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From State Transitions to Sensory Regularity:
Structuring Uninterpreted Sensory Signals from
Naive Sensorimotor Experiences

Loic Goasguen*, Jean-Merwan Godon* and Sylvain Argentieri

1 Abstract—How could a naive agent build some internal, subjec-
2 tive, notions of continuity in its sensorimotor experiences? This
sis a key question for all sensorimotor approaches to perception
4when trying to make them face realistic interactions with an
s environment, including noise in the perceived sensations, errors
sin the generation of motor trajectories, or uncertainties in the
7agent’s internal representation of this interaction. This paper
s proposes a detailed formalization, but also some experimental
o assessments, of the structure a naive agent can leverage from
10 its own uninterpreted sensorimotor flow to capture a subjective
11 sensory continuity, making it able to discover some notions of
12 closeness or regularities in its experience. The precise role of the
13 agent’s actions is also questioned w.r.t. the spatial and temporal
12 dynamics of its exploration of the environment. On this basis, the
15 previous authors’ contribution on sensory prediction is extended
16 to successfully handle noisy data in the agent’s sensorimotor flow.
17

18 Index Terms—Sensorimotor contingencies theory, topological
19 grounding, sensory regularities, uninterpreted sensory signals.

20 I. INTRODUCTION

21 It is certainly the case that we deem our sensory experience
22to be “continuous”. Indeed, one crucial property of many
23 psychological perceptual processes is that they generally seem
2« continuous [1]; in point of fact, this intuition is strong enough
25 that it is the converse situations where it visibly is not that earn
26 explicit mentions, such as that of Categorical Perception [2],
27 [3]. However, such continuity does not trivially follow from
ssour knowledge of how perceptual processes are materially
29 —e.g. neurally— mediated [4], [5], [6]. In the instance of visual
a0 perception, for example, it is known that the eye only acquires
a1 very partial snapshots of visual information due to the sparse
32 layout of discrete photoreceptors on its retina as well as the
as typical trajectories of ocular saccades.

s Nevertheless, the continuity of perception subjectively expe-
ssrienced by sensorimotor agents is undeniably useful, allowing
s for the formulation and exploitation of several powerful ideas.
a7 One such idea, for instance, is that of inter and extrapolation.
as If an agent hopes to infer properties of an unknown situation
3s from a structure it has learned from previous experiences, this
s0agent should have a way to quantify in what way this new
41 experience relates to the data it already knows. One very
2common way to deal with this is thus to a priori assign
43 close properties (e.g. evaluated in terms of distances between
s sensory signals features, proximity between spatial positions)
45 to experiences that are themselves alike (e.g. by characterizing

* Loic Goasguen and Jean-Merwan Godon have both equally contributed
to this paper. All authors are with Sorbonne Université, CNRS, Institut des
Systemes Intelligents et de Robotique, ISIR, F-75005 Paris, France.

similar physical properties in the environment, or by rating the
system ability to achieve its task): the agent should then have
the capabilities to distinguish “similar” things, be it external
objects (e.g. a cymbal emitting a sound), sensory attributes
(e.g. the intensity, or the tone of the same cymbal), or even
sensorimotor capabilities (e.g. the association between theses
attributes and the action actually performed by the agent to
emit the sound from the cymbal). These capacities may in
turn provide grounds for the emergence of its felt continuity of
perception: in the end, the agent should then be able to assert
that “Red is closer to Pink than it is to Blue, and it is certainly
closer to Blue than it is to the sound of a bell” [7]. Such
closeness properties are usually leveraged in robotic settings
through the well-known mathematical notion of continuity of
maps R — R™ since the data available to the robotic agent is
usually represented numerically. More generally, the modern
examination of continuity and related problems is the subject
of topology [8], a field of mathematics which is precisely
devoted to the study of what it means for something to be
continuous. This field has indeed proved a powerful tool for
bootstrapping [9], or for modeling geometric ideas in several
sensorimotor works [10], [11], [12], in particular those that
attempt to internally establish properties of external space [13].
Such approaches allow, e.g., motion planning in the internal
sensorimotor body representation of an agent through the gen-
eration, by interpolation, of continuous motor trajectories [14],
or the emergence of a topological representation of the sensor
poses from the sensorimotor flow [15]. But importantly, while
most of these works are rooted in generic topological intu-
itions, they all end up exploiting a discrete setup for which
most of the topological structures are useless. Indeed, most
modern robotic setups rely on discrete time computations
for which we can define other tools like distances based on
similarities or correlations between elements in the agent’s
sensorimotor flow. Then, should we want a naive agent to
make some kind of judgement about discrete samples by way
of its subjective sense of continuity, then this sense cannot
be entirely grounded in topology; in particular, it cannot be
reduced to that of formal continuity. As a consequence, the
(almost) only assessments one might provide a naive agent
with are entirely categorical: it should then only be able to
perform comparisons at a “symbolic” level, denoted by a strict
equality operator between e.g. sensory values. While the pre-
vious cited contributions certainly prove that these operations
allow for the extraction of interesting features or meaningful
internal representations from a naive form of sensorimotor
flow, they also share limitations related to the absence of the
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o3 aforementioned “closeness” concept: what about their robust-
¢ NEess W.I.t. noise, imperfect repetition of motor paths, etc.? The
s very same limitation is also shared by the previous work by
os the authors [16]; in this contribution, the interlink between
o7 motor actions and sensory prediction is explored, through
s the demonstration of the existence of a group isomorphism
90 between them. But predicting the sensory outcome of an action
10is only accessible to the agent by detecting the exact shift
101 of values inside its own sensor array. Endowing the agent
102 with some internal notion of sensory closeness would then
103 make it able to assess its own prediction, and more generally,
104 might allow these sensorimotor approaches to perception —so
105 far mainly restricted to simulated territories— to deal with more
106 realistic conditions.

17 Importantly, most of the previously cited contributions also
10e claim to deal with uninterpreted sensory signals. But in these
100 works, the form assumed by the signal (and the expected
1o transformations thereof) is usually known and leveraged by
11 the agent; what it ignores instead is how these signals relate
12 to the sensorimotor interaction. Then, using a priori distances,
113 metrics, and similarities, maps or representations of the agent’s
114 sensorimotor interaction with a generally unknown environ-
115 ment are built [17]. In this paper, however, no “natural” metrics
nenor algebraic operations on the symbols perceived by the
17 agent are used —in a simular way to [18] where a less formal
1s approach is proposed—, contrary to our understanding of the
119 usual numeric values. This is generally made manifest with the
120 choice to assume that states are coded as numeric values (or
121 tuples thereof), and of special influence with that of whether
122t0 use natural (possibly topological, as previously outlined)
s structures of RY. Thus, most developments which try to
124 achieve robustness and scalability do so via extrapolation and
125 clustering [12], [14], while [19] goes a bit further by evaluating
126 sensory states similarities by their transition probabilities, but
127 for object identification in a sensorimotor context. Never-
12s theless, as already argued, most of these techniques require
e referring to preexisting external metrics, which constitutes
130 assumption about a priori knowledge we would like to avoid.

131 In this paper, we then propose to examine how some notion
1z20f closeness —that we could also relate to some internal
s notion of subjective continuity— in sensorimotor experiences
134 can emerge from uninterpreted sensory information for a naive
135 agent operating in discrete time. To that end, some formal
136 considerations are first introduced in §II. After evaluating a
17 purely topological approach, a metric approach is proposed
wsinstead and the probability of transition between sensory
130 symbols is used to define some appropriate notion of sensory
140 distance. On this basis some simple simulations are introduced
1a1in Section III to illustrate how an agent could leverage some
12 structure by simply judging if its sensory observations are
s close or not. This is illustrated for visual perception through
12 the building by a naive agent of the grayscale or some RGB
1s color model. Then, the role of the agent’s action in this
16 framework is questioned in §IV. More precisely, the spatial
17 and temporal dynamics of the agent’s exploration is shown
1 critical to obtain a meaningful and useful structure of its own
19 sensory symbols. Next, some experiments initially proposed
wsoin [16] are reproduced in Section V to illustrate how the
151 proposed framework could allow an agent to actually build

some sensory prediction functions even in the presence of is
sensory noise. Finally, a conclusion ends the paper. 153

II. TOWARDS A TOPOLOGY OF SENSORY VALUES 154

This first section aims at defining a topology of sensory val-
ues, built on the basis of the agent’s sensorimotor experience.
After a short subsection devoted to the required definitions
and notations, a time variable is added to the formalism in
the second subsection, so as to account for the explicit time
dependency of the agent’s experience, allowing us to introduce
a first time-inherited topology. While being possibly sufficient,
arguments for the introduction of an explicit metric are then
discussed. The third subsection thus proposes the definition
of an internal probabilistic metric and highlights the benefits
and limits of the proposed approach. Section III then exploits
these elements in a simple experimental framework to illustrate
these elements and demonstrate their actual exploitation. 167
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A. A short reminder on notations 168

Let us consider in the following an agent endowed with 1ee
motor and sensory capabilities. Its internal sensorimotor con-
figuration is classically noted as (m,s), where m € M (resp.
s € S) represents the agent’s internal motor (resp. sensory)
configuration as an element of its corresponding motor M 17
(resp. sensory S) set. As shown in [16], the agent’s motor 174
description can be enriched from m € M to b € %, where s
b = (m, 7) depicts the absolute agent’s motor configuration.
b is made of the agent’s internal (and thus known to it)
motor configuration m and of its absolute external (and thus
unknown to it) pose T in its ambient space. Importantly,
as discussed in [16], switching the motor description from 1so
m to b allows us to keep a functional relationship between
motor and sensory data, even in the case where the agent 1s2
can freely move in its environment. But while the agent has
no direct access to b, it can apply some motor actions a on 1ss
b = (m,T) to go to configurations b’ = (m’, ) = ab: the
agent knowns instead how to move in Z. This capability will
be exploited later to apply the following developments to get
an internal assessment of sensory regularity, see §V. Next, the 1ss
environment state is characterized as a function € : X — P, 180
i.e. as a state € € & linking the ambient geometrical space X’ 190
in which sensorimotor experiences occur (classically endowed
with some rigid transformations group G(X)) to the set of
the physical properties P observable by the agent, where & 193
denotes the set of environmental states. Then, ¢(x) represents 1s4
the observable physical properties at point X € X. On the 195
basis of the previous definitions, we can now define the 19
sensorimotor map ¢ as the function ¥ : & x & — S, such 1
that s = (b, e). We can notice here that the sensorimotor 1ss
law does not explicitly depend on time, as is the case of most 1ss
other contributions in the fields [10], [20], [14]. We will now 200
enrich this formalization with an explicit time dependency. 201
It will then constitute our gateway towards continuity in the 202
sensory experience of the agent. Much like in J. Elman’s 203
famous 1990 paper [21] where words are not considered as 24
preexisting categories but more as emergent features in the 205
latent structure of sentences along time [22]. Similarly, the 206
topology of sensory symbols can be considered as the latent 207
structure between them through the sensorimotor experience 2os
along time. 209
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210B. All is well in continuous land

211 1) Introducing time in the sensorimotor experience: The
212 definitions we recalled in the previous subsection actually
213 described snapshots of the agent’s sensorimotor interaction.
214 Nevertheless, these can be easily enriched with an explicit
21s dependency of the various states with a time variable ¢t € 7.
216 Thus, the environmental state ¢ € & can now be written

eI xX =P

(t,x) — €(t, x). M

217 With this notation, we can express an instantaneous snapshot
218 of the environmental state as the partial function

€ :X € X — e(x) =€(t,x) € P. 2)

219 Therefore, any temporal succession of environment states can
220 be described as a trajectory

Ye:t€ T e €6E. 3)

221 Correspondingly, the agent’s absolute configuration trajecto-
22ries and sensory ones are respectively denoted by

Ww:te T — b€ B, 4)

223 and

Ys = Ibe : te T — St = ¢(7b(t)57€(t)) €s. (5)

24 In the following, we will consider a particular subset of
225 such temporal environmental, motor, and sensory trajectories
26 representing the set of effectively valid trajectories. We thus
227 instead restrict ¢, € &5 C F (.7, &) so as to include possible
2g external constraints on the succession in time of physical
220 properties in the agent’s environment. In the same vein, one
230 defines v, € Ao, where B is the set of all effectively
231 performable motor configurations, possibly allowing to capture
232 €.g. limitations on velocity and their smoothness as actuated by
233 the agent. Consequently, the effectively valid sensory trajecto-
aaaties s lie in S, with a natural mapping So — Bo X E7.
25 2) Towards a sensory topology: Let us now get back to
236 the intuition of the sensory experience being continuous, as
237 discussed in the introduction of this paper. More precisely, this
238 continuity is that of the agent’s sensory experience unfolding
23 with the time . during which it occurs. In (purely) topo-
240 logical settings, an argument examined e.g. in [23] shows that
241 searching for (formal) continuity of the s sensory experiences
2221s entirely dual to searching for topological constraints on
2sthe sensory values s € S. These two viewpoints intersect
ass at the final topology of the 7, [8], a topology on & which
245 precisely encodes which structural constraints on the s sensory
246 values is needed to make (all) the 5 experiences continuous.
27 While this final topology seems to solve —at least from a
243 purely topological point of view— the initial problem, we have
29t0 keep in mind that most robotic setups rely on discrete
250 time computations. The resulting final topology thus makes
251 S discrete. Intuitively, this occurs because if the agent only
252 experiences jumps in times such that no instant follows
253 continuously from the previous one, then it does not need
254 to introduce new continuities in its sensations to make their
255 succession continuous. So how can we solve this issue? In the
256 following subsection, we propose to switch to metric geometry,
257 which, although less general, might be better suited.

C. Introduction of a statistical sensory metric 258

Introducing corresponding metric considerations, however, 250
raises new issues: given an abstract sequence of points in 2e0
a (metrized) point cloud, how can we determine whether it 2
represents a regular/continuous trajectory? For example, how 262
can we decide that a jump in values across a distance of e.g. 5 23
units corresponds to a regular transition, or instead represents 2
a break in continuity? Without a priori assumptions about the 2ss
expected reasonable dynamics of the experience, it seems these 266
numbers are entirely arbitrary, and related to some external 267
knowledge that we want the agent to do without. Instead, s
we propose to define a statistical sensory metric, for which 269
the agent ought to set to zero any distance between sensory 2o
values that immediately (and not continuously) follow one 271
another. Thus, the temporal length between successive sensory 272
samples is now central to how the agent perceives them. 273
Consequently, we should first assume that the agent is able 27
to compute distances (or durations) between two timesteps in 275
. On this basis, we will assume in all the following that the 27
laws of the sensorimotor experiences the agent can observe 277
are time homogeneous. This hypothesis then indicates that no 27
statistical measurement the agent can empirically obtain from 27
its sensorimotor experience may depend on the absolute value 2s0
of the timestep indexing its interaction. In particular, it should 2s
be a natural consequence of the particular choice of timestep 2s2
being an entirely external convention, implementing a sort of 2ss
independence of choice of reference. 284

Let us now define the likelihood Py s over all experiences zss
that the sensory value s’ immediately follows s in the senso- 2ss
rimotor flow of the agent along 287

Pyjs =P(y(t+1) = s’ | y(t) =s). (6)

Importantly, from the previous time homogeneity assumption, 2ss
Py s does not depend on the current time ¢ it is computed. 2s
From there and following the intuition that “closeness” of sen- 20
sory values s and s’ should increase whenever the probability 2e1
of the transition s — s’ does, we propose to define a simple 20

metric prototype via 293
0f(s,s') = f(Pyjs) Vs,s' €8, @)
where f should verify the two conditions: 294

1) f:]0;1] — R4: f only needs to map probabilities in 2es
[0; 1] to nonnegative values, i.e. dissimilarity values; 20

2) f is non-increasing: probable transitions (i.e. Fys close 2o7
to 1) should result in low dissimilarities. 208
These conditions do not make d; a metric since it only verifies 20

the non-negativity property. We therefore extend it via minimal so0
path considerations, i.e., by defining a distance d;. Let R®S a0

be the set of all paths from s to s’ , with 302
(s =50 s k=1 k) — gy ¢ RS (8)

We can then define d; along 303
ds(s,s’) = inf R®. 9)

This in turn enforces the properties of triangular inequality sos
and reflexivity. In the case where S is finite, this reduces sos
to the familiar computational form of finding minimal paths s0e
on a finite graph with nonnegative weights (corresponding soz



ssto the 0f(s,s’) edge from s to s’). It should also be noted
aos that this does not guarantee symmetry at its core because
sto Py|s may differ from Pyg. Then the 6y weights naturally
s define a directed graph (digraph), which does not impair
sizthe search for minimal paths but does however, lead to a
sisnon-symmetric d; function. While there exist several ways
s14to obtain a closely related undirected graph from any given
a5 digraph, we hypothesize instead that symmetry should occur
a6 as a contingency of the sensorimotor exploration in most real
a17 world examples. Therefore, we do not enforce such corrections
a8 for now and will instead assess this hypothesis in the resulting
ate graph.

20 [II. BUILDING THE SENSORY TOPOLOGY FROM STATISTICS

a2t The previous section was devoted to the mathematical roots
a22 of the approach. We will now illustrate how these points can
a3 be exploited inside a simple experimental framework which
s2¢ could allow a naive agent to leverage a structure on its sensory
a5 signals from its own observations. To begin with, a detailed
a26 description of the simulation setup is proposed. On this basis,
327 two main experiments are conducted: the first one deals with
s2s the construction of a probabilistic sensory metric and the
a29 corresponding low-embedding representation for a grayscale
a3 camera sensor; the second one extends the reasoning to a more
sa1 complex representation when using RGB image sensors.

s2 A. Experimental setup and sensory distance estimation

ss 1) Experimental setup: In all the following, we consider
s an agent endowed with a camera sensor observing a 3D
sss scene. Since we are for now dealing with sensory values
ass and their transitions only, the visual perception is basically
a7 simulated by playing a video file v[n] of size W x H, where n
ass represents the video frame number. This is a (temporary) very
ase restrictive setup, which will be enriched later when discussing
a0 the influence of the movement of the agent (see §IV). Also,
a1 the experience occurs in discrete time, for which each timestep
a2 verifies t = ¢, = nTs with T the sampling period. In practice,
ass we have v[n] = (v;;[n]); ;, with i € [0; W —1], j € [0; H—1],
a4 and where v;;[n] depicts the pixel value of the video at frame
ssn, row 4 and column j. Each pixel v;; = (Ri;,Gyj, Bij)
ssis represented as a traditional color tuple € [0;255]3. The
a7 agent’s sensory state s[n| is then simulated by applying some
s instantaneous function g : [0;255]* — S to the video, i.e.

s[n] = (si5[n])i,j, such that s;;[n] = g(vi;[n]), (10)

ue where s;;[n] represents the (i, ) sensel value at time n, row
ss0 ¢ and column j of the agent’s camera sensor. Introducing g(.)
ss1in (10) allows to explain formally how a physical state of the
ss2 environment (which can be envisaged here as the pixel values
asss of the video) is turned into the internal sensory state of the
as¢ agent. But one has to keep in mind that the agent does not
ass know the relation (10), it does not even have any knowledge
ass about the meaning of these numerical values: they are only
as7 uninterpreted symbols to it, with no a priori structure, order,
sss nor any way to actually compare them. In addition, the set S
sso may well be isomorphic to the set of actual pixel values, but
aeo there may also have a lower number S of symbols than pixel
a1 values, resulting in a compressed representation. Without loss

of generality, S will then be defined as the finite set of positive s
integers {0,...,S—1} with S = Card(S), where each sensory ss
symbol s; € S can equally be written directly as the integer ss
k, and we will adopt a traditional s;; € [0;S — 1] coding ses
convention for the numerical values of each (i, j) sensel, with s
S = 256 for traditional camera sensors. As outlined in §II-C, a7
it is then proposed to look at the relationship between those sss
S uninterpreted (numerical) symbols through the statistics of s
their transitions. Let us now detail how these transitions are s
actually captured. a7t

2) Description of the experiment: In all the following, we a7
will assume that all W x H agent’s sensels contribute equally s7s
to the building of the same representation, i.e., all sensels share 37
the same excitation function linking the environment state to s7s
the agent’s sensations as written in Equation (10). Then, we a7
define a Sx S matrix M = (my;),; counting all the transitions s77
of sensel values along observations, with 378

my[n + 1] :mkl[n]-i-ZCkl(i,j)[n], (11)

with (i, 5) € [1; W x H]?, my;[0] = 0, and k, [ both represent a7
two symbols in S (that is, sensor output values s, and s; € S). a0
Cri(%, j)[n] aims to capture the existence of a change of value ses
of the (4, 7) sensel from value k at time n to value [ at time ss
n+1, ie. 383

Cra(i, g)[n] = {

1 iff s;5[n] =k and s;;[n+ 1] =1,

. (12)
0 otherwise.

From (11), we can then compute the probability of transition ss
of sensels values gathered in a S x S matrix P = (pg;)s,; with

@

85
mkl[n]
5—1
2 =0 Miq[n]
the probability at time n for any sensel to see its value sss
changing from symbol k to . Obviously, py;[n] is expected to as7
converge towards P s, as time n tends to infinity. Then, once sss
the estimation of the matrix P has converged after a fixed sse
number frames N, it is turned into a S X S metric prototype s
matrix A = (8;)x,; according to Eq. (7) where f = —log! is so1
selected, with 302
k1 = — log(pri[V])- (14)

Again, any function verifying the two conditions in §II-C sss
could have been selected. Then, Dijkstra’s algorithm [24] is 304
applied to the A matrix along Eq. (9) to produce the S X S 305
distance matrix D = (dj)g,;, providing the agent with the ses
result metric d we set out to discover 397

(15)

pri[n] = (13)

dg(s,s") = d_iog(Sk, 1) = di,

which is finally visualized in 2D or 3D through a multi- s
dimensional scaling projection method (MDS [25], [26], [27] s
or ISOMAP [28]). 400

B. Results for a grayscale perception 401

The W x H = 856 x 480 video used to conduct the 402
experiments comes from a slightly stabilized camera filming 43

UIf a probability of transition is equal to 0, the corresponding distance is
set to NaN by convention.



s an evening walk in Midtown New York City in the rain?. It
a0s consists of a natural city scene filmed in real time from a
aos first-person point of view. A grayscale (cropped) preview of
407 the video is shown in Figure la. It is clear that this environ-
a0s ment exhibits some nice local temporal and spatial continuity
a09 properties: the values of each pixel change smoothly in time,
410 while local pixel values are highly correlated. While these are
411 some nice properties to illustrate the building of the sensory
sz topology from statistics, the importance and formalization of
a3 these hypotheses w.r.t. the agent’s movement capabilities is
siadiscussed in §IV.

415 To begin with, we will consider a function g, mapping the
a6 (R;;,Gij, Byj) color coding of the video pixels v;; to the
a7 sensel values s;; € [0; 255] of the agent, such that

sij = g(vij) = h(round(mean(R;;, Gij, Bij))),  (16)

sis where h is a function that can be tuned to artificially modify
a9 the agent’s perception. Note that g acts here like an exci-
a20 tation function, and is thus supposed to be identical for all
a21 sensels. Two cases for h are discussed in the following: either
w22 h() =id() in §II-BI, corresponding to the case where the
sz agent’s grayscale perception exactly matches the grayscale
sea version of the video, or h() = sawtooth() for which the
s25 perception is altered on purpose to exhibit the folding of the
26 agent’s internal representation between black and white pixel
427 values in the video, as detailed in $III-B2.

s 1) First case: h() is the identity function:

429 a) Estimation of the probability of transition between
a0 symbols: Since h() = id() in Eq. (16), the agent’s sensory
1 values are made of S = 256 uninterpreted symbols, whose
a3z values along frames can be used to compute their probability
a3 Of transition along Equation (13). The resulting S x S matrix
44 P is shown in Figure 1b and le after n = 5 and n = 10*
a3s successive sensory transitions respectively. Note that the S
a3 symbols are ordered in the figure according to their numerical
s37 values: this is something the agent cannot actually do for now,
a3s but this ordering has no effect on the reasoning and helps in
as9 understanding the process. From Figures 1b and le, we can
a0 see that the most probable transitions are all placed along the
as1 diagonal of the matrix P, meaning that the most probable
442 sensory output at the next time step is the very same symbol,
azeven at the very beginning of the experiment with n = 5.
aa4 Further, the a priori ordering of symbols allows to observe that
ass the diagonal is thick and fades away as the symbols values are
e distant: this clearly indicates that the most probable transitions
as7 are the ones to symbols that have close colors, from an external
as point of view (again, the a priori ordering is unknown to
w9 the agent). Conversely, the least probable transitions are the
as0 ones to distant symbols. Those results are in accordance with
451 the intuition that close time intervals lead to close sensory
sszoutputs, and that some regularity of the sensory experience
ss3 has been captured. Note that since the probability estimation
45418 evaluated on occurrences, the case where no transitions at
a5 all between two symbols are observed leads to a probability
a6 of O (represented in white in Figure 1b); this appears at the
457 beginning of the experiment only (see Figure le for n = 10%)
ass and mainly concerns distant symbols with a very low transition
450 probability, i.e., in the two corners of Figure 1b.

Zhttps://youtu.be/eZe4Q_58UTU by courtesy of Nomadic Ambience.

b) Computation of the distance matrix: On the basis s
of the previous probability of transitions between symbols, ss1
we can compute the metric prototype in the form of the 4
S x S matrix A whose elements are given by Eq. (14). s
Then, Dijkstra’s algorithm [24] is performed on A to obtain s
the S x S distance matrix D. The resulting matrix D is s
represented in Figure 1c and If for n = 5 and n = 10% 4
respectively. Obviously, one should note that when direct 47
transitions between symbols are missing in P (and thus in A) 4es
as shown in Figure 1b, Dijkstra’s algorithm will nonetheless 4ss
generally find an alternate path towards those symbols by 470
finding adequate successive transitions; consequently the D a7
matrix is expected to be fully defined (i.e. with all coefficients 472
finite) as long as the agent has experienced enough sensory 47
symbols transitions. This is exactly what is shown in Figure lc, 74
where the corresponding distance matrix D shows distances 475
between all sensory symbols, while transitions between some 476
of them have not been directly observed yet. We can also 477
see from both Figures 1c and 1f that previous low transition 47s
probabilities are now associated with high distances (and vice 47
versa). In addition, we recognize the same diagonal pattern, 4so
which now corresponds to low distances. We can also see a1
that D is almost symmetric, except in the corners, where lie 42
most of the high distances, corresponding to the least probable sss
transitions of sensory symbols. This is not an encoded property s
of the agent’s experience but instead seems to appear as sss
a contingency of the sensorimotor exploration, as outlined sss
in §II-C. Finally, a qualitative comparison between the two 47
D matrices obtained at the beginning (Figure 1c) and at sss
the end (Figure 1f) of the experiment shows that the very sss
same structures (symmetry, diagonal pattern) are captured very 4so
quickly. This is certainly thanks to the identical contribution ss1
of all pixels to the building of the same statistic, as one time ss2
step actually captures W x H = 4.10° sensory transitions. s

c) Visualization of the representation: Finally, we can s
qualitatively assess the shape of the captured sensory symbols 4ss
topology by projecting the resulting distance matrix D into a s
space of lower dimension. The 2D visualization of the matrix a7
D through a MultiDimensional Scaling (MDS) projection is 4ss
represented in Figures 1d and 1g. Note that such a method a9
requires the input matrix to be symmetric; hopefully, we soo
qualitatively showed it was almost the case so that MDS can be so1
actually applied on the symmetrized matrix 1/2x (D+D7). In so2
both Figures 1d and 1g, each circle represents a single symbol sos
where the inner color corresponds to the color perceived from sos
an external point of view (color that also matches the classical sos
gray-level scale in this case, since f = id()). We can see from s
this representation that the obtained manifold is almost one- so
dimensional and captures the classical gray scale from white to sos
black in a continuous manner, even at the very beginning of the sos
experiment. This can be evaluated by looking for the 2 nearest sio
neighbors of each symbol in the internal metric (i.e. with the s
neighbors computed on D and not on the representation); these si2
neighbors are then linked together in the projection by a line sis
drawn in the figure. Browsing the manifold by following these sis
lines allows to go from white (coded as the number 255) sis
to black (coded as a 0) almost without any discontinuity in sie
the symbol order at the end of the experiment. Interestingly, sz
we can see that the projection obtained at the early stage of sis
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Figure 1: Building of the internal organization of sensory values. (a) Grayscale version of one frame of the video used in the experiment.
(b)(e) Estimated probability matrix P at n = 5 and n = 104, ie., at the very beginning of the experiment. (c)(f) Estimated distance matrix

D atn=25and n=10%

i.e., at the end of the experiment. (d)(g) Corresponding low-dimensional embedding of D at n = 5 and n = 10*:

we can see the intuitive grayscale organization of pixel values, discovered by the agent from its sensory values transitions.

s19 the experiment already exhibits a one dimensional manifold,
s20 with a thicker and less organized ordering of symbols. Again,
s21 the contribution of all sensels to the same statistic certainly
s22 explains this nice quick convergence of the representation.
s23 Thus, from the final graph, we can conclude that the agent
s2« has been able, starting only from the probability of transition
s2s between uninterpreted sensory symbols, to discover the gray
s26 level scale. Such a capability will be further exploited for
s27 different applications, like sensory prediction, see §V.

ss 2) 2nd case: h() is a sawtooth function: We will now
s29 consider a case where the agent’s sensory output does not
s30 exactly match the original grayscale world as per Eq. (16),
sst where h() = sawtooth() is defined along

2z if0<z <127

2(z — 128) otherwise, a7

sawtooth(x) = {
seefor x € [0;255] only. With such a change, a single internal
s33 sensory symbol (e.g., 54) will now correspond to two possible
ss world grayscale values (27 and 155). Intuitively, such a change
53518 expected to create continuity that does not exist initially
s3 between symbols through a closer proximity between values
se7 representing dark and light shades. The previous process
ssis then repeated and the resulting 2D MDS embedding is
ss9 depicted in Figure 2: as expected, we identify a looping
s¢o monodimensional manifold. In the figure, each sensory symbol
se1is depicted as a circle whose color represents its internal
se2 coding (i.e., a numerical value from 0 to 254 with a step of 2),
sa3 represented as grayscale values for convenience. This color no
s« longer matches the grayscale values of the world it represents
ses because of the introduction of the sawtooth function. But the

Figure 2: 2D MDS projection of the sensory symbols when a saw-
tooth function links together world gray values to sensory symbols.
Each symbol is represented as a circle whose color represents the
internal coding. The corresponding symbols in the outside world are
represented as a looping arrow around the projection. Internal black
(symbol 0) and white (symbol 255) symbols are now close to each
other, differently from Figure 1g.

continuity initially captured in the previous experiment leads s
to a looping representation where the two opposite symbols, s«
0 and 254, are now close to each other in the internal rep- s
resentation as they both correspond to close grayscale values s
in the environment. Such a conclusion might be obvious in sso



ss1 this specific case, but it highlights that the internal, subjective
ss2 representation of the sensory symbols’ topology might actually
ss3 differ greatly from our initial intuition as it depends on the
ss¢ way the agent’s sensors encode sensory information. The same
sss remark could apply to faulty sensors, whose output symbols
sse could be modified or rearranged because of some failure in
ss7 the information acquisition process; the proposed approach
sss could then allow the agent to (re)build an adequate internal
sse representation, though still intrinsically limited by its own
se0 defective sensory capabilities.

sst C. Results for color perception

s2 To further illustrate the approach, we will now endow the
se3 agent with some color perception capabilities. Then, in this
s+ subsection, the initial color tuples (R;;, Gyj, Bij) € [0;255]3
ss coding the video pixel values v;; are now mapped to the
ses S = o agent’s sensels values s;; € [0;® — 1] along

sij = 9(vij) = Qa(Bij) + aQa(Gij) + *Qa(Ri;), (18)

se7 with Q4 (.) a quantification function defined by
X
Qo : X = Qu(X) = round <255 X (o — 1)> , (19

sewith X € [0;255] and Qn(X) € [0;a — 1]. Note that
seo while the symbol ordering was quite obvious for grayscale
s70 values from an external point of view (e.g., the natural order
s71 from O to 255) for the various matrices M, P, A, and D,
s72 this no longer holds for these color sensory output symbols.
s73 Nevertheless, the order in which they appear as line or column
s7+ indices in these matrices is not relevant since the only relevant
s7s information about their closeness is entirely independent of
576 how these symbols are actually ordered. In all the following,
s7« = 10 is selected, so that the agent’s sensory space is made
ssof S = o = 1000 uninterpreted (numerical) symbols. On
s70 this basis, all the previous steps are successively applied. The
sso resulting D matrix can then be visualized through a low-
ss1 dimensional embedding technique like ISOMAP [28]. The
se2 result of this projection performed in 3D is shown in Figure 3.
ss3 The obtained representation is in line with some classical
ss representations of RGB color models, like the HSL or HSV
ses coding of color. Indeed, the 3D point cloud first appears to
sse capture some color order very similar to the classical hue
se7 color wheel, where pure colors are represented through an
sss angular position on a circle, as depicted in Figure 3a. But the
ss0 3D projection also exhibits a third axis linking very dark to
se0 very light shades for each color of the hue wheel, similar to
so1 the lightness axis in the HSV color coding, see Figure 3b. In
se2 order to assess in a more quantitative way the similarity of
se3 this low-dimensional projection with different color models, it
se4 1S proposed to compute a Frobenius distance J along

F =Dl =Dl I, (20)

sos where D, is the S x S distance matrix between all the sensory
se6 symbols observed during the experiment for the color model
svm € {RAND, RGB, HSL, HSV}, and |.| the standardization
ses operator. The resulting distances are reported in Table I,
se0 Where the HSV color model better fits the obtained projection,
e0 as initially qualitatively intuited. The same study can be
e01 conducted by computing the k-nearest-neighbors between the

Green

Yellow

(b) The same 3D projection seen as a cylinder, with the lightness axis drawn
as arrows from black to white.

Figure 3: Interpretation of the 3D ISOMAP projection of the matrix
D when the agent is endowed with color perception capabilities. (a)
Representation obtained when viewing the projection “from below”:
we can notice that all the sensory symbols are arranged by color,
matching the intuitive color wheel which has been added to the graph.
(b) Another point of view on the 3D sensory symbols representation:
in addition to the color ordering highlighted in subfigure (a), a third
axis supports the variation of lightness. The obtained projection can
thus be understood as analogous to the HSL cylindre or biconic
representation of the RGB color model.

obtained representation and the different color models. The
result of such a study is also reported in Table I for k£ = 75
and exhibits the same conclusion. But one still has to keep in
mind that finding the best fitting color model is not important
by itself, since it is only exploited to illustrate the smooth
transitions from one color symbol to another, without apparent
discontinuity in the low dimensional embedding, as a way to
represent the information actually captured by the agent in D,
which is, in the end, the only data it exploits in the following.
Then, with such a representation, the agent is now able to
assess if the sensory symbol associated with the rose color is
closer to the one associated with the red color than it is to the
green one thanks to its internal metric matrix D.



Color model || RAND | RGB HSL HSV
Distance F 1320 947 890.4 | 857.2
75-NN rate 8.4% 444% | 45.5% | 47.5%

Table I: Comparison between different color models, with RAND
representing a random organization of the observed color symbols.
(2nd line) Distances F between the low-dimensional projection
and the corresponding color model. (3rd line) Rate of 75 nearest
neighbors between the obtained representation and the corresponding
color model.

615 IV. LOCOMOTIVE MOTIVES: A CASE FOR FITTING
616 EXPLORATION AND EXPLOITATION DYNAMICS

s7  The previous developments were largely devoted to the
e1s relationship between two internal observations: the transition
o9 probabilities and the resulting metric. We showed how this
e20 information allows the agent to build some notion of closeness
621 between sensory symbols —which could be understood as
622 some subjective notion of sensory continuity— from certain
e23 successions of sensory experiences being more likely, or
e24 typical, than others. But such considerations clearly rely on
e2s the idea that typical environment states also display certain
e26 typical patterns themselves. From an external point of view,
ezone would certainly declare that “environment states are
e2s (mostly) continuous”, both in time and space. This underlying
s20 assumption has not been dealt with so far, especially since the
e30 agent was passively observing sensory symbols changing over
et time in the previous experiments and not actively exploring its
ez environment. This section thus aims to study which external
eas structures in the states of the environment could explain the
e3¢ relationships between the agent’s motor actions associated
e3s With a sensory experience and the observed regularity, effec-
e36 tively giving action a defining role in this internal assessment.
e37 We then propose to study the influence of the agent’s action
e3s amplitude on its subjective sensory symbol continuity when
e39 it interacts with a mostly continuous environment. To that
es0 end, additional formal considerations are introduced in the
e+t first subsection. On this basis, some new experiments are
es2 proposed in the second subsection to highlight the importance
e43 of movement in building this subjective continuity.

eaa A. Fitting spatial and sensory dynamics in the exploration

ess 1) Spatial and temporal coherence: The results obtained in
ess Section III were based on a purely passive observation of a
ez changing “natural” visual scene —where the word natural here
e4s refers to our own usual and intuitive sensorimotor experience—
e49 allowing the agent to build a metric on its sensory symbols.
eso But this distance should highly depend on the environment
es1 states and the successive configurations with which the agent
es2 samples it along time. More precisely, this implies that the
es3 environment’s state should exhibit some typical patterns, both
es¢ in space and time, in line with the manner in which the agent
ess conducts its interaction, to make apparent the notion of certain
es6 sensory symbol transitions being “more typical” than others.
es7 Thus, one first condition to fulfill is spatial, mandating that
ess €.¢. immediately next to a red region X’ of ambient space X
es0 it is more likely to be another region X’ that is orange than
eeo cyan itself. In other words, we would generally expect the two
661 EVENLS

{VE(t)IX/ =eo} and {’Ye(t)IX“ =€} 21

to largely depend on one another when X’ and X denote es2
close (and small) regions of space. Furthermore, one second sess
condition is temporal, so that the environment’s state at any es
localization X’ does not immediately change too randomly, so ess
that the two events 666

{7e)|x = €0} and {ye(t + At)jxr =1} (22)

are conditioned on one another when Atf remains sufficiently es7
small. We should insist on the fact that this coherence property, sss
however, should only be local and relative to the agent’s eeo
exploration dynamics. It is clear that the color of a point x € X 670
and time ¢ € .7 does not depend on which colors appear two &7
kilometers away, one and a half days from there. On the other &7
hand, should the agent instead perform a two-kilometers long &7
movement between two successive time samples, it should not ez
be able to infer any relationship between successive sensory ezs
readings from the sole spatial coherence constraints. 676

2) A formal account of spatiotemporal coherence: Let us e
now generalize the previous sensory transition probabilities (6) e7s
by introducing, for any (sub)collection of motor trajectories ez
%ly C B, 680

B
Ps’ls

={%({t+1)=5|%(t)=sand w € B5}, (23)

for which Pf;’zgg = Py|s . Such a (slight) generalization ee:
allows to highlight how a specific set of motor trajectories ac- ss2
tually condition the sensory transitions available in the agent’s ess
sensorimotor flow. More precisely, we introduced in [16] the es
sensor receptive field as the specific region of space for which sss
the state of the environment is sufficient to fully determine the ess
agent’s sensory state s. Formally, a sensor receptive field can es7
be seen as a function F' : b € B — F(b) C X verifying 688

Ve, eq € E,Vb € B, 690
€11 Fm) = €2/Fm) = Y(b,e1) = P(b,e2) =s. (24) gy

Then, let us now consider A, as a set of motor explorations ess
~ such that the receptive fields F'(y,(t)) and F(yw(t + 1)), s
which condition successive sensory outputs 7s(t) and ~s(t + ess
1), fall far apart from one another. Then, based on our es
prior assumptions, the corresponding local environment states es7
Ve F(n(t+1)) (t + 1) and ¢ p(q,(2)) () should be independent: e
the physical properties available to the agent in the environ- ees
ment, restricted to the regions of space it would sample at time 700
t and ¢ + 1 by following a motor trajectory v, € %', should 7or
not depend on each other. It then follows that (¢t + 1) = 7
Yy (t41),el P (1) (E + 1) and 4s(t) = Yoy (). (0)) () 708
should be independent themselves. As a result, we have 704

©

4

‘@/
Pyl = (st +1) =5 | v(t) =s,7 € B'r},

(25)
={%t+1)=5"|mec By}

Thus, the probability Pﬁf —where A'; is a motor trajectory 7os
for which the coherence properties mentioned before are 7os
not verified— should not depend on previous sensory output 7o
s anymore; instead, it simply replicates the wunconditional 7os
probability that the agent experiences the particular sensory 7oe
value s’. To the agent, this means that the knowledge of which 710
sensation s it experiences at timestep ¢ does not give it any 71
information on which sensation s’ it is poised to experience at 72
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Figure 4: Experimental setup to assess the effect of the agent’s
movement on the internal sensory symbol topology. A camera, whose
field of view —or receptive field— is drawn as a square with red
borders, faces a grayscale image and moves from one position T
to another thanks to an action of amplitude Ab. The corresponding
sensory states s[n] are then captured along time to build the statistics
of the sensory symbol transitions.

nst + 1. Importantly, this shows that suitable choices of motor
714 explorations are required for building a valid sensory metric,
7i5as well as giving an internal observation to assess whether
7e this condition fails through Equation (25). The influence of
717 this motor exploration is experimentally studied in the next
718 subsection to illustrate these developments.

79 B. An experimental assessment of the influence of the move-
720 ment amplitude

721 We propose in this subsection to assess the effect movement
720f the agent has on the internal representation of sensory
723 symbols through simple simulations, where the agent is now
724 allowed to move in a fixed environment. To begin with, details
7s about the experiment setup are given. Next, the resulting
726 representations are analyzed and discussed.

727 1) Experimental setup: let us consider in all the following
7282 very simple agent, whose body is made of a planar, rectan-
720 gular, camera sat atop one actuator, allowing the agent to only
730 move in one direction, see Figure 4. The pixels of the camera
731 are sensitive to the luminance of the ambient stimulus, which is
722 a fixed grayscale image placed in front of the moving camera.
733 In such a case, the ambient space X is then the plane R2, and
734 the state of the environment is a function e mapping a position
75 (x,y) in the plane to luminance values e(z,y) € [0;255]
7eas encoded in the grayscale image. Those values are then
737 converted into a sensory vector s € [0;255]" < directly
738 capturing the corresponding grayscale value in the environ-
noment (the function h() in Equation (16) is thus the identity
720 function). In the forthcoming simulations, W = H = 100.
741 As already outlined in §II-A, we consider the agent is able to
742 move in its environment by applying a single action a [16], i.e.
723 by applying a function a to its current absolute configuration
74b = (m, T) to go to another configuration b’ = (m’, 7/) = ab.
7sIn this section, we will mainly study the influence of the
ns amplitude Ab of this action, which is supposed to produce
7472 movement of the camera in only one direction and with the
78 same amplitude, as illustrated in Figure 4. This is obviously
749 @ very particular and restrictive action, at least in comparison
750 with the more generic motor action framework presented by

the authors in [16], but it will still allow a comprehensive 7s
study of the effect of movement on the internal representation 7s2
built by the agent. The different action amplitudes Ab used 75
in the simulations will all be equal to a multiple of o}, a 7
particular amplitude which causes a shift of the perceived 7ss
information in s of exactly 1 pixel. This actually corresponds 7s
to a displacement of the camera receptive field F(b) in X 7
(represented as squares with red borders in Figure 4) of the 7ss
width of 1 pixel in the plane supporting the grayscale image. 7s
Note that the amplitude of the actions is explicitly an external 7eo
metric that is not available to the agent; all it knows about 7
is that it is using an action with an unknown amplitude to 7-
move in its environment. We will show in §IV-B3 that, under 73
the proposed assumptions, the agent will be able to compare 7
the amplitude of its actions on the basis on their sensory 7es
consequences. 766

In practice, the experiment is conducted the following 7
way: to begin with, the environment observed by the agent 7es
is a grayscale image of a crowded street, partially shown 7es
in Figure 4. Then, starting from a fixed (random) position 770
Tp in the environment, the agent follows a motor trajectory 771
Y[n] made of jumps of fixed amplitude Ab. This produces 772
a displacement of the agent’s sensor receptive field in the 77
environment at which the agent gathers samples s[n] of its 77
corresponding sensory trajectory 7s[n]. After having generated 775
N, times the same action a, the camera is put in one other 77
random position in the image; then, the action a is used again 777
to move the camera N, times in the image. This process is 77s
repeated NV, times, so that N,. X N, sensory samples s[n] are 779
collected. These samples then allow one to build the matrix P 7so0
as in Equation (13). Then, the corresponding MDS projection 7s:
of the distance matrix D can be computed to visualize the 7s
captured sensory symbol topology. The experience is finally 7ss
repeated for various amplitudes Ab. 784

2) Results: The experiment has been conducted for N, = 785
500 and N, = 100, so that 50.103 sensory transitions are 7ss
used to build the matrix P for each action amplitude Ab 77
chosen among {oy, 250}, 2500, 10000, }. Note that being 7ss
greater than the size Ny = 100 of the sensor, Ab = 2500}, 78
leads to the sampling of an area in the environment that does 70
not overlap with its previous receptive field position. Figure 5 791
represents successively (in each row) the matrices P, D and 72
their corresponding embedding MDSo (D) for each of the 4 7s
selected amplitudes (in each column). Let us first consider 7e4
the evolution of the probability matrix as a function of the 7es
movement amplitude (first row). For a very small action ampli- 76
tude, the probability matrix P exhibits a clear diagonal pattern 77
indicating that close sensory symbols (in terms of gray levels) 798
correspond to high transition probabilities; qualitatively, we 7
face more or less the same conditions than in §III-B1 where the sowo
observation of the environment changes matches the changes sor
in perception induced by the action of the agent. These two so2
scenarios no longer correspond when the action amplitude sos
rises: the higher the amplitude, the wider the probability sos
distribution. For the largest amplitude, the diagonal pattern sos
cannot even be seen anymore in P and high probabilities do sos
not correspond to close gray levels anymore. This tendency sor
is clearly confirmed when computing the distance matrix D sos
from P (2nd row in Figure 5): for high amplitudes, mostly all sos
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Figure 5: Evolution of the transition probability measure P (displayed with a logarithmic norm), the distance measure D and the representation
of this distance projected using 2-dimensional MDS for increasing movement amplitudes. Each column represents a motor trajectory for a
fixed amplitude Ab described relative to a 1 pixel shift of its sensor’s field of view. We can see that the diagonal pattern for P and D as
well as the uni-dimensional grayscale manifold are deteriorating as the movement amplitude gets bigger, indicating the inability to capture
spatial coherence properties. The links that connect each symbol on the MDS representation are a k-NN like algorithm that assess how the

agent perceive its symbol continuity.

s10 symbols are now close to each other. Obviously, this results in
s11 very different 2D projections of the matrix D (3rd row). For
sz the lowest amplitudes, we still clearly see a one-dimensional
13 manifold, folding on itself when the action amplitude grows.
s1a But the dimensionality of the manifold is not sufficient to
sis tell if the agent correctly captured or not the sensory symbol
a6 topology. Like we did in Figure 1g and Figure 1d, a k-NN
s17 algorithm is computed on D and displayed in Figure 5 to link
s1s each symbol to its closest neighbor, this link being represented
s9as a line between two symbols in the projection. Looking
s20 at the smallest amplitude, the sensory symbols manifold can
s21 be browsed in the usual grayscale order by following the
s22 aforementioned lines. On the contrary, this proves impossible
s23 for larger amplitudes, where lines link together e.g., symbols
s24 associated with clear and dark gray levels. It is then clear
e2s that the conditions written as Equations (21) and (22) are not
s26 verified anymore, with two successively sampled environment
s27 states associated with two distant positions in space, leading to
a2s the loss of perception by the agent of the spatial and temporal
s20 coherence in the environment.

s 3) Discussions: Equation (25) states that, for a specific set
s31 of motor trajectories %', making successive receptive fields
sz falling apart from one another, the probability of transition
833 between successwe sensory symbols tends to an unconditional
s34 probability P | . Importantly, this phenomenon can
a5 be internally assessed by the agent since both probability
s36 distributions are only based on sensory symbol observations;

this then constitutes some internal way for the agent to rate
the spatial and temporal coherence of its interaction with
the environment. To that end, we propose to compare the
two probability distributions Py s—s, —the probability of every
sensory value to succeed to a specific sensory value s;—
and Py, by using the Jensen-Shannon distance Djs [29], a
bounded metric based on the symmetrized version of the
Kullback-Leibler divergence [30], and defined as

KL(Py s_s, || M) + KL(Py [ M)
DJS<PS’|S:Sk||PS') = \/ S |S Sk 2 S ’

. 1
with M = 3 (Ps/|s=5k + Ps’) , (26)

with the KL divergence for two discrete probabilistic distribu-
tions A and B defined in the probability space W as

5 o (1),

zeW
This results in a distance Djs(.) between 0 and 1, computed
for each sensory symbol s, that is expected to converge
towards 0 when both distributions are identical, i.e. when the
motor trajectory of the agent leads to having s and s’ inde-
pendent. Again, Djs is computed for 4 different amplitudes
{0, 5op, 2501, 12501, } with corresponding graphs in Figure 6.
The results displayed in Figure 6 show that the JS distance for
every probability distribution systematically decreases when
the amplitude of the agent’s movement increases, i.e. when

KL(4[|B) = (27)
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divergence of every symbol decreases, getting close to the uncon-
ditional probability.

Ab Op
I(s,s’) || 5.36

Table II: Mutual information between sensory symbols s and s’ as a
function of the agent’s action amplitude.

25 Op
1.92

125 o,
0.94

5 Op
3.49

ss1 the conditional distribution tends towards the unconditional
sszone as described by Eq. (25). In the same vein, we can also
sss conduct this comparison by computing the mutual information
ss¢ between, roughly speaking, the sensory symbols before and
ses after the agent’s movement and defined by

I(S7 Sl) = Zpsk,sl 1Og2 <pSkSZ> 9

k,l pskpsl

(28)

ses With Ps ¢ = (Ds, s, )si.s, the joint probability and Ps = (ps, )s,
svand Py = (ps,)s, the marginal probabilities. This mutual
ses information is computed for the same 4 amplitudes as in
a0 Figure 6, and is reported in Table II. As expected, the mutual
s70 information drops significantly by about 64% as soon as the
s71 movement amplitude rises to 250y, showing again how the
g72 link between s and s’ is degraded when the agent’s motion am-
s73 plitude becomes higher between two time steps. Importantly,
s74 these two comparisons between the two probability distribu-
s7s tions could provide the agent with an infernal way to rate
a7 the adequation of its motor exploration performed by applying
s77 actions with (at least for now) unknown consequences, or even
e7s an internal signature of the amplitude of its own actions.

879 V. USING THE METRIC TO GET AN INTERNAL ASSESSMENT
880 OF SENSORY REGULARITY

st Now that we have been able to quantify how and why
ss2 the agent’s action modulates its sensory symbol topology,
ss3let us focus on a more experimental use of the obtained
ss4 representation. Intuitively, and thanks to the introduction of the
sss metric d g, the agent should now be able to assess if a sensory
sge transition is typical or not. This could be used as a way to
ss7 deal with the presence of noise in the raw sensory data, i.e. by
sss being able to discriminate close (but not strictly equal) sensory
a0 values from irregular sensory transitions due to the presence of
a0 specific events in the environment (movement of an object in
so1 the scene, changes in the illumination conditions, etc.). This

section thus aims to present how the agent could internally ss
assess its sensory regularity by first depicting some simple sss
formal elements in the first subsection. Then, the second s
subsection shows how a naive agent could actually be capable sss
of performing a sensory prediction task, even in the presence sss
of noise, in the vein of the sensorimotor action framework so7
presented by the authors in [16]. 898

A. Internally rating the sensory regularity 899

1) Some formal considerations: to begin with, let us con- s
sider again Eq. (7) by which d/(s,s’) is defined in terms of s
the sensory transition probabilities Fys. It can be trivially so
rewritten as 903

Vs,s' € S, P(ys(t +1) =5 | %(t) =5) = f (5 (5,5)),
(29)
when f is injective. But because f is also necessarily non- s
increasing, so must be f‘l; this obviously entails that the sos
probability of any sensory transition from s to s’ is as expected s
a decreasing function of the sensory distance between them. so7
However, we also know from the definition of the metric d s
from shortest paths in Eq. (9) that 909

Vs,s' € S,ds(s,s") < (s, s). (30)
We then have immediately 910
Vs,s' € S,P(7s(t +1) =" [ %(t) =s) < fH(dy (s.8).-
(€Y

Then, Eq. (31) guarantees that, from any sensory value s, s
the probability to land on s’ at a distance dy(s,s’) = A et
is therefore less than f~'()\). This property thus gives an o1
intrinsic way of quantifying the regularity of a transition s
in the sensory experience. Indeed, providing some ‘“metric sis
rejection threshold” 7,., the agent might be able to deem all s16
sensory transitions s to s’ of corresponding distance d(s,s’) 17
as irregular (resp. regular) whenever ds(s,s’) > 7, (resp. ot
ds(s,s’) < 7). Obviously, determining whether a transition st
is regular or not might also be decided directly on the basis of s
its probability of transition. To stay consistent, we choose to s
only investigate the properties of our regularity measure from oz2
the standpoint of the sensory metric. 923

Still, one should notice that Eq. (31) is merely an inequality, o2
as opposed to the corresponding equality in Eq. (29). To the e
agent, this means that there may be some particular transitions s
from s to s’ which are still unlikely even if the agent found s
ds(s,s’) to be small: basically, this criterion can allow false ez
positives, while it guarantees that all transitions rejected on ez
the basis of this metric verify the occurrence probability sso
inequality, that is it does not cause false negatives. 931

2) Example: we selected in previous sections (see Eq. (14)) o2
the function f = —log to map the estimated transition sss
probabilities py; to the metric prototype dy;. In such a case, still s34
with a threshold 7., an irregular transition should then typically sss
occur with a probability P(vs(t+1) =s' | %(t) =s) < e 7. 93
Then, selecting for instance the threshold values 7,. € {1,3,5} o7
will allow the agent to reject transitions that occur in less than sss
about {37,5,1}% of occurrences. 939



a0 B. Exploiting the sensory regularity for sensory prediction

1 We now propose to exploit the agent’s capability to decide
s42 whether a sensory transition is regular in a sensory prediction
aea task in the presence of noise inside the sensory data. To that
ssa end, the framing of the approach in [16] is first briefly intro-
s duced, followed by the proposed experimental setup, mirroring
as6 that of this previous contribution. Then, the sensory prediction
o7 framework from [16] is applied for different scenarios: (i) with
948 N0 noise in the sensory data or with noise, but (ii) without or
a40 (ii1) with rating the sensory regularity. A discussion comparing
os0 these scenarios is then proposed in the second paragraph.

st 1) A short recall on the framing of the problem: The
os2 contribution from [16] is all about the theoretical conditions
o3 for the determination of a sensory prediction function for
es¢ @ naive agent. More precisely, it is demonstrated how the
oss algebraic structure found in this prediction is homeomorphic
o6 to that of an algebraic group of specific motor actions, the
o057 conservative actions. An action a is said to be conservative
ossif all sensels of the agent exchange the places they sample
95 When applying a: equivalently, conservative actions can then
o0 be thought of as permutations of sensels. Importantly, this
91 result has since been extended to quasiconservative actions
s2in [23], where partial sensory prediction maps are proposed
o3 to generalize the sensel permutations of strictly conservative
o4 actions for the case where some sensels have no identified
965 permutations when applying an action a (e.g. for sensels in
96 the border of a camera).

o7 2) Experimental setup: the proposed simulation setup is
oss very close to the one already presented in §IV-B1. The agent
seois still made of a moving camera facing a fixed grayscale
970 image, as shown in Figure 4. This time, the agent is endowed
orwith a W x H = 10 x 10 sensor, and is now able to
szmove in four orthogonal directions by applying 5 different
o73 (quasiconservative) actions: a;q, af, @, @, and a; making the
974 camera receptive field respectively stay still, move in the left,
ars right, up or down directions in X. It is clear that the sensory
o76 consequences of such actions can be illustrated as a shift
o7 of information in the image in the opposite direction of the
o8 agent’s movement: most of the sensels values before applying
o79 any of these actions can find a successor after. Then, predicting
950 the sensory consequence of an action can be summed up by a
981 permutation between sensel values, providing all sensels share
92 the same excitation function, as already outlined in §III-A2.
983 Importantly, the agent has no clue about the incidence of a
984 given action nor about their possible relationship. All it can
ss5 do is perform an action and observe its consequences in its
sss sensory data [16]. The proposed experimentation then relies
97 on the two following steps.

988 a) Step 1: building of the sensory symbol topology. The
989 agent explores its environment by repeatedly selecting random
s actions in A = {aig, ay, ap, ar,a;} with identical amplitudes
9t Ab = 0y, (apart from a;q), and then infers the distance matrix
992 [, in line with §IV-B where the number N, of draws of
903 actions is set to N, = 25, and the number of repetition is
ss selected to N, = 2.103. As opposed to the previous case,
905 some artificial noise n;; is now added to the pixel value v;; of
s the image to form the agent’s sensel values® s;; = v;; + n;;

3which is further clamped if need be, i.e. if s;; exceeds O or 255, the sensel
value is set to the closer bound.

before computing the matrix D, with n;; a random integer se
drawn from a centered discrete uniform distribution of width sss
20,. 999

b) Step 2: building of the sensory prediction function.ow
Once the matrix D is obtained, the agent performs a second oo
exploration of its environment so as to build a sensory predic- 1002
tion function for each of its actions in .A. As previously argued, 1003
these functions can take the form of binary permutation oo
matrices [16] II,, = (’/'I'](fl}))kyl of size Ny x N, with a), € Aoos
and Ny = W x H, as each pixel value in the sensory array o0
is expected to shift in different positions depending on the o7
spatial effect of the performed action. In these matrices, having ioos
77,(5) = 1 indicates that the k™ sensel takes the value ofioos
the I sensel after applying action a,. For this experiment,oto
N, = 50.10® and N, = 1. Initially, every element w,i’l’) of 1o
the permutation matrices Il is initialized to 1, meaning thatior
all permutations between the agent’s sensels are possible foriors
action a,. Then, each time this action is drawn from A, theios
agent can discard in II,, some permutations by observingios
that some sensel values do not switch with one another, thenioss
updating the corresponding matrix elements to 0 as per theror
update rule 1018

1 iff s;[n] = sg[n + 1] and w,(c]?)[n] =1
0 else,

(p)
szz’

[n+1] = (32)

where s, and s; represent the sensel values associated withiote
the element at the position (k,[) in the permutation matrix 1oz
IT,,. We can notice in Eq. (32) that the elements in these oz
matrices are set to 0 as soon as a permutation is not detected 1022
by the strict equality between sensory values. This limitation, 1023
already outlined in [16], makes this approach fall apart when o2
dealing with noise in the sensory data or when interactingozs
with a non-static environment. Benefiting from the previousiozs
developments, we instead propose a revised update rule for o7
the permutation matrix as 1028

1iff dg(si[n], sg[n + 1]) < 7 and 72 [n] = 1
0 else,

(»)

T [N+l =

(33)
where 7, is a manually chosen threshold applied to theiozs
built matrix distance D. In the following, 7. is tuned so10s0
as to correspond to the smallest threshold that allows forios
permutation matrices to converge. It is clear that this is a strong1os2
a priori, and the way the agent can autonomously set thisioss
threshold is still an ongoing work, discussed in the conclusion. 103
In the same vein, the second step in this experiment requires 1oss
a second exploration of the same environment as during the1os
first step. This definitely a suboptimal process, only proposed ios7
here to illustrate the benefits of the internal assessment ofioss
sensory regularities for the proposed sensory prediction task. 103
Obviously, the sensory transitions observed when building the 1040
sensory symbol topology could also be used for building the o041
sensory prediction functions. Importantly, this highlights again 10s
the importance of the threshold 7. which should then also be 1o
selected by an appropriate combination of these two steps.  10a

c) Evaluation: convergence of the permutation matrices.1oss
To evaluate the influence of the added noise on the conver-ios
gence of permutation matrices II,,, we propose an (external) o7
criterion C'(Il,,) = Cy(Il,,) x Cp(Il,,) adapted from [16] 104



1049 to account for the added noise to the data and defined along

(p) =(
D ki 7715) 7%11))

Cp(la,) = W’ and
kl Tkl

(34)

N,

1 s

I, )=1- —m—— H;,

CH( p) N510g2(N5);

1050 with - -

Ny 7 P
H; =—Y% Bl log, | = ) , )

M = max (17 Zi\/:sl 771(@117) )
1051 where 7‘7,(5) represents the (binary) coefficients of the ideal
1052 Matrix 1:[% associated with the action a,,. Basically, Cy can be
10s3 understood as an average measure of certainty in the discovery
1054 of the permutations, weighted by the percentage C'p of the
10ss correctly identified permutations w.r.t. the ground truth to
10ss account for the noise, possibly discarding some of them. In the
10s7 end, criterion C' lies between 0 —i.e. the matrix is full of 1’s
10s8 (initialization) or 0’s (all permutations have been discarded)-
1se and 1 —i.e. the permutation has been correctly discovered.

160 3) Results: As outlined in the introduction of Section V,
161 three different scenarios are evaluated. To begin with, we
1062 first consider the case where there is no noise in the agent’s
1083 perception by setting o, = 0. Then, using the update rule (32)
1064 should allow the agent to correctly build all of its permutation
10es matrices, exactly as in in [16]. As expected, Figure 7a shows
1066 that criterion C' converges towards its maximal value of 1 for
167 all actions in A. C plots also exhibit sparse jumps at random
1068 times, corresponding to the steps where the action was actually
1069 drawn in .4 during the experiment. More importantly, we can
10 see in Figure 7a that only a few realizations of each action
w71 a, (about 4 to 6 here) are required for C'(Il,,) to almost
wzreach 1, showing how easy it is for the agent to discover the
1073 existence of such permutations in its own perception. In the
1074 second scenario, a noise of amplitude o,, = 2 is now added to
1075 the sensation. Obviously, the strict comparison of sensel values
176 in (32) in the presence of such noise (however small) entirely
1077 breaks the approach , as shown in Figure 7b. As expected, the
1078 criterion C' now converges to 0: each II,, matrices converges
1079 to null matrices as all possible permutations of values have
1080 been (including erroneously) discarded in the process. Finally,
1081 the new update rule (33) is now used to judge the closeness
1082 Of sensel values on the basis of the built distance D, resulting
1083 in the evolution of the criterion C' represented in Figure 7c.
108 For this scenario, o0, = 1 and 7,, = 1.63. In the presence of
10ss noise, the ability of the agent to assess if a sensation is now
108s close to others allows it to correctly discover the existence of
1087 permutations in its perception. But clearly, this task is not as
1088 €asy as in the first scenario: the number of required actions for
1080 correctly evaluating their corresponding permutation matrices
1000 18 significantly higher. This is apparent in Figure 7c, not only in
1091 the slower convergence time of the criterion C' but also in the
10s2 smaller jumps of values in C'. Indeed, each generation of action
1003 brings less information in the prediction process because of the
1004 noise included in the agent’s sensations. But still, the important
1005 Structures anchoring the sensorimotor interaction the agent has
1006 With its environment are still available, allowing it e.g., to build
1007 an image of its body [14] or of its peripersonal space [15], at

Qid
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(a) Evaluation criterion C' with o, = 0 and strict equality update rule.

20 o _ 60 80 100
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(b) Evaluation criterion C' with o, = 2 and strict equality update rule.

( 20 40 60 80 100 120 140
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(¢) Evaluation criterion C' with o, = 2 and a threshold in D.

Figure 7: Evolution of the evaluation criterion C' for the 5 considered
actions in .A. (a) With no noise and the update rule (32), C converges
towards 1 in a very short number of realizations of each action. (b) In
the same scenario, but with ¢,, = 2, the update rule (32) do not allow
to detect permutations anymore, resulting in the criterion falling down
to 0. (c) When selecting a correct threshold 7, in Eq. (33), the agent
is now able to build the 5 sensory prediction functions correctly, but
with more realization of each action in comparison with (a).

least at the cost of a longer interaction in time. 1098

VI. CONCLUSION 1009

In this paper, and after purely topological considerations, 100
a metric-based approach is proposed to formalize the ability 1101
of a naive agent to build some subjective sense of sensory i
continuity. An experimental framework is then proposed, il-1103
lustrated and assessed in the context of visual perception for 1o
the discovery of gray or color scales. Then the importance of 110s
the dynamic of the agent’s exploration relative to that of the11os
environment is studied, highlighting an important spatiotem- 1107
poral coherence principle of this exploration. Finally, with aiios
sensory closeness notion now available to the agent, a sensory 11



1o prediction task is proved accessible even in the presence
1111 of noise, thus extending the robustness of this sensorimotor
1112 framework to realistic conditions.

1113 Nevertheless, it is clear that this work still suffers from
111a some limitations. For instance, the scalability of the proposed
11s experimental framework is certainly limited. Indeed, although
1116 it was not the objective of this paper, the way the regularities
117 are extracted from the raw sensations is certainly not compu-
1118 tationally effective, considering the possibly very high number
1meof sensory symbols involved in e.g., color perception for
1120 traditional camera sensors. Hierarchical approaches might be
1121 preferred [31], but still remain to be explored in the context of
1122 sensorimotor approaches to perception. Another limit concerns
1123 the notion of sensory neighbors: while being now formally
1124 accessible to the agent thanks to the proposed contribution, it
25 still practically requires a threshold to be set w.r.t. the task to
1126 be performed. In this paper, this threshold has been manually
17 tuned with two successive steps involving two independent
112 explorations of the same environment, but we could instead
nzerely on a closed-loop approach mixing the discovery of the
1130 sensory regularities with the corresponding sensory prediction
a1 task: as long as the prediction is not correctly built, the
132 threshold must be adapted accordingly. Still, should the agent
1133 be able to perform some sensory prediction task, so should it
1134 be able to quantitatively compare its prediction with its actual
135 perception. This should make it capable of detecting outliers
1138 in its environment, and in particular, changes in its perception
1137 that are not directly correlated to its own actions. This might
msbe the way towards some internal notion of sensorimotor
1130 objects and thus would undoubtedly extend the scope of these
1140 approaches to more potential applications.
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