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From State Transitions to Sensory Regularity:
A Topological Grounding of Naive Sensorimotor

Experiences
Jean-Merwan Godon?, Loïc Goasguen? and Sylvain Argentieri

Abstract—How could a naive agent build some internal notions
of continuity in its sensorimotor experiences? This is a key
question for all sensorimotor approaches to perception when
trying to make them face realistic interactions with an environ-
ment, including noise in the perceived sensations, errors in the
generation of motor trajectories, or uncertainties in the agent
internal representation of this interaction. This paper proposes a
detailed formalization, but also some experimental assessments,
of the structure a naive agent can leverage from its own senso-
rimotor flow to capture a subjective sensory continuity, making
it able to discover some notions of closeness or regularities in its
experience. The precise role of the agent action is also questioned
w.r.t. the spatial and temporal dynamics of its exploration of the
environment. On this basis, the previous authors contribution on
sensory prediction is extended to successfully handle noisy data
in the agent sensorimotor flow.

Index Terms—Sensorimotor contingency theory, topological
grounding, sensory regularities.

I. INTRODUCTION

It is certainly the case that we deem our sensory experience
to be “continuous”. Indeed, one crucial property of many
psychological perceptual processes is that they generally seem
continuous [1]; in point of fact, this intuition is strong enough
that it is the converse situations where it visibly is not, that earn
explicit mentions, such as that of Categorical Perception [2],
[3]. However such continuity does not trivially follow from
our knowledge of how perceptual processes are materially
–e.g. neurally– mediated [4], [5], [6]. In the instance of visual
perception, for example, it is known that the eye only acquires
very partial snapshots of visual information due to the sparse
layout of discrete photoreceptors on its retina as well as the
typical trajectories of ocular saccades.

Nevertheless, the continuity of perception subjectively expe-
rienced by sensorimotor agents is undeniably useful, allowing
for formulation and exploitation of several powerful ideas. One
such idea, for instance, is that of inter and extrapolation. If
an agent hopes to infer properties of an unknown situation
from a structure it has learned on previous experiences, this
agent should have a way to quantify in what way this new
experience relates to the data it already knows. One very
common way to deal with this is thus to a priori assign
close properties to experiences that are themselves close:
the agent should then have the capabilities to distinguish
“similar” things, be it external objects, sensory attributes, or
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even perceptual items. These capabilities may in turn provide
grounds for the emergence of its felt continuity of perception:
in the end, the agent should then be able to assert that “Red
is closer to Pink than it is to Blue, and it is certainly closer
to Blue than it is to the sound of a bell” [7]. Such closeness
properties are usually leveraged in robotic settings through
the well-known mathematical notion of continuity of maps
Rn → Rm since the data available to the robotic agent is
usually represented numerically. More generally, the modern
examination of continuity and related problems is the subject
of topology [8], a field of mathematics which is precisely
devoted to the study of what it means for something to be
continuous. This field has indeed proved a powerful tool
for bootstrapping [9], or for modeling geometric ideas in
several sensorimotor works [10], [11], [12], in particular those
that attempted internally establishing properties of external
space [13]. Such approaches allow e.g. motion planning in the
internal sensorimotor body representation of an agent through
the generation, by interpolation, of continuous motor trajecto-
ries [14], or the emergence of a topological representation of
the sensor poses from the sensorimotor flow [15]. In most of
these works, the (almost) only assessments initially available
to the agent are entirely categorical: the agent is indeed only
able to perform comparison at a “symbolic” level denoted by
a strict equality operator between e.g. sensory values. While
these works certainly proved that these operations allow for
the extraction of interesting features or meaningful internal
representations from a naive form of sensorimotor flow, they
also share limitations related to the absence of a “closeness”
concept: what about their robustness w.r.t. noise, imperfect
repetition of motor paths, etc.? The very same limitation is
also shared by the previous work by the authors [16]; in
this contribution, the interlink between motor actions and
sensory prediction is explored, through the demonstration of
the existence of a group isomorphism between them. But
predicting the sensory outcome of an action is only accessible
to the agent by detecting the exact shift of values inside its own
sensor array. Endowing the agent with some internal notion of
sensory closeness would then make it able to assess its own
prediction, and more generally might allow these sensorimotor
approaches to perception –so far mainly restricted to simulated
territories– to deal with more realistic conditions.

In this paper, we then propose to examine how some internal
notions of continuity in sensorimotor experiences can emerge
for a naive agent. To that end, some formal considerations are
first introduced in §II. After evaluating a purely topological
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approach, a metric approach is proposed instead and the
probability of transition between sensory symbols is used to
define some appropriate notion of sensory distance. On this
basis, some simple simulations are introduced in Section III
to illustrate how an agent could leverage some structure from
its own sensory observation. This is illustrated for visual
perception through the building by a naive agent of the
grayscale or some RGB color model. Then, the role of the
agent action in this framework is questioned in §IV. More
precisely, the spatial and temporal dynamics of the agent
exploration is shown critical to obtain a meaningful and useful
structure of its own sensory symbols. Next, some experiments
initially proposed in [16] are reproduced in Section V to
illustrate how the proposed framework could allow an agent
to actually build some sensory prediction functions even in
the presence of sensory noise. Finally, a conclusion ends the
paper.

II. TOWARDS A TOPOLOGY OF SENSORY VALUES

This first section aims at defining a topology of sensory
values, built on the basis of the agent sensorimotor experience.
After a short subsection devoted to the required definitions
and notations, a time variable is added to the formalism in
the second subsection, so as to account for explicit time
dependency of the agent experience, allowing us to introduce
a first time-inherited topology. While being possibly sufficient,
arguments for the introduction of an explicit metric are then
discussed. The third subsection thus proposes the definition of
an internal probabilistic metric and highlights the benefits and
limits of the proposed approach. Section 3 then exploits these
elements in a simple experimental framework to illustrate these
elements and demonstrate their actual exploitation.

A. A short reminder on notations

Let us consider in the following an agent endowed with
motor and sensory capabilities. Its internal sensorimotor con-
figuration is classically noted as (m,s), where m ∈ M (resp.
s ∈ S) represents the internal motor (resp. sensory) agent con-
figuration, both being elements of their corresponding motor
M (resp. sensory S) set. As shown in [16], the agent motor
description can be enriched from m ∈ M to b ∈ B, where
b = (m, τ ) depicts the absolute agent motor configuration.
b is made of the agent internal (and thus known to it) motor
configuration m and of its absolute external (and thus unknown
from it) pose τ in its ambient space. Importantly, as discussed
in [16], such a change in the notations allows to keep a
functional relation between motor and sensory data, even in
the case where the agent can freely move in its environment.
Next, the environment state is characterized as a function
ε : X → P , i.e. as a state ε ∈ E linking the geometrical space
X (classically endowed with some rigid transformations group
G(X )) to the set of the physical properties P observable by
the agent, where E denotes the set of environmental states.
Then, ε(x) represents the observable physical properties at
point x ∈ X . On the basis on the previous definitions, one
can now define the sensorimotor map ψ as the function
ψ : B × E → S, such that s = ψ(b, ε). One can notice

here that the sensorimotor law does not explicitly depends
on time, as is the case of most other contributions in the
fields [10], [17], [14]. We will now enrich this formalization
with an explicit time dependency. It will then constitute our
gateway towards continuity in the sensory experience of the
agent, much as in J. Elman’s famous 1990 paper [18].

B. All is well in continuous land

1) Introducing time in the sensorimotor experience: The
definitions we recalled in the previous subsection actually
described snapshots of the agent sensorimotor interaction.
Nevertheless, these can be easily enriched with an explicit
dependency of the various states with a time variable t ∈ T .
Thus, the environmental state ε ∈ E can now be written

ε : T ×X → P
(t, x) 7→ ε(t, x).

(1)

With this notation, one can express an instantaneous snapshot
of the environmental state as the partial function

εt : x ∈ X 7→ εt(x) = ε(t, x) ∈ P. (2)

Therefore any temporal succession of environment states can
be described as a trajectory

γε : t ∈ T 7→ εt ∈ E . (3)

Correspondingly, the agent’s absolute configuration trajecto-
ries and sensory one are respectively denoted by

γb : t ∈ T 7→ bt ∈ B, (4)

and

γs = γb,ε : t ∈ T 7→ st = ψ(γb(t), γε(t)) ∈ S. (5)

In the following, we will consider a particular but arbitrary
subset ST (resp. BT and ET ) of these sensory trajectories
as ones the agent can effectively experience. This is intended
to denote that some “structural” constraints (which we would
externally call “physical” constraints, e.g. limitations on joints’
velocity and their smoothness as actuated by the agent) shape
the content of its sensorimotor experience.

2) Towards a sensory topology: Let us now get back to
the intuition of the sensory experience being continuous, as
discussed in the introduction of this paper. More precisely, this
continuity is that of the agent’s sensory experience unfolding
with the time T during which it occurs. In (purely) topo-
logical settings, an argument examined e.g. in [19] shows that
searching for (formal) continuity of the γs sensory experiences
is entirely dual to searching for topological constraints on
the sensory values s ∈ S . These two viewpoints intersect
at the final topology of the γs [8], a topology on S which
precisely encodes which structural constraints on the s sensory
values is needed to make (all) the γs experiences continuous.
While this final topology seems to solve –at least from a
purely topological point of view– the initial problem, one
has to keep in mind that most robotic setups rely on discrete
time computations. The resulting final topology thus makes
S discrete. Intuitively, this occurs because if the agent only
experiences jumps in times such that no instant follows
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continuously from the previous one, then it does not need
to introduce new continuities in its sensations to make their
succession continuous. So how can we solve this issue? One
proposes to turn to the setting of metric geometry, which
although less general is more suited, in the next subsection.

C. Introduction of a statistical sensory metric

Introducing corresponding metric considerations however
raises new issues: given an abstract sequence of points in
a (metrized) point cloud, how can one determine whether it
represents a regular/continuous trajectory? For example, how
can one decide that a jump in values across a distance of
e.g. 5 units corresponds to a regular transition, or instead
represents a break in continuity? Without a priori assumptions
about the expected reasonable dynamics of the experience,
it seems these numbers are entirely arbitrary, and related
to some external knowledge the agent aims to do without.
Instead we propose to define a statistical sensory metric, for
which the agent ought to set to zero any distance between
sensory values that immediately (and not continuously) follow
one another. Thus, the temporal length between successive
sensory samples is now central to how the agent perceive them.
Consequently, one should first assume that the agent is able
to compute distances (or durations) between two timesteps in
T . On this basis, we will assume in all the following that the
laws of the sensorimotor experiences the agent can observe
are time homogeneous. This hypothesis then indicates that no
statistical measurement the agent can empirically obtain from
its sensorimotor experience may depend on the absolute value
of the timestep indexing its interaction.

Let us now define the likelihood Ps,s′ over all experiences
that the sensory value s′ immediately follows s in the senso-
rimotor flow of the agent along

Ps,s′ = P(γs(t+ 1) = s′ | γs(t) = s). (6)

Importantly, from the previous time homogeneity assumption,
Ps,s′ does not depend on the current time t it is computed.
From there and following the intuition that “closeness” of sen-
sory values s and s′ should increase whenever the probability
of the transition s → s′ does, we propose to define a simple
metric prototype via

δf (s, s′) = f(Ps,s′) ∀s, s′ ∈ S, (7)

where f should verify the two conditions:
1) f : [0; 1] → R+: f only needs to map probabilities in

[0; 1] to nonnegative values, i.e. dissimilarity values;
2) f is non-increasing: probable transitions (i.e. Ps,s′ close

to 1) should result in low dissimilarities.
These conditions do not make δf a metric since it only verifies
the non-negativity property. We therefore extend it via minimal
paths considerations, i.e. by defining a distance df along

df (s, s′) = inf

(
n−1∑
k=0

δf (s(k), s(k+1))

)
, s(0) = s and s(n) = s′.

(8)
This in turn enforces the properties of triangular inequality
and reflexivity. In the case where S is finite, this reduces to

the familiar computational form of finding minimal paths on
a finite graph with nonnegative weights (corresponding to the
δf (s, s′) edge from s to s′). One should also note that this does
not guarantee symmetry at its core because Ps,s′ may differ
from Ps′,s. Then the δf weights naturally define a directed
graph (digraph), which do not impair the search for minimal
paths but do however lead to a non symmetric df function.
While there exist several ways to obtain a closely related
undirected graph from any given digraph, we hypothesize
instead that symmetry should occur as a contingency of
the sensorimotor exploration in most real world examples.
Therefore, we do not enforce such corrections for now and
will instead assess this hypothesis in the resulting graph.

III. BUILDING THE SENSORY TOPOLOGY FROM STATISTICS

The previous section was devoted to the mathematical roots
of the approach. We will now illustrate how these points
can be exploited inside a simple experimental framework
which could allow a naive agent to leverage some structure
from its own sensory observation. To begin with, a detailed
description of the simulation setup is proposed. On this basis,
two main experiments are conducted: the first one deals with
the construction of a probabilistic sensory metric and the
corresponding low-embedding representation for a grayscale
camera sensor; the second one extends the reasoning on more
complex representation when using RGB image sensors.

A. Experimental setup and sensory distance estimation

1) Experimental setup: In all the following, we consider
an agent endowed with a camera sensor observing a 3D
scene. Since we are for now dealing with sensory values
and their transitions only, the visual perception is basically
simulated by playing a video file v[n] of size W ×H , where
n represents the video frame number. This is a (temporary)
very restrictive setup, which will be enriched later when
discussing influence of movement of the agent (see §IV). Also
the experience occurs in discrete time, for which each timestep
verifiest = tn = nTs with Ts the sampling period. In practice,
one have v[n] = (vij [n])i,j , with i ∈ [0;W−1], j ∈ [0;H−1],
and where vij [n] depicts the pixel value of the video at frame
n, row i and column j. Each pixel vij = (Rij , Gij , Bij)
is represented as a traditional color tuple ∈ [[0; 255]]3. The
agent sensory state sn is then simulated by applying some
instantaneous function g : [[0; 255]]3 → S to the video, i.e.

sn = (sij [n])i,j , such that sij [n] = g(vij [n]), (9)

where sij [n] represents the (i, j) sensel value at time n, row
i and column j of the agent camera sensor. Introducing g(.)
in (9) allows to explain formally how a physical state of the
environment (which can be envisaged here as the pixel values
of the video) is turned into the internal sensory state of the
agent. But one has to keep in mind that the agent does not
know the relation (9), it does not even have any knowledge
about the meaning of these numerical values: they are only
uninterpreted symbols to it, with no a priori structure, order,
not any way to actually compare them. In addition, the set
S may well be isomorphic to the set of actual pixel values,
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but there may also have a lower number S of symbols than
pixel values, resulting in a compressed representation. Without
loss of generality, S will then be defined as the finite set of
positive integers {0, . . . , S−1} and we will adopt a traditional
sij ∈ [[0;S − 1]] coding convention for the numerical values
of each (i, j) sensel, where S = 256 for traditional camera
sensors. As outlined in §II-C, it is then proposed to look
at the relationship between those S uninterpreted (numerical)
symbols through the statistics of their transitions. Let us now
detail how these transitions are actually captured.

2) Description of the experiment: In all the following, we
will assume that all W ×H agent’s sensels contribute equally
to the building of the same representation. Then, we define a
S × S matrix M = (mkl)k,l counting all the transitions of
sensels values along observations, with

mkl[n+ 1] = mkl[n] +
∑
i,j

ζkl(i, j)[n], (10)

with (i, j) ∈ [[1;W × H]]2, mkl[0] = 0, and k, l both
representing two symbols in S (that is, sensor output values
sk and sl ∈ S). ζkl(i, j)[n] aims to capture the existence of a
change of value of the (i, j) sensel from value k at time n to
value l at time n+ 1, i.e.

ζkl(i, j)[n] =

{
1 iff sij [n] = k and sij [n+ 1] = l,

0 otherwise.
(11)

From (10), one can then compute the probability of transition
of sensels values gathered in a S×S matrix P = (pkl)k,l with

pkl[n] =
mkl[n]∑S−1
q=0 mql[n]

(12)

the probability at time n for any sensel to see its value
changing from symbol k to l. Obviously, pkl[n] is expected to
converge towards Psk,sl as time n tends to infinity. Then, once
the estimation of the matrix P has converged after a fixed
number frames N , it is turned into a S × S metric prototype
matrix ∆ = (δkl)k,l according to Eq. (7) where f = − log1 is
selected, with

δkl = − log(pkl[N ]). (13)

Again, any function verifying the two conditions in §II-C
could have been selected. Then, Dijkstra’s algorithm [20] is
applied on the ∆ matrix along Eq. (8) to produce the S × S
distance matrix D = (dkl)k,l, providing the agent with the
result metric d we set out to discover

df (s, s′) = d−log(sk, sl) = dkl, (14)

which is finally visualized in 2D or 3D through a multi-
dimensional scaling projection method (MDS [21], [22], [23]
or ISOMAP [24]).

B. Results for a grayscale perception
The W × H = 856 × 480 video used to conduct the

experiments comes from a slightly stabilized camera filming
an evening walk in Midtown New York City in the rain2. It

1If a probability of transition is equal to 0, the corresponding distance is
set to NaN by convention.

2https://youtu.be/eZe4Q_58UTU

consists in a natural city scene filmed in real time from a first
person point of view. A grayscale (cropped) preview of the
video is shown in Figure 1a. To begin with, one will consider
a function g, mapping the (Rij , Gij , Bij) color coding of the
video pixels vij to the sensel values sij ∈ [[0; 255]] of the
agent, such that

sij = g(vij) = h(round(mean(Rij , Gij , Bij))), (15)

where h is a function that can be tuned to artificially modify
the agent’s perception. Two cases for h are discussed in the
following: either h() = id(), corresponding to the case where
the agent grayscale perception exactly matches the grayscale
version of the video, or h() = sawtooth() for which the
perception is altered on purpose to exhibit some properties
of the agent internal representation of sensory values.

1) First case: h() is the identity function:
a) Estimation of the probability of transition between

symbols: Since h() = id() in Eq. (15), the agent sensory
values are made of S = 256 uninterpreted symbols, whose
values along frames can be used to compute their probability
of transition along Equation (12). The resulting S × S matrix
P is shown in Figure 1b for frame number n = 10. Note
that the S symbols are ordered in the figure according to their
numerical values: this is something the agent can not actually
do for now, but this ordering has no effect on the reasoning
and helps in understanding the process. From Figure 1b, one
can see that the most probable transitions are all placed along
the diagonal of the matrix P, meaning that the most probable
sensory output at the next time step is the very same symbol.
Further, the a priori ordering of symbols allows to observe
that the diagonal is thick and fades away as the symbols
values are distant: this clearly indicates that the most probable
transitions are the one to symbols that are close, from an
external point of view (again, the a priori ordering is unknown
to the agent). Conversely the least probable transitions are the
one to distant symbols. Those results are in accordance with
the intuition that close time intervals lead to close sensory
outputs, and that some regularity of the sensory experience
has been captured. Note that since the probability estimation
is evaluated on occurrences, the case where no transitions at
all between two symbols is observed leads to a probability of
0 (represented in white on the Figure 1b); this appears at the
beginning of the experiment only and mainly concerns distant
symbols with a very low transition probability, i.e. in the two
corners of the Figure 1b.

b) Computation of the distance matrix: On the basis
on the previous probability of transitions between symbols,
one can compute the metric prototype in the form of the
S×S matrix ∆ whose elements are given by Eq. (13). Then,
Dijkstra’s algorithm [20] is performed on ∆ to obtain the S×S
distance matrix D. The resulting matrix D is represented in
Figure 1c for n = 104. Obviously one should note that
when direct transitions between symbols are missing in P (and
thus in ∆), Dijkstra’s algorithm will nonetheless generally find
an alternate path towards those symbols by finding adequate
successive transitions; consequently the D matrix is expected
to be fully defined (i.e. with all coefficients finite) as long as
the agent has experienced enough sensory symbols transitions.

https://youtu.be/eZe4Q_58UTU
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(c) D at n = 104 (d) MDS2(D) at n = 104

Figure 1: Building of the internal organization of sensory values. (a) Grayscale version of one frame of the video used in the experiment.
(b) Estimated probability matrix P at n = 10, i.e. at the very beginning of the experiment. (c) Estimated distance matrix D at n = 104, i.e.
at the end of the experiment. (d) Corresponding low-dimensional embedding of D: one can see the intuitive grayscale organization of pixel
values, discovered by the agent from its sensory values transitions.

One can see from Figure 1c that previous low transition
probabilities are now associated to high distances (and vice
versa). One also recognizes the same diagonal pattern, which
now corresponds to low distances. One can also see that D is
almost symmetric, except in the corners where lie most of the
high distances, corresponding to the least probable transitions
of sensory symbols. This is not an encoded property of the
agent experience but instead seems to appear as a contingency
of the sensorimotor exploration, as outlined in §II-C.

c) Visualization of the representation: Finally, one can
qualitatively assess the shape of the captured sensory symbols
topology by projecting the resulting distance matrix D into a
space of lower dimension. The 2D visualization of the matrix
D through a MultiDimensional Scaling (MDS) projection is
represented in Figure 1d. Note that such a method requires
the input matrix to be symmetric; hopefully, we qualitatively
showed it was almost the case so that MDS can be actually
applied on the symmetrized matrix 1/2 × (D + DT ). In
Figure 1d, each circle represents a single symbol where the
inner color corresponds to the color perceived from an external
point of view (color that also matches the classical gray-
level scale in this case, since f = id()). One can see from
this representation that the obtained manifold is almost one
dimensional, and captures the classical gray scale from white
to black in a continuous manner. This can be evaluated by
looking for the 2 nearest neighbor of each symbol in the
internal metric; these neighbors are then linked together in
the projection by an arrow drawn in the figure. Browsing the
manifold by following these arrows allows to go from white
(coded as the number 255) to black (coded as a 0) almost
without any discontinuity in the symbol order. From this
graph, one can conclude that the agent has been able, starting
only from the probability of transition between uninterpreted
sensory symbols, to discover the gray level scale. Such a
capability will be further exploited for different applications,
like sensory prediction, see §V.

2) 2nd case: h() is a sawtooth function: We will now con-
sider a case where the agent’s sensory output does not exactly
match the original grayscale world as per Eq. (15), where
h() = sawtooth(). With such a change, a world grayscale
value between 0 and 127 will be encoded by (uninterpreted)

Figure 2: 2D MDS projection of the sensory symbols when a saw-
tooth function links together world gray values to sensory symbols.
Each symbol is represented as a circle whose color represents the
internal coding. The corresponding symbols in the outside world are
represented as a looping arrow around the projection. Internal Black
(symbol 0) and white (symbol 255) symbols are now close to each
other, differently from Fig. 1d.

sensory symbols between 0 and 254 (with a step of 2) for
the agent, along with the world grayscale values between
128 and 255. Consequently, a single internal sensory symbol
(e.g. 54) will now correspond to two possible world grayscale
values (27 and 155). Intuitively, such a change is expected to
create continuity that does not exist initially between symbols
through a stronger proximity between values representing dark
and light shades. The previous process is then repeated and
the resulting 2D MDS embedding is depicted in Figure 2: as
expected, one identifies a looping monodimensional manifold.
In the figure, each sensory symbol is depicted as a circle whose
color represents its internal coding (i.e. a numerical value
from 0 to 254 with a step of 2), represented as grayscale
values for convenience. This color no longer matches the
grayscale values of the world it represents because of the
introduction of the sawtooth function. But the continuity
initially captured in the previous experiment leads to a looping
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representation where the two opposite symbols 0 and 254 are
now close to each other in the internal representation as they
both correspond to close grayscale values in the environment.
Such a conclusion might be obvious in this specific case, but
it highlights that the internal representation of the sensory
symbols’ topology might actually highly differ from our initial
intuition as it depends on the way the agent’s sensors encode
sensory information. The same remark could apply to faulty
sensors, which output symbols could be modified or rearranged
because of some failure in the information acquisition process;
the proposed approach could then allow the agent to (re)build
an adequate internal representation, though still intrinsically
limited by its own (limited) sensory capabilities.

C. Results for color perception

To further illustrate the approach, one will now endow the
agent with some color perception capabilities. Then, in this
subsection, the initial color tuples (Rij , Gij , Bij) ∈ [[0; 255]]3

coding the video pixels values vij are now mapped to the
S = α3 agent sensels values sij ∈ [[0;α3 − 1]] along

sij = g(vij) = Qα(Bij) + αQα(Gij) + α2Qα(Rij), (16)

with Qα(.) a quantification function defined by

Qα : X 7→ Qα(X) = round

(
X

255
× (α− 1)

)
, (17)

with X ∈ [[0; 255]] and Qα(X) ∈ [[0;α − 1]]. Note that while
the symbol ordering was quite obvious for grayscale values
from an external point of view (e.g. the natural order from 0 to
255) for the various matrices M , P , ∆, and D, this no longer
holds for these color sensory output symbols. Nevertheless, the
order in which they appear as line or column indices in these
matrices is not relevant since the only relevant information
of closeness between them is entirely independent on how
these symbols are actually ordered. In all the following,
α = 10 is selected, so that the agent sensory space is made
of S = α3 = 1000 uninterpreted (numerical) symbols. On
this basis, all the previous steps are successively applied.
The resulting D matrix can then be visualized through a low
dimensional embedding technique like ISOMAP [24]. The
result of this projection performed in 3D is shown in Figure 3.
The obtained representation is pretty much in line with some
classical representations of RGB color models, like the HSL or
HSV coding of color. Indeed, the 3D points cloud first appears
to capture some color order very similar to the classical hue
color wheel where pure colors are represented through an
angular position on a circle, as depicted in Figure 3a. But
the 3D projection also exhibits a third axis linking very dark
to very light shades for each color of the hue wheel, similar
to the lightness axis in the HSL color coding, see Figure 3b.
Then, with such a representation, the agent is now able to
assess if the sensory symbol associated to the rose color is
closer to the one associated to the red color than it is to the
green one thanks to its internal metric matrix D.
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(a) 3D ISOMAP projection seen as a 2D color wheel.

(b) The same 3D projection seen as a cylinder, with the lightness axis drawn
as arrows from black to white.

Figure 3: Interpretation of the 3D ISOMAP projection of the matrix
D when the agent is endowed with color perception capabilities. (a)
Representation obtained when viewing the projection “from below”:
one can notice that all the sensory symbols are arranged by colors,
matching the intuitive color wheel which has been added to the graph.
(b) Another point of view on the 3D sensory symbols representation:
in addition to the color ordering highlighted in subfigure (a), a third
axis is supporting the variation of lightness. The obtained projection
can thus been understood as analog to the HSL cylindre or biconic
representation of the RGB color model.

IV. LOCOMOTIVE MOTIVES: A CASE FOR FITTING
EXPLORATION AND EXPLOITATION DYNAMICS

The previous developments were largely devoted to the
relationship between two internal observations: the transition
probabilities and the resulting metric. We showed how this
information allows the agent to build some notion of closeness
between sensory symbols –which could be understood as
some subjective notion of sensory continuity– from certain
successions of sensory experiences being more likely, or
typical, than others. But such considerations clearly rely on the
idea that typical environment states also display certain typical
patterns themselves. From an external point of view, one would
certainly declare that “environment states are (mostly) contin-
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uous”, both in time and space. This underlying assumption
has not been dealt with so far, especially since the agent
was passively observing sensory symbols changing along time
in the previous experiments, and not actively exploring its
environment. This section thus aims to study which external
structure in the states of the environment could explain the
relationships between the agent’s motor actions associated to
a sensory experience and the observed regularity, effectively
giving action a defining role in this internal assessment. To
that end, additional formal considerations are introduced in
a first subsection. On this basis, some new experiments are
proposed to highlight the importance of movement in building
this subjective continuity.

A. Fitting spatial and sensory dynamics in the exploration

1) Spatial and temporal coherence: The results obtained in
Section III were based on a purely passive observation of a
changing “natural” visual scene –where the word natural here
refers to our own usual and intuitive sensorimotor experience–
allowing the agent to build a representation of its own sensory
symbols organization. But this representation should highly
depend on the environment states and the successive config-
urations with which the agent samples it along time. More
precisely, this implies that the environment state should exhibit
some typical patterns, both in space and time, in line with the
manner in which the agent conducts its interaction, to make
apparent the notion of certain sensory symbols transition being
“more typical” than others. Thus, one first condition to fulfill
is spatial, mandating that e.g. immediately next to a red region
X ′ of ambient space X it is more likely to be another region
X ′′ that is orange than cyan itself. In other words, we would
generally expect the two events

{γε(t)|X ′ = ε0} and {γε(t)|X ′′ = ε1} (18)

to largely depend on one another when X ′ and X ′′ denote
close (and small) regions of space. Furthermore, one second
condition is temporal, so that the environment state at any
localization X ′ does not immediately change too randomly so
that the two events

{γε(t)|X ′ = ε0} and {γε(t+ ∆t)|X ′ = ε1} (19)

are conditioned to another when ∆t remains sufficiently small.
One should insist on the fact that this coherence property
however should only be local and relative to the agent ex-
ploration dynamics. It is clear that the color of a point x ∈ X
and time t ∈ T does not depend on which colors appears
two kilometers, one and a half days from there. On the other
hand, should the agent instead perform a two kilometers long
movement between two successive time samples, it should not
be able to infer any relationship between successive sensory
readings from the sole spatial coherence constraints.

2) A formal account of spatiotemporal coherence: Let us
now generalize the previous sensory transition probabilities (6)
by introducing, for any (sub)collection of motor trajectories
B′T ⊂ BT ,

P
B′

T
s,s′ = {γs(t+ 1) = s′ | γs(t) = s and γb ∈ B′T }, (20)

for which PBT
s,s′ = Ps,s′ . Such a (slight) generalization allows

to highlight how a specific set of motor trajectories actually
condition the sensory transitions available in the agent sen-
sorimotor flow. More precisely, we used in [16] the sensor
receptive field notion to define the specific region of space
which environment state suffices to fully determine the agent
sensory state s. Formally, a sensor receptive field can be seen
as a function F : b ∈ B 7→ F (b) ⊂ X verifying

∀ε1, ε2 ∈ E ,∀b ∈ B,

ε1|F (b) = ε2|F (b) ⇒ ψ(b, ε1) = ψ(b, ε2) = s. (21)

Then, let us now consider B′T as a set of motor explorations
γb such that the receptive fields F (γb(t)) and F (γb(t + 1)),
which condition successive sensory outputs γs(t) and γs(t+1),
fall far apart from one another. Then, the corresponding local
environment states γε|F (γb(t+1))(t + 1) and γε|F (γb(t))(t) are
independent: the physical properties available to the agents
in the environment, restricted to the regions of space it would
sample at time t and t+1 by following a motor trajectory γb ∈
B′T , do not depend on each other. It then follows that γs(t+
1) = γγb(t+1),ε|F (γb(t+1))(t+1) and γs(t) = γγb(t),ε|F (γb(t))(t)
are independent themselves. As a result, we have

P
B′

T
s,s′ = {γs(t+ 1) = s′ | γs(t) = s, γb ∈ B′T },

= {γs(t+ 1) = s′ | γb ∈ B′T }.
(22)

Thus, the probability PB′
T

s,s′ –where B′T is a motor trajectory
for which the coherence properties mentioned before are
not verified– does not depend on previous sensory output
s anymore; instead, it simply replicates the unconditional
probability that the agent experience the particular sensory
value s’. To the agent, this means that the knowledge of which
sensation s it experiences at timestep t does not give it any
information on which sensation s′ it is poised to experience at
t + 1. Importantly, this shows that suitable choices of motor
explorations are required for building a valid sensory metric,
as well as giving an internal observation to assess whether
this condition fails through Equation (22). The influence of
this motor exploration is experimentally studied in the next
subsection to illustrate these developments.

B. An experimental assessment of the influence of the move-
ment amplitude

We propose in this subsection to assess the effect movement
of the agent has on the internal representation of sensory
symbols through simple simulations, where an agent is now
allowed to move in a fixed environment. To begin with, details
about the experiment setup are given. Next, the resulting
representations are analyzed and discussed.

1) Experimental setup: let us consider in all the following
a very simple agent, whose body is made of a planar, rectan-
gular, camera sat atop one actuator allowing the agent to only
move in one direction, see Figure 4. The pixels of the camera
are sensitive to the luminance of the ambient stimulus, which is
a fixed grayscale image placed in front of the moving camera.
In such a case, the ambient space X is then the plane R2, and
the state of the environment is a function ε mapping a position
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Figure 4: Experimental setup to assess the effect of the agent
movement in the internal sensory symbol topology. A camera, whose
field of view –or receptive field– is drawn as a square with red
borders, faces a grayscale image and moves from one position τ
to another thanks to an action of amplitude ∆b. The corresponding
sensory states st are then captured along time to build the statistics
of the sensory symbol transitions.

(x, y) in the plane to luminance values ε(x, y) ∈ [[0; 255]]
as encoded in the grayscale image. Those values are then
converted into a sensory vector s ∈ [[0; 255]]W×H directly
capturing the corresponding grayscale value in the environ-
ment (the function h() in Equation (15) is thus the identity
function). In the forthcoming simulations, W = H = 100.
The agent is able to move in its environment by applying
a single action a [16], i.e. by applying a function a to its
current absolute configuration b = (m, τ) to go to another
configuration b′ = (m′, τ ′). In this section, we will mainly
study the influence of the amplitude ∆b of this action, which
is supposed to produce a movement of the camera in only
one direction and with the same amplitude, as illustrated in
Figure 4. This is obviously a very particular and restrictive
action, at least in comparison with the more generic motor
actions framework presented by the authors in [16], but it will
still allow a comprehensive study of the effect of movement
on the internal representation built by the agent. The different
action amplitudes ∆b used in the simulations will all be equal
to a multiple of σb, a particular amplitude which causes a
shift of the perceived information in s of exactly 1 pixel. This
actually corresponds to a displacement of the camera receptive
field F (b) in X (represented as squares with red borders in
Figure 4) of the width of 1 pixel in the plane supporting the
grayscale image.

In practice, the experiment is conducted the following way.
To begin with, the environment observed by the agent is a
grayscale image of a crowded street, partially shown in Fig-
ure 4. Then, starting from a fixed (random) position τ0 in the
environment, the agent follows a motor trajectory γb(t) made
of jumps of fixed amplitude ∆b. This produces a displacement
of the agent sensor receptive field in the environment at which
the agent gathers samples st of its corresponding sensory
trajectory γs(t). After having generated Na times the same
action a, the camera is put in one other random position in the
image; then, the action a is used again to move the camera Na
times in the image. This process is repeated Nr times, so that
Nr×Na sensory samples st are collected. These samples then

allow one to build the matrix P as in Equation (12). Then, the
corresponding MDS projection of the distance matrix D can be
computed to visualize the captured sensory symbols topology.
The experience is finally repeated for various amplitudes ∆b.

2) Results and discussions: The experiment has been con-
ducted for Na = 500 and Nr = 100, so that 50.103 sensory
transitions are used to build the matrix P for each action
amplitude ∆b chosen among {σb, 25σb, 250σb, 1000σb}. Note
that being greater than the size Ns = 100 of the sensor,
∆b = 250σb leads to the sampling of an area in the
environment that does not overlap with its previous receptive
field position. Figure 5 represents successively (in each row)
the matrices P,D and its corresponding embedding MDS2(D)
for each of the 4 selected amplitudes (in each column). Let
us first consider the evolution of the probability matrix as a
function of the movement amplitude (first row). For a very
small action amplitude, the probability matrix P exhibits
a clear diagonal pattern indicating that close sensory sym-
bols (in terms of gray levels) correspond to high transition
probabilities; qualitatively, one faces here more or less the
same conditions than in §III-B1 where the observation of
the environment changes matches the changes in perception
induced by action of the agent. These two scenarios no
longer correspond when the action amplitude rises: the higher
the amplitude, the wider the probability distribution. For the
largest amplitude, the diagonal pattern cannot even be seen
anymore in P and high probabilities do not correspond to
close gray levels anymore. This tendency is clearly confirmed
when computing the distance matrix D from P (2nd row in
Figure 5): for high amplitudes, mostly all symbols are now
close to each other. Obviously, this results in very different 2D
projections of the matrix D (3rd row). For lowest amplitudes,
one still clearly sees a one-dimensional manifold, folding on
itself when the action amplitude grows. But the dimensionality
of the manifold is not sufficient to tell if the agent correctly
captured or not the sensory symbols topology. Like we did in
Figure 1d, a k-NN algorithm is computed on D and displayed
in Figure 5 to link each symbol to its closest neighbor, this
link being represented as an arrow between two symbols in
the projection. Looking at the smallest amplitude, the sensory
symbols manifold can be browsed in the usual grayscale order
by following the aforementioned arrows. On the contrary this
proves impossible for larger amplitudes, where arrows link
together e.g. symbols associated to clear and dark gray levels.
It is then clear that the conditions written as Equations (19)
and (18) are not verified anymore, with two successively
sampled environment states associated to two distant positions
in space, leading to the loss of perception by the agent of the
spatial and temporal coherence in the environment.

Equation (22) states that, for a specific set of motor tra-
jectories B′T making successive receptive fields falling apart
from one other, the probability of transition between succes-
sive sensory symbols tends to an unconditional probability
P

B′
T

s,s′ = Ps′ . Importantly, this phenomenon can be internally
assessed by the agent since both probability distributions are
only based on sensory symbols observations; this then consti-
tute some internal way for the agent to rate the spatial and
temporal coherence of its interaction with the environment.
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Figure 5: Evolution of the transition probability measure P (displayed with logarithmic norm), the distance measure D and the representation
of this distance projected using 2-dimensional MDS for increasing movement amplitudes. Each column represents a motor trajectory for a
fixed amplitude ∆b described relatively to a 1 pixel shift of its sensor’s field of view. One can see that the diagonal pattern for P and D
as well as the uni-dimensional grayscale manifold are deteriorating as the movement amplitude get bigger indicating the inability to capture
spatial coherence properties. The links that connect each symbol on the MDS representation are a k-NN like algorithm that assess how the
agent perceive its symbol continuity.

To that end, we propose to compare the two probability
distributions Ps=si,s′ , the probability of every sensory value
to succeed to a specific sensory value si, and Ps′ by using
the Jensen-Shannon distance DJS [25], a metric based on the
Kullback–Leibler divergence [26] defined along

DJS(Ps=si,s′‖Ps′) =

√
KL(Ps=si,s′‖M) + KL(Ps′‖M)

2
,

with M =
1

2
(Ps=si,s′ + Ps′) , (23)

with the KL divergence for two discrete probabilistic distribu-
tions A and B defined on the probability space W as

KL(A‖B) =
∑
x∈W

A(x) log2

(
A(x)

B(x)

)
.

This results in a distance DJS(si) between 0 and 1, computed
for each sensory symbol s′, that is expected to converge
towards 0 when both distributions are identical, i.e. when the
motor trajectory of the agent leads to having s and s′ inde-
pendent. Again, DJS is computed for 4 different amplitudes
{σb, 5σb, 25σb, 125σb} with corresponding graphs in Figure 6.
The results displayed in Figure 6 show that the JS distance for
every probability distribution systematically decreases when
the amplitude of agent’s movement increases, i.e. the con-
ditional distribution tends towards the unconditional one as
described by Eq. (22). This internal comparison between the
two probability distributions could then provide the agent

0 25 50 75 100 125 150 175 200

s

0.2

0.4

0.6

0.8

D
JS

(P
s=

s i
,s
′
‖
P

s′
)

σb 5σb 25σb 125σb

Figure 6: JS distance of every conditional probabilities relatively
to the unconditional probability P (s′) for different movement am-
plitudes. Each point of the plot represents a JS distance for a
single conditional probability to P (s′). As the amplitude increases
the divergence of every symbol decreases, getting closer to the
unconditional probability.

with a way to rate the adequation of its motor exploration
performed by applying actions with (at least for now) unknown
consequences, or even an internal signature of the amplitude
of actions.

V. USING THE METRIC TO GET AN INTERNAL ASSESSMENT
OF SENSORY REGULARITY

Now that we have been able to quantify how and why
the agent action modulates its sensory symbol topology, let
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us focus on a more experimental use of the obtained rep-
resentation. Intuitively, and thanks to the introduction of the
metric df , the agent should now be able to assess if a sensory
transition is typical or not. This could be used as a way to
deal with the presence of noise in the raw sensory data, i.e.
by being able to discriminate close (but not strictly equal)
sensory values from irregular sensory transitions due to the
presence of specific events in the environment (movement of
an object in the scene, changes in the illumination conditions,
etc.). This section thus aims to present how the agent could
internally assess its sensory regularity by first depicting some
simple formal elements in a first subsection. Then, a second
subsection shows how a naive agent could actually be capable
of performing a sensory prediction task, even in the presence
of noise, in the vein of the sensorimotor action framework
presented by the authors in [16].

A. Internally rating the sensory regularity
1) Some formal considerations: to begin with, let us con-

sider again Eq. (7) by which δf (s, s′) is defined in terms of
the sensory transition probabilities Ps,s′ . It can be trivially
rewritten as

∀s, s′ ∈ S,P(γs(t+ 1) = s′ | γs(t) = s) = f−1(δf (s, s′)) ,
(24)

when f is injective. But because f is also necessarily non-
increasing, so must f−1 be; this obviously entails that the
probability of any sensory transition from s to s′ is as expected
a decreasing function of the sensory distance between them.
However, we also know from the definition of the metric df
from shortest paths in Eq. (8) that

∀s, s′ ∈ S,df (s, s′) ≤ δf (s, s′). (25)

One then has immediately

∀s, s′ ∈ S,P(γs(t+ 1) = s′ | γs(t) = s) ≤ f−1(df (s, s′)) .
(26)

Then, Eq. (26) guarantees that, from any sensory value s,
the probability to land on s′ at a distance df (s, s′) = λ
is therefore less than f−1(λ). This property thus gives an
intrinsic way of quantifying the regularity of a transition
in the sensory experience. Indeed, providing some “metric
rejection threshold” τr, the agent might be able to deem all
sensory transitions s to s′ of corresponding distance df (s, s′)
as irregular (resp. regular) whenever df (s, s′) ≥ τr (resp.
df (s, s′) < τr).

Still, one should notice that Eq. (26) is merely an inequality,
as opposed to the corresponding equality in Eq. (24). To the
agent, this means that there may be some particular transitions
from s to s′ which are still unlikely even if the agent found
df (s, s′) to be small: basically, this criterion can allow false
positives, while it guarantees that all transitions rejected on
the basis of this metric verify the occurrence probability
inequality, that is it does not cause false negatives.

2) Example: we selected in previous sections (see Eq. (13))
the function f = − log to map the estimated transition
probabilities pkl to the metric prototype δkl. In such a case, still
with a threshold τr, an irregular transition should then typically
occur with a probability P(γs(t+ 1) = s′ | γs(t) = s) ≤ e−τr .

Then, selecting for instance the classical threshold values
τr ∈ {1, 3, 5} will allow the agent to reject transitions that
occur in less than about {37, 5, 1}% of occurrences.

B. Exploiting the sensory regularity for sensory prediction

We now propose to exploit the agent’s capability to decide
whether a sensory transition is regular in a sensory prediction
task in the presence of noise inside the sensory data. To that
end, the experimental setup used in [16] is replicated and
shortly recalled in a first paragraph. Then, the resulting sensory
prediction function, taking the form of a permutation matrix
between pixels of the agent’s camera, is computed for different
scenarios: (i) with no noise in the sensory data (exactly like
in [16]), or with noise, but (ii) without or (iii) with rating the
sensory regularity. A discussion comparing these scenarios is
then proposed in a second paragraph.

1) Experimental setup: the proposed simulation setup is
very close to the one already presented in §IV-B1. The agent is
still made of a moving camera facing a fixed grayscale image,
as shown in Figure 4. This time, the agent is endowed with a
W × H = 10 × 10 sensor, and is now able to move in four
orthogonal directions by applying 5 different actions aid, af ,
ab, ar and al making the camera receptive field respectively
stay still, move in the left, right, up or down directions in X .
Importantly, the agent has no clue about the incidence of a
given action nor about their possible relationship. All it can
do is perform an action and observe its consequence in its
sensory data [16]. The proposed experimentation then relies
on the two following steps.

a) Step 1: building of the sensory symbol topology. The
agent explores its environment by randomly selecting an action
in A = {aid, af , ab, ar, al} with identical amplitudes ∆b = σb
(apart from aid), and then infers the distance matrix D, in line
with §IV-B where the number Na of draws of actions is set
to Na = 25, and the number of repetition is selected to Nr =
2.103. As opposed to the previous case, some artificial noise
nij is now added to the pixel value vij of the image to form
the agent’s sensel values3 sij = vij + nij before computing
the matrix D, with nij a random integer drawn from a centered
discrete uniform distribution of width 2σn.

b) Step 2: building of the sensory prediction function.
Once the matrix D is obtained, the agent performs a second
exploration of its environment so as to build a sensory predic-
tion function for each of its actions in A. In practice, these
functions take the form of binary permutation matrices [16]
Πap = (π

(p)
kl )k,l of size Ns × Ns, with ap ∈ A and

Ns = W × H , as each pixel value in the sensory array
is expected to shift in different positions depending on the
spatial effect of the performed action. For this experiment,
Na = 50.103 and Nr = 1. Initially, every element π(p)

kl of the
permutation matrices Πap is initialized to 1, meaning that all
permutations between the agent sensels are possible for action
ap. Then, each time this action is drawn from A, the agent
can discard in Πap some permutations by observing that some

3which is further clamped if need be, i.e. if sij exceeds 0 or 255, the sensel
value is set to the closer bound.
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sensels values do not switch with one others, then updating
the corresponding matrix elements to 0 as per the update rule

π
(p)
kl [n+1] =

{
1 iff sl[n] = sk[n+ 1] and π(p)

kl [n] = 1

0 else,
(27)

where sk and sl represent the sensel values associated to the
element at the position (k, l) in the permutation matrix Πap .
One can notice in Eq. (27) that the elements in these matrices
are set to 0 as soon as a permutation is not detected by the
strict equality between sensory values. This limitation, already
outlined in [16], makes this approach fall apart when dealing
with noise in the sensory data. Benefiting from the previous
developments, one instead proposes a revised update rule of
the permutation matrix along

π
(p)
kl [n+1] =

{
1 iff df (sl[n], sk[n+ 1]) < τr and π(p)

kl [n] = 1

0 else,
(28)

where τr is a manually chosen threshold applying on the
built matrix distance D. In the following, τr is tuned so
as to correspond to the smallest threshold that allows for
permutations matrices to converge. It is clear that this a strong
a priori, and the way the agent can autonomously set this
threshold is still an ongoing work, discussed in the conclusion.

c) Evaluation: convergence of the permutation matrices.
To evaluate the influence of the added noise on the conver-
gence of permutation matrices Πap , one proposes an (external)
criterion C(Πap) = CH(Πap) × CD(Πap) adapted from [16]
to account for the added noise to the data and defined along

CD(Πap) =

∑
kl π

(p)
kl π̄

(p)
kl∑

kl π̄
(p)
kl

, and

CH(Πap) = 1− 1

Ns log2(Ns)

Ns∑
i=1

Hi,

with Hi = −
Ns∑
l=1

π
(p)
kl

µk
log2

(
π
(p)
kl

µk

)
,

and µk = max

(
1,

Ns∑
l=1

π
(p)
kl

)
,

(29)

where π̄
(p)
kl represents the (binary) coefficients of the ideal

matrix Π̄ap associated to the action ap. Basically, CH can be
understood as an average measure of certainty in the discovery
of the permutations, weighted by the percentage CD of the
correctly identified permutations w.r.t. the ground truth to
account for the noise possibly discarding some of them. In the
end, criterion C lies between 0 –i.e. the matrix is full of 1’s
(initialization) or 0’s (all permutations have been discarded)–
and 1 –i.e. the permutation has been correctly discovered–.

2) Results: As outlined in the introduction of Section V,
three different scenarios are evaluated. To be begin with, one
first considers the case where there is no noise in the agent’s
perception by setting σn = 0. Then, using the update rule (27)
should allow the agent to correctly build all of its permutation
matrices, exactly as in in [16]. As expected, Figure 7a shows
that criterion C converges towards its maximal value 1 for
all actions in A. C plots also exhibit sparse jumps at random
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(a) Evaluation criterion C with σn = 0 and strict equality update rule.
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(b) Evaluation criterion C with σn = 2 and strict equality update rule.
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(c) Evaluation criterion C with σn = 2 and a threshold in D.

Figure 7: Evolution of the evaluation criterion C for the 5 considered
actions in A. (a) With no noise and the update rule (27), C converges
towards 1 in a very short number of realization of each action. (b) In
the same scenario, but with σn = 2, the update rule (27) do not allow
to detect permutations anymore, resulting in the criterion falling down
to 0. (c) When selecting a correct threshold τr in Eq. (28), the agent
is now able to build the 5 sensory prediction functions correctly, but
with more realization of each action in comparison with (a).

times, corresponding to the steps where the action was actually
drawn in A during the experiment. More importantly, one can
see in Figure 7a that only a few realizations of each action ap
(about 4 to 6 here) is required for C(Πap) to almost reach 1,
showing how easy it is for the agent to discover the existence
of such permutations in its own perception. In the second
scenario, a noise of amplitude σn = 2 is now added to the
sensation. Obviously the strict comparison of sensel values
in (27) in the presence of such noise (however small) entirely
breaks the approach , as shown in Figure 7b. As expected, the
criterion C now converges to 0: each Πap matrices converges
to null matrices as all possible permutations of values have
been (including erroneously) discarded in the process. Finally,
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the new update rule (28) is now used to judge of the closeness
of sensels values on the basis on the built distance D, resulting
in the evolution of the criterion C represented in Figure 7c.
For this scenario, σb = 1 and τr = 1.63. In the presence of
noise, the ability for the agent to assess if a sensation is now
close to others allows it to correctly discover the existence of
permutations in its perception. But clearly, this task is not as
easy as in the first scenario: the number of required actions for
correctly evaluating their corresponding permutation matrices
is significantly higher. This is apparent in Figure 7c, not only in
the slower convergence time of the criterion C, but also in the
smaller jumps of values in C. Indeed, each generation of action
brings less information in the prediction process because of the
noise included in the agent sensation. But still, the important
structures anchoring the sensorimotor interaction the agent has
with its environment are still available, allowing it e.g. to build
an image of its body [14] or of its peripersonal space [15], at
least at the cost of a longer interaction in time.

VI. CONCLUSION

In this paper, and after purely topological considerations,
a metric-based approach is proposed to formalize the ability
for a naive agent to build some subjective sense of sensory
continuity. An experimental framework is then proposed, il-
lustrated and assessed in the context of visual perception for
the discovering of gray or color scales. Then the importance
of the dynamic of the agent exploration relatively to that of the
environment is studied, highlighting an important spatiotem-
poral coherence principle of this exploration. Finally, a sensory
closeness notion being now available to the agent, a sensory
prediction task is proved accessible even in the presence
of noise, thus extending the robustness of this sensorimotor
framework to realistic conditions.

Nevertheless, it is clear that this work still suffers from
some limitations. For instance, the scalability of the proposed
experimental framework is certainly limited. Indeed, although
it was not the objective of this paper, the way the regular-
ities are extracted from the raw sensations is certainly not
computationally effective, considering the possibly very high
number of sensory symbols involved in e.g. color perception
for traditional camera sensors. Hierarchical approaches might
be preferred [27], but still remain to be explored in the
context of sensorimotor approaches to perception. Another
limit concerns the notion of sensory neighbors: while being
now formally accessible to the agent thanks to the proposed
contribution, it still practically requires a threshold to be set
w.r.t. the task to be performed. In this paper this threshold has
been manually tuned, but one could instead rely on a closed-
loop approach mixing the discovery of the sensory regularities
with the corresponding sensory prediction task: as long as the
prediction is not correctly built, the threshold must be adapted
accordingly. Still, should the agent be able to perform some
sensory prediction task, so should it be able to quantitatively
compare its prediction with its actual perception. This should
make it capable of detecting outliers in its environment, and
in particular changes in its perception which are not directly
correlated to its own action. This might be the way towards
some internal notion of sensorimotor objects, and thus would

undoubtedly extend the scope of these approaches to more
potential applications.
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