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Abstract: In the fast developing world of telecommunications, it may prove useful to be able to analyse any 

protocol one comes across, even if it is unknown. To that end, one needs to get the state machine and the frame 

format of the protocol. These can be extracted from network and/or execution traces via Protocol Reverse 

Engineering (PRE). In this paper, we aim to evaluate and compare the performance of three algorithms used as 

part of three different PRE systems of the literature: Aho-Corasick (AC), Variance of the Distribution of 

Variances (VDV), and Latent Dirichlet Allocation (LDA). In order to do so, we suggest a new meaningful 

metric complementary to precision and recall: the fields detection ratio. We implemented and simulated these 

algorithms in an Internet of Things (IoT) context, and more precisely on Zigbee Data Link Layer frames. The 

results obtained clearly show that the LDA algorithm outperforms AC and VDV. 
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1. Introduction 
 

With the ever growing development of 

telecommunications, and especially Internet of 

Things (IoT), a lot of new protocols are constantly 

appearing. In order to know what they are used for, 

we need to understand how they work. 

In this paper, we place ourselves in the context of 

a communicating object coming into an unknown 

environment and wanting to establish a 

communication with the existing networks. To that 

end, the object needs to have 'generic', or 'multi-

standard' behavior, i. e. to be able to adapt itself to 

whichever standard is used in the target environment. 

It is the same goal as the one pursued by Software 

Defined Radio, except that in our case, we propose to 

learn the unknown protocol of the environment, and 

not just identify it from a database. 

This is the goal of Protocol Reverse Engineering 

(PRE), a family of techniques which aims at 

reconstructing the frame formats and/or the state 

machine of a target unknown protocol through 

analyzing execution traces and/or network traces. 

There is no precisely defined procedure to 

perform PRE, but the most encountered one [1] is a 

five-step process. (i) Firstly, the radio traffic is 

intercepted and the frames issued by the targeted 

protocol are isolated. (ii) Next, the meaningful binary 

sequences (features) of these frames are identified, 

(iii) and then the frames are grouped by format via 

the use of these features. (iv) Within each group, 

sequence alignment is performed, and, finally, (v) the 

frame formats and/or the state machine of the 

targeted protocol are reconstructed. 

In this paper, we focus solely on the second step, 

the identification of remarkable sequences. This step 

aims at reducing the quantity of information needed 

to label a frame. This is achieved by identifying the 

remarkable sections of the frames, i. e. in our case by 

spotting the recurring sequences and their positions. 

Such sequences are most probably keywords. Our 

goal is to evaluate and compare the performance of 

different techniques achieving this, in order to obtain 

useful data for choosing a technique or a family of 

techniques to be used in a real-life system. To this 

end, we selected the Variance of the Distribution of 

Variances (VDV) [2], Aho-Corasick (AC) [3], and 

Latent Dirichlet Allocation (LDA) [4] techniques. 

The simulation context in which we will simulate 

the performance of these techniques lies in the 

analysis of Data Link Layer (DLL) frames of the 

Zigbee protocol. 

Most of the surveys in the PRE domain involve 

comparing a rather narrow range of tools and their 

approaches without delving into the exact mechanics 

or presenting their performance, like in [5]. However, 

some of them are more exhaustive, and present in 

detail the techniques used by the tools [6] and the 

protocols they are able to reverse engineer [7]. 

Nevertheless, these surveys do not refer to the 

performance of the different tools in a quantifiable 

way, and they also do not present the individual 

performance of the techniques used in each tool. 

Such an approach is legitimate, as they browse a 

wide range of PRE tools, but this is where the 

particularity of our paper stands. We select only three 

techniques as opposed to the dozens present in the 

previous surveys, and we evaluate their performance 

through simulations, which has not been done in the 

previous papers. 

This article is an extended version of the paper 

presented at the ASPAI' 2020 conference [8], with 

more detailed explanations of the compared 

techniques, and complementary simulation results. 

The rest of this paper is organized as follows: 

section 2 presents the theory related to the three 

techniques studied; in section 3, we simulate and 

compare them; and finally, we conclude in section 4. 

 

 

2. State of the Art of the Three 

Techniques 
 

In this section, we present the principle and 

mechanisms of each of the sequence identification 

techniques, as well as the practical algorithms 

designed from them to fit our context. 
 

2.1 Variance of the Distribution of Variances  
 

This technique aims at statistically identifying in 

a population the parts which offer the least 

variability. The following presentation is based on 

the approach proposed by A. Trifilò et al [2]. 

The VDV technique considers a population 

formed of groups of individuals. The latter are 

themselves composed of elements which can take 

different numerical values. Fig. 1 illustrates this 

assumed data structuring. 

The technique unfolds in five steps: 

 For each group, calculating the average, then 

the variance of the value of each element 

across all the individuals in a given group. 

 

Fig. 1. Structuring of the data (=population) considered by 

the VDV technique 



 Across groups, calculating the average, then 

the variance of these variances. 

 Retaining the elements whose variance of 

the variances is less than a given filtration 

threshold. 

Algorithm 1 in Fig. 2 presents this process under 

the form of a pseudo-code algorithm. 

The actual algorithm used in our context derives 

from the technique above, with some modifications. 

The groups of individuals previously considered 

are now replaced by flows composed of DLL frames 

to be analysed, and the base unit is switched from 

element to 'token', a n-bit long position slot on the 

frames which can assume different sequences of n 

consecutive bits. These equivalences are summarized 

in Table 1. 

To be able to detect fields regardless of their 

position, all the possible tokens obtainable from a 

frame are created. 

The filtration threshold actually used for filtering 

(     ) is not a fixed value, but a value proportional 

to the average variance of the variances. The 

proportionality coefficient is called filtration 

threshold coefficient (     
 ), and the formula 

linking       and      
  is: 

 

                   
 , (1) 

 

with       the variance of the variances of token i. 

The frames being collected on a radio link, it is 

not possible to clearly identify flows, so we create 

them by randomly attributing frames to flows 

following a discrete uniform law. 

To enable the detection of fields of different 

lengths, the algorithm is executed many times, for 

different values of n, i.e. token lengths, and all the 

single sequences extracted from these runs are kept 

for metrics computation. 

The successive steps of the process are illustrated 

in Fig. 3. 

The parameters of the algorithm are as follows: 

 Maximal length of the sequences searched 

(token length) 

 Filtration threshold value 

 Number of generated flows 

 

2.2 Aho-Corasick 
 

This technique was designed by A. Aho and M. 

Corasick in order to identify a string of characters in 

a text [3]. However, its use can be extended to 

identify any pattern composed of a sequence of 

elements taking values from a discrete finite space. 

The search is then run on a sequence of these 

elements whose length is superior or equal to the 

targeted pattern. The following presentation is based 

on the approach proposed by Y. Wang et al. [9]. 

The particularity of AC is that it is based on a 

state machine to optimize the processing speed. 

This machine is represented as a tree, with each of 

its states described by the character to be read to 

access this particular state. This automaton is ruled 

by three functions : 

 A transition function g, defining the next 

state of the machine, depending on the 

current state and the character read, when 

the latter is relevant in regards to the strings 

searched 

 A failure function f, defining the next state 

of the machine, depending on the current 

state, when the character read is not relevant 

in regards to the strings searched 

 An activity function o, defining the word(s) 

finishing on a state of the machine, 

depending on the current state 

The technique operates in two major steps: 

 Constructing the state machine based on the 

strings to search in the text. 

 Scanning the whole text character by 

character, and notifying, for each character, 

Table 1. Summary of equivalent terms for the VDV 

algorithm 

General term used in the 

technique explanation 

Equivalent term used in our 

study case 

Population Data Link layer trace 

Group Flow 

Individual Frame 

Element Token 

 

Fig. 2. VDV pseudo-code algorithm 



the strings ending on that character. 

Algorithm 2 in Fig. 4 presents this process under 

the form of a pseudo-code algorithm. 

Fig. 5 illustrates a sample state machine, built for 

searching the following strings: pit, it, pity, and paw. 

Each circle represents a state. The letter written 

on each state corresponds to the one to be read to 

access this state. The empty state is the root of the 

tree. The thick straight lines materialize the 

transitions ruled by function g. They are traveled 

through only in the root to leaves direction. The thin 

curved lines materialize the transitions ruled by 

function f. They are traveled through only in the 

leaves to root direction. The thicker circles on some 

 

Fig. 3. Illustration of the VDV algorithm applied to our study case 



states mean that one or multiple strings, specified 

next to the states, end on these states. 

The actual algorithm used in our context derives 

from the one above, with some modifications. 

The text considered in the AC technique is now 

replaced by the DLL trace to be analysed, and the 

base unit is switched from character to bit. Moreover, 

the strings to be identified are now all the possible n-

bit sequences. These equivalences are summarized in 

Table 2. 

An occurrence counter of the sequences was 

added, in order to perform filtering. The sequences 

under a threshold      proportional to the average 

number of appearances of any sequence considering a 

uniform distribution are filtered out.      is given 

by: 

 

       
     

         
 , (2) 

 

with n the number of bits of the trace, L the length of 

the sequences searched, and     
  the proportionality 

coefficient called filtration threshold coefficient. This 

filtering is done to keep only the frequent enough 

sequences. 

The sequences with a similarity level superior to a 

given threshold are fused. By fusion, we mean that in 

a group of similar enough sequences, we retain the 

one best representing all the other ones. We achieve 

that through unsupervised ascendant hierarchical 

clustering of the sequences, using the similarity as the 

distance metric, defined by:  

 

           
              

      
, (3) 

 

with X and Y representing any two sequences, l(X,Y) 

the average length of X and Y, and ed(X,Y) the 

minimal edition distance between X and Y, i. e. the 

minimal number of operations to apply on one of the 

sequences to obtain the other one. All the sequences 

being the same length, the average length of X and Y, 

l(X,Y), equals those of X and Y. 

To enable the detection of fields of different 

lengths, the algorithm is executed many times, for 

different values of n, i.e. lengths of sequences, and all 

the single sequences extracted from these runs are 

kept for metrics computation. 

The parameters of the algorithm are as follows: 

 Maximal length of the sequences searched 

Table 2. Summary of equivalent terms for the AC 

algorithm 

General term used in the 

technique explanation 

Equivalent term used in our 

study case 

Text Data Link layer trace 

String Flow 

Character Frame 

 

Fig. 5. Illustration of an AC technique example state 

machine 

 

Fig. 4. AC pseudo-code algorithm 



 Filtration threshold value 

 Fusion threshold value 

 

2.3 Latent Dirichlet Allocation  
 

This technique comes from the machine learning 

domain of Information Retrieval (IR), which aims at 

modeling a text mathematically, in order to extract its 

meaning. It was designed with the objective to 

identify latent topics from a document corpus, and to 

associate terms coming from a dictionary to them. 

However, its use can be extended to regrouping 

sequences of single elements taking values in a finite 

discrete space, from a collection of data. The 

following presentation is based on the approach 

proposed by Y. Wang et al [10]. 

The name Latent Dirichlet Allocation stems from 

the fact that the model uses Dirichlet as the a priori 

law of the latent variables (topics) allocated to the 

observed variables (words). Practically, the Dirichlet 

law is used to generate a probability vector 

characteristic of a multinomial law, from a vector of 

concentration parameters. These parameters have 

values varying from 0 to +∞, 0 meaning that 

probabilities of the generated probability vector will 

be 0 or 1 (before normalization) and +∞ meaning 

probabilities will be equal to 0.5 (before 

normalization). 1 means that the a priori is in fact that 

there is no a priori, i. e. probabilities can take any 

value between 0 and 1 with equal probability. The 

Dirichlet law was chosen for its conjugacy property 

with the multinomial law which is used for 

classification (like LDA). Conjugacy of Dirichlet law 

and multinomial law means that if the latent variables 

follow a Dirichlet a priori law, their a posteriori law 

will be multinomial.  

The LDA technique is first and foremost a 

generative model for a corpus based on a Bayesian 

network; the actual implemented algorithm is 

deduced from it upon inference. 

Let us introduce the necessary notions and 

parameters needed to understand the generative 

model and the inference based on it: 

 a word w is an element taking value from a 

dictionary v gathering all the known 

vocabulary. 

 a document m is a set of words w, modeled 

by a vector. 

 a corpus W is a set of documents m, 

modeled by a vector. 

 a term t is the base element of the 

vocabulary. 

 V is the set of terms of the dictionary or its 

cardinal. 

 K is the set of topics desired or its cardinal. 

 M is the set of documents in the corpus or its 

cardinal. 

 α and β are the Dirichlet prior parameters of 

the topics over documents and the words 

over topics distributions, respectively. 

 ξ is the parameter of the Poisson law 

determining the number of words in each 

document. 

   
⃗⃗⃗⃗  ⃗ is the vector characterizing the topics 

distribution for the document m.   

 {  
⃗⃗⃗⃗  ⃗}

   

 
 is the matrix     characterizing 

the topics distribution over the documents. 

   ⃗⃗⃗⃗  ⃗ is the vector characterizing the terms of v 

distribution for the topic k.    {  ⃗⃗⃗⃗  ⃗}   
  is 

the matrix     characterizing the terms 

distribution over the topics. 

    represents the number of words in 

document m. 

      represents the     word of document 

m. The vector   ⃗⃗⃗⃗ ⃗⃗  represents the words of 

document m. The vector of vectors   
     ⃗⃗⃗⃗ , represents the words of the corpus. 

      represents the topic associated to the 

    word of document m. The vector   ⃗⃗⃗⃗  ⃗ 
represents the topics respectively attibuted 

to each word of document m. The vector of 

vectors        ⃗⃗ , represents the topics 

respectively attributed to each word of the 

corpus. 

Let us illustrate the structures of the vectors of 

vectors   ⃗⃗⃗⃗  and   ⃗⃗  with a random example corpus and 

three latent subjects considered. We precise that   ⃗⃗  is 

filled-in with random topics ids which do not reflect 

what LDA would really do (outside random 

initialization). We consider the three following 

documents in the example corpus: 

 Document 1 : This is an example 

 Document 2 : The documents do not have 

all the same number of words 

 Document 3 : The matrices are vectors of 

vectors 

 

  ⃗⃗⃗⃗  

[
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  ⃗⃗   
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In LDA, we consider that a corpus is a set of 



documents, each of those being composed of a 

random number of words, where the number is drawn 

following a Poisson law of parameter ξ. Each of the 

words takes a value within the dictionary. 

In the generative model, to begin, Θ and Φ are 

randomly generated following a Dirichlet law of 

parameters α and β, respectively. 

Firstly, for each word to be generated of each 

document to be generated, the topic associated to it is 

randomly drawn following a multinomial law 

parameterized by Θ, knowing the document the word 

is in. Next, the value of the word is drawn from the 

dictionary, following a multinomial law 

parameterized by Φ, knowing the previously drawn 

topic associated with the word. 

The generative process of the documents 

according to LDA is described in Algorithm 3 in Fig. 

6, and summarized on the plate diagram in Fig. 7.  

The arrows represent the causality links 

(probability laws) linking the random variables, 

represented as circles. The zones delimited by dashed 

rectangles materialize the different sets of elements 

composing the corpus: 

 The topics k 

 The documents m 

 The words n 

The dashed circles correspond to the latent 

variables, or hidden variables, in opposition to the 

observed and known variables. The hatched circle is 

the final, observed variables generated by the model: 

the words present in the corpus. 

It is to be noted that α and β are matrices, and ξ is 

a vector, but in the LDA generative algorithm, they 

are expressed as scalars, as we consider all the 

elements within each of them to be equal. When the 

actual α, β, and ξ are used, they are generated by 

replicating the scalar values as many times as needed. 

Moreover, ξ does not have any use outside the 

generative algorithm, so it will not be mentionned 

anymore. 

The goal of the LDA technique is to infer the 

terms over topics and topics over documents 

distributions, i. e. the matrices Φ and Θ, from the 

corpus of documents. 

Given the parameters α and β, and a document m, 

the joint probability of all the observed variables 

(  ⃗⃗ ⃗⃗ ⃗⃗  ) and hidden variables (  ⃗⃗ ⃗⃗     
⃗⃗ ⃗⃗  ⃗  ) concerned by 

m is given by: 

 

  (   ⃗⃗⃗⃗ ⃗⃗  ⃗   ⃗⃗⃗⃗  ⃗   
⃗⃗⃗⃗  ⃗  |   )   ∏        

  
        

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  (    |  
⃗⃗⃗⃗  ⃗) (  

⃗⃗⃗⃗  ⃗| )      , (4) 

 

where      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ represents the probability vector of the 

matrix Φ associated to     , the topic associated to 

the nth word of document m. 

The joint probability of   ⃗⃗ ⃗⃗ ⃗⃗   and   ⃗⃗ ⃗⃗   is obtained by 

integrating over   
⃗⃗ ⃗⃗  ⃗ and Φ: 

      ⃗⃗⃗⃗ ⃗⃗  ⃗   ⃗⃗⃗⃗  ⃗       ∬ (  
⃗⃗⃗⃗  ⃗| )      ∏        

  
        

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    (    |  
⃗⃗⃗⃗  ⃗)      

⃗⃗⃗⃗  ⃗. (5) 

 

The marginal distribution of   ⃗⃗⃗⃗ ⃗⃗  is obtained by 

summing      ⃗⃗⃗⃗ ⃗⃗  ⃗   ⃗⃗⃗⃗  ⃗      over all the possible values 

of     , i. e. all the topics K: 

 

 

Fig. 7. Plate diagram of the LDA generative model 

 

Fig. 6. LDA pseudo-code generative algorithm 



 

    ⃗⃗⃗⃗ ⃗⃗       ∬ (  
⃗⃗⃗⃗  ⃗| )      ∏ ∑  (    |     

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) (    |  
⃗⃗⃗⃗  ⃗)      

⃗⃗⃗⃗  ⃗

    

  

   

 ∬ (  
⃗⃗⃗⃗  ⃗| )      ∏ ∑  (    |  

⃗⃗⃗⃗  ⃗  )      
⃗⃗⃗⃗  ⃗

    

  

   

 (6) 

 

The joint probability of all words in the corpus 

and their associated topics is given by: 

 

    ⃗⃗    ⃗⃗        ∏     ⃗⃗⃗⃗ ⃗⃗    ⃗⃗⃗⃗  ⃗      
   . (7) 

 

The marginal probability of all the words in the 

corpus is given by: 

 

    ⃗⃗        ∏     ⃗⃗⃗⃗ ⃗⃗       
   . (8) 

 

We aim at computing the a posteriori distributions 

of   ⃗⃗ , Φ, and Θ, given the words  ⃗⃗  observed. 

However, Φ and Θ can be computed directly from the 

distribution of   ⃗⃗ , so we consider only the latter. The 

target distribution is consequently as follows: 

 

    ⃗⃗   ⃗⃗       
   ⃗⃗    ⃗⃗      

   ⃗⃗      

 
∏      ⃗⃗⃗⃗ ⃗⃗  ⃗   ⃗⃗⃗⃗  ⃗      

   

∏ ∑      ⃗⃗⃗⃗ ⃗⃗  ⃗   ⃗⃗⃗⃗  ⃗         
 
   

 (9) 

 

This distribution is intractable because of its 

denominator being a sum over K
M

 terms. It will 

therefore be estimated through Gibbs sampling [11]. 

The Gibbs sampling technique comes from 

observing that it is impossible to simultaneously infer 

all the latent variables of the model (i. e. the topics). 

Random initialization. So, instead, one at a time, their 

distributions are inferred conditionally to all the other 

ones, then a new realization of the inferred 

distribution is drawn. When repeating this operation 

over all the variables a large number of times, theory 

shows that the realizations drawn (i. e. the sample) 

eventually converge towards what would be sampled 

from the target distribution. Then, the properties of 

the distribution can be statistically computed from 

the sample. 

Applied to the LDA, Gibbs sampling unfolds in 

the following two steps:  

 The initialization, where the words are 

randomly given associated topics 

 An iterative process during which, for each 

word wm,n, the probability to get each of the 

topics for this word given the topics 

attributions to all the other words of the 

corpus is computed. The obtained 

probability vector parameterizes a 

multinomial law, which is used to draw a 

new topic for the word wm,n. This step is 

repeated until a stopping criterion is 

reached. 

We can then compute the terms over topics and 

topics over documents distributions, i. e. the matrices 

Φ and Θ, from the vectors of vectors  ⃗⃗⃗  and   ⃗⃗ . We 

can finally make a decision on which words to 

associate to which topics and which topics to 

associate to which documents based on Φ and Θ. 

Fig. 8 illustrates the principle of Gibbs sampling 

applied to LDA. To that end, we define the following 

terms: 

 The vector of vectors of the topics 

associated to the words, 

  ⃗⃗   {    }              
, with M the number 

of documents and n(i) the number of words 

of document i 

 The vector of vectors of the topics 

associated to the words to which the word 

wi,j is excluded, 

     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    {    }                       
 

 The vector of vectors representing the 

corpus,   ⃗⃗⃗⃗   {    }              
 

 

Fig. 8. Algorigram of the Gibbs sampler procedure 



 The vector parameterizing the multinomial 

distribution of the topic     , associated to 

the word wi,j,       
⃗⃗ ⃗⃗ ⃗⃗  ⃗   {     

 }
     

  

 N, the number of iterations of the algorithm 

(a possible stopping criterion) 

The perplexity [12] expresses the ability of a 

model to generalize to unknown data. It is defined as 

the reciprocal of the geometric mean by element of a 

test corpus likelihood, given the model with its 

current parameters (which change at each learning 

iteration). 

More practically, in the case of the LDA, it is the 

inverse of the average likelihood by word of the test 

corpus given the current state of the matrices Φ and 

Θ. The perplexity is expressed as follows : 

 

                    ∏     ⃗⃗⃗⃗ ⃗⃗   
 

    . (10) 

 

The information conveyed by the perplexity on 

the quality of the learned model can be interpreted as 

follows: for a given word slot, the probability to 

obtain with this model the word actually present in 

the test corpus will be the inverse of the perplexity. 

This probability is to be compared to that of a draw 

from a uniform law over all the words of the 

dictionary. 

We will now present in Algorithm 4 in Fig. 9 the 

learning procedure of the LDA model via Gibbs 

sampling, leading to the obtention of   ⃗⃗ , Θ, and Φ, 

given the observed corpus W, the number of 

keywords assumed K, the dictionary v, and the 

Dirichlet a priori parameters α and β. 

The notation –i means all elements of the 

considered ensemble, except the one in position i.  

The actual algorithm used in our context derives 

from the above, with some modifications. 

The documents considered in the LDA technique 

are replaced by the DLL frames to be analysed, so the 

corpus consequently becomes the DLL trace. The 

topics are replaced by keywords of the protocol, and 

the words by n-grams, groups of n consecutive bits. 

The n-grams having no natural delimiters, like spaces 

for words, all the possible n-grams obtainable from a 

frame are created. The terms become the different 

possible sequences of n bits. These equivalences are 

summarized in Table 3. 

The dictionary is composed of all the possible n-

grams with n bits. 

The gradient of perplexity between two iterations 

is used as the stopping criterion of the Gibbs sampler. 

The perplexity P of a learning corpus W is practically 

calculated as follows:  

 

 
       

 
∑       ⃗⃗⃗⃗ ⃗⃗ ⃗⃗      

∑      , (11) 

 

with M the set of frames from the learning DLL trace, 

   the number of n-grams in the DLL frame m, and  

 

     ⃗⃗⃗⃗ ⃗⃗    ∏  ∑                
  

 

, (12) 

 

with V the set of the single n-grams, K the set of the 

keywords, and   
  the number of occurrences in 

document m of the single n-gram t. 

We calculate the perplexity gradient    between 

two consecutive time indexes n-1 and n as follows:  

Table 3. Summary of equivalent terms for the LDA 

algorithm 

General term used in the 

technique explanation 

Equivalent term used in our 

study case 

Corpus Data Link layer trace 

Document Frame 

Topic Keyword 

Word N-gram 

Term N-bits sequence 

 

Fig. 9. LDA pseudo-code learning algorithm via Gibbs 

sampling 



 

            
             

    
. (13) 

 

The sampling continues as long as the perplexity 

gradient is above a threshold defined as the maximal 

perplexity gradient divided by the number of frames 

in the DLL trace. 

Once the matrices Θ and Φ are calculated, for 

each keyword, the n-grams with the highest 

appearance probabilities are selected. For that 

purpose, the n-grams are ordered by descending 

probabilities, then iterated through, calculating the 

gradient within each pair of consecutive n-gram 

probabilities. Mathematically, if we consider a 

keyword k, and its associated n-gram distribution 

vector,   ⃗⃗⃗⃗  ⃗, in descending order, the probability 

gradient     of a n-gram in position   [   ] is:  

 

         
               

     
. (14) 

 

The first n-gram is always selected, and the others 

are selected if their probability gradient is under the 

threshold defined as the maximal probability 

gradient. 

 To enable the detection of fields of different 

lengths, the algorithm is executed many times, for 

different values of n, i.e. n-gram lengths, and all the 

single sequences extracted from these runs are kept 

for metrics computation. 

The parameters of the algorithm are as follows: 

 Maximal length of the sequences searched 

(n-grams length) 

 Number of latent keywords assumed 

 Maximal perplexity gradient value 

 Maximal probability gradient value 

 α a priori Dirichlet parameter 

 β a priori Dirichlet parameter 

 

 

3. Comparative Simulations 
 

In this section, we present the metrics (including 

new ones proposed in this paper) used to quantify the 

performance of the algorithms, as well as the 

parameterization for the simulations. We then discuss 

the results produced. 

 

3.1. Performance Metrics 
 

In order to define the metrics quantifying the 

performance of the algorithms, we introduce the 

notions of sequence, field, and matching condition as 

follows: 

 Sequence: a sequence s is characterized by 

its length l, value v, and the set of its 

positions    {  }   . A sequence is then 

represented by         . The list of the 

detected sequences    { } is given by the 

identification algorithms. 

 Field: a field c is characterized by its 

possible lengths L, characteristic values V 

(null if absent), and possible positions 

   {  }   . A field is then represented by 

        . The list of the fields    { } is 

obtained from the Zigbee specification. A 

field can be either detectable (     ) or 

not detectable (     ). 

 Matching condition: the sequence          

and the field          match if the 

following property is verified: 

 

 
{
                    

                
 (15) 

 

As metrics, we first use a tradeoff between 

precision and recall, the F score [13] which is the 

harmonic mean of the two. This metric quantifies the 

quality of the sequence detection, i. e. the 

performance of the algorithm. It is given by:  

 

    
     

   
, (16) 

 

with P the precision, quantifying the part of what was 

correctly detected from the totality of what was 

detected, given by:  

 

    
  

     
, (17) 

 

with    the true positives, which are the sequences 

correctly detected, and    the false positives, which 

are the sequences incorrectly detected. 

R is the recall, quantifying the part of what was 

correctly detected from what was supposed to be 

detected, given by:  

 

    
  

     
, (18) 

 

with    the false negatives, which are the sequences 

incorrectly not detected. 

Each sequence counts as one true positive if its 

properties match at least one detectable field, it 

counts as one false positive in all other cases. 

The number of false negatives is equal to the 

difference between the number of remarkable 

sequences across all fields and the number of true 

positives. 

In addition to the quality of the sequence 

detection, we want to quantify the quality of the field 

detection, as it is more reprensentative of the 

usefulness of the algorithm. 

To the best of our knowledge, a metric serving 

that purpose does not exist, so we introduce our own, 

the fields detection ratio. It quantifies the detected 

information of a field, and comes in three different 

forms:    for lengths,    for values, and    for 

positions. 

Let us consider     {           } the set of 

sequences matching at least one field, and 



               , a generic field, with     {   }   , 

    {   }   ,     {   }   , and I the set of all 

existing fields, and              a generic sequence. 
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   (19) 

 

are, respectively, the ratios between the number of 

possible lengths, values, and positions of    detected 

and the total number of possible lengths, values, and 

positions of   , with   
   {                 }, 

  
   {                 },   

   {        

                }. 

For each of the previous ratios, the average over 

all fields is calculated as follows:  

 

     ∑
  

          , (20) 

 

with    representing the different ratios presented in 

(19). 

These averages are the metrics we use for our 

simulations. 

 

3.2. Simulation Context 
 

In order to evaluate the performance of the 

algorithms VDV, AC, and LDA, we simulate them 

with a DLL trace of a protocol widespread in the IoT: 

Zigbee [14]. This protocol is based on the standard 

IEEE 802.15.4 [15], widely used in the IoT for 

physical and data link layers. 

The DLL traces to be analysed are generated by 

randomly creating frames from a data frame formats 

base we created according to Zigbee specification. 

The trace generation process is run at each single 

simulation, so the traces analysed are never the same 

(although they respect the same statistical properties). 

The traces are then processed by the algorithms in an 

offline procedure. 

The comparative simulation was done in two 

steps. (i) Observing the influence of each of the 

algorithms parameters by simulating them over an 

arbitrary but wisely chosen parameters set domain. 

(ii) Choosing the best performing parameter set 

among all the ones simulated, and comparing the 

performance achieved. 

This method allowed us to get parameter sets 

yielding good performance, but not the best that 

could be achieved by the algorithms. This is due to 

the fact that we used a simple optimization approach, 

considering that all the parameters influence the 

algorithms in an independent manner. 

We chose to simulate all the algorithms with a 

number of frames varying from 1 to 1000 to see the 

impact of the trace size on the performances, with a 

logarithmic increment to cover the domain with 

fewer points. We limited ourselves to 1000 frame 

traces for processing power and memory usage 

limitations of our simulating hardware.  

We know that most of the sequences to be found 

in the test datasets have a length inferior or equal to 8 

bits. We also observed a steep increase in the 

processing time when looking for up to 16-bit 

sequences, the longest actually present in the 

datasets. Therefore, the maximal length of the 

sequences searched will vary from 1 to 8 bits by 

power of two increments. 

Note that each curve point is calculated by 

averaging over 100 runs of the simulation 

corresponding to this point parameter set. 

The metrics presented in the results graphs will be 

the following ones: 

 The precision of the detected sequences 

 The recall of the detected sequences 

 The F score of the detected sequences 

 The average fields lengths detection ratio 

(only for the comparison of the best 

performances) 

 The average fields values detection ratio 

(only for the comparison of the best 

performances) 

 The average fields positions detection ratio 

(only for the comparison of the best 

performances) 

 

3.3. Study of VDV parameters influence 
 

We first run our implementation of the VDV 

algorithm with a series of parameter sets to study 

their influence. 

Table 4 summarizes the parameters used for the 

simulations of the VDV algorithm. 

In the graph Fig. 10, we can see first of all that 

the precision of the VDV algorithm is inversely 

proportional to the maximal length of the sequences 

searched. This can be explained by the fact that the 

longer the sequences searched are, the more different 

sequences can be detected, and therefore the lower 

their respective numbers of appearances are, so the 

statistical thresholding is less efficient, hence the 

increase in false positives. 

Table 4. Summary of the VDV algorithm simulation 

parameters 

Parameters 

Sequences 

length 

influence 

Flows 

number 

influence 

Filtration 

threshold 

influence 

Number of 

frames 

1 to 1000, 
logarithmic 

increment 

1 to 1000, 
logarithmic 

increment 

1 to 1000, 
logarithmic 

increment 

Sequences 

length 

1 to 8, power 

of 2 increment 
8 8 

Number of 

flows 
10 

5 to 30, 

increment of 5 
10 

Filtration 
threshold 

1 1 

0.0001 to 1, 

power of 10 

increment 



We can also a notice a rapid increase in precision 

with the number of frames in the DLL trace, when 

the latter is low (below 10 frames). This behaviour is 

to be expected, as the algorithm uses statistical 

filtering, which only makes sense on large samples. 

However, there is also a collapse in precision when 

the trace becomes large (above 100 frames). This is 

due to the fact that as the size of the trace increases, 

the variance decreases, so it becomes more difficult 

to discriminate the sequences to be detected with the 

filtration threshold, resulting in an increase in false 

positives and a decrease in true positives. 

It can be seen from the graph in Fig. 11 that the 

recall of the VDV algorithm is proportional to the 

maximal length of the the sequences searched. This 

seems logical, since as the length increases, it 

becomes possible to detect more remarkable 

sequences present in the DLL trace. 

There is also a similar behaviour to that of the 

precision in relation to the number of frames in the 

trace, which can be explained by the same reasons. 

From the graph in Fig. 12, we can conclude that 

for 10 flows and a filtation threshold of 1, the 

maximal length of the the sequences searched 

maximising the performance of the VDV algorithm is 

4 bits, as we favor the large DLL traces. 

The precision curves of the VDV algorithm 

parameterised by the number of flows generated 

within it will not be presented as this parameter 

seems to have no influence on this metric. 

The graph in Fig. 13 can be split into three parts 

along the axis of the number of frames of the DLL 

trace. Below 20 frames, the recall of the VDV 

algorithm is inversely proportional to the number of 

frames. This is due to the fact that the variance 

calculations performed within each flow lose their 

meaning if the flows contain too few frames, 

resulting in better coverage for a lower number of 

flows. 

From 20 to 100 frames, the performances are 

approximately equivalent, as this is an intermediate 

area between small and large traces. 

From 100 to 1000 frames, the recall is 

proportional to the number of flows, because by 

increasing the diversity of the flows, full advantage is 

taken of the two-level variance calculation 

performed. 

We also notice a behaviour relative to the trace 

size identical to that of the previous curves in Fig. 10 

and Fig. 11, which can be explained by the same 

reasons. 

The F score curves being no more interesting than 

the precision curves, we can say that for a maximal 

length of the sequences searched of 8 and a filtation 

threshold of 1, the best number of flows is 30 or 

more, as we favor the large DLL traces. 

 

Fig. 11. Recall of the VDV algorithm relative to the trace 

size and parameterized by maximal sequence length 

 

Fig. 13. Recall of the VDV algorithm relative to the trace 

size and parameterized by the number of flows 

 

Fig. 10. Precision of the VDV algorithm relative to the 

trace size and parameterized by maximal sequence length 

 

Fig. 12. F score of the VDV algorithm relative to the trace 

size and parameterized by maximal sequence length 



The graph in Fig. 14 shows that the precision of 

the VDV algorithm is inversely proportional to its 

filtration threshold. This is due to the fact that as the 

filtration threshold decreases, only those sequences 

with the lowest variance of the variances are retained, 

and this is usually a detectable sequence. 

The same behaviour with respect to the number of 

frames is observed, similar to all other performance 

curves of the VDV algorithm, but it can be seen that 

the value of the filtration threshold is indeed the 

parameter influencing the critical size of the DLL 

trace above which performance collapses. It would 

probably have been more appropriate to tie this 

threshold to the number of frames in the trace.  

The identical precision regardless of the filtration 

threshold for a trace of less than 10 frames is related 

to the fact that the variance is so big that a large 

proportion of the tokens are detected, and therefore 

there are a lot of false positives. 

We can observe on the graph in Fig. 15 the 

collapse in performance when the filtration threshold 

is too high, characteristic of our implementation of 

VDV. However, we can also confirm that a threshold 

independent of the trace size is not at all relevant; 

indeed, before 7 frames, all curves display the same 

rapid growth, but afterwards, we can see that each of 

them seems to have approximately the same 

behaviour: a phase of decrease, then growth, and 

finally decrease, but shifted on the axis of the number 

of frames of the trace. We can therefore assume that 

for each trace size there exists a corresponding 

optimal filtration threshold. 

From the graph in Fig. 16, we can conclude that 

for a maximal length of the sequences searched of 8 

and 10 flows, the filtration threshold maximising the 

performance of the VDV algorithm over the 

simulated interval is 0.001, which is only just 

beginning its growth phase. However, if we were to 

consider a larger trace, 0.0001 would probably be a 

better alternative, although ideally the filtration 

threshold should be indexed to the size of the DLL 

trace. 

3.4. Study of AC parameters influence 
 

We then run our implementation of the AC 

algorithm with a series of parameter sets to study 

their influence. 

Table 5 summarizes the parameters used for the 

simulations of the AC algorithm. 

It can be seen from the graph in Fig. 17 that the 

precision of the AC algorithm is inversely 

proportional to the maximal length of the sequences 

Table 5. Summary of the AC algorithm simulation 

parameters 

Parameters 

Sequences 

length 

influence 

Filtration 

threshold 

influence 

Fusion 

threshold 

influence 

Number of 

frames 

1 to 1000, 

logarithmic 
increment 

1 to 1000, 

logarithmic 
increment 

1 to 1000, 

logarithmic 
increment 

Sequences 
length 

1 to 8, power 
of 2 increment 

8 8 

Filtration 

threshold 
1 

0.7 to 1.5, 

increment of 

0.1 

1 

Fusion 

threshold 
1 1 

0.1 to 1, 
increment of 

0.1 

 

Fig. 15. Recall of the VDV algorithm relative to the trace 

size and parameterized by the filtration threshold value 

 

Fig. 16. F score of the VDV algorithm relative to the trace 

size and parameterized by the filtration threshold value 

 

Fig. 14. Precision of the VDV algorithm relative to the 

trace size and parameterized by the filtration threshold 

value 



searched, similar to the VDV algorithm, and for the 

same reasons. 

The missing points for small trace sizes of the 

curve corresponding to a maximal sequence length of 

1 bit means that no sequences were detected, which is 

not surprising as applying statistics to very short 

sequences on a small number of frames does not tend 

to lead to any tendencies, so filtration may result in 

nothing being selected. 

It can also be seen that the precision increases 

logarithmically with the size of the DLL trace, but 

unlike VDV, the precision does not eventually 

collapse when the number of frames increases. This 

can be explained by comparing the formulas for 

computing the filtration thresholds of the two 

algorithms: VDV's filtration threshold does not 

depend on the trace size, whereas AC's does. As we 

previously assumed, such a threshold is more 

relevant.  

In the graph Fig. 18, we can see that the recall of 

the AC algorithm is proportional to the maximal 

length of the sequences searched, similar to the VDV 

algorithm, and for the same reasons. 

We also observe the same logarithmic growth 

similar to the previous curves in Fig. 17, and for the 

same reasons. 

From the graph in Fig. 19, we can conclude that 

for a filtration and fusion threshold of 1, the maximal 

length of the sequences searched maximising the 

performance of the AC algorithm is 4 bits. 

The graph in Fig. 20 shows us that the precision 

of the AC algorithm increases with the filtration 

threshold at first, then, beyond 1.3, it decreases. The 

increase of the filtration threshold means that the 

filtering is more restrictive, so that, initially, the 

previously retained sequences that are no longer 

retained are mainly false positives, hence the 

improvement in precision. However, after a certain 

stage, the filtering becomes too hard, and removes 

more true positives than false positives, which 

explains the presence of this extremum.  

The same logarithmic growth is also observed, 

similar to all AC performance curves, and for the 

same reasons. 

It can be seen on the graph in Fig. 21 that the 

recall of the AC algorithm is inversely proportional 

to the value of the filtration threshold, but only from 

a value of 0.8, because the recall stops improving 

below this value. This simply means that all 

detectable sequences with a length less than or equal 

to 8 bits have been detected. The missing 15% is 

caused by the 3 16-bit sequences present in the DLL 

trace. 

From the graph in Fig. 22, we can conclude that 

 

Fig. 17. Precision of the AC algorithm relative to the trace 

size and parameterized by maximal sequence length 

 

Fig. 18. Recall of the AC algorithm relative to the trace 

size and parameterized by maximal sequence length 

 

Fig. 19. F score of the AC algorithm relative to the trace 

size and parameterized by maximal sequence length 

 

Fig. 20. Precision of the AC algorithm relative to the trace 

size and parameterized by the filtration threshold value 



for a maximal length of the sequences searched of 8 

and a fusion threshold of 1, the filtration threshold 

value maximising the performance of the AC 

algorithm is 1.2 or 1.3.  

The graph in Fig. 23 shows us that the precision 

of the AC algorithm is inversely proportional to the 

fusion threshold between 0.2 and 0.9, and does not 

vary outside these limits. A low fusion threshold 

means that relatively different sequences are merged, 

so that the total number of detected sequences 

decreases. It appears, according to the graph, that the 

number of false positives decreases faster than the 

number of true positives, which means that false 

positives are assimilated with true positives, causing 

an increase in precision. However, when the 

threshold reaches 0.2, for each sequence length, all 

the sequences are merged into one, making it 

impossible to gain anything more by merging. On the 

contrary, when the threshold reaches 0.9, it becomes 

impossible to merge sequences, hence a non-existent 

impact of the merging procedure.  

We can see in the graph Fig. 24 that the recall of 

the AC algorithm is proportional to the fusion 

threshold between 0.2 and 0.9, and does not vary 

outside these boundaries. This seems logical, because 

a higher fusion threshold implies less sequence 

merging, and therefore greater diversity, leading to 

better recall. The visible boundaries are due to the 

same reasons as for the graph in Fig. 23. 

From the graph Fig. 25, we can conclude that for 

a maximal length of 8 of the sequences searched and 

a filtration threshold of 1, the fusion threshold of the 

sequences maximising the performance of the AC 

algorithm is 0.2.  

3.5. Study of LDA parameters influence 
 

We finally run our implementation of the LDA 

algorithm with a series of parameter sets to study 

their influence. 

We do not present the performance curves 

parameterized by Beta because this parameter has 

 

Fig. 24. Recall of the AC algorithm relative to the trace 

size and parameterized by the fusion threshold value 

 

Fig. 21. Recall of the AC algorithm relative to the trace 

size and parameterized by the filtration threshold value 

 

Fig. 22. Fscore of the AC algorithm relative to the trace 

size and parameterized by the filtration threshold value 

 

Fig. 23. Precision of the AC algorithm relative to the trace 

size and parameterized by the fusion threshold value 

 

Fig. 25. Precision of the AC algorithm relative to the trace 

size and parameterized by the fusion threshold value 



virtually no influence given the parameter values we 

simulated. Beta influences the a priori on the 

concentration of the multinomial distribution of the 

words over topics. We simulated it for values inferior 

to 1, so it means it just influenced the gap between 

high and low probability values.  

However, with the maximal probability gradient 

value we used, the selected keywords would always 

be the ones above the probability gap, whatever the 

gap width.  

Table 6 summarizes the parameters used for the 

simulations of the LDA algorithm. 

It can be seen on the graph in Fig. 26 that the 

precision of the LDA algorithm is inversely 

proportional to the maximal length of the sequences 

searched, similar to the VDV and AC algorithms, and 

for the same reasons. 

There is also an approximately linear growth 

proportional to the size of the DLL trace, indicating 

that, unlike the AC algorithm, a learning-based 

technique keeps increasing its performance as its 

learning base becomes larger, making it more 

suitable for large volumes of data. 

In the graph Fig. 27, we can see that the recall of 

the LDA algorithm is proportional to the maximal 

length of the sequences searched, similar to the VDV 

and AC algorithms, and for the same reasons. 

We notice a phase of slight increase, then slight 

decrease of the recall, as the size of the DLL trace 

grows. This can be explained by the search for too 

few keywords, which causes most of the keywords to 

converge towards a limited number of sequences as 

the number of frames increases, resulting in a 

reduction in recall. However, when the maximal 

length of the sequences searched becomes long 

enough, this phenomenon seems to disappear.  

From the graph in Fig. 28, we can conclude that 

for 10 keywords, a maximal perplexity gradient of 1, 

Table 6. Summary of the LDA algorithm simulation parameters 

Parameters 

Sequences 

length 

influence 

Keywords 

number 

influence 

Maximal 

perplexity 

gradient 

influence 

Maximal 

probability 

gradient 

influence 

Alpha 

influence 

Number of 

frames 

1 to 1000, 
logarithmic 

increment 

1 to 1000, 
logarithmic 

increment 

1 to 1000, 
logarithmic 

increment 

1 to 1000, 
logarithmic 

increment 

1 to 1000, 
logarithmic 

increment 

Sequences 

length 

1 to 8, power 

of 2 increment 
8 8 8 8 

Keywords 
number 

10 3 5 10 20 30 10 10 10 

Maximal 

perplexity 

gradient 

1 1 

0.1 to 10, 

logarithmic 

increment 

1 1 

Maximal 
probability 

gradient 

0.1 0.1 0.1 
0.01 to 1, 

logarithmic 

increment 

0.1 

Alpha 1 1 1 1 

0.01 to 100, 

power of 10 
increment 

Beta 0.0001 0.0001 0.0001 0.0001 0.0001 

 

Fig. 26. Precision of the LDA algorithm relative to the 

trace size and parameterized by maximal sequence length 

 

Fig. 27. Recall of the LDA algorithm relative to the trace 

size and parameterized by maximal sequence length 



a maximal probability gradient of 0.1, an alpha of 1, 

and a beta of 0.0001, the maximal length of the 

sequences searched maximising the performance of 

the LDA algorithm is 4 bits. 

We can observe on the graph in Fig. 29 that the 

precision of the LDA algorithm is inversely 

proportional to the number of keywords assumed to 

be present in the DLL trace. Indeed, since only the 

most probable sequences are selected for each 

keyword, if fewer keywords are assumed, then only 

the most probable sequences among those will be 

selected. These most probable sequences are 

generally remarkable sequences, which means more 

true positives, and hence higher precision. 

In addition, there are generally two phases: a 

linear growth with respect to the size of the DLL 

trace, for the same reason as for the previous LDA 

curves in Fig. 26-28; and a constant phase 

corresponding to the maximal performance 

achievable with the value given to the other 

parameters. 

In the graph Fig. 30, we can see that the recall of 

the LDA algorithm is proportional to the number of 

keywords assumed in the DLL trace. This seems 

logical, because the greater the number of keywords, 

the greater the number of sequences selected, and 

therefore the greater the recall. 

From the graph in Fig. 31, we can conclude that 

for a maximal length of 8 of the sequences searched, 

a maximal perplexity gradient of 1, a maximal 

probability gradient of 0.1, an alpha of 1, and a beta 

of 0.0001, the number of keywords maximising the 

performance of the LDA algorithm over the 

simulated interval is 3 or 5, but we will favour larger 

DLL trace sizes, so we will select 5. 

We can see on the graph in Fig. 32 that the 

precision of the LDA algorithm is proportional to the 

value of the maximal perplexity gradient before the 

Gibbs sampler stops, between 0.3 and 3, and then 

 

Fig. 28. F score of the LDA algorithm relative to the trace 

size and parameterized by maximal sequence length 

 

Fig. 29. Precision of the LDA algorithm relative to the 

trace size and parameterized by the number of keywords 

 

Fig. 30. Recall of the LDA algorithm relative to the trace 

size and parameterized by the number of keywords 

 

Fig. 31. F score of the LDA algorithm relative to the trace 

size and parameterized by the number of keywords 

 

Fig. 32. Precision of the LDA algorithm relative to the 

trace size and parameterized by maximal perplexity 

gradient 



stabilises. This means that iterating the sampler a 

large number of times is useless, and even counter-

productive, which is very surprising. 

The graph in Fig. 33 shows that the recall of the 

LDA algorithm is inversely proportional to the 

maximal perplexity gradient. This means that 

iterating the Gibbs sampler a greater number of times 

favours a greater diversity of keywords, and therefore 

of sequences selected for these keywords. 

The behaviour of the reacall relative to the size of 

the DLL trace is similar to the previous recall curves 

of the LDA algorithm in Fig 27 and Fig. 30, and for 

the same reason. 

From the graph in Fig. 34, we can conclude that 

for 10 keywords, a maximal length of 8 of the 

sequences searched, a maximal probability gradient 

of 0.1, an alpha of 1, and a beta of 0.0001, the values 

of the maximal perplexity gradient maximising the 

performance of the LDA algorithm are those greater 

than or equal to 3. 

We can see on the graph in Fig. 35 that the 

precision of the LDA algorithm is inversely 

proportional to the maximal probability gradient. 

This seems logical, as the lower this gradient is, the 

more the n-grams with the highest probability within 

each keyword will be favored, thus those most likely 

to be remarkable sequences of the protocol. 

We also notice a behaviour generally resembling 

that of the precision parameterized by the number of 

keywords, with a growth phase, then a stabilization. 

The ceiling is probably due to the too high number of 

keywords and the too low perplexity gradient. 

The graph in Fig. 36 shows that the recall of the 

LDA algorithm is proportional to the maximal 

probability gradient. This is due to the fact that as this 

gradient increases, the hardness of the n-gram 

selection decreases, therefore more n-grams are 

detected, resulting in an increase in diversity, and 

therefore recall. 

The behaviour with respect to the number of 

frames is similar to that of all other recall curves of 

the LDA algorithm, and for the same reasons. 

From the graph in Fig. 37, we can conclude that 

for 10 keywords, a maximal length of the sequences 

searched of 8, a maximal perplexity gradient of 1, an 

alpha of 1, and a beta of 0.0001, the value of the 

maximal probability gradient maximising the 

performance of the LDA algorithm is 0.03 or less. 

On the graph in Fig. 38, we can see that the 

precision of the LDA algorithm is proportional to 

Alpha. By studying the characteristics of Dirichlet 

law, we can say that this means that the algorithm 

offers its best precision when we consider that the 

frames are composed of a relatively homogeneous 

mixture of all the keywords of the protocol, rather 

 

Fig. 33. Recall of the LDA algorithm relative to the trace 

size and parameterized by maximal perplexity gradient 

 

Fig. 34. F score of the LDA algorithm relative to the trace 

size and parameterized by maximal perplexity gradient 

 

Fig. 35. Precision of the LDA algorithm relative to the 

trace size and parameterized by maximal probability 

gradient 

 

Fig. 36. Recall of the LDA algorithm relative to the trace 

size and parameterized by maximal probability gradient 



than just a few. This seems to correspond relatively 

well to reality, so these results are not surprising. 

The graph in Fig. 39 shows that the recall is 

inversely proportional to Alpha. Although we do not 

have a precise explanation for this behaviour, it is 

consistent with the principle verified in all the 

previous curves in Fig. 10-38, namely that precision 

and recall always show opposite trends when varying 

a parameter. Furthermore, the improvement in 

accuracy as Alpha increases is greater than the 

deterioration of the recall, resulting in an overall 

improvement in performance, which is in line with 

our hypothesis when observing the graph in Fig. 38. 

From the graph Fig. 40, we can conclude that for 

10 keywords, a maximal length of 8 of the sequences 

searched, a maximal perplexity gradient of 1, a 

maximal probability gradient of 0.1, and a beta of 

0.0001, the values of Alpha maximising the 

performance of the LDA algorithm are those greater 

than or equal to 10. 

3.6. Comparison of the best parameter sets 

 

For each graph, we selected the best performing 

curve in the previous subsection and retrieved its 

corresponding algorithm parameters. Then, out of all 

these best performing curves, we select the best one 

for each algorithm, and address them in this 

subsection. We obtain the following parameter sets : 

 For all algorithms, a maximal length of the 

sequences searched of 4  

 For the VDV algorithm, a number of flows 

randomly generated of 10 and a filtration 

threshold coefficient of 1. 

 For the AC algorithm, a fusion threshold and 

a filtration threshold of 1. 

 For the LDA algorithm, a number of 

keywords of 10, a maximal perplexity 

gradient of 1, a maximal probability gradient 

of 0.1, an alpha of 1, and a beta of 0.0001. 

The graph in Fig. 41 shows that, for small DLL 

traces (less than 400 frames), the AC algorithm offers 

the best precision, followed by the LDA algorithm, 

and finally the VDV algorithm. For traces of more 

 

Fig. 37. F score of the LDA algorithm relative to the trace 

size and parameterized by maximal probability gradient 

 

Fig. 38. Precision of the LDA algorithm relative to the 

trace size and parameterized by alpha 

 

Fig. 39. Recall of the LDA algorithm relative to the trace 

size and parameterized by alpha 

 

Fig. 40. F score of the LDA algorithm relative to the trace 

size and parameterized by alpha 

 

Fig. 41. Best precision of the algorithms VDV, AC, and 

LDA 



than 400 frames, the LDA algorithm becomes more 

precise than the AC algorithm, and the improvement 

in precision seems to continue beyond 1000 frames. 

Maximum performance is around 85% precision 

for LDA, and just under 80% for AC, while VDV 

peaks at just over 20%. 

On the graph in Fig. 42, we can see that the LDA 

algorithm has the best recall regardless of the size of 

the trace. Between 10 and 100 frames, the VDV 

algorithm has the second best recall, and the AC 

algorithm has the worst one, but outside these limits, 

AC is second, and VDV last.  

Maximum performance is about 40% recall for 

LDA, 35% for VDV, and 30% for AC. 

The graph in Fig. 43 shows that the AC and LDA 

algorithms have approximately identical 

performance, with the LDA looking slightly better. 

The VDV algorithm offers significantly poorer 

results, which even determining the filtration 

threshold based on the size of the DLL trace could 

not fully compensate for; at most, results at 1000 

frames would be on the same order as of those 

obtained for 100. 

Maximum performance is slightly under 50% F 

score for LDA, slightly under 45% for AC, and 

slightly under 30% for VDV. 

Let us now switch from the quality of the 

sequence detection to its usefulness for field 

detection. 

The graph in Fig. 44 shows that the average fields 

lengths detection ratio of the LDA algorithm is the 

best, followed by that of AC,  and finally VDV.  

 Maximum performance is slightly less than 60% 

for LDA, a bit under 50% for AC, and slightly under 

30% for VDV. 

The same behaviour can be seen on the graphs in 

Fig. 45 and Fig. 46, concerning the average fields 

values and fields positions detection ratios. Their 

maximum performances are, respectively, 75% for 

the LDA algorithm, slightly above 40% for AC, 

slightly below 40% for the VDV algorithm, and 

slightly below 60% for the LDA algorithm, slightly 

 

Fig. 42. Best recall of the algorithms VDV, AC, and LDA 

 

Fig. 43. Best F score of the algorithms VDV, AC, and 

LDA 

 

Fig. 44. Best average fields lengths detection ratio of the 

algorithms VDV, AC, and LDA 

 

Fig. 45. Best average fields values detection ratio of the 

algorithms VDV, AC, and LDA 

 

Fig. 46. Best average fields positions detection ratio of the 

algorithms VDV, AC, and LDA 



below 50% for AC, and slightly below 10% for the 

VDV algorithm. 

We summarize the relative performance of the 

three algorithms in Table 7. The number of stars 

stands, by decreasing order, for the best, average, and 

worst. 

 We clearly see that the LDA algorithm offers the 

best performance, followed by the AC algorithm, and 

lastly the VDV algorithm. 

 

 

4. Conclusion 
 

We wanted a communicating object to be able to 

communicate in an unknown environment, so we 

needed it to learn the protocols in that environment. 

We chose to study and evaluate the performance of 

three possible sequence identification techniques 

which could be used in that learning procedure: 

VDV, AC, and LDA. To that end, we simulated them 

applied to the analysis of Zigbee DLL traces, and 

compared them. 

For the purpose of comparison, in addition to the 

classic  metric F score, we defined our own, the fields 

detection ratio. 

From the simulations results, we can clearly state 

that in this context the LDA technique offers the best 

results, followed by the AC technique, and eventually 

the VDV technique. 

A more powerful hardware could have allowed us 

to see if we could push further the performance of the 

LDA algorithm by analysing larger traces, and a 

more formal parameter optimization would have 

given us more precise maximal performance of the 

algorithms. 

Nonetheless, with the results of the comparative 

simulation, we can now state that a technique based 

on Bayesian networks performs better than ones 

simply based on statistics or occurrences counting. 

This encourages us to further engage in Bayesian 

theory in the future, and design our own Bayesian 

network model. 
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Table 7. Relative performance summary of the 

algorithms VDV, AC, and LDA 

Algorithms VDV AC LDA 

Precision * *** *** 

Recall * ** *** 

F score * *** *** 

Average fields 

lengths 

detection ratio 

* ** *** 

Average fields 
values 

detection ratio 

* ** *** 

Average fields 

positions 
detection ratio 

* ** *** 

Total 6 14 18 


