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From State Transitions to Sensory Regularity:
Structuring Uninterpreted Sensory Signals from

Naive Sensorimotor Experiences
Loïc Goasguen⋆, Jean-Merwan Godon⋆ and Sylvain Argentieri

Abstract—How could a naive agent build some internal, subjec-1

tive, notions of continuity in its sensorimotor experiences? This2

is a key question for all sensorimotor approaches to perception3

when trying to make them face realistic interactions with an4

environment, including noise in the perceived sensations, errors5

in the generation of motor trajectories, or uncertainties in the6

agent’s internal representation of this interaction. This paper7

proposes a detailed formalization, but also some experimental8

assessments, of the structure a naive agent can leverage from9

its own uninterpreted sensorimotor flow to capture a subjective10

sensory continuity, making it able to discover some notions of11

closeness or regularities in its experience. The precise role of the12

agent’s actions is also questioned w.r.t. the spatial and temporal13

dynamics of its exploration of the environment. On this basis, the14

previous authors’ contribution on sensory prediction is extended15

to successfully handle noisy data in the agent’s sensorimotor flow.16

17

Index Terms—Sensorimotor contingencies theory, topological18

grounding, sensory regularities, uninterpreted sensory signals.19

I. INTRODUCTION20

It is certainly the case that we deem our sensory experience21

to be “continuous”. Indeed, one crucial property of many22

psychological perceptual processes is that they generally seem23

continuous [1]; in point of fact, this intuition is strong enough24

that it is the converse situations where it visibly is not that earn25

explicit mentions, such as that of Categorical Perception [2],26

[3]. However, such continuity does not trivially follow from27

our knowledge of how perceptual processes are materially28

–e.g. neurally– mediated [4], [5], [6]. In the instance of visual29

perception, for example, it is known that the eye only acquires30

very partial snapshots of visual information due to the sparse31

layout of discrete photoreceptors on its retina as well as the32

typical trajectories of ocular saccades.33

Nevertheless, the continuity of perception subjectively expe-34

rienced by sensorimotor agents is undeniably useful, allowing35

for the formulation and exploitation of several powerful ideas.36

One such idea, for instance, is that of inter and extrapolation.37

If an agent hopes to infer properties of an unknown situation38

from a structure it has learned from previous experiences, this39

agent should have a way to quantify in what way this new40

experience relates to the data it already knows. One very41

common way to deal with this is thus to a priori assign42

close properties (e.g. evaluated in terms of distances between43

sensory signals features, proximity between spatial positions)44

to experiences that are themselves alike (e.g. by characterizing45
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similar physical properties in the environment, or by rating the 46

system ability to achieve its task): the agent should then have 47

the capabilities to distinguish “similar” things, be it external 48

objects (e.g. a cymbal emitting a sound), sensory attributes 49

(e.g. the intensity, or the tone of the same cymbal), or even 50

sensorimotor capabilities (e.g. the association between theses 51

attributes and the action actually performed by the agent to 52

emit the sound from the cymbal). These capacities may in 53

turn provide grounds for the emergence of its felt continuity of 54

perception: in the end, the agent should then be able to assert 55

that “Red is closer to Pink than it is to Blue, and it is certainly 56

closer to Blue than it is to the sound of a bell” [7]. Such 57

closeness properties are usually leveraged in robotic settings 58

through the well-known mathematical notion of continuity of 59

maps Rn → Rm since the data available to the robotic agent is 60

usually represented numerically. More generally, the modern 61

examination of continuity and related problems is the subject 62

of topology [8], a field of mathematics which is precisely 63

devoted to the study of what it means for something to be 64

continuous. This field has indeed proved a powerful tool for 65

bootstrapping [9], or for modeling geometric ideas in several 66

sensorimotor works [10], [11], [12], in particular those that 67

attempt to internally establish properties of external space [13]. 68

Such approaches allow, e.g., motion planning in the internal 69

sensorimotor body representation of an agent through the gen- 70

eration, by interpolation, of continuous motor trajectories [14], 71

or the emergence of a topological representation of the sensor 72

poses from the sensorimotor flow [15]. But importantly, while 73

most of these works are rooted in generic topological intu- 74

itions, they all end up exploiting a discrete setup for which 75

most of the topological structures are useless. Indeed, most 76

modern robotic setups rely on discrete time computations 77

for which we can define other tools like distances based on 78

similarities or correlations between elements in the agent’s 79

sensorimotor flow. Then, should we want a naive agent to 80

make some kind of judgement about discrete samples by way 81

of its subjective sense of continuity, then this sense cannot 82

be entirely grounded in topology; in particular, it cannot be 83

reduced to that of formal continuity. As a consequence, the 84

(almost) only assessments one might provide a naive agent 85

with are entirely categorical: it should then only be able to 86

perform comparisons at a “symbolic” level, denoted by a strict 87

equality operator between e.g. sensory values. While the pre- 88

vious cited contributions certainly prove that these operations 89

allow for the extraction of interesting features or meaningful 90

internal representations from a naive form of sensorimotor 91

flow, they also share limitations related to the absence of the 92
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aforementioned “closeness” concept: what about their robust-93

ness w.r.t. noise, imperfect repetition of motor paths, etc.? The94

very same limitation is also shared by the previous work by95

the authors [16]; in this contribution, the interlink between96

motor actions and sensory prediction is explored, through97

the demonstration of the existence of a group isomorphism98

between them. But predicting the sensory outcome of an action99

is only accessible to the agent by detecting the exact shift100

of values inside its own sensor array. Endowing the agent101

with some internal notion of sensory closeness would then102

make it able to assess its own prediction, and more generally,103

might allow these sensorimotor approaches to perception –so104

far mainly restricted to simulated territories– to deal with more105

realistic conditions.106

Importantly, most of the previously cited contributions also107

claim to deal with uninterpreted sensory signals. But in these108

works, the form assumed by the signal (and the expected109

transformations thereof) is usually known and leveraged by110

the agent; what it ignores instead is how these signals relate111

to the sensorimotor interaction. Then, using a priori distances,112

metrics, and similarities, maps or representations of the agent’s113

sensorimotor interaction with a generally unknown environ-114

ment are built [17]. In this paper, however, no “natural” metrics115

nor algebraic operations on the symbols perceived by the116

agent are used –in a simular way to [18] where a less formal117

approach is proposed–, contrary to our understanding of the118

usual numeric values. This is generally made manifest with the119

choice to assume that states are coded as numeric values (or120

tuples thereof), and of special influence with that of whether121

to use natural (possibly topological, as previously outlined)122

structures of RN . Thus, most developments which try to123

achieve robustness and scalability do so via extrapolation and124

clustering [12], [14], while [19] goes a bit further by evaluating125

sensory states similarities by their transition probabilities, but126

for object identification in a sensorimotor context. Never-127

theless, as already argued, most of these techniques require128

referring to preexisting external metrics, which constitutes129

assumption about a priori knowledge we would like to avoid.130

In this paper, we then propose to examine how some notion131

of closeness –that we could also relate to some internal132

notion of subjective continuity– in sensorimotor experiences133

can emerge from uninterpreted sensory information for a naive134

agent operating in discrete time. To that end, some formal135

considerations are first introduced in §II. After evaluating a136

purely topological approach, a metric approach is proposed137

instead and the probability of transition between sensory138

symbols is used to define some appropriate notion of sensory139

distance. On this basis some simple simulations are introduced140

in Section III to illustrate how an agent could leverage some141

structure by simply judging if its sensory observations are142

close or not. This is illustrated for visual perception through143

the building by a naive agent of the grayscale or some RGB144

color model. Then, the role of the agent’s action in this145

framework is questioned in §IV. More precisely, the spatial146

and temporal dynamics of the agent’s exploration is shown147

critical to obtain a meaningful and useful structure of its own148

sensory symbols. Next, some experiments initially proposed149

in [16] are reproduced in Section V to illustrate how the150

proposed framework could allow an agent to actually build151

some sensory prediction functions even in the presence of 152

sensory noise. Finally, a conclusion ends the paper. 153

II. TOWARDS A TOPOLOGY OF SENSORY VALUES 154

This first section aims at defining a topology of sensory val- 155

ues, built on the basis of the agent’s sensorimotor experience. 156

After a short subsection devoted to the required definitions 157

and notations, a time variable is added to the formalism in 158

the second subsection, so as to account for the explicit time 159

dependency of the agent’s experience, allowing us to introduce 160

a first time-inherited topology. While being possibly sufficient, 161

arguments for the introduction of an explicit metric are then 162

discussed. The third subsection thus proposes the definition 163

of an internal probabilistic metric and highlights the benefits 164

and limits of the proposed approach. Section III then exploits 165

these elements in a simple experimental framework to illustrate 166

these elements and demonstrate their actual exploitation. 167

A. A short reminder on notations 168

Let us consider in the following an agent endowed with 169

motor and sensory capabilities. Its internal sensorimotor con- 170

figuration is classically noted as (m,s), where m ∈ M (resp. 171

s ∈ S) represents the agent’s internal motor (resp. sensory) 172

configuration as an element of its corresponding motor M 173

(resp. sensory S) set. As shown in [16], the agent’s motor 174

description can be enriched from m ∈ M to b ∈ B, where 175

b = (m, τ ) depicts the absolute agent’s motor configuration. 176

b is made of the agent’s internal (and thus known to it) 177

motor configuration m and of its absolute external (and thus 178

unknown to it) pose τ in its ambient space. Importantly, 179

as discussed in [16], switching the motor description from 180

m to b allows us to keep a functional relationship between 181

motor and sensory data, even in the case where the agent 182

can freely move in its environment. But while the agent has 183

no direct access to b, it can apply some motor actions a on 184

b = (m, τ ) to go to configurations b′ = (m′, τ ′) = ab: the 185

agent knowns instead how to move in B. This capability will 186

be exploited later to apply the following developments to get 187

an internal assessment of sensory regularity, see §V. Next, the 188

environment state is characterized as a function ϵ : X → P , 189

i.e. as a state ϵ ∈ E linking the ambient geometrical space X 190

in which sensorimotor experiences occur (classically endowed 191

with some rigid transformations group G(X )) to the set of 192

the physical properties P observable by the agent, where E 193

denotes the set of environmental states. Then, ϵ(x) represents 194

the observable physical properties at point x ∈ X . On the 195

basis of the previous definitions, we can now define the 196

sensorimotor map ψ as the function ψ : B × E → S , such 197

that s = ψ(b, ϵ). We can notice here that the sensorimotor 198

law does not explicitly depend on time, as is the case of most 199

other contributions in the fields [10], [20], [14]. We will now 200

enrich this formalization with an explicit time dependency. 201

It will then constitute our gateway towards continuity in the 202

sensory experience of the agent. Much like in J. Elman’s 203

famous 1990 paper [21] where words are not considered as 204

preexisting categories but more as emergent features in the 205

latent structure of sentences along time [22]. Similarly, the 206

topology of sensory symbols can be considered as the latent 207

structure between them through the sensorimotor experience 208

along time. 209
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B. All is well in continuous land210

1) Introducing time in the sensorimotor experience: The211

definitions we recalled in the previous subsection actually212

described snapshots of the agent’s sensorimotor interaction.213

Nevertheless, these can be easily enriched with an explicit214

dependency of the various states with a time variable t ∈ T .215

Thus, the environmental state ϵ ∈ E can now be written216

ϵ : T ×X → P
(t, x) 7→ ϵ(t, x).

(1)

With this notation, we can express an instantaneous snapshot217

of the environmental state as the partial function218

ϵt : x ∈ X 7→ ϵt(x) = ϵ(t, x) ∈ P. (2)

Therefore, any temporal succession of environment states can219

be described as a trajectory220

γϵ : t ∈ T 7→ ϵt ∈ E . (3)

Correspondingly, the agent’s absolute configuration trajecto-221

ries and sensory ones are respectively denoted by222

γb : t ∈ T 7→ bt ∈ B, (4)

and223

γs = γb,ϵ : t ∈ T 7→ st = ψ(γb(t), γϵ(t)) ∈ S. (5)

In the following, we will consider a particular subset of224

such temporal environmental, motor, and sensory trajectories225

representing the set of effectively valid trajectories. We thus226

instead restrict ϵt ∈ ET ⊂ F (T ,E ) so as to include possible227

external constraints on the succession in time of physical228

properties in the agent’s environment. In the same vein, one229

defines γb ∈ BT , where BT is the set of all effectively230

performable motor configurations, possibly allowing to capture231

e.g. limitations on velocity and their smoothness as actuated by232

the agent. Consequently, the effectively valid sensory trajecto-233

ries γs lie in ST , with a natural mapping ST ↪→ BT × ET .234

2) Towards a sensory topology: Let us now get back to235

the intuition of the sensory experience being continuous, as236

discussed in the introduction of this paper. More precisely, this237

continuity is that of the agent’s sensory experience unfolding238

with the time T during which it occurs. In (purely) topo-239

logical settings, an argument examined e.g. in [23] shows that240

searching for (formal) continuity of the γs sensory experiences241

is entirely dual to searching for topological constraints on242

the sensory values s ∈ S . These two viewpoints intersect243

at the final topology of the γs [8], a topology on S which244

precisely encodes which structural constraints on the s sensory245

values is needed to make (all) the γs experiences continuous.246

While this final topology seems to solve –at least from a247

purely topological point of view– the initial problem, we have248

to keep in mind that most robotic setups rely on discrete249

time computations. The resulting final topology thus makes250

S discrete. Intuitively, this occurs because if the agent only251

experiences jumps in times such that no instant follows252

continuously from the previous one, then it does not need253

to introduce new continuities in its sensations to make their254

succession continuous. So how can we solve this issue? In the255

following subsection, we propose to switch to metric geometry,256

which, although less general, might be better suited.257

C. Introduction of a statistical sensory metric 258

Introducing corresponding metric considerations, however, 259

raises new issues: given an abstract sequence of points in 260

a (metrized) point cloud, how can we determine whether it 261

represents a regular/continuous trajectory? For example, how 262

can we decide that a jump in values across a distance of e.g. 5 263

units corresponds to a regular transition, or instead represents 264

a break in continuity? Without a priori assumptions about the 265

expected reasonable dynamics of the experience, it seems these 266

numbers are entirely arbitrary, and related to some external 267

knowledge that we want the agent to do without. Instead, 268

we propose to define a statistical sensory metric, for which 269

the agent ought to set to zero any distance between sensory 270

values that immediately (and not continuously) follow one 271

another. Thus, the temporal length between successive sensory 272

samples is now central to how the agent perceives them. 273

Consequently, we should first assume that the agent is able 274

to compute distances (or durations) between two timesteps in 275

T . On this basis, we will assume in all the following that the 276

laws of the sensorimotor experiences the agent can observe 277

are time homogeneous. This hypothesis then indicates that no 278

statistical measurement the agent can empirically obtain from 279

its sensorimotor experience may depend on the absolute value 280

of the timestep indexing its interaction. In particular, it should 281

be a natural consequence of the particular choice of timestep 282

being an entirely external convention, implementing a sort of 283

independence of choice of reference. 284

Let us now define the likelihood Ps′|s over all experiences 285

that the sensory value s′ immediately follows s in the senso- 286

rimotor flow of the agent along 287

Ps′|s = P(γs(t+ 1) = s′ | γs(t) = s). (6)

Importantly, from the previous time homogeneity assumption, 288

Ps′|s does not depend on the current time t it is computed. 289

From there and following the intuition that “closeness” of sen- 290

sory values s and s′ should increase whenever the probability 291

of the transition s → s′ does, we propose to define a simple 292

metric prototype via 293

δf (s, s′) = f(Ps′|s) ∀s, s′ ∈ S, (7)

where f should verify the two conditions: 294

1) f : [0; 1] → R+: f only needs to map probabilities in 295

[0; 1] to nonnegative values, i.e. dissimilarity values; 296

2) f is non-increasing: probable transitions (i.e. Ps′|s close 297

to 1) should result in low dissimilarities. 298

These conditions do not make δf a metric since it only verifies 299

the non-negativity property. We therefore extend it via minimal 300

path considerations, i.e., by defining a distance df . Let Rs,s’
301

be the set of all paths from s to s′ , with 302

⟨s = s(0), s(1), . . . , s(k−1), s(k) = s′⟩ ∈ Rs,s’. (8)

We can then define df along 303

df (s, s′) = infRs,s’. (9)

This in turn enforces the properties of triangular inequality 304

and reflexivity. In the case where S is finite, this reduces 305

to the familiar computational form of finding minimal paths 306

on a finite graph with nonnegative weights (corresponding 307
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to the δf (s, s′) edge from s to s′). It should also be noted308

that this does not guarantee symmetry at its core because309

Ps′|s may differ from Ps|s′ . Then the δf weights naturally310

define a directed graph (digraph), which does not impair311

the search for minimal paths but does however, lead to a312

non-symmetric df function. While there exist several ways313

to obtain a closely related undirected graph from any given314

digraph, we hypothesize instead that symmetry should occur315

as a contingency of the sensorimotor exploration in most real316

world examples. Therefore, we do not enforce such corrections317

for now and will instead assess this hypothesis in the resulting318

graph.319

III. BUILDING THE SENSORY TOPOLOGY FROM STATISTICS320

The previous section was devoted to the mathematical roots321

of the approach. We will now illustrate how these points can322

be exploited inside a simple experimental framework which323

could allow a naive agent to leverage a structure on its sensory324

signals from its own observations. To begin with, a detailed325

description of the simulation setup is proposed. On this basis,326

two main experiments are conducted: the first one deals with327

the construction of a probabilistic sensory metric and the328

corresponding low-embedding representation for a grayscale329

camera sensor; the second one extends the reasoning to a more330

complex representation when using RGB image sensors.331

A. Experimental setup and sensory distance estimation332

1) Experimental setup: In all the following, we consider333

an agent endowed with a camera sensor observing a 3D334

scene. Since we are for now dealing with sensory values335

and their transitions only, the visual perception is basically336

simulated by playing a video file v[n] of size W×H , where n337

represents the video frame number. This is a (temporary) very338

restrictive setup, which will be enriched later when discussing339

the influence of the movement of the agent (see §IV). Also,340

the experience occurs in discrete time, for which each timestep341

verifies t = tn = nTs with Ts the sampling period. In practice,342

we have v[n] = (vij [n])i,j , with i ∈ [0;W −1], j ∈ [0;H−1],343

and where vij [n] depicts the pixel value of the video at frame344

n, row i and column j. Each pixel vij = (Rij , Gij , Bij)345

is represented as a traditional color tuple ∈ [[0; 255]]3. The346

agent’s sensory state s[n] is then simulated by applying some347

instantaneous function g : [[0; 255]]3 → S to the video, i.e.348

s[n] = (sij [n])i,j , such that sij [n] = g(vij [n]), (10)

where sij [n] represents the (i, j) sensel value at time n, row349

i and column j of the agent’s camera sensor. Introducing g(.)350

in (10) allows to explain formally how a physical state of the351

environment (which can be envisaged here as the pixel values352

of the video) is turned into the internal sensory state of the353

agent. But one has to keep in mind that the agent does not354

know the relation (10), it does not even have any knowledge355

about the meaning of these numerical values: they are only356

uninterpreted symbols to it, with no a priori structure, order,357

nor any way to actually compare them. In addition, the set S358

may well be isomorphic to the set of actual pixel values, but359

there may also have a lower number S of symbols than pixel360

values, resulting in a compressed representation. Without loss361

of generality, S will then be defined as the finite set of positive 362

integers {0, . . . ,S−1} with S = Card(S), where each sensory 363

symbol sk ∈ S can equally be written directly as the integer 364

k, and we will adopt a traditional sij ∈ [[0; S− 1]] coding 365

convention for the numerical values of each (i, j) sensel, with 366

S = 256 for traditional camera sensors. As outlined in §II-C, 367

it is then proposed to look at the relationship between those 368

S uninterpreted (numerical) symbols through the statistics of 369

their transitions. Let us now detail how these transitions are 370

actually captured. 371

2) Description of the experiment: In all the following, we 372

will assume that all W ×H agent’s sensels contribute equally 373

to the building of the same representation, i.e., all sensels share 374

the same excitation function linking the environment state to 375

the agent’s sensations as written in Equation (10). Then, we 376

define a S×S matrix M = (mkl)k,l counting all the transitions 377

of sensel values along observations, with 378

mkl[n+ 1] = mkl[n] +
∑
i,j

ζkl(i, j)[n], (11)

with (i, j) ∈ [[1;W ×H]]2, mkl[0] = 0, and k, l both represent 379

two symbols in S (that is, sensor output values sk and sl ∈ S). 380

ζkl(i, j)[n] aims to capture the existence of a change of value 381

of the (i, j) sensel from value k at time n to value l at time 382

n+ 1, i.e. 383

ζkl(i, j)[n] =

{
1 iff sij [n] = k and sij [n+ 1] = l,

0 otherwise.
(12)

From (11), we can then compute the probability of transition 384

of sensels values gathered in a S×S matrix P = (pkl)k,l with 385

pkl[n] =
mkl[n]∑S−1

q=0 mkq[n]
(13)

the probability at time n for any sensel to see its value 386

changing from symbol k to l. Obviously, pkl[n] is expected to 387

converge towards Psl|sk as time n tends to infinity. Then, once 388

the estimation of the matrix P has converged after a fixed 389

number frames N , it is turned into a S × S metric prototype 390

matrix ∆ = (δkl)k,l according to Eq. (7) where f = − log1 is 391

selected, with 392

δkl = − log(pkl[N ]). (14)

Again, any function verifying the two conditions in §II-C 393

could have been selected. Then, Dijkstra’s algorithm [24] is 394

applied to the ∆ matrix along Eq. (9) to produce the S × S 395

distance matrix D = (dkl)k,l, providing the agent with the 396

result metric d we set out to discover 397

df (s, s′) = d−log(sk, sl) = dkl, (15)

which is finally visualized in 2D or 3D through a multi- 398

dimensional scaling projection method (MDS [25], [26], [27] 399

or ISOMAP [28]). 400

B. Results for a grayscale perception 401

The W × H = 856 × 480 video used to conduct the 402

experiments comes from a slightly stabilized camera filming 403

1If a probability of transition is equal to 0, the corresponding distance is
set to NaN by convention.
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an evening walk in Midtown New York City in the rain2. It404

consists of a natural city scene filmed in real time from a405

first-person point of view. A grayscale (cropped) preview of406

the video is shown in Figure 1a. It is clear that this environ-407

ment exhibits some nice local temporal and spatial continuity408

properties: the values of each pixel change smoothly in time,409

while local pixel values are highly correlated. While these are410

some nice properties to illustrate the building of the sensory411

topology from statistics, the importance and formalization of412

these hypotheses w.r.t. the agent’s movement capabilities is413

discussed in §IV.414

To begin with, we will consider a function g, mapping the415

(Rij , Gij , Bij) color coding of the video pixels vij to the416

sensel values sij ∈ [[0; 255]] of the agent, such that417

sij = g(vij) = h(round(mean(Rij , Gij , Bij))), (16)

where h is a function that can be tuned to artificially modify418

the agent’s perception. Note that g acts here like an exci-419

tation function, and is thus supposed to be identical for all420

sensels. Two cases for h are discussed in the following: either421

h() = id() in §III-B1, corresponding to the case where the422

agent’s grayscale perception exactly matches the grayscale423

version of the video, or h() = sawtooth() for which the424

perception is altered on purpose to exhibit the folding of the425

agent’s internal representation between black and white pixel426

values in the video, as detailed in §III-B2.427

1) First case: h() is the identity function:428

a) Estimation of the probability of transition between429

symbols: Since h() = id() in Eq. (16), the agent’s sensory430

values are made of S = 256 uninterpreted symbols, whose431

values along frames can be used to compute their probability432

of transition along Equation (13). The resulting S× S matrix433

P is shown in Figure 1b and 1e after n = 5 and n = 104434

successive sensory transitions respectively. Note that the S435

symbols are ordered in the figure according to their numerical436

values: this is something the agent cannot actually do for now,437

but this ordering has no effect on the reasoning and helps in438

understanding the process. From Figures 1b and 1e, we can439

see that the most probable transitions are all placed along the440

diagonal of the matrix P , meaning that the most probable441

sensory output at the next time step is the very same symbol,442

even at the very beginning of the experiment with n = 5.443

Further, the a priori ordering of symbols allows to observe that444

the diagonal is thick and fades away as the symbols values are445

distant: this clearly indicates that the most probable transitions446

are the ones to symbols that have close colors, from an external447

point of view (again, the a priori ordering is unknown to448

the agent). Conversely, the least probable transitions are the449

ones to distant symbols. Those results are in accordance with450

the intuition that close time intervals lead to close sensory451

outputs, and that some regularity of the sensory experience452

has been captured. Note that since the probability estimation453

is evaluated on occurrences, the case where no transitions at454

all between two symbols are observed leads to a probability455

of 0 (represented in white in Figure 1b); this appears at the456

beginning of the experiment only (see Figure 1e for n = 104)457

and mainly concerns distant symbols with a very low transition458

probability, i.e., in the two corners of Figure 1b.459

2https://youtu.be/eZe4Q_58UTU by courtesy of Nomadic Ambience.

b) Computation of the distance matrix: On the basis 460

of the previous probability of transitions between symbols, 461

we can compute the metric prototype in the form of the 462

S × S matrix ∆ whose elements are given by Eq. (14). 463

Then, Dijkstra’s algorithm [24] is performed on ∆ to obtain 464

the S × S distance matrix D. The resulting matrix D is 465

represented in Figure 1c and 1f for n = 5 and n = 104 466

respectively. Obviously, one should note that when direct 467

transitions between symbols are missing in P (and thus in ∆) 468

as shown in Figure 1b, Dijkstra’s algorithm will nonetheless 469

generally find an alternate path towards those symbols by 470

finding adequate successive transitions; consequently the D 471

matrix is expected to be fully defined (i.e. with all coefficients 472

finite) as long as the agent has experienced enough sensory 473

symbols transitions. This is exactly what is shown in Figure 1c, 474

where the corresponding distance matrix D shows distances 475

between all sensory symbols, while transitions between some 476

of them have not been directly observed yet. We can also 477

see from both Figures 1c and 1f that previous low transition 478

probabilities are now associated with high distances (and vice 479

versa). In addition, we recognize the same diagonal pattern, 480

which now corresponds to low distances. We can also see 481

that D is almost symmetric, except in the corners, where lie 482

most of the high distances, corresponding to the least probable 483

transitions of sensory symbols. This is not an encoded property 484

of the agent’s experience but instead seems to appear as 485

a contingency of the sensorimotor exploration, as outlined 486

in §II-C. Finally, a qualitative comparison between the two 487

D matrices obtained at the beginning (Figure 1c) and at 488

the end (Figure 1f) of the experiment shows that the very 489

same structures (symmetry, diagonal pattern) are captured very 490

quickly. This is certainly thanks to the identical contribution 491

of all pixels to the building of the same statistic, as one time 492

step actually captures W ×H ≈ 4.105 sensory transitions. 493

c) Visualization of the representation: Finally, we can 494

qualitatively assess the shape of the captured sensory symbols 495

topology by projecting the resulting distance matrix D into a 496

space of lower dimension. The 2D visualization of the matrix 497

D through a MultiDimensional Scaling (MDS) projection is 498

represented in Figures 1d and 1g. Note that such a method 499

requires the input matrix to be symmetric; hopefully, we 500

qualitatively showed it was almost the case so that MDS can be 501

actually applied on the symmetrized matrix 1/2×(D+DT ). In 502

both Figures 1d and 1g, each circle represents a single symbol 503

where the inner color corresponds to the color perceived from 504

an external point of view (color that also matches the classical 505

gray-level scale in this case, since f = id()). We can see from 506

this representation that the obtained manifold is almost one- 507

dimensional and captures the classical gray scale from white to 508

black in a continuous manner, even at the very beginning of the 509

experiment. This can be evaluated by looking for the 2 nearest 510

neighbors of each symbol in the internal metric (i.e. with the 511

neighbors computed on D and not on the representation); these 512

neighbors are then linked together in the projection by a line 513

drawn in the figure. Browsing the manifold by following these 514

lines allows to go from white (coded as the number 255) 515

to black (coded as a 0) almost without any discontinuity in 516

the symbol order at the end of the experiment. Interestingly, 517

we can see that the projection obtained at the early stage of 518

https://youtu.be/eZe4Q_58UTU
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(c) D at n = 5 (d) MDS2(D) at n = 5
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(e) P at n = 104
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(f) D at n = 104 (g) MDS2(D) at n = 104

Figure 1: Building of the internal organization of sensory values. (a) Grayscale version of one frame of the video used in the experiment.
(b)(e) Estimated probability matrix P at n = 5 and n = 104, i.e., at the very beginning of the experiment. (c)(f) Estimated distance matrix
D at n = 5 and n = 104, i.e., at the end of the experiment. (d)(g) Corresponding low-dimensional embedding of D at n = 5 and n = 104:
we can see the intuitive grayscale organization of pixel values, discovered by the agent from its sensory values transitions.

the experiment already exhibits a one dimensional manifold,519

with a thicker and less organized ordering of symbols. Again,520

the contribution of all sensels to the same statistic certainly521

explains this nice quick convergence of the representation.522

Thus, from the final graph, we can conclude that the agent523

has been able, starting only from the probability of transition524

between uninterpreted sensory symbols, to discover the gray525

level scale. Such a capability will be further exploited for526

different applications, like sensory prediction, see §V.527

2) 2nd case: h() is a sawtooth function: We will now528

consider a case where the agent’s sensory output does not529

exactly match the original grayscale world as per Eq. (16),530

where h() = sawtooth() is defined along531

sawtooth(x) =

{
2x if 0 ≤ x ≤ 127
2(x− 128) otherwise, (17)

for x ∈ [[0; 255]] only. With such a change, a single internal532

sensory symbol (e.g., 54) will now correspond to two possible533

world grayscale values (27 and 155). Intuitively, such a change534

is expected to create continuity that does not exist initially535

between symbols through a closer proximity between values536

representing dark and light shades. The previous process537

is then repeated and the resulting 2D MDS embedding is538

depicted in Figure 2: as expected, we identify a looping539

monodimensional manifold. In the figure, each sensory symbol540

is depicted as a circle whose color represents its internal541

coding (i.e., a numerical value from 0 to 254 with a step of 2),542

represented as grayscale values for convenience. This color no543

longer matches the grayscale values of the world it represents544

because of the introduction of the sawtooth function. But the545

Figure 2: 2D MDS projection of the sensory symbols when a saw-
tooth function links together world gray values to sensory symbols.
Each symbol is represented as a circle whose color represents the
internal coding. The corresponding symbols in the outside world are
represented as a looping arrow around the projection. Internal black
(symbol 0) and white (symbol 255) symbols are now close to each
other, differently from Figure 1g.

continuity initially captured in the previous experiment leads 546

to a looping representation where the two opposite symbols, 547

0 and 254, are now close to each other in the internal rep- 548

resentation as they both correspond to close grayscale values 549

in the environment. Such a conclusion might be obvious in 550
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this specific case, but it highlights that the internal, subjective551

representation of the sensory symbols’ topology might actually552

differ greatly from our initial intuition as it depends on the553

way the agent’s sensors encode sensory information. The same554

remark could apply to faulty sensors, whose output symbols555

could be modified or rearranged because of some failure in556

the information acquisition process; the proposed approach557

could then allow the agent to (re)build an adequate internal558

representation, though still intrinsically limited by its own559

defective sensory capabilities.560

C. Results for color perception561

To further illustrate the approach, we will now endow the562

agent with some color perception capabilities. Then, in this563

subsection, the initial color tuples (Rij , Gij , Bij) ∈ [[0; 255]]3564

coding the video pixel values vij are now mapped to the565

S = α3 agent’s sensels values sij ∈ [[0;α3 − 1]] along566

sij = g(vij) = Qα(Bij) + αQα(Gij) + α2Qα(Rij), (18)

with Qα(.) a quantification function defined by567

Qα : X 7→ Qα(X) = round

(
X

255
× (α− 1)

)
, (19)

with X ∈ [[0; 255]] and Qα(X) ∈ [[0;α − 1]]. Note that568

while the symbol ordering was quite obvious for grayscale569

values from an external point of view (e.g., the natural order570

from 0 to 255) for the various matrices M , P , ∆, and D,571

this no longer holds for these color sensory output symbols.572

Nevertheless, the order in which they appear as line or column573

indices in these matrices is not relevant since the only relevant574

information about their closeness is entirely independent of575

how these symbols are actually ordered. In all the following,576

α = 10 is selected, so that the agent’s sensory space is made577

of S = α3 = 1000 uninterpreted (numerical) symbols. On578

this basis, all the previous steps are successively applied. The579

resulting D matrix can then be visualized through a low-580

dimensional embedding technique like ISOMAP [28]. The581

result of this projection performed in 3D is shown in Figure 3.582

The obtained representation is in line with some classical583

representations of RGB color models, like the HSL or HSV584

coding of color. Indeed, the 3D point cloud first appears to585

capture some color order very similar to the classical hue586

color wheel, where pure colors are represented through an587

angular position on a circle, as depicted in Figure 3a. But the588

3D projection also exhibits a third axis linking very dark to589

very light shades for each color of the hue wheel, similar to590

the lightness axis in the HSV color coding, see Figure 3b. In591

order to assess in a more quantitative way the similarity of592

this low-dimensional projection with different color models, it593

is proposed to compute a Frobenius distance F along594

F = ∥ |D| − |Dm| ∥, (20)

where Dm is the S×S distance matrix between all the sensory595

symbols observed during the experiment for the color model596

m ∈ {RAND, RGB, HSL, HSV}, and |.| the standardization597

operator. The resulting distances are reported in Table I,598

where the HSV color model better fits the obtained projection,599

as initially qualitatively intuited. The same study can be600

conducted by computing the k-nearest-neighbors between the601

Yellow
<latexit sha1_base64="mmoz1p7E8OXGXVcd/LZor6+92cg="></latexit>

Red
<latexit sha1_base64="R9HeZPiNYkTrT6ldNeVqyX6WN+s="></latexit>

Fuchsia
<latexit sha1_base64="h4q4niMJosr4wuR/5GBlmYvdl0Y="></latexit>

Blue
<latexit sha1_base64="FViJDvAzAExFAHZl7zcm1tOGskM="></latexit> Green

<latexit sha1_base64="HuxpVuE5Tg3/RLGWAzua6HGdojY="></latexit>

Cyan
<latexit sha1_base64="SaeuLbst3Snu7P43gqTqTR1ZVjU=">AAACx3icjVHLTsJAFD3UF+ILdemmkZi4Ii3G6MIFCRvdYSJIgsRMhwEaStu0UyIhLvwBt/pnxj/Qv/DOOCQqMTpN2zPn3nNm7r1eHPipdJzXnLWwuLS8kl8trK1vbG4Vt3eaaZQlXDR4FERJy2OpCPxQNKQvA9GKE8FGXiCuvWFNxa/HIkn9KLySk1h0Rqwf+j2fM6mo2oSFt8WSU3b0sueBa0AJZtWj4gtu0EUEjgwjCISQhAMwpPS04cJBTFwHU+ISQr6OC9yjQNqMsgRlMGKH9O3Trm3YkPbKM9VqTqcE9CaktHFAmojyEsLqNFvHM+2s2N+8p9pT3W1Cf894jYiVGBD7l26W+V+dqkWih1Ndg081xZpR1XHjkumuqJvbX6qS5BATp3CX4glhrpWzPttak+raVW+Zjr/pTMWqPTe5Gd7VLWnA7s9xzoNmpewelY8vK6XqmRl1HnvYxyHN8wRVnKOOBnkP8IgnPFsXVmSNrbvPVCtnNLv4tqyHD2uhkK0=</latexit>

(a) 3D ISOMAP projection seen as a 2D color wheel.

(b) The same 3D projection seen as a cylinder, with the lightness axis drawn
as arrows from black to white.

Figure 3: Interpretation of the 3D ISOMAP projection of the matrix
D when the agent is endowed with color perception capabilities. (a)
Representation obtained when viewing the projection “from below”:
we can notice that all the sensory symbols are arranged by color,
matching the intuitive color wheel which has been added to the graph.
(b) Another point of view on the 3D sensory symbols representation:
in addition to the color ordering highlighted in subfigure (a), a third
axis supports the variation of lightness. The obtained projection can
thus be understood as analogous to the HSL cylindre or biconic
representation of the RGB color model.

obtained representation and the different color models. The 602

result of such a study is also reported in Table I for k = 75 603

and exhibits the same conclusion. But one still has to keep in 604

mind that finding the best fitting color model is not important 605

by itself, since it is only exploited to illustrate the smooth 606

transitions from one color symbol to another, without apparent 607

discontinuity in the low dimensional embedding, as a way to 608

represent the information actually captured by the agent in D, 609

which is, in the end, the only data it exploits in the following. 610

Then, with such a representation, the agent is now able to 611

assess if the sensory symbol associated with the rose color is 612

closer to the one associated with the red color than it is to the 613

green one thanks to its internal metric matrix D. 614
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Color model RAND RGB HSL HSV
Distance F 1320 947 890.4 857.2
75-NN rate 8.4% 44.4% 45.5% 47.5%

Table I: Comparison between different color models, with RAND
representing a random organization of the observed color symbols.
(2nd line) Distances F between the low-dimensional projection
and the corresponding color model. (3rd line) Rate of 75 nearest
neighbors between the obtained representation and the corresponding
color model.

IV. LOCOMOTIVE MOTIVES: A CASE FOR FITTING615

EXPLORATION AND EXPLOITATION DYNAMICS616

The previous developments were largely devoted to the617

relationship between two internal observations: the transition618

probabilities and the resulting metric. We showed how this619

information allows the agent to build some notion of closeness620

between sensory symbols –which could be understood as621

some subjective notion of sensory continuity– from certain622

successions of sensory experiences being more likely, or623

typical, than others. But such considerations clearly rely on624

the idea that typical environment states also display certain625

typical patterns themselves. From an external point of view,626

one would certainly declare that “environment states are627

(mostly) continuous”, both in time and space. This underlying628

assumption has not been dealt with so far, especially since the629

agent was passively observing sensory symbols changing over630

time in the previous experiments and not actively exploring its631

environment. This section thus aims to study which external632

structures in the states of the environment could explain the633

relationships between the agent’s motor actions associated634

with a sensory experience and the observed regularity, effec-635

tively giving action a defining role in this internal assessment.636

We then propose to study the influence of the agent’s action637

amplitude on its subjective sensory symbol continuity when638

it interacts with a mostly continuous environment. To that639

end, additional formal considerations are introduced in the640

first subsection. On this basis, some new experiments are641

proposed in the second subsection to highlight the importance642

of movement in building this subjective continuity.643

A. Fitting spatial and sensory dynamics in the exploration644

1) Spatial and temporal coherence: The results obtained in645

Section III were based on a purely passive observation of a646

changing “natural” visual scene –where the word natural here647

refers to our own usual and intuitive sensorimotor experience–648

allowing the agent to build a metric on its sensory symbols.649

But this distance should highly depend on the environment650

states and the successive configurations with which the agent651

samples it along time. More precisely, this implies that the652

environment’s state should exhibit some typical patterns, both653

in space and time, in line with the manner in which the agent654

conducts its interaction, to make apparent the notion of certain655

sensory symbol transitions being “more typical” than others.656

Thus, one first condition to fulfill is spatial, mandating that657

e.g. immediately next to a red region X ′ of ambient space X658

it is more likely to be another region X ′′ that is orange than659

cyan itself. In other words, we would generally expect the two660

events661

{γϵ(t)|X ′ = ϵ0} and {γϵ(t)|X ′′ = ϵ1} (21)

to largely depend on one another when X ′ and X ′′ denote 662

close (and small) regions of space. Furthermore, one second 663

condition is temporal, so that the environment’s state at any 664

localization X ′ does not immediately change too randomly, so 665

that the two events 666

{γϵ(t)|X ′ = ϵ0} and {γϵ(t+∆t)|X ′ = ϵ1} (22)

are conditioned on one another when ∆t remains sufficiently 667

small. We should insist on the fact that this coherence property, 668

however, should only be local and relative to the agent’s 669

exploration dynamics. It is clear that the color of a point x ∈ X 670

and time t ∈ T does not depend on which colors appear two 671

kilometers away, one and a half days from there. On the other 672

hand, should the agent instead perform a two-kilometers long 673

movement between two successive time samples, it should not 674

be able to infer any relationship between successive sensory 675

readings from the sole spatial coherence constraints. 676

2) A formal account of spatiotemporal coherence: Let us 677

now generalize the previous sensory transition probabilities (6) 678

by introducing, for any (sub)collection of motor trajectories 679

B′
T ⊆ BT , 680

P
B′

T

s′|s = {γs(t+ 1) = s′ | γs(t) = s and γb ∈ B′
T }, (23)

for which P
B′

T =BT

s′|s = Ps′|s . Such a (slight) generalization 681

allows to highlight how a specific set of motor trajectories ac- 682

tually condition the sensory transitions available in the agent’s 683

sensorimotor flow. More precisely, we introduced in [16] the 684

sensor receptive field as the specific region of space for which 685

the state of the environment is sufficient to fully determine the 686

agent’s sensory state s. Formally, a sensor receptive field can 687

be seen as a function F : b ∈ B 7→ F (b) ⊂ X verifying 688

689

∀ϵ1, ϵ2 ∈ E ,∀b ∈ B, 690

ϵ1|F (b) = ϵ2|F (b) ⇒ ψ(b, ϵ1) = ψ(b, ϵ2) = s. (24) 691
692

Then, let us now consider B′
T as a set of motor explorations 693

γb such that the receptive fields F (γb(t)) and F (γb(t + 1)), 694

which condition successive sensory outputs γs(t) and γs(t + 695

1), fall far apart from one another. Then, based on our 696

prior assumptions, the corresponding local environment states 697

γϵ|F (γb(t+1))(t + 1) and γϵ|F (γb(t))(t) should be independent: 698

the physical properties available to the agent in the environ- 699

ment, restricted to the regions of space it would sample at time 700

t and t+1 by following a motor trajectory γb ∈ B′
T , should 701

not depend on each other. It then follows that γs(t + 1) = 702

γγb(t+1),ϵ|F (γb(t+1))(t + 1) and γs(t) = γγb(t),ϵ|F (γb(t))(t) 703

should be independent themselves. As a result, we have 704

P
B′

T

s′|s = {γs(t+ 1) = s′ | γs(t) = s, γb ∈ B′
T },

= {γs(t+ 1) = s′ | γb ∈ B′
T }.

(25)

Thus, the probability PB′
T

s′|s –where B′
T is a motor trajectory 705

for which the coherence properties mentioned before are 706

not verified– should not depend on previous sensory output 707

s anymore; instead, it simply replicates the unconditional 708

probability that the agent experiences the particular sensory 709

value s’. To the agent, this means that the knowledge of which 710

sensation s it experiences at timestep t does not give it any 711

information on which sensation s′ it is poised to experience at 712
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Figure 4: Experimental setup to assess the effect of the agent’s
movement on the internal sensory symbol topology. A camera, whose
field of view –or receptive field– is drawn as a square with red
borders, faces a grayscale image and moves from one position τ
to another thanks to an action of amplitude ∆b. The corresponding
sensory states s[n] are then captured along time to build the statistics
of the sensory symbol transitions.

t + 1. Importantly, this shows that suitable choices of motor713

explorations are required for building a valid sensory metric,714

as well as giving an internal observation to assess whether715

this condition fails through Equation (25). The influence of716

this motor exploration is experimentally studied in the next717

subsection to illustrate these developments.718

B. An experimental assessment of the influence of the move-719

ment amplitude720

We propose in this subsection to assess the effect movement721

of the agent has on the internal representation of sensory722

symbols through simple simulations, where the agent is now723

allowed to move in a fixed environment. To begin with, details724

about the experiment setup are given. Next, the resulting725

representations are analyzed and discussed.726

1) Experimental setup: let us consider in all the following727

a very simple agent, whose body is made of a planar, rectan-728

gular, camera sat atop one actuator, allowing the agent to only729

move in one direction, see Figure 4. The pixels of the camera730

are sensitive to the luminance of the ambient stimulus, which is731

a fixed grayscale image placed in front of the moving camera.732

In such a case, the ambient space X is then the plane R2, and733

the state of the environment is a function ϵ mapping a position734

(x, y) in the plane to luminance values ϵ(x, y) ∈ [[0; 255]]735

as encoded in the grayscale image. Those values are then736

converted into a sensory vector s ∈ [[0; 255]]W×H directly737

capturing the corresponding grayscale value in the environ-738

ment (the function h() in Equation (16) is thus the identity739

function). In the forthcoming simulations, W = H = 100.740

As already outlined in §II-A, we consider the agent is able to741

move in its environment by applying a single action a [16], i.e.742

by applying a function a to its current absolute configuration743

b = (m, τ) to go to another configuration b′ = (m′, τ ′) = ab.744

In this section, we will mainly study the influence of the745

amplitude ∆b of this action, which is supposed to produce746

a movement of the camera in only one direction and with the747

same amplitude, as illustrated in Figure 4. This is obviously748

a very particular and restrictive action, at least in comparison749

with the more generic motor action framework presented by750

the authors in [16], but it will still allow a comprehensive 751

study of the effect of movement on the internal representation 752

built by the agent. The different action amplitudes ∆b used 753

in the simulations will all be equal to a multiple of σb, a 754

particular amplitude which causes a shift of the perceived 755

information in s of exactly 1 pixel. This actually corresponds 756

to a displacement of the camera receptive field F (b) in X 757

(represented as squares with red borders in Figure 4) of the 758

width of 1 pixel in the plane supporting the grayscale image. 759

Note that the amplitude of the actions is explicitly an external 760

metric that is not available to the agent; all it knows about 761

is that it is using an action with an unknown amplitude to 762

move in its environment. We will show in §IV-B3 that, under 763

the proposed assumptions, the agent will be able to compare 764

the amplitude of its actions on the basis on their sensory 765

consequences. 766

In practice, the experiment is conducted the following 767

way: to begin with, the environment observed by the agent 768

is a grayscale image of a crowded street, partially shown 769

in Figure 4. Then, starting from a fixed (random) position 770

τ0 in the environment, the agent follows a motor trajectory 771

γb[n] made of jumps of fixed amplitude ∆b. This produces 772

a displacement of the agent’s sensor receptive field in the 773

environment at which the agent gathers samples s[n] of its 774

corresponding sensory trajectory γs[n]. After having generated 775

Na times the same action a, the camera is put in one other 776

random position in the image; then, the action a is used again 777

to move the camera Na times in the image. This process is 778

repeated Nr times, so that Nr ×Na sensory samples s[n] are 779

collected. These samples then allow one to build the matrix P 780

as in Equation (13). Then, the corresponding MDS projection 781

of the distance matrix D can be computed to visualize the 782

captured sensory symbol topology. The experience is finally 783

repeated for various amplitudes ∆b. 784

2) Results: The experiment has been conducted for Na = 785

500 and Nr = 100, so that 50.103 sensory transitions are 786

used to build the matrix P for each action amplitude ∆b 787

chosen among {σb, 25σb, 250σb, 1000σb}. Note that being 788

greater than the size Ns = 100 of the sensor, ∆b = 250σb 789

leads to the sampling of an area in the environment that does 790

not overlap with its previous receptive field position. Figure 5 791

represents successively (in each row) the matrices P,D and 792

their corresponding embedding MDS2(D) for each of the 4 793

selected amplitudes (in each column). Let us first consider 794

the evolution of the probability matrix as a function of the 795

movement amplitude (first row). For a very small action ampli- 796

tude, the probability matrix P exhibits a clear diagonal pattern 797

indicating that close sensory symbols (in terms of gray levels) 798

correspond to high transition probabilities; qualitatively, we 799

face more or less the same conditions than in §III-B1 where the 800

observation of the environment changes matches the changes 801

in perception induced by the action of the agent. These two 802

scenarios no longer correspond when the action amplitude 803

rises: the higher the amplitude, the wider the probability 804

distribution. For the largest amplitude, the diagonal pattern 805

cannot even be seen anymore in P and high probabilities do 806

not correspond to close gray levels anymore. This tendency 807

is clearly confirmed when computing the distance matrix D 808

from P (2nd row in Figure 5): for high amplitudes, mostly all 809
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Figure 5: Evolution of the transition probability measure P (displayed with a logarithmic norm), the distance measure D and the representation
of this distance projected using 2-dimensional MDS for increasing movement amplitudes. Each column represents a motor trajectory for a
fixed amplitude ∆b described relative to a 1 pixel shift of its sensor’s field of view. We can see that the diagonal pattern for P and D as
well as the uni-dimensional grayscale manifold are deteriorating as the movement amplitude gets bigger, indicating the inability to capture
spatial coherence properties. The links that connect each symbol on the MDS representation are a k-NN like algorithm that assess how the
agent perceive its symbol continuity.

symbols are now close to each other. Obviously, this results in810

very different 2D projections of the matrix D (3rd row). For811

the lowest amplitudes, we still clearly see a one-dimensional812

manifold, folding on itself when the action amplitude grows.813

But the dimensionality of the manifold is not sufficient to814

tell if the agent correctly captured or not the sensory symbol815

topology. Like we did in Figure 1g and Figure 1d, a k-NN816

algorithm is computed on D and displayed in Figure 5 to link817

each symbol to its closest neighbor, this link being represented818

as a line between two symbols in the projection. Looking819

at the smallest amplitude, the sensory symbols manifold can820

be browsed in the usual grayscale order by following the821

aforementioned lines. On the contrary, this proves impossible822

for larger amplitudes, where lines link together e.g., symbols823

associated with clear and dark gray levels. It is then clear824

that the conditions written as Equations (21) and (22) are not825

verified anymore, with two successively sampled environment826

states associated with two distant positions in space, leading to827

the loss of perception by the agent of the spatial and temporal828

coherence in the environment.829

3) Discussions: Equation (25) states that, for a specific set830

of motor trajectories B′
T making successive receptive fields831

falling apart from one another, the probability of transition832

between successive sensory symbols tends to an unconditional833

probability P
B′

T

s′|s = Ps′ . Importantly, this phenomenon can834

be internally assessed by the agent since both probability835

distributions are only based on sensory symbol observations;836

this then constitutes some internal way for the agent to rate 837

the spatial and temporal coherence of its interaction with 838

the environment. To that end, we propose to compare the 839

two probability distributions Ps′|s=sk –the probability of every 840

sensory value to succeed to a specific sensory value sk– 841

and Ps′ , by using the Jensen-Shannon distance DJS [29], a 842

bounded metric based on the symmetrized version of the 843

Kullback–Leibler divergence [30], and defined as 844

DJS(Ps′|s=sk∥Ps′) =

√
KL(Ps′|s=sk∥M) + KL(Ps′∥M)

2
, 845

with M =
1

2

(
Ps′|s=sk + Ps′

)
, (26) 846

847

with the KL divergence for two discrete probabilistic distribu- 848

tions A and B defined in the probability space W as 849

KL(A∥B) =
∑
x∈W

A(x) log2

(
A(x)

B(x)

)
. (27) 850

851

This results in a distance DJS(.) between 0 and 1, computed 852

for each sensory symbol s′, that is expected to converge 853

towards 0 when both distributions are identical, i.e. when the 854

motor trajectory of the agent leads to having s and s′ inde- 855

pendent. Again, DJS is computed for 4 different amplitudes 856

{σb, 5σb, 25σb, 125σb} with corresponding graphs in Figure 6. 857

The results displayed in Figure 6 show that the JS distance for 858

every probability distribution systematically decreases when 859

the amplitude of the agent’s movement increases, i.e. when 860
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Figure 6: JS distance of every conditional probabilities relatively to
the unconditional probability P (s′) for different movement ampli-
tudes. Each point of the plot represents a JS distance for a single
conditional probability to P (s′). As the amplitude increases, the
divergence of every symbol decreases, getting close to the uncon-
ditional probability.

∆b σb 5 σb 25 σb 125 σb
I(s, s′) 5.36 3.49 1.92 0.94

Table II: Mutual information between sensory symbols s and s′ as a
function of the agent’s action amplitude.

the conditional distribution tends towards the unconditional861

one as described by Eq. (25). In the same vein, we can also862

conduct this comparison by computing the mutual information863

between, roughly speaking, the sensory symbols before and864

after the agent’s movement and defined by865

I(s, s′) =
∑
k,l

psk,sl log2

(
psk,sl
pskpsl

)
, (28)

with Ps,s′ = (psk,sl)sk,sl the joint probability and Ps = (psk)sk866

and Ps′ = (psl)sl the marginal probabilities. This mutual867

information is computed for the same 4 amplitudes as in868

Figure 6, and is reported in Table II. As expected, the mutual869

information drops significantly by about 64% as soon as the870

movement amplitude rises to 25σb, showing again how the871

link between s and s′ is degraded when the agent’s motion am-872

plitude becomes higher between two time steps. Importantly,873

these two comparisons between the two probability distribu-874

tions could provide the agent with an internal way to rate875

the adequation of its motor exploration performed by applying876

actions with (at least for now) unknown consequences, or even877

an internal signature of the amplitude of its own actions.878

V. USING THE METRIC TO GET AN INTERNAL ASSESSMENT879

OF SENSORY REGULARITY880

Now that we have been able to quantify how and why881

the agent’s action modulates its sensory symbol topology,882

let us focus on a more experimental use of the obtained883

representation. Intuitively, and thanks to the introduction of the884

metric df , the agent should now be able to assess if a sensory885

transition is typical or not. This could be used as a way to886

deal with the presence of noise in the raw sensory data, i.e. by887

being able to discriminate close (but not strictly equal) sensory888

values from irregular sensory transitions due to the presence of889

specific events in the environment (movement of an object in890

the scene, changes in the illumination conditions, etc.). This891

section thus aims to present how the agent could internally 892

assess its sensory regularity by first depicting some simple 893

formal elements in the first subsection. Then, the second 894

subsection shows how a naive agent could actually be capable 895

of performing a sensory prediction task, even in the presence 896

of noise, in the vein of the sensorimotor action framework 897

presented by the authors in [16]. 898

A. Internally rating the sensory regularity 899

1) Some formal considerations: to begin with, let us con- 900

sider again Eq. (7) by which δf (s, s′) is defined in terms of 901

the sensory transition probabilities Ps′|s. It can be trivially 902

rewritten as 903

∀s, s′ ∈ S,P(γs(t+ 1) = s′ | γs(t) = s) = f−1(δf (s, s′)) ,
(29)

when f is injective. But because f is also necessarily non- 904

increasing, so must be f−1; this obviously entails that the 905

probability of any sensory transition from s to s′ is as expected 906

a decreasing function of the sensory distance between them. 907

However, we also know from the definition of the metric df 908

from shortest paths in Eq. (9) that 909

∀s, s′ ∈ S,df (s, s′) ≤ δf (s, s′). (30)

We then have immediately 910

∀s, s′ ∈ S,P(γs(t+ 1) = s′ | γs(t) = s) ≤ f−1(df (s, s′)) .
(31)

Then, Eq. (31) guarantees that, from any sensory value s, 911

the probability to land on s′ at a distance df (s, s′) = λ 912

is therefore less than f−1(λ). This property thus gives an 913

intrinsic way of quantifying the regularity of a transition 914

in the sensory experience. Indeed, providing some “metric 915

rejection threshold” τr, the agent might be able to deem all 916

sensory transitions s to s′ of corresponding distance df (s, s′) 917

as irregular (resp. regular) whenever df (s, s′) ≥ τr (resp. 918

df (s, s′) < τr). Obviously, determining whether a transition 919

is regular or not might also be decided directly on the basis of 920

its probability of transition. To stay consistent, we choose to 921

only investigate the properties of our regularity measure from 922

the standpoint of the sensory metric. 923

Still, one should notice that Eq. (31) is merely an inequality, 924

as opposed to the corresponding equality in Eq. (29). To the 925

agent, this means that there may be some particular transitions 926

from s to s′ which are still unlikely even if the agent found 927

df (s, s′) to be small: basically, this criterion can allow false 928

positives, while it guarantees that all transitions rejected on 929

the basis of this metric verify the occurrence probability 930

inequality, that is it does not cause false negatives. 931

2) Example: we selected in previous sections (see Eq. (14)) 932

the function f = − log to map the estimated transition 933

probabilities pkl to the metric prototype δkl. In such a case, still 934

with a threshold τr, an irregular transition should then typically 935

occur with a probability P(γs(t+1) = s′ | γs(t) = s) ≤ e−τr . 936

Then, selecting for instance the threshold values τr ∈ {1, 3, 5} 937

will allow the agent to reject transitions that occur in less than 938

about {37, 5, 1}% of occurrences. 939
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B. Exploiting the sensory regularity for sensory prediction940

We now propose to exploit the agent’s capability to decide941

whether a sensory transition is regular in a sensory prediction942

task in the presence of noise inside the sensory data. To that943

end, the framing of the approach in [16] is first briefly intro-944

duced, followed by the proposed experimental setup, mirroring945

that of this previous contribution. Then, the sensory prediction946

framework from [16] is applied for different scenarios: (i) with947

no noise in the sensory data or with noise, but (ii) without or948

(iii) with rating the sensory regularity. A discussion comparing949

these scenarios is then proposed in the second paragraph.950

1) A short recall on the framing of the problem: The951

contribution from [16] is all about the theoretical conditions952

for the determination of a sensory prediction function for953

a naive agent. More precisely, it is demonstrated how the954

algebraic structure found in this prediction is homeomorphic955

to that of an algebraic group of specific motor actions, the956

conservative actions. An action a is said to be conservative957

if all sensels of the agent exchange the places they sample958

when applying a: equivalently, conservative actions can then959

be thought of as permutations of sensels. Importantly, this960

result has since been extended to quasiconservative actions961

in [23], where partial sensory prediction maps are proposed962

to generalize the sensel permutations of strictly conservative963

actions for the case where some sensels have no identified964

permutations when applying an action a (e.g. for sensels in965

the border of a camera).966

2) Experimental setup: the proposed simulation setup is967

very close to the one already presented in §IV-B1. The agent968

is still made of a moving camera facing a fixed grayscale969

image, as shown in Figure 4. This time, the agent is endowed970

with a W × H = 10 × 10 sensor, and is now able to971

move in four orthogonal directions by applying 5 different972

(quasiconservative) actions: aid, af , ab, ar and al making the973

camera receptive field respectively stay still, move in the left,974

right, up or down directions in X . It is clear that the sensory975

consequences of such actions can be illustrated as a shift976

of information in the image in the opposite direction of the977

agent’s movement: most of the sensels values before applying978

any of these actions can find a successor after. Then, predicting979

the sensory consequence of an action can be summed up by a980

permutation between sensel values, providing all sensels share981

the same excitation function, as already outlined in §III-A2.982

Importantly, the agent has no clue about the incidence of a983

given action nor about their possible relationship. All it can984

do is perform an action and observe its consequences in its985

sensory data [16]. The proposed experimentation then relies986

on the two following steps.987

a) Step 1: building of the sensory symbol topology. The988

agent explores its environment by repeatedly selecting random989

actions in A = {aid, af , ab, ar, al} with identical amplitudes990

∆b = σb (apart from aid), and then infers the distance matrix991

D, in line with §IV-B where the number Na of draws of992

actions is set to Na = 25, and the number of repetition is993

selected to Nr = 2.103. As opposed to the previous case,994

some artificial noise nij is now added to the pixel value vij of995

the image to form the agent’s sensel values3 sij = vij + nij996

3which is further clamped if need be, i.e. if sij exceeds 0 or 255, the sensel
value is set to the closer bound.

before computing the matrix D, with nij a random integer 997

drawn from a centered discrete uniform distribution of width 998

2σn. 999

b) Step 2: building of the sensory prediction function. 1000

Once the matrix D is obtained, the agent performs a second 1001

exploration of its environment so as to build a sensory predic- 1002

tion function for each of its actions in A. As previously argued, 1003

these functions can take the form of binary permutation 1004

matrices [16] Πap
= (π

(p)
kl )k,l of size Ns ×Ns, with ap ∈ A 1005

and Ns = W × H , as each pixel value in the sensory array 1006

is expected to shift in different positions depending on the 1007

spatial effect of the performed action. In these matrices, having 1008

π
(p)
kl = 1 indicates that the kth sensel takes the value of 1009

the lth sensel after applying action ap. For this experiment, 1010

Na = 50.103 and Nr = 1. Initially, every element π(p)
kl of 1011

the permutation matrices Πap is initialized to 1, meaning that 1012

all permutations between the agent’s sensels are possible for 1013

action ap. Then, each time this action is drawn from A, the 1014

agent can discard in Πap
some permutations by observing 1015

that some sensel values do not switch with one another, then 1016

updating the corresponding matrix elements to 0 as per the 1017

update rule 1018

π
(p)
kl [n+1] =

{
1 iff sl[n] = sk[n+ 1] and π(p)

kl [n] = 1

0 else,
(32)

where sk and sl represent the sensel values associated with 1019

the element at the position (k, l) in the permutation matrix 1020

Πap
. We can notice in Eq. (32) that the elements in these 1021

matrices are set to 0 as soon as a permutation is not detected 1022

by the strict equality between sensory values. This limitation, 1023

already outlined in [16], makes this approach fall apart when 1024

dealing with noise in the sensory data or when interacting 1025

with a non-static environment. Benefiting from the previous 1026

developments, we instead propose a revised update rule for 1027

the permutation matrix as 1028

π
(p)
kl [n+1] =

{
1 iff df (sl[n], sk[n+ 1]) < τr and π(p)

kl [n] = 1

0 else,
(33)

where τr is a manually chosen threshold applied to the 1029

built matrix distance D. In the following, τr is tuned so 1030

as to correspond to the smallest threshold that allows for 1031

permutation matrices to converge. It is clear that this is a strong 1032

a priori, and the way the agent can autonomously set this 1033

threshold is still an ongoing work, discussed in the conclusion. 1034

In the same vein, the second step in this experiment requires 1035

a second exploration of the same environment as during the 1036

first step. This definitely a suboptimal process, only proposed 1037

here to illustrate the benefits of the internal assessment of 1038

sensory regularities for the proposed sensory prediction task. 1039

Obviously, the sensory transitions observed when building the 1040

sensory symbol topology could also be used for building the 1041

sensory prediction functions. Importantly, this highlights again 1042

the importance of the threshold τr which should then also be 1043

selected by an appropriate combination of these two steps. 1044

c) Evaluation: convergence of the permutation matrices. 1045

To evaluate the influence of the added noise on the conver- 1046

gence of permutation matrices Πap
, we propose an (external) 1047

criterion C(Πap
) = CH(Πap

) × CD(Πap
) adapted from [16] 1048
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to account for the added noise to the data and defined along1049

CD(Πap) =

∑
kl π

(p)
kl π̄

(p)
kl∑

kl π̄
(p)
kl

, and

CH(Πap
) = 1− 1

Ns log2(Ns)

Ns∑
i=1

Hi,

(34)

with1050  Hi = −∑Ns

l=1
π
(p)
kl

µk
log2

(
π
(p)
kl

µk

)
,

µk = max
(
1,
∑Ns

l=1 π
(p)
kl

)
,

(35)

where π̄
(p)
kl represents the (binary) coefficients of the ideal1051

matrix Π̄ap
associated with the action ap. Basically, CH can be1052

understood as an average measure of certainty in the discovery1053

of the permutations, weighted by the percentage CD of the1054

correctly identified permutations w.r.t. the ground truth to1055

account for the noise, possibly discarding some of them. In the1056

end, criterion C lies between 0 –i.e. the matrix is full of 1’s1057

(initialization) or 0’s (all permutations have been discarded)–1058

and 1 –i.e. the permutation has been correctly discovered.1059

3) Results: As outlined in the introduction of Section V,1060

three different scenarios are evaluated. To begin with, we1061

first consider the case where there is no noise in the agent’s1062

perception by setting σn = 0. Then, using the update rule (32)1063

should allow the agent to correctly build all of its permutation1064

matrices, exactly as in in [16]. As expected, Figure 7a shows1065

that criterion C converges towards its maximal value of 1 for1066

all actions in A. C plots also exhibit sparse jumps at random1067

times, corresponding to the steps where the action was actually1068

drawn in A during the experiment. More importantly, we can1069

see in Figure 7a that only a few realizations of each action1070

ap (about 4 to 6 here) are required for C(Πap
) to almost1071

reach 1, showing how easy it is for the agent to discover the1072

existence of such permutations in its own perception. In the1073

second scenario, a noise of amplitude σn = 2 is now added to1074

the sensation. Obviously, the strict comparison of sensel values1075

in (32) in the presence of such noise (however small) entirely1076

breaks the approach , as shown in Figure 7b. As expected, the1077

criterion C now converges to 0: each Πap
matrices converges1078

to null matrices as all possible permutations of values have1079

been (including erroneously) discarded in the process. Finally,1080

the new update rule (33) is now used to judge the closeness1081

of sensel values on the basis of the built distance D, resulting1082

in the evolution of the criterion C represented in Figure 7c.1083

For this scenario, σb = 1 and τr = 1.63. In the presence of1084

noise, the ability of the agent to assess if a sensation is now1085

close to others allows it to correctly discover the existence of1086

permutations in its perception. But clearly, this task is not as1087

easy as in the first scenario: the number of required actions for1088

correctly evaluating their corresponding permutation matrices1089

is significantly higher. This is apparent in Figure 7c, not only in1090

the slower convergence time of the criterion C but also in the1091

smaller jumps of values in C. Indeed, each generation of action1092

brings less information in the prediction process because of the1093

noise included in the agent’s sensations. But still, the important1094

structures anchoring the sensorimotor interaction the agent has1095

with its environment are still available, allowing it e.g., to build1096

an image of its body [14] or of its peripersonal space [15], at1097
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(a) Evaluation criterion C with σn = 0 and strict equality update rule.
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(b) Evaluation criterion C with σn = 2 and strict equality update rule.
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(c) Evaluation criterion C with σn = 2 and a threshold in D.

Figure 7: Evolution of the evaluation criterion C for the 5 considered
actions in A. (a) With no noise and the update rule (32), C converges
towards 1 in a very short number of realizations of each action. (b) In
the same scenario, but with σn = 2, the update rule (32) do not allow
to detect permutations anymore, resulting in the criterion falling down
to 0. (c) When selecting a correct threshold τr in Eq. (33), the agent
is now able to build the 5 sensory prediction functions correctly, but
with more realization of each action in comparison with (a).

least at the cost of a longer interaction in time. 1098

VI. CONCLUSION 1099

In this paper, and after purely topological considerations, 1100

a metric-based approach is proposed to formalize the ability 1101

of a naive agent to build some subjective sense of sensory 1102

continuity. An experimental framework is then proposed, il- 1103

lustrated and assessed in the context of visual perception for 1104

the discovery of gray or color scales. Then the importance of 1105

the dynamic of the agent’s exploration relative to that of the 1106

environment is studied, highlighting an important spatiotem- 1107

poral coherence principle of this exploration. Finally, with a 1108

sensory closeness notion now available to the agent, a sensory 1109
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prediction task is proved accessible even in the presence1110

of noise, thus extending the robustness of this sensorimotor1111

framework to realistic conditions.1112

Nevertheless, it is clear that this work still suffers from1113

some limitations. For instance, the scalability of the proposed1114

experimental framework is certainly limited. Indeed, although1115

it was not the objective of this paper, the way the regularities1116

are extracted from the raw sensations is certainly not compu-1117

tationally effective, considering the possibly very high number1118

of sensory symbols involved in e.g., color perception for1119

traditional camera sensors. Hierarchical approaches might be1120

preferred [31], but still remain to be explored in the context of1121

sensorimotor approaches to perception. Another limit concerns1122

the notion of sensory neighbors: while being now formally1123

accessible to the agent thanks to the proposed contribution, it1124

still practically requires a threshold to be set w.r.t. the task to1125

be performed. In this paper, this threshold has been manually1126

tuned with two successive steps involving two independent1127

explorations of the same environment, but we could instead1128

rely on a closed-loop approach mixing the discovery of the1129

sensory regularities with the corresponding sensory prediction1130

task: as long as the prediction is not correctly built, the1131

threshold must be adapted accordingly. Still, should the agent1132

be able to perform some sensory prediction task, so should it1133

be able to quantitatively compare its prediction with its actual1134

perception. This should make it capable of detecting outliers1135

in its environment, and in particular, changes in its perception1136

that are not directly correlated to its own actions. This might1137

be the way towards some internal notion of sensorimotor1138

objects and thus would undoubtedly extend the scope of these1139

approaches to more potential applications.1140
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