold

independent of the trace size is not at all relevant;

indeed, before 7 frames, all curves display the same

rapid growth, but afterwards, we can see that each of

them seems to have approximately the same

behaviour: a phase of decrease, then growth, and

finally decrease, but shifted on the axis of the number

of frames of the trace. We can therefore assume that

for each trace size there exists a corresponding

optimal filtration threshold.

From the graph in Fig. 16, we can conclude that

for a maximal length of the sequences searched of 8

and 10 flows, the filtration threshold maximising the

performance of the VDV algorithm over the

simulated interval is 0.001, which is only just

beginning its growth phase. However, if we were to

consider a larger trace, 0.0001 would probably be a

better alternative, although ideally the filtration

threshold should be indexed to the size of the DLL

trace.

3.4. Study of AC parameters influence

We then run our implementation of the AC

algorithm with a series of parameter sets to study

their influence.

Table 5 summarizes the parameters used for the

simulations of the AC algorithm.

It can be seen from the graph in Fig. 17 that the

precision of the AC algorithm is inversely

proportional to the maximal length of the sequences

Table 5. Summary of the AC algorithm simulation

parameters

Parameters

Sequences

length

influence

Filtration

threshold

influence

Fusion

threshold

influence

Number of

frames

1 to 1000,

logarithmic
increment

1 to 1000,

logarithmic
increment

1 to 1000,

logarithmic
increment

Sequences
length

1 to 8, power
of 2 increment

8 8

Filtration

threshold
1

0.7 to 1.5,

increment of

0.1

1

Fusion

threshold
1 1

0.1 to 1,
increment of

0.1

Fig. 15. Recall of the VDV algorithm relative to the trace

size and parameterized by the filtration threshold value

Fig. 16. F score of the VDV algorithm relative to the trace

size and parameterized by the filtration threshold value

Fig. 14. Precision of the VDV algorithm relative to the

trace size and parameterized by the filtration threshold

value

searched, similar to the VDV algorithm, and for the

same reasons.

The missing points for small trace sizes of the

curve corresponding to a maximal sequence length of

1 bit means that no sequences were detected, which is

not surprising as applying statistics to very short

sequences on a small number of frames does not tend

to lead to any tendencies, so filtration may result in

nothing being selected.

It can also be seen that the precision increases

logarithmically with the size of the DLL trace, but

unlike VDV, the precision does not eventually

collapse when the number of frames increases. This

can be explained by comparing the formulas for

computing the filtration thresholds of the two

algorithms: VDV's filtration threshold does not

depend on the trace size, whereas AC's does. As we

previously assumed, such a threshold is more

relevant.

In the graph Fig. 18, we can see that the recall of

the AC algorithm is proportional to the maximal

length of the sequences searched, similar to the VDV

algorithm, and for the same reasons.

We also observe the same logarithmic growth

similar to the previous curves in Fig. 17, and for the

same reasons.

From the graph in Fig. 19, we can conclude that

for a filtration and fusion threshold of 1, the maximal

length of the sequences searched maximising the

performance of the AC algorithm is 4 bits.

The graph in Fig. 20 shows us that the precision

of the AC algorithm increases with the filtration

threshold at first, then, beyond 1.3, it decreases. The

increase of the filtration threshold means that the

filtering is more restrictive, so that, initially, the

previously retained sequences that are no longer

retained are mainly false positives, hence the

improvement in precision. However, after a certain

stage, the filtering becomes too hard, and removes

more true positives than false positives, which

explains the presence of this extremum.

The same logarithmic growth is also observed,

similar to all AC performance curves, and for the

same reasons.

It can be seen on the graph in Fig. 21 that the

recall of the AC algorithm is inversely proportional

to the value of the filtration threshold, but only from

a value of 0.8, because the recall stops improving

below this value. This simply means that all

detectable sequences with a length less than or equal

to 8 bits have been detected. The missing 15% is

caused by the 3 16-bit sequences present in the DLL

trace.

From the graph in Fig. 22, we can conclude that

Fig. 17. Precision of the AC algorithm relative to the trace

size and parameterized by maximal sequence length

Fig. 18. Recall of the AC algorithm relative to the trace

size and parameterized by maximal sequence length

Fig. 19. F score of the AC algorithm relative to the trace

size and parameterized by maximal sequence length

Fig. 20. Precision of the AC algorithm relative to the trace

size and parameterized by the filtration threshold value

for a maximal length of the sequences searched of 8

and a fusion threshold of 1, the filtration threshold

value maximising the performance of the AC

algorithm is 1.2 or 1.3.

The graph in Fig. 23 shows us that the precision

of the AC algorithm is inversely proportional to the

fusion threshold between 0.2 and 0.9, and does not

vary outside these limits. A low fusion threshold

means that relatively different sequences are merged,

so that the total number of detected sequences

decreases. It appears, according to the graph, that the

number of false positives decreases faster than the

number of true positives, which means that false

positives are assimilated with true positives, causing

an increase in precision. However, when the

threshold reaches 0.2, for each sequence length, all

the sequences are merged into one, making it

impossible to gain anything more by merging. On the

contrary, when the threshold reaches 0.9, it becomes

impossible to merge sequences, hence a non-existent

impact of the merging procedure.

We can see in the graph Fig. 24 that the recall of

the AC algorithm is proportional to the fusion

threshold between 0.2 and 0.9, and does not vary

outside these boundaries. This seems logical, because

a higher fusion threshold implies less sequence

merging, and therefore greater diversity, leading to

better recall. The visible boundaries are due to the

same reasons as for the graph in Fig. 23.

From the graph Fig. 25, we can conclude that for

a maximal length of 8 of the sequences searched and

a filtration threshold of 1, the fusion threshold of the

sequences maximising the performance of the AC

algorithm is 0.2.

3.5. Study of LDA parameters influence

We finally run our implementation of the LDA

algorithm with a series of parameter sets to study

their influence.

We do not present the performance curves

parameterized by Beta because this parameter has

Fig. 24. Recall of the AC algorithm relative to the trace

size and parameterized by the fusion threshold value

Fig. 21. Recall of the AC algorithm relative to the trace

size and parameterized by the filtration threshold value

Fig. 22. Fscore of the AC algorithm relative to the trace

size and parameterized by the filtration threshold value

Fig. 23. Precision of the AC algorithm relative to the trace

size and parameterized by the fusion threshold value

Fig. 25. Precision of the AC algorithm relative to the trace

size and parameterized by the fusion threshold value

virtually no influence given the parameter values we

simulated. Beta influences the a priori on the

concentration of the multinomial distribution of the

words over topics. We simulated it for values inferior

to 1, so it means it just influenced the gap between

high and low probability values.

However, with the maximal probability gradient

value we used, the selected keywords would always

be the ones above the probability gap, whatever the

gap width.

Table 6 summarizes the parameters used for the

simulations of the LDA algorithm.

It can be seen on the graph in Fig. 26 that the

precision of the LDA algorithm is inversely

proportional to the maximal length of the sequences

searched, similar to the VDV and AC algorithms, and

for the same reasons.

There is also an approximately linear growth

proportional to the size of the DLL trace, indicating

that, unlike the AC algorithm, a learning-based

technique keeps increasing its performance as its

learning base becomes larger, making it more

suitable for large volumes of data.

In the graph Fig. 27, we can see that the recall of

the LDA algorithm is proportional to the maximal

length of the sequences searched, similar to the VDV

and AC algorithms, and for the same reasons.

We notice a phase of slight increase, then slight

decrease of the recall, as the size of the DLL trace

grows. This can be explained by the search for too

few keywords, which causes most of the keywords to

converge towards a limited number of sequences as

the number of frames increases, resulting in a

reduction in recall. However, when the maximal

length of the sequences searched becomes long

enough, this phenomenon seems to disappear.

From the graph in Fig. 28, we can conclude that

for 10 keywords, a maximal perplexity gradient of 1,

Table 6. Summary of the LDA algorithm simulation parameters

Parameters

Sequences

length

influence

Keywords

number

influence

Maximal

perplexity

gradient

influence

Maximal

probability

gradient

influence

Alpha

influence

Number of

frames

1 to 1000,
logarithmic

increment

1 to 1000,
logarithmic

increment

1 to 1000,
logarithmic

increment

1 to 1000,
logarithmic

increment

1 to 1000,
logarithmic

increment

Sequences

length

1 to 8, power

of 2 increment
8 8 8 8

Keywords
number

10 3 5 10 20 30 10 10 10

Maximal

perplexity

gradient

1 1

0.1 to 10,

logarithmic

increment

1 1

Maximal
probability

gradient

0.1 0.1 0.1
0.01 to 1,

logarithmic

increment

0.1

Alpha 1 1 1 1

0.01 to 100,

power of 10
increment

Beta 0.0001 0.0001 0.0001 0.0001 0.0001

Fig. 26. Precision of the LDA algorithm relative to the

trace size and parameterized by maximal sequence length

Fig. 27. Recall of the LDA algorithm relative to the trace

size and parameterized by maximal sequence length

a maximal probability gradient of 0.1, an alpha of 1,

and a beta of 0.0001, the maximal length of the

sequences searched maximising the performance of

the LDA algorithm is 4 bits.

We can observe on the graph in Fig. 29 that the

precision of the LDA algorithm is inversely

proportional to the number of keywords assumed to

be present in the DLL trace. Indeed, since only the

most probable sequences are selected for each

keyword, if fewer keywords are assumed, then only

the most probable sequences among those will be

selected. These most probable sequences are

generally remarkable sequences, which means more

true positives, and hence higher precision.

In addition, there are generally two phases: a

linear growth with respect to the size of the DLL

trace, for the same reason as for the previous LDA

curves in Fig. 26-28; and a constant phase

corresponding to the maximal performance

achievable with the value given to the other

parameters.

In the graph Fig. 30, we can see that the recall of

the LDA algorithm is proportional to the number of

keywords assumed in the DLL trace. This seems

logical, because the greater the number of keywords,

the greater the number of sequences selected, and

therefore the greater the recall.

From the graph in Fig. 31, we can conclude that

for a maximal length of 8 of the sequences searched,

a maximal perplexity gradient of 1, a maximal

probability gradient of 0.1, an alpha of 1, and a beta

of 0.0001, the number of keywords maximising the

performance of the LDA algorithm over the

simulated interval is 3 or 5, but we will favour larger

DLL trace sizes, so we will select 5.

We can see on the graph in Fig. 32 that the

precision of the LDA algorithm is proportional to the

value of the maximal perplexity gradient before the

Gibbs sampler stops, between 0.3 and 3, and then

Fig. 28. F score of the LDA algorithm relative to the trace

size and parameterized by maximal sequence length

Fig. 29. Precision of the LDA algorithm relative to the

trace size and parameterized by the number of keywords

Fig. 30. Recall of the LDA algorithm relative to the trace

size and parameterized by the number of keywords

Fig. 31. F score of the LDA algorithm relative to the trace

size and parameterized by the number of keywords

Fig. 32. Precision of the LDA algorithm relative to the

trace size and parameterized by maximal perplexity

gradient

stabilises. This means that iterating the sampler a

large number of times is useless, and even counter-

productive, which is very surprising.

The graph in Fig. 33 shows that the recall of the

LDA algorithm is inversely proportional to the

maximal perplexity gradient. This means that

iterating the Gibbs sampler a greater number of times

favours a greater diversity of keywords, and therefore

of sequences selected for these keywords.

The behaviour of the reacall relative to the size of

the DLL trace is similar to the previous recall curves

of the LDA algorithm in Fig 27 and Fig. 30, and for

the same reason.

From the graph in Fig. 34, we can conclude that

for 10 keywords, a maximal length of 8 of the

sequences searched, a maximal probability gradient

of 0.1, an alpha of 1, and a beta of 0.0001, the values

of the maximal perplexity gradient maximising the

performance of the LDA algorithm are those greater

than or equal to 3.

We can see on the graph in Fig. 35 that the

precision of the LDA algorithm is inversely

proportional to the maximal probability gradient.

This seems logical, as the lower this gradient is, the

more the n-grams with the highest probability within

each keyword will be favored, thus those most likely

to be remarkable sequences of the protocol.

We also notice a behaviour generally resembling

that of the precision parameterized by the number of

keywords, with a growth phase, then a stabilization.

The ceiling is probably due to the too high number of

keywords and the too low perplexity gradient.

The graph in Fig. 36 shows that the recall of the

LDA algorithm is proportional to the maximal

probability gradient. This is due to the fact that as this

gradient increases, the hardness of the n-gram

selection decreases, therefore more n-grams are

detected, resulting in an increase in diversity, and

therefore recall.

The behaviour with respect to the number of

frames is similar to that of all other recall curves of

the LDA algorithm, and for the same reasons.

From the graph in Fig. 37, we can conclude that

for 10 keywords, a maximal length of the sequences

searched of 8, a maximal perplexity gradient of 1, an

alpha of 1, and a beta of 0.0001, the value of the

maximal probability gradient maximising the

performance of the LDA algorithm is 0.03 or less.

On the graph in Fig. 38, we can see that the

precision of the LDA algorithm is proportional to

Alpha. By studying the characteristics of Dirichlet

law, we can say that this means that the algorithm

offers its best precision when we consider that the

frames are composed of a relatively homogeneous

mixture of all the keywords of the protocol, rather

Fig. 33. Recall of the LDA algorithm relative to the trace

size and parameterized by maximal perplexity gradient

Fig. 34. F score of the LDA algorithm relative to the trace

size and parameterized by maximal perplexity gradient

Fig. 35. Precision of the LDA algorithm relative to the

trace size and parameterized by maximal probability

gradient

Fig. 36. Recall of the LDA algorithm relative to the trace

size and parameterized by maximal probability gradient

than just a few. This seems to correspond relatively

well to reality, so these results are not surprising.

The graph in Fig. 39 shows that the recall is

inversely proportional to Alpha. Although we do not

have a precise explanation for this behaviour, it is

consistent with the principle verified in all the

previous curves in Fig. 10-38, namely that precision

and recall always show opposite trends when varying

a parameter. Furthermore, the improvement in

accuracy as Alpha increases is greater than the

deterioration of the recall, resulting in an overall

improvement in performance, which is in line with

our hypothesis when observing the graph in Fig. 38.

From the graph Fig. 40, we can conclude that for

10 keywords, a maximal length of 8 of the sequences

searched, a maximal perplexity gradient of 1, a

maximal probability gradient of 0.1, and a beta of

0.0001, the values of Alpha maximising the

performance of the LDA algorithm are those greater

than or equal to 10.

3.6. Comparison of the best parameter sets

For each graph, we selected the best performing

curve in the previous subsection and retrieved its

corresponding algorithm parameters. Then, out of all

these best performing curves, we select the best one

for each algorithm, and address them in this

subsection. We obtain the following parameter sets :

 For all algorithms, a maximal length of the

sequences searched of 4

 For the VDV algorithm, a number of flows

randomly generated of 10 and a filtration

threshold coefficient of 1.

 For the AC algorithm, a fusion threshold and

a filtration threshold of 1.

 For the LDA algorithm, a number of

keywords of 10, a maximal perplexity

gradient of 1, a maximal probability gradient

of 0.1, an alpha of 1, and a beta of 0.0001.

The graph in Fig. 41 shows that, for small DLL

traces (less than 400 frames), the AC algorithm offers

the best precision, followed by the LDA algorithm,

and finally the VDV algorithm. For traces of more

Fig. 37. F score of the LDA algorithm relative to the trace

size and parameterized by maximal probability gradient

Fig. 38. Precision of the LDA algorithm relative to the

trace size and parameterized by alpha

Fig. 39. Recall of the LDA algorithm relative to the trace

size and parameterized by alpha

Fig. 40. F score of the LDA algorithm relative to the trace

size and parameterized by alpha

Fig. 41. Best precision of the algorithms VDV, AC, and

LDA

than 400 frames, the LDA algorithm becomes more

precise than the AC algorithm, and the improvement

in precision seems to continue beyond 1000 frames.

Maximum performance is around 85% precision

for LDA, and just under 80% for AC, while VDV

peaks at just over 20%.

On the graph in Fig. 42, we can see that the LDA

algorithm has the best recall regardless of the size of

the trace. Between 10 and 100 frames, the VDV

algorithm has the second best recall, and the AC

algorithm has the worst one, but outside these limits,

AC is second, and VDV last.

Maximum performance is about 40% recall for

LDA, 35% for VDV, and 30% for AC.

The graph in Fig. 43 shows that the AC and LDA

algorithms have approximately identical

performance, with the LDA looking slightly better.

The VDV algorithm offers significantly poorer

results, which even determining the filtration

threshold based on the size of the DLL trace could

not fully compensate for; at most, results at 1000

frames would be on the same order as of those

obtained for 100.

Maximum performance is slightly under 50% F

score for LDA, slightly under 45% for AC, and

slightly under 30% for VDV.

Let us now switch from the quality of the

sequence detection to its usefulness for field

detection.

The graph in Fig. 44 shows that the average fields

lengths detection ratio of the LDA algorithm is the

best, followed by that of AC, and finally VDV.

 Maximum performance is slightly less than 60%

for LDA, a bit under 50% for AC, and slightly under

30% for VDV.

The same behaviour can be seen on the graphs in

Fig. 45 and Fig. 46, concerning the average fields

values and fields positions detection ratios. Their

maximum performances are, respectively, 75% for

the LDA algorithm, slightly above 40% for AC,

slightly below 40% for the VDV algorithm, and

slightly below 60% for the LDA algorithm, slightly

Fig. 42. Best recall of the algorithms VDV, AC, and LDA

Fig. 43. Best F score of the algorithms VDV, AC, and

LDA

Fig. 44. Best average fields lengths detection ratio of the

algorithms VDV, AC, and LDA

Fig. 45. Best average fields values detection ratio of the

algorithms VDV, AC, and LDA

Fig. 46. Best average fields positions detection ratio of the

algorithms VDV, AC, and LDA

below 50% for AC, and slightly below 10% for the

VDV algorithm.

We summarize the relative performance of the

three algorithms in Table 7. The number of stars

stands, by decreasing order, for the best, average, and

worst.

 We clearly see that the LDA algorithm offers the

best performance, followed by the AC algorithm, and

lastly the VDV algorithm.

4. Conclusion

We wanted a communicating object to be able to

communicate in an unknown environment, so we

needed it to learn the protocols in that environment.

We chose to study and evaluate the performance of

three possible sequence identification techniques

which could be used in that learning procedure:

VDV, AC, and LDA. To that end, we simulated them

applied to the analysis of Zigbee DLL traces, and

compared them.

For the purpose of comparison, in addition to the

classic metric F score, we defined our own, the fields

detection ratio.

From the simulations results, we can clearly state

that in this context the LDA technique offers the best

results, followed by the AC technique, and eventually

the VDV technique.

A more powerful hardware could have allowed us

to see if we could push further the performance of the

LDA algorithm by analysing larger traces, and a

more formal parameter optimization would have

given us more precise maximal performance of the

algorithms.

Nonetheless, with the results of the comparative

simulation, we can now state that a technique based

on Bayesian networks performs better than ones

simply based on statistics or occurrences counting.

This encourages us to further engage in Bayesian

theory in the future, and design our own Bayesian

network model.

References

[1]. O. Esoul, N. Walkinshaw, Finding clustering

configurations to accurately infer packet structures from

network data, in ArXiv, October 2016.

[2]. A. Trifilò, S. Burschka, E. Biersack, Traffic to protocol

reverse engineering, in 2009 Proceedings of the IEEE

Symposium on Computational Intelligence in Security and

Defense Applications, July 2009, pp. 1-8.

[3]. A. V. Aho and M. J. Corasick, Efficient string

matching: An aid to bibliographic search, Commun. ACM,

vol. 18, no. 6, June 1975, pp. 333-340.

[4]. D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet

allocation, Journal of machine Learning research, vol. 3,

May 2003, pp. 993-1022.

[5]. A. Li, C. Dong, S. Tang, F. wu, C. Tian, B. Tao, H.

Wang, Demodulation-free protocol identification in

heterogeneous wireless networks, Computer

Communications, vol. 55, September 2014, pp. 102-111.

[6]. S. Kleber, L. Maile, F. Kargl, Survey of protocol

reverse engineering algorithms: Decomposition of tools for

static traffic analysis, IEEE Communications Surveys and

Tutorials, vol. 21, August 2018, pp. 526-561.

[7]. B. Sija, Y.-H. Goo, K.-S. Shim, H. Hasanova, M.-S.

Kim, A survey of automatic protocol reverse engineering

approaches, methods, and tools on the inputs and outputs

view, Security and Communication Networks, vol. 2018,

February 2018, pp. 1-17.

[8]. P. -S. Gréau-Hamard, M. Djoko-Kouam, Y. Louet, A

comparative Study of Sequence Identification Algorithms

in IoT Context, in 2020 Proceedings of the 2nd

International Conference on Advances in Signal Processing

and Artificial Intelligence (ASPAI' 2020), November 2020,

pp. 137-143.

[9]. Y.Wang, N. Zhang, Y.-M.Wu, B.-B. Su, Y.-J. Liao,

Protocol formats reverse engineering based on association

rules in wireless environment, in 2013 Proceedings of the

12th IEEE International Conference on Trust, Security and

Privacy in Computing and Communications, July 2013, pp.

134-141.

[10]. Y. Wang, X. Yun, M. Shafiq, L. Wang, A. Liu, Z.

Zhang, D. Yao, Y. Zhang, L. Guo, A semantics aware

approach to automated reverse engineering unknown

protocols, in 2012 Proceedings of the 20th IEEE

International Conference on Network Protocols (ICNP),

October 2012, pp. 1-10.

[11]. E. I. George, G. Casella, Explaining the gibbs

sampler, The American Statistician, vol. 46, No. 3, August

1992, pp. 167-174.

[12]. G. Heinrich, Parameter estimation for text analysis,

University of Leipzig, Germany, Technical Note, 2008.

[13]. C. A. Haydar, Trust-based recommender systems,

Theses, Université de Lorraine, September 2014.

[14]. Zigbee Specification, ZigBee Standards Organization

Std.

[15]. IEEE Std 802.15.-2003, IEEE Std.

Table 7. Relative performance summary of the

algorithms VDV, AC, and LDA

Algorithms VDV AC LDA

Precision * *** ***

Recall * ** ***

F score * *** ***

Average fields

lengths

detection ratio

* ** ***

Average fields
values

detection ratio

* ** ***

Average fields

positions
detection ratio

* ** ***

Total 6 14 18

