
HAL Id: hal-03537373
https://hal.science/hal-03537373v1

Preprint submitted on 20 Jan 2022 (v1), last revised 10 Jun 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed precision algorithms in numerical linear algebra
Nicholas J Higham, Théo Mary

To cite this version:
Nicholas J Higham, Théo Mary. Mixed precision algorithms in numerical linear algebra. 2022. �hal-
03537373v1�

https://hal.science/hal-03537373v1
https://hal.archives-ouvertes.fr

Acta Numerica (2021), pp. 1–69 © Cambridge University Press, 2021
doi:10.1017/S09624929XXXXXXXX Printed in the United Kingdom

Mixed precision algorithms in
numerical linear algebra

Nicholas J. Higham
Department of Mathematics, University of Manchester,

Manchester, M13 9PL, UK
nick.higham@manchester.ac.uk

Theo Mary
Sorbonne Université, CNRS, LIP6,

Paris, F-75005, France
theo.mary@lip6.fr

Version of December 20, 2021

Today’s floating-point arithmetic landscape is broader than ever. While scientific
computing has traditionally used single precision and double precision floating-point
arithmetics, half precision is increasingly available in hardware and quadruple preci-
sion is supported in software. Lower precision arithmetic brings increased speed and
reduced communication and energy costs, but it produces results of correspondingly
low accuracy. Higher precisions are more expensive but can potentially provide great
benefits, even if used sparingly. A variety of mixed precision algorithms have been
developed that combine the superior performance of lower precisions with the better
accuracy of higher precisions. Some of these algorithms aim to provide results of
the same quality as algorithms running in a fixed precision but at a much lower cost;
others use a little higher precision to improve the accuracy of an algorithm. This
survey treats a broad range of mixed precision algorithms in numerical linear al-
gebra, both direct and iterative, for problems including matrix multiplication, matrix
factorization, linear systems, least squares, eigenvalue decomposition, and singular
value decomposition. We identify key algorithmic ideas, such as iterative refine-
ment, adapting the precision to the data, and exploiting mixed precision block fused
multiply–add operations. We also describe the possible performance benefits and
explain what is known about the numerical stability of the algorithms. This survey
should be useful to a wide community of researchers and practitioners who wish to
develop or benefit from mixed precision numerical linear algebra algorithms.

2 N. J. Higham and T. Mary

CONTENTS
1 Introduction 2
2 Floating-point arithmetics 6
3 Rounding error analysis model 14
4 Matrix multiplication 15
5 Nonlinear equations 18
6 Iterative refinement for Ax = b 22
7 Direct methods for Ax = b 25
8 Iterative methods for Ax = b 35
9 Mixed precision orthogonalization and QR factoriza-

tion 39
10 Least squares problems 42
11 Eigenvalue decomposition 43
12 Singular value decomposition 46
13 Multiword arithmetic 47
14 Data-driven algorithms 50
15 Miscellany 52

1. Introduction
Traditionally, scientific computing has been carried out in double precision arith-
metic, which nowadays corresponds to a 64-bit floating-point number format. It
has long been recognized that single precision computations have advantages over
double precision ones, not just because single precision arithmetic is typically twice
as fast as double precision arithmetic but also because single precision data requires
half as much storage as double precision data and has half the memory transfer
costs. Of course, single precision computations will generally provide only single
precision accuracy. Whether this is sufficient for a given application depends on the
application and the answer can be different even for different computations within
the same field—see Section 1.2.2.
Modern hardware increasingly supports half precision arithmetic, which is at-

tractive compared with single and double precisions because of its speed, its lower
energy usage, and its reduced storage and data movement costs.
As we now have three precisions of floating-point arithmetic in hardware, as

well as quadruple precision arithmetic in software, we are in an intrinsically mixed
precision world, where precisions can be judiciously chosen in order to make the
best use of our computational resources.
In this work we survey mixed precision algorithms in numerical linear algebra.

Relevant work goes back to the beginning of the digital computer area, but most
contributions in this area have been made in the last couple of decades. An earlier
survey of the same areas is Abdelfattah et al. (2021a).

Mixed precision numerical linear algebra 3

1.1. Mixed precision versus multiprecision

We use the following terminology.

• A mixed precision algorithm uses two or more precisions chosen from a
small number of available precisions, which are typically half, single, and
double precision, provided in hardware, and quadruple precision, provided in
software.
• A multiprecision algorithm uses one or more arbitrary precisions, which may
be problem-dependent and are provided in software. The precision at which
results are returned may be fixed (for example, double precision) or may
be a parameter. See Section 2.5 for details of some available multipreci-
sion arithmetics. The term variable precision is sometimes used in place of
multiprecision.

This survey is concerned with mixed precision algorithms, but we will briefly
discuss some multiprecision algorithms in Section 15.2.

1.2. Applications

Mixed precision algorithms are being used, or considered for use in awide variety of
applications, some of which involve computations at very large scale. We mention
some examples here in order to illustrate the different motivations for using mixed
precision arithmetic and the possible benefits in real-life applications.

1.2.1. Simulations
Idomura et al. (2020) carry out plasma turbulence simulations for the next genera-
tion experimental fusion reactor ITER on the Fugaku and Summit supercomputers.
Their code for integrating the gyrokinetic partial differential equation (PDE) in
double precision involves the solution of linear systems by a Krylov method. The
authors show that using a communication-avoiding version of the Krylov method
with a half precision (fp16) version of the preconditioner results in speedups over
the original solver by a factor approximately 2–3.
Yang et al. (2019) implement in TensorFlow a Monte-Carlo simulation of the

Ising model on a two-dimensional lattice and run it on Google Tensor Processing
Units (TPUs). They find that single precision can be replaced by half precision
(bfloat16) without any loss of accuracy, enabling larger lattices to be simulated
because of the lower memory requirement of half precision.

1.2.2. Climate modelling and weather forecasting
In climate modelling and weather forecasting, codes have traditionally used double
precision variables, but in recent years the use of lower precisions has been ex-
tensively investigated (?). The lesser data movement and faster execution of lower
precision arithmetic offers the possibility of using refined spatial grids represented
in lower precision, allowing higher resolution simulations with no increase in run

4 N. J. Higham and T. Mary

time, potentially improving the output of a model. The observations on which a
model is built have low precision, so it can be argued that variables do not need
to be represented in double precision (Tintó Prims et al. 2019), and this argument
is also supported by the notion that the grid parametrizations should be stochastic
(Palmer 2020). Moreover, many model components have uncertainties that can
be much larger than the level of double precision (Dawson, Düben, MacLeod and
Palmer 2018). Codes in this area can consist of millions of lines of Fortran (Bauer
et al. 2021), so changing the precisions of variables and assessing the effect of the
changes is not an easy task.
Váňa et al. (2017) show that almost all double precision variables in the In-

tegrated Forecast System of the European Centre for Medium-Range Weather
Forecasts can be converted to single precision with no noticeable loss in accuracy
and a gain in speed of about 40 percent. A benefit of running the code in lower
precision was found to be that it revealed places where the code could be made
more robust. Harvey and Verseghy (2015) had a different experience with their
code for a land surface model, where running in single precision instead of double
did not provide sufficient accuracy for some of the land depths and timescales of
interest.
A weather and climate simulation code called the Unified Model (UM) is used

by the Met Office for both operational numerical weather prediction and climate
modelling. The code carries out time integration of a system of PDEs, which
involves at each time step the solution of a linear system with a banded, time-
varying nonsymmetric matrix of size 3.5 × 108. The system is solved by the
preconditioned BiCGstab algorithm, with a convergence test requiring a residual
of norm 10−4 relative to the right-hand side. The UM is coded in double precision
and is memory bound (that is, its execution time is determined by the speed at which
data is transferred frommainmemory to the arithmetic units rather than by the speed
of the floating-point arithmetic). Maynard and Walters (2019) implemented the
linear system solution almost entirely in single precision, with the same convergence
tolerance, obtaining close to a factor 2 speedup of the solver, which they attribute
to the reduction in data movement costs. To alleviate some stability issues they use
a mixed precision summation algorithm that is essentially the FABsum algorithm
of Blanchard, Higham and Mary (2020a), which is discussed in Section 4.2. The
mixed precision solver is now used in operational forecasts.

1.2.3. Machine learning
Low precision arithmetic has become widely used in machine learning in the last
few years because it has been found experimentally that algorithms can run faster
with certain parts executed in low precision, with little or no deterioration in the
quality of the results. Dean (2020) gives three characteristics of deep learning
models that make specialized hardware suitable for running them.
“First, they are very tolerant of reduced-precision computations. Second, the computations
performed by most models are simply different compositions of a relatively small handful

Mixed precision numerical linear algebra 5

of operations likematrixmultiplies, vector operations, application of convolutional kernels,
and other dense linear algebra calculations . . . Third, many of the mechanisms developed
over the past 40 years to enable general-purpose programs to run with high performance on
modern CPUs . . . are unnecessary for machine learning computations. So, the opportunity
exists to build computational hardware that is specialized for dense, low-precision linear
algebra, and not much else, but is still programmable at the level of specifying programs
as different compositions of mostly linear algebra-style operations.”

The special-purpose hardware being referred to here can be classified as either
field programmable gate arrays (FPGAs) or application-specific integrated circuits
(ASICs) and they may use fixed-point arithmetic, floating-point arithmetic, or an
intermediate between the two called block floating-point arithmetic (which was in
use in the 1960s (Wilkinson 1963, Wang et al. 2019)).
Variables of different precisions arise inmachine learning algorithms fromquant-

ization, the process of reducing the number of bits per operand. The limiting case is
binarization, in which a number has just two possible values, 0 and 1. Quantization
is applied in various ways, including during training or on a trained model.
One of the first papers to popularize the use of low precision arithmetic in deep

learning is by Courbariaux, Bengio and David (2015), who find that “very low
precision is sufficient not just for running trained networks but also for training
them.”
Several reasons have been suggested by numerical analysts for the success of low

precision floating-point arithmetic in machine learning. Scheinberg (2016) argues
that in machine learning we are solving the wrong problem, namely a surrogate
for the original optimization problem, so we do not need an accurate solution. It
can also be argued that low precision arithmetic provides regularization and that
this is beneficial to machine learning, perhaps by leading to flat minima rather than
narrow minima.
In machine learning one often updates a parameter φ by a sequence of small

quantities hi through a recurrence φ(i+1) ← φ(i) + hi, i = 1: n. If hi is of absolute
value less than half the spacing of the floating-point numbers around φ(i), which is
more likely in low precision arithmetic, then φ(i) + hi rounds to φ(i) with round to
nearest, so the information in hi is lost, and if this happens for many i then the error
in φ(n+1) can be large. This phenomenon is called stagnation. It can be avoided by
using stochastic rounding in place of round to nearest (Connolly, Higham andMary
2021, Croci et al. 2021). Stochastic rounding is a randomized form of rounding
that rounds to the next larger or next smaller floating-point number with probability
proportional to 1minus the distance to those floating-point numbers. An early use in
deep learning was by Gupta, Agrawal, Gopalakrishnan and Narayanan (2015), who
find that “deep networks can be trained using only 16-bit wide fixed-point number
representation when using stochastic rounding, and incur little to no degradation
in the classification accuracy.”

6 N. J. Higham and T. Mary

1.2.4. HPL-AI Mixed Precision Benchmark
The HPL-AI Mixed Precision Benchmark1 is intended to measure supercomputer
performance on AI-type workloads. It solves a double precision nonsingular linear
system Ax = b of order n using an LU factorization without pivoting computed in
half precision and it refines the solution using preconditioned GMRES in double
precision. As of November 2021, the world record execution rate for the benchmark
is 2.0 ExaFlop/s (2 × 1018 floating-point operations per second), where most of
the operations are half precision ones, for a matrix of size 16, 957, 440, which was
achieved by the Fugaku supercomputer in Japan (Kudo, Nitadori, Ina and Imamura
2020a,b). The choice of matrix A for the benchmark is critical, as it must be cheap
to compute, have a controlled condition number, and have a numerically stable
LU factorization without pivoting; a class of matrices having these properties is
derived by Fasi and Higham (2021).

2. Floating-point arithmetics
Support for more than one precision of floating-point arithmetic, provided in hard-
ware or software, has existed throughout the history of digital computing. A
landmark was the Fortran 66 standard (ANSI 1966), which included the real and
double precision data types and so made it possible to write portable programs that
used two precisions.
Some early machines that supported d-digit but not 2d-digit arithmetic offered

the ability to accumulate an inner product of d-digit vectors in a 2d-digit accu-
mulator, only rounding back to d digits after the final addition. This mode of
computation was discussed by von Neumann and Goldstine (1947, Section 2.3)
and was exploited by Wilkinson (1948, 1961) on the ACE computer and by Moler
(1967) on the IBM 7094. Even earlier, desk calculating machines such as the
Brunsviga offered accumulators with more digits than the input or the registers
(Croarken 1985, Section 1.2.1).
Up to the mid 1980s, most computers used for scientific computing offered both

single precision and double precision floating-point arithmetic, but the formats of
the precisions varied greatly between machines. For example, a double precision
number had a 96-bit significand on theCray-1, a 53-bit significand on theDECVAX
(G format), and a 14-hexadecimal digit significand on the IBM 3090. This lack
of uniformity, and more importantly the differing properties of the arithmetics,
hindered the development of software intended to perform consistently across
different machines.

2.1. IEEE arithmetics

Amajor breakthrough for scientific computingwas the publication of theANSI/IEEE
Standard 754-1985 for Binary Floating-Point Arithmetic (IEEE 1985), which

1 https://icl.bitbucket.io/hpl-ai/

https://icl.bitbucket.io/hpl-ai/

Mixed precision numerical linear algebra 7

Table 2.1. Parameters for five floating-point arithmetics: number of bits in sig-
nificand (including implicit most significant bit) and exponent (sig, exp); unit
roundoff u; smallest positive (subnormal) number xsmin; smallest positive normal-
ized number xmin; and largest finite number xmax. The last four columns are given
to three significant figures. In Intel’s bfloat16 specification subnormal numbers are
not supported (Intel Corporation 2018).

(sig, exp) u xsmin xmin xmax

bfloat16 (8, 8) 3.91 × 10−3 9.18 × 10−41 1.18 × 10−38 3.39 × 1038

fp16 (11, 5) 4.88 × 10−4 5.96 × 10−8 6.10 × 10−5 6.55 × 104

fp32 (24, 8) 5.96 × 10−8 1.40 × 10−45 1.18 × 10−38 3.40 × 1038

fp64 (53, 11) 1.11 × 10−16 4.94 × 10−324 2.22 × 10−308 1.80 × 10308

fp128 (113, 15) 9.63 × 10−35 6.48 × 10−4966 3.36 × 10−4932 1.19 × 104932

provided binary floating-point formats and precise rules for carrying out arith-
metic on them. The standard had been carefully designed over several years by a
committee of experts from academia and industry, and it brought much-needed or-
der to computer arithmetic (Kahan 1981). Within a few years virtually all computer
manufacturers had adopted it.
The 1985 standard prescribed two floating-point number formats: 32-bit single

precision and 64-bit double precision. A 2008 revision (IEEE 2008) added a 128-
bit quadruple precision format and a 16-bit half precision format, the latter defined
as a storage format only rather than for computation. The half precision format was
motivated by the emergence of support for 16-bit formats on graphical processing
units (GPUs), where these formats were used for graphics and gaming.
To define the IEEE formats we recall that a floating-point number system is a

finite subset F = F(β, t, emin, emax) of R whose elements have the form

x = ±m × βe−t+1. (2.1)

Here, β is the base, which is 2 on virtually all current computers. The integer t is the
precision and the integer e is the exponent, which lies in the range emin ≤ e ≤ emax,
and the IEEE standard requires that emin = 1−emax. The significand m is an integer
satisfying 0 ≤ m ≤ βt − 1. To ensure a unique representation for each nonzero
x ∈ F it is assumed that m ≥ βt−1 if x , 0, so that the system is normalized.
The largest and smallest positive numbers in the system are xmax = β

emax(β−β1−t)
and xmin = βemin , respectively. Two other important quantities are u = 1

2 β
1−t , the

unit roundoff, and ε = β1−t , the machine epsilon, which is the distance from 1 to
the next larger floating-point number.
Numbers with e = emin and 0 < m < βt−1 are called subnormal numbers. They

have the minimal exponent but fewer than t digits of precision. They form an
equally spaced grid between 0 and the smallest normalized number.

The parameters for the IEEE formats are given in Table 2.1. We refer to these

8 N. J. Higham and T. Mary

Sign Exponent Significand
5 bits 10 (+1) bits

fp16

Sign Exponent Significand
8 bits 7 (+1) bits

bfloat16

Figure 2.1. Comparison of the 16-bit bfloat16 and fp16 floating-point number
formats. The “+1” refers to the implicit leading bit of the significand, which is not
stored.

formats as “fpxy”, where the integer “xy” specifies the number of bits in a floating-
point number (the IEEE standard uses the terminology “binaryxy”).
What is perhaps most striking is the great difference in ranges [xsmin, xmax]

between the formats, and especially the narrow range [xmin, xmax] ≈ [6 × 10−5, 6 ×
104] for fp16. This means that a large proportion of fp32 and fp64 numbers are
not representable as finite, nonzero fp16 numbers; as we will see, this means that
careful scaling is needed in mixed precision algorithms that use fp16.

2.2. Other arithmetics

A floating-point number format called bfloat16 was proposed by researchers in the
Google Brain artificial intelligence research group. Like fp16, it is a 16-bit format,
but it allocates bits between the significand and exponent differently: as illustrated
in Figure 2.1, bfloat16 allocates 8 bits for the significand and 8 bits for the exponent
versus 11 bits for the significand 5 bits for the exponent for fp16. As shown in
Table 2.1, the range of bfloat16 is very similar to that of fp32 (but not identical,
because of its narrower significand), which means that overflow in converting to
bfloat16 from higher precisions is much less likely than for fp16. The drawback
of bfloat16 is its low precision: about three decimal digits of precision versus four
for fp16. Bfloat16 has been taken up by Intel (Intel Corporation 2018), Arm, and
NVIDIA (beginning with the Ampere architecture).
There is no generally accepted 8-bit quarter precision format, though suggestions

have been made by Moler (2017) (and implemented in MATLAB by Moler2),
Tagliavini et al. (2018), and Wang et al. (2018).
Double-double arithmetic is a form of quadruple precision arithmetic in which

a quadruple precision number is represented as the unevaluated sum of two double
precision numbers, one representing the higher order bits of the significand and
the other the lower order bits (Muller et al. 2018, Section 14.1). Double-double

2 http://mathworks.com/matlabcentral/fileexchange/59085-cleve-laboratory

http://mathworks.com/matlabcentral/fileexchange/59085-cleve-laboratory

Mixed precision numerical linear algebra 9

arithmetic has a long history going back to the 1960s (Li et al. 2002). It is a
“poor man’s quadruple precision” in that it is slightly less accurate than quadruple
precision, has roughly the same range as double precision, and does not inherit
all the desirable properties of the underlying double precision arithmetic (Joldes,
Muller and Popescu 2017).
Other floating-point formats have been proposed for specific applications. For

example, a 9-bit format with a 4-bit significand and a 5-bit exponent is proposed
by O’uchi et al. (2018) for use in deep learning.

2.3. Availability in hardware and software

IEEE single and double precision arithmetic began to be widely supported in
hardware in the late 1980s and early 1990s. In fact, the Intel 8087 coprocessor,
produced before the standardwas published, partly supported it. In principle, single
precision arithmetic operations should run twice as fast as their double precision
counterparts, and single precision variables have the benefit of requiring half the
storage of double precision ones, resulting in less data movement, but on Intel chips
single precision had no speed advantage over double precision until the late 1990s,
when Streaming SIMD Extensions (SSE) instructions were introduced (Langou
et al. 2006).

IEEE fp16 arithmetic began to be supported on NVIDIA GPUs in the Max-
well architectures (Jetson TX1, 2014) and was included in the subsequent Pascal
(P100, 2016), Volta (V100, 2017), Turing (T4, 2018), and Ampere (A100, 2020)
architectures. Fp16 is also supported on AMD GPUs in the GCN and CDNA
architectures.
Bfloat16 is supported on Google’s TPUs (Norrie et al. 2021), the NVIDIA

A100 GPU (Choquette et al. 2021, NVIDIA Corporation 2020), the ARM NEON
architecture (ARM 2018) and Armv8-A architecture (ARM 2019), the Fujitsu
A64FX ARM processor (Dongarra 2020, Sato et al. 2020), and the Intel Xeon
Cooper Lake processors. It is not only high-end devices that support half precision:
the Raspberry Pi, which uses the Armv8-A architecture, supports Bfloat16 (Groote,
Morel, Schmaltz and Watkins 2021, Sec. 7.2.1).
The future Chinese Sunway exascale computer is scheduled to have double

precision arithmetic running at 1 ExaFlop/s and half precision arithmetic running
at 4 ExaFlop/s (Gao et al. 2021, Sec. 4).

Quadruple precision arithmetic is available almost exclusively in software. It
is supported by some compilers, such as the GNU Compiler Collection (GCC)3,
and in MATLAB through the Symbolic Math Toolbox4 and the Multiprecision
Computing Toolbox.5 Quadruple precision arithmetic is supported in hardware on

3 https://gcc.gnu.org/
4 http://www.mathworks.co.uk/products/symbolic/
5 http://www.advanpix.com

https://gcc.gnu.org/
http://www.mathworks.co.uk/products/symbolic/
http://www.advanpix.com

10 N. J. Higham and T. Mary

the IBM Power9 processor (Trader 2016) and the IBM z13 processor (Lichtenau,
Carlough and Mueller 2016).
A set of extended and mixed precision Basic Linear Algebra Subprograms

(BLAS) known as the XBLAS6 provides extended and mixed precision coun-
terparts of selected level 1, 2, and 3 BLAS (Li et al. 2002). They use extended
precision internally, defined to mean a precision at least 1.5 times as accurate as
double precision and wider than 80 bits. The input and output arguments remain
single or double precision variables, but some arguments can be of mixed type (real
or complex) as well as mixed precision (single or double), and the main visible
difference is an extra input argument that specifies the precision at which internal
computations are to be performed. A reference implementation is provided that
employs the double-double format described in the previous subsection.

2.4. Block Fused Multiply-Adds

Since the 1990s some processors have provided a fused multiply–add (FMA)
operation that computes x + yz with just one rounding error instead of two: x + yz
is essentially computed exactly and then rounded. The motivation for an FMA is
speed, as it can be implemented in a pipelined fashion so that it takes about the
same time as a single multiplication or addition (Muller et al. 2018, sec. 3.4.2).
In recent years, mixed precision block FMAs (also known as mixed-precision

matrix multiply-accumulate accelerators) have become available in hardware. In
general, such a device takes as input matrices A ∈ Rb1×b, B ∈ Rb×b2 , and C ∈
Rb1×b2 , where A and B are provided in a given precision ulow and C is either in
precision ulow or in a higher precision uhigh, and computes

D︸︷︷︸
ulow or uhigh

= C︸︷︷︸
ulow or uhigh

+ A︸︷︷︸
ulow

B︸︷︷︸
ulow

, (2.2)

returning D in precision ulow or uhigh.
The tensor cores in the NVIDIA Volta and Turing architectures have b1 = b =

b2 = 4. They require the matrices A and B to be in the fp16 format, C and the result
D can be in fp16 or fp32, and internal computations are done in fp32 (Appleyard
and Yokim 2017). Pictorially, we have

D = C + A B
× × × ×

× × × ×

× × × ×

× × × ×

︸ ︷︷ ︸
fp16 or fp32

=

× × × ×

× × × ×

× × × ×

× × × ×

︸ ︷︷ ︸
fp16 or fp32

+

× × × ×

× × × ×

× × × ×

× × × ×

︸ ︷︷ ︸
fp16

× × × ×

× × × ×

× × × ×

× × × ×

︸ ︷︷ ︸
fp16

6 https://netlib.org/xblas/

https://netlib.org/xblas/

Mixed precision numerical linear algebra 11

Table 2.2. Processing units or architectures equipped with mixed-precision block
fused multiply–add accelerators. Matrix dimensions are expressed as b1 × b × b2,
where the matrix product is of a b1 × b matrix with a b × b2 matrix. The input
and output precisions ulow and uhigh are defined in (2.2). Sources ARM (2020),
Choquette et al. (2021), Jouppi et al. (2020, 2021), Norrie et al. (2021).

Year of Matrix
release Device dimensions ulow uhigh

2016 Google TPU v2 128 × 128 × 128 bfloat16 fp32
2017 Google TPU v3 128 × 128 × 128 bfloat16 fp32
2020 Google TPU v4i 128 × 128 × 128 bfloat16 fp32
2017 NVIDIA V100 4 × 4 × 4 fp16 fp32
2018 NVIDIA T4 4 × 4 × 4 fp16 fp32
2019 ARMv8.6-A 2 × 4 × 2 bfloat16 fp32

2020 NVIDIA A100

8 × 8 × 4 bfloat16 fp32
8 × 8 × 4 fp16 fp32
8 × 4 × 4 TensorFloat-32 fp32
2 × 4 × 2 fp64 fp64

The Ampere architecture offers a wider choice of input data types for the tensor
cores, including bfloat16 and fp32 (NVIDIA Corporation 2020).
Other instances of block FMAs are the matrix units (MXUs) available on Google

TPUs (Jouppi et al. 2020, 2021, Wang and Kanwar 2019). They use bfloat16 rather
than fp16 as the low precision format and operate on square matrices of dimension
128. Google TPUs are not commercially available.
Table 2.2 summarizes the properties of block FMAs available in some current

hardware. We note that the details of the computations, such as rounding modes,
normalization of intermediate results, and whether subnormal numbers are suppor-
ted, are generally not available and so must be inferred from experimentation. Fasi,
Higham, Mikaitis and Pranesh (2021b) investigate NVIDIA tensor cores; among
their findings is that the inner products within the matrix multiplications use round
towards zero for the additions and can be non-monotonic.

2.5. Multiprecision arithmetic

Multiprecison floating-point arithmetic is a built-in feature ofMaple7 andMathem-
atica8 as well as the open-source PARI/GP9 and Sage10 computer algebra systems.

7 http://www.maplesoft.com
8 http://www.wolfram.com
9 http://pari.math.u-bordeaux.fr

10 http://www.sagemath.org

http://www.maplesoft.com
http://www.wolfram.com
http://pari.math.u-bordeaux.fr
http://www.sagemath.org

12 N. J. Higham and T. Mary

It is available in MATLAB through the Symbolic Math Toolbox and the Mul-
tiprecision Computing Toolbox. The programming language Julia11 (Bezanson,
Edelman, Karpinski and Shah 2017) supports multiprecison floating-point num-
bers by means of the built-in data type BigFloat. For other languages third-party
libraries are available:

Python: mpmath12 (Johansson et al. 2013) and SymPy13 (Meurer et al. 2017).
C: the GNU Multiple Precision Arithmetic Library14 and the GNU MPFR Lib-

rary15 (Fousse et al. 2007).
C++: the BOOST libraries.16
C++ and Fortran: the ARPREC library (Bailey, Hida, Li and Thompson 2002).
C++: the MPFUN2020 library (?).17

The GNU MPFR Library is used in some of the software mentioned above, and
interfaces to it are available for several programming languages. It was originally
intended for high precisions, though recent work has improved its efficiency for
fp64 and fp128 (Lefèvre and Zimmermann 2017). As the documentation notes,18
the default exponent range is wide and “subnormal numbers are not implemented
(but can be emulated)”.
Nakata (2021) has produced a multiprecision version of the LAPACK library

called MPLAPACK by translating the LAPACK source code from Fortran to C++.
MPLAPACK has several options for the underlying arithmetic, including quad-
ruple precision provided by GCC, double-double arithmetic, quad-double arith-
metic (which represents a number as the unevaluated sum of four double precision
numbers, so has about twice the precision of quadruple precision), the GNU Mul-
tiple Precision Arithmetic Library, and the GNU MPFR Library. The test results
reported in Nakata (2021) indicate a roughly 1:5:10 ratio of the time for double
precision arithmetic, double-double arithmetic, and quadruple precision arithmetic
for matrix multiplication on an AMD Ryzen multicore CPU.

2.6. Simulating different precisions

When developing mixed precision algorithms one may not have access in hardware
to all the precisions of interest. Or one may wish to experiment with floating-
point formats not yet supported in hardware. It is therefore useful to be able
to simulate arithmetics of different precisions using arithmetic of a given higher

11 http://julialang.org
12 http://mpmath.org
13 http://www.sympy.org
14 http://gmplib.org/
15 http://www.mpfr.org
16 http://www.boost.org
17 https://www.davidhbailey.com/dhbsoftware/
18 https://www.mpfr.org/mpfr-current/mpfr.html

http://julialang.org
http://mpmath.org
http://www.sympy.org
http://gmplib.org/
http://www.mpfr.org
http://www.boost.org
https://www.davidhbailey.com/dhbsoftware/
https://www.mpfr.org/mpfr-current/mpfr.html

Mixed precision numerical linear algebra 13

precision available in hardware. This capability has proved particularly useful
for half precision arithmetic, since initially fp16 was available only on GPUs and
bfloat16 on Google TPUs. In addition to half precision, support for other binary
formats specified by the user via the number of bits in the significand and the
exponent is desirable, as well as support for different rounding modes. These
features differentiate the simulations from the multiprecision arithmetics described
in the previous section, some of which are parametrized by the number of base 10
digits.
AMATLAB function chop19 of Higham and Pranesh (2019) rounds the elements

of a matrix stored in single precision or double precision to a lower precision using
one of several forms of rounding, with the result stored in the original precision. The
target format for the rounding is specified by the number of bits in the significand
and the maximum value of the exponent. The bfloat16, fp16, and fp32 formats
are built-in. Subnormal numbers can be included or not. Six rounding modes are
supported: round to nearest using round to even last bit to break ties (the default),
round towards plus infinity, round towards minus infinity, round towards zero, and
two forms of stochastic rounding. The chop function makes it easy to adapt existing
codes to mixed precision by wrapping statements in calls to chop, and since the
chop function is vectorized few calls to it are typically needed for linear algebra
codes.
A library CPFloat20 by Fasi and Mikaitis (2020) offers similar functionality to

chop for C. It comes with a MEX interface to MATLAB, and calling CPFloat
can be faster than calling chop for large matrices. Fasi and Mikaitis (2020) offer
a comparison with some other available packages for simulating low precision
floating-point arithmetics.
Another approach to simulation is to provide a new storage class and overload

operators to do arithmetic on the class. The fp16 half precision MATLAB class of
Moler (2017)21 introduces a new data type fp16 that implements the fp16 storage
format and overloads some basic functions for fp16 arguments. Arithmetic in this
class is slow because of both the overhead of object orientation in MATLAB and
the cost of converting to and from the fp16 storage format. Moler has also written
a class vfp16 that allows the partitioning of a 16-bit word between significand
and exponent to be varied, in particular allowing bfloat16 to be simulated (Moler
2019). This class also allows subnormals to be included or not and FMAs to be
done within the inner products inside a matrix multiplication.
Half precision simulations are available in some other languages.

Julia The built-in float16 (fp16) datatype and the bfloat16 package22 provide
simulations of these half precision arithmetics.

19 https://github.com/higham/chop
20 https://github.com/mfasi/cpfloat
21 http://mathworks.com/matlabcentral/fileexchange/59085-cleve-laboratory
22 https://github.com/JuliaMath/BFloat16s.jl

https://github.com/higham/chop
https://github.com/mfasi/cpfloat
http://mathworks.com/matlabcentral/fileexchange/59085-cleve-laboratory
https://github.com/JuliaMath/BFloat16s.jl

14 N. J. Higham and T. Mary

C++ A header file for fp16 is available.23
Python NumPy provides a float16 data type.24

The rpe (reduced floating-point precision) library of Dawson and Düben (2017)
provides a derived type and overloaded operators for Fortran and was developed
for use in weather and climate modeling. It emulates the specified precision but in
general uses the exponent range of double precision.
With all these simulations it is important to realize that one might obtain more

accurate results than for a true lowprecision computation because certain operations
may be done in higher precision. For example, a language that supports matrix
operations and provides a half precision data type may implement half precision
matrix operations by doing them at higher precision and rounding to half precision.
For a detailed discussion of the resulting differences in accuracy see Higham and
Pranesh (2019, Section 3).

3. Rounding error analysis model
We denote by fl the operator that rounds a real number into the floating-point
number system F whose elements are given by (2.1). We recall that if x is in the
range of F,

fl(x) = x(1 + δ), |δ | ≤ u,

where u is the unit roundoff (Higham 2002, Thm. 2.2). Unless otherwise stated,
when the argument of fl is an expression expr, fl(expr) denotes the result of
evaluating that expression in floating-point arithmetic.
We will use the standard model of floating-point arithmetic (Higham 2002,

Sec 2.2), which states that

fl(x op y) = (x op y)(1 + δ), |δ | ≤ u, op = +,−, ∗, /. (3.1)

This model is certainly satisfied by IEEE arithmetic (in the absence of underflow
or overflow), which defines fl(x op y) to be the rounded exact value.

A constant that appears in rounding error analyses is

γn =
nu

1 − nu
(nu < 1).

We will use the notation u16, u32, u64, and u128 to denote the unit roundoffs
corresponding to IEEE arithmetics with the indicated word sizes. These values are
given in the third column of Table 2.1.
The rounding error bounds we state in this paper are mostly worst-case bounds

and can be very pessimistic. For blocked algorithms, worst-case bounds that are
smaller by a factor equal to the block size can be obtained for many algorithms,
as explained by Higham (2021). Moreover, under suitable assumptions on the

23 http://half.sourceforge.net/
24 https://numpy.org/

http://half.sourceforge.net/
https://numpy.org/

Mixed precision numerical linear algebra 15

rounding errors, probabilistic bounds with constants that are the square roots of
the constants in the worst-case bounds can be obtained; see Section 4.3. These
observations are important because for low precisions a constant nu (say) in a
worst-case rounding error bound can exceed 1 even for very modest n.

4. Matrix multiplication
In this section we consider the computation of C = AB, where A ∈ Rm×n and
B ∈ Rn×p are two general matrices. If all operations are carried out in a uniform
precision u, the computed Ĉ satisfies the standard bound (Higham 2002, Sec. 3.5)

|Ĉ − C | ≤ γn |A| |B|, (4.1)

where |A| denotes the matrix of absolute values, (|ai j |).
The presence of the dimension n in bound (4.1), which reflects the fact that

rounding errors accumulate along the inner dimension, may prevent the compu-
tation from achieving sufficient accuracy when n is large or u is large. Various
approaches have therefore been proposed to reduce the effect of error accumulation,
and mixed precision arithmetic is at the heart of several of them.

4.1. Using block FMAs

A matrix product can be computed with the aid of a block FMA (2.2). We will
assume that the internal computations are done at precision uhigh.

Block FMAs can be chained together by taking the output D at precision uhigh
and using it as the input C to a subsequent FMA. Block FMAs thereby provide a
natural way to mitigate error accumulation, as accumulation occurs at the level of
uhigh, not ulow. The required conversion of A and B to ulow is the only source of
error of order ulow, and it does not depend on the matrix dimensions.
Algorithm 4.1 shows how to use a block FMA to compute a general matrix

product. Three precisions are in play: the working precision u and the precisions
ulow and uhigh, where uhigh ≤ ulow.

Algorithm 4.1. Let A ∈ Rm×n and B ∈ Rn×t , given in precision u, be partitioned
into b1 × b blocks Ai j and b × b2 blocks Bi j , respectively, where p = m/b1,
q = n/b, and r = t/b2 are assumed to be integers. This algorithm performs the
matrix multiplication C = AB using a block FMA.

1 Ã← fllow(A), B̃← fllow(B)
2 for i = 1: p
3 for j = 1: r
4 Ci j = 0
5 for ` = 1: q
6 Compute Ci j = Ci j + Ãi` B̃` j using a block FMA with output

at precision uhigh.

16 N. J. Higham and T. Mary

7 end
8 Convert Ci j to precision u.
9 end
10 end

The following error bound, a special case of Blanchard et al. (2020b, Thm. 3.2),
describes the result of Algorithm 4.1.

Theorem 4.2. Let the product C = AB of A ∈ Rm×n and B ∈ Rn×t , given in
precision u, be evaluated by Algorithm 4.1, where q = n/b. The computed Ĉ
satisfies

|Ĉ − C | ≤
(
2ulow + u2

low + nuhigh +O(uhighulow)
)
|A| |B|. (4.2)

Theorem 4.2 is applicable to NVIDIA Volta and Turing tensor cores with b = 4,
ulow = u16, and uhigh = u32. The theorem is also applicable to the latest Ampere
generation of NVIDIA GPUs, where A and B can also be stored in bfloat16 or
tfloat32 arithmetics.25

We note that a more general error analysis is given in Blanchard et al. (2020b,
Thm. 3.2) that allows for a different precision in the internal block FMA evaluation.

Optimized low precision BLAS are available in vendor libraries, such as in
NVIDIA’s cuBLAS library. Open source implementations are also available, such
as that of San Juan, Rodríguez-Sánchez, Igual, Alonso-Jordá and Quintana-Ortí
(2021) who target the ARM v8.2 architecture, and Abdelfattah, Tomov and Don-
garra (2019a), who provide batched multiplication routines for NVIDIA GPUs. A
batched operation is one in which many independent operations on small matrices
are grouped together and carried out by a single routine, and the batched BLAS
standard described by Abdelfattah et al. (2021b) includes half precision and quad-
ruple precision data types.

4.2. Blocked summation

In the absence of block FMA hardware with internal computations in higher pre-
cision, reduced error bounds can still be achieved by changing the summation
algorithm used to compute each element ci j =

∑n
k=1 aikbk j . In particular, blocked

algorithms, which are widely used in numerical linear algebra, compute the sum
s =

∑n
k=1 xk by grouping summands xk into blocks of size b. Partial sums of b

summands are first computed independently, before being combined into the final
result. By doing so, the term γn in the error bound (4.1) is reduced to γ

b+n/b−1,
because rounding errors incurred in different blocks do not accumulate. Indeed in
forming ci j , precisely (n/b)(b − 1) = n − n/b of the additions are carried out in
computing the partial sums, and these account for the term bu in the bound. Only

25 Tfloat32 is a format introduced by NVIDIA for use in tensor cores that has the range of fp32 and
the precision of fp16.

Mixed precision numerical linear algebra 17

the last n/b − 1 additions account for the error term (n/b − 1)u. This observation
creates an opportunity for mixed precision arithmetic: by computing these last
n/b − 1 additions in higher precision (say, in precision u2), we can obtain an error
bound independent of n to first order. The next result is a special case of Blanchard
et al. (2020a, Thm. 4.2).

Theorem 4.3. Let the product C = AB of A ∈ Rm×n and B ∈ Rn×p be evaluated
by computing the inner products ci j =

∑n
k=1 aikbk j by blocks of size b, where

partial sums of each block are computed in precision u before being combined in
precision u2. The computed Ĉ satisfies

|Ĉ − C | ≤
(
(b + 1)u + (n/b + b2 − 1)u2 +O(u3)

)
|A| |B|. (4.3)

This mixed precision summation algorithm is an instance of the FABsum al-
gorithm (Blanchard et al. 2020a), which computes the partial sums with a fast
summation and combines them with an accurate summation. The reduction of the
error bound is achieved at a modest extra cost, because most of the additions are
still carried out in precision u.

Fasi et al. (2021a) implement FABsumonNVIDIAGPUs using theCUTLASS26
library to improve the accuracy of multiwordmatrix multiplication (see section 13).
Their implementation achieves an improved performance–accuracy tradeoff com-
paredwith cuBLAS: depending on the choice of block size and precisions, FABsum
can be either as fast as cuBLAS with fp16 tensor cores, but more accurate, or as
accurate as cuBLAS with fp32 arithmetic, but faster.

4.3. Probabilistic analyses

The bounds (4.1)–(4.3) are worst-case bounds and they do not reflect the fact that
rounding errors of opposite signs can partially cancel each other. Under some
assumptions on the rounding errors, probabilistic error analyses (Connolly et al.
2021, Connolly and Higham 2021, Higham and Mary 2019a, 2020a, Ipsen and
Zhou 2020) show that the dimension-dependent constants in the bounds can be
replaced by their square roots. The underlying assumptions of these analyses are
not always satisfied; oneway to enforce them is to use stochastic rounding (Connolly
et al. 2021).
In the case where the matrices A and B are generated by sampling their entries

from a random distribution, the sharper analysis of Higham and Mary (2020a)
shows that the means of the entries play an important role. Specifically, for zero-
mean data, the error bound is independent of n. Therefore, given a general matrix,
a natural idea is to shift its entries so that they have zero mean. Computing the
product C = AB of the shifted matrices and shifting back the result can provide a
much more accurate result (Higham and Mary 2020a, Thm. 4.2). Shifting back the

26 https://github.com/nvidia/cutlass

https://github.com/nvidia/cutlass

18 N. J. Higham and T. Mary

result has negligible cost for large dimensions, but it must be carried out in higher
precision.

4.4. Multiword matrix multiplication with block FMAs

The emergence of block FMA hardware that allows for accumulation in higher
precision (see Section 2.4) has provided new opportunities to efficiently implement
matrix multiplication using multiword arithmetic, such as double–fp16 arithmetic,
which approximates fp32 arithmetic by representing numbers as the unevaluated
sum of two fp16 numbers. These approaches are described in Section 13.

4.5. Data-driven matrix–vector product

Recently, various inner product and matrix–vector product algorithms have been
proposed based on the idea of storing each element in a precision adapted to its
magnitude. These approaches are described in Section 14.4.

5. Nonlinear equations
Consider a system of nonlinear algebraic equations

F(x) = 0, F : Rn → Rn. (5.1)

Many problems of interest can be formulated in this form, so we consider the use of
mixed precision arithmetic in this general context before specializing to particular
problems.
Suppose we have an iteration xk+1 = g(xk) that generates a sequence of vectors

x0, x1, . . . converging to a solution x∗. An obvious idea is to use on each iteration
arithmetic of the lowest available precision that equals or exceeds the accuracy of
the iterates. Therefore we use low precision arithmetic for the early iterations and
increase the precision as the iteration proceeds, until the last few iterations are done
at the working precision. The justification is that the rounding errors committed
on the early iterations should be dominated by the inherent iteration errors. If the
iteration is globally convergent this approach should produce a solution of quality
as good as if the working precision were used throughout, because such an iteration
damps out errors, and each iterate xk can be regarded as restarting the iteration
with a new starting value.
The possible gain in speed from using mixed precision arithmetic in this way

depends on the number of iterations required, which in turn depends on the rate
of convergence and on the cost per iteration. Consider a quadratically convergent
iteration and a working precision of double. If at the end of the first iteration
the error is 10−1, the subsequent errors will ideally be 10−2, 10−4, 10−8, 10−16.
We might carry out the first three iterations at half precision, the fourth at single
precision, and the fifth at double precision. Assuming each iteration requires the
same number of operations and a ratio of 1:2:4 for the costs of half, single and double
precision arithmetic, the overall cost will be a fraction (3/4 + 1/2 + 1)/5 = 9/20

Mixed precision numerical linear algebra 19

of the cost of carrying out all the iterations in double precision. A greater speedup
will be obtained if a greater proportion of the iterations are carried out at lower
precisions, as will be the case if the initial non-asymptotic convergence phase is
long, but in this case alternative iterations or methods might be more efficient. The
assumption that each iteration requires the same number of operations may not
hold, as we will see in Section 6, and this is why greater speedups are possible.
Varying the precisions in the way just described does not always work. In

particular, it fails for iterations for matrix functions that are not self-correcting,
such as the Newton iteration for the unitary polar factor (a solution to X∗X = I):
Xk+1 = (Xk + X−∗

k
)/2, X0 = A ∈ Cn×n (Higham 1986), (Higham 2008, Chap. 8).

The iteration formula is independent of A, so if we perturb Xk → Xk + Ek with
a general Ek with ‖Ek ‖ � u (as opposed to the specially structured errors that
appear in the exact arithmetic iteration), then important information about A has
been lost and convergence to a matrix with error of order u cannot be obtained.

5.1. Newton’s method

Newton’s method is an excellent method for solving (5.1) and it includes various
particular methods of interest as special cases. Therefore we will carry out an
analysis of Newton’s method in mixed precision arithmetic. Because the analysis
is general, it may be suboptimal for particular problems, but it will reveal features
common to all.
We suppose that F is continuously differentiable and denote by J its Jacobian

matrix (∂Fi/∂xj). Given a starting vector x0, Newton’s method for (5.1) generates
a sequence {xi} defined by

J(xi)(xi+1 − xi) = −F(xi), i ≥ 0. (5.2)

As is well known, under appropriate conditions xi converges to a solution x∗
from any starting vector x0 sufficiently close to x∗, and the rate of convergence
is quadratic if J(x∗) is nonsingular (Dennis and Schnabel 1983, Theorem. 5.2.1).
We consider the mixed precision implementation of Newton’s method given in
Algorithm 5.1. Here, we evaluate f in a possibly higher precision ur and solve
for the update di at a possibly lower precision u` (hoping that the resulting errors
are damped out). In this and the later algorithms, imax is a limit on the number of
iterations and “or until converged” means that the iteration will be terminated if an
unspecified convergence test based on the residual or an estimate of the forward
error is satisfied..

Algorithm 5.1. Newton’s method for F(x) = 0 with starting vector x1, in preci-
sions u` , u, and ur (ur ≤ u ≤ u`).

1 for i = 1: imax or until converged
2 Compute fi = F(xi) in precision ur .
3 Solve J(xi)di = − fi in precision u` .

20 N. J. Higham and T. Mary

4 xi+1 = xi + di at precision u.
5 end

Accounting for rounding and approximation errors, we can write the computed
iterates x̂i as

x̂i+1 = x̂i −
(

J(x̂i) + Ei

)−1 (F(x̂i) + ei
)
+ εi . (5.3)

The error terms are explained as follows.

• ei is the error made in computing F(x̂i), and we assume that there is a function
ψ depending on F, x̂i, u, and ur such that

‖ei ‖ ≤ u‖F(x̂i)‖ + ψ(F, x̂i, u, ur). (5.4)

• Ei combines the error incurred in forming J(x̂i) with the backward error for
solving the linear system for di. We assume that

‖Ei ‖ ≤ φ(F, x̂i, n, u`, u), (5.5)

for some function φ that reflects both the (in)stability of the linear system
solver and the error made when approximating or forming J(x̂i). In practice,
we certainly have φ(F, x̂i, n, u`, u) ≥ u‖J(x̂i)‖.
• εi is the rounding error made when adding the correction d̂i to x̂i, so

‖εi ‖ ≤ u(‖ x̂i ‖ + ‖ d̂i ‖).

The norm is any absolute vector norm (one for which ‖ |v | ‖ = ‖v‖ for all v) and
the corresponding subordinate matrix norm.
Note that (5.3) is a very general model, and with a suitable choice of Ei it

yields modified Newton methods, in which the Jacobian is held constant for several
iterations in order to reduce the cost of the method.
We wish to know how the precisions affect (a) sufficient conditions for con-

vergence and (b) the limiting accuracy and limiting residual, that is, how small
‖x∗ − x̂i ‖ and ‖F(x̂i)‖ are guaranteed to become as i increases, where x∗ is the
solution to which the iteration would converge in the absence of errors.
We will assume that J is Lipschitz continuous with constant θL , that is,

‖J(v) − J(w)‖ ≤ θL ‖v − w‖ for all v,w ∈ Rn.

Analyses of the effects of different sources of error on Newton’s method are
available in the literature, for example in Kelley (1995, Section 5.4) and Kelley
(2021). Most useful for our purposes are results of Tisseur (2001). The results
were originally stated for the situation where just two precisions are in use (u` =
u), but they are general enough to support a third precision u` as well. The
first result bounds the limiting accuracy. Here, we use the condition number
κ(A) = ‖A‖‖A−1‖.

Mixed precision numerical linear algebra 21

Theorem 5.2 (Tisseur). Assume that there is an x∗ such that F(x∗) = 0 and
J∗ = J(x∗) is nonsingular with

κ(J∗)u ≤
1
8
. (5.6)

Assume also that for φ in (5.5),

‖J(x̂i)−1‖ φ(F, x̂i, n, u`, u) ≤
1
8

for all i. (5.7)

Then, for all x0 such that

θL ‖J−1
∗ ‖ ‖x0 − x∗‖ ≤

1
8
, (5.8)

Newton’s method in floating-point arithmetic generates a sequence { x̂i} satisfying

‖ x̂i+1 − x∗‖ ≤ αi ‖ x̂i − x∗‖ + βi, (5.9)

where

αi ≈ ‖J(x̂i)−1Ei ‖ + ‖J−1
∗ ‖‖ x̂i − x∗‖ + κ(J∗)u,

βi ≈ ‖J−1
∗ ‖‖ψ(F, x̂i, u, ur)‖ + u‖x∗‖,

and the normwise relative error decreases until the first i for which
‖ x̂i+1 − x∗‖
‖x∗‖

≈
‖J−1
∗ ‖

‖x∗‖
ψ(F, x∗, u, ur) + u. (5.10)

As a check, we note that in the absence of errors, the terms u, ψ(F, v, u, ur),
and φ(F, v, n, u`, u) are all zero and thus Theorem 5.2 implies local quadratic
convergence of Newton’s method.
In words, Theorem 5.2 says that if J(x∗) is not too ill conditioned, the Jacobian

evaluation and the solver are not too inaccurate, the Lipschitz constant θL is not too
large, and the initial guess x0 is not too far from x∗, then the limiting accuracy is
proportional to the condition of the Jacobian at the solution and the accuracy with
which the residual is evaluated. Note that the function φ does not appear in (5.10),
which shows that errors in forming J and solving the linear system do not affect
the limiting accuracy, provided they are not too large. The αi term in (5.9) shows
that these errors do, however, affect the rate of convergence, and that this rate is
essentially independent of ur .

The next result bounds the limiting residual.

Theorem 5.3 (Tisseur). Under the assumptions of Theorem 5.2, if

θL ‖J−1
∗ ‖

(
‖J−1
∗ ‖ψ(F, x∗, u, ur) + u‖x∗‖

)
≤

1
8
,

then, for all x0 such that (5.8) holds, the sequence {‖F(x̂i)‖} of residual norms
generated by Newton’s method in floating-point arithmetic decreases until

‖F(x̂i+1)‖ ≈ ψ(F, x̂i, u, ur) + u‖J(x̂i)‖ ‖ x̂i ‖. (5.11)

22 N. J. Higham and T. Mary

Theorem 5.3 shows that, under very similar conditions to those in Theorem 5.2,
the limiting residual is at the level of the error made in computing the residual plus
the term u‖J(x̂i)‖ ‖ x̂i ‖. This latter term is inevitable: from the Taylor series

F(x∗ + ∆x∗) = F(x∗) + J(x∗)∆x∗ +O(‖∆x∗‖2),

we see that merely rounding the exact solution to x̃∗ = x∗ + ∆x∗, so that ‖∆x∗‖ ≤
u‖x∗‖, gives

‖F(x̃∗)‖ . ‖J(x∗)‖ ‖∆x∗‖ ≤ u‖J(x∗)‖ ‖x∗‖.

Just as for the limiting accuracy, the limiting residual does not depend on the errors
in evaluating J or in solving the linear systems.

Since the limiting accuracy and limiting residual both depend onψ, Theorems 5.2
and 5.3 confirm the folklore that Newton’s method must be provided with good
function values if it is to work well in practice.

As an application, we consider a linear system F(x) = b − Ax = 0, where
A ∈ Rn×n is nonsingular. In principle, Newton’s method converges in one step,
but in the presence of errors it becomes an iterative method, namely iterative
refinement. Here, we have θL = 0. Computing F at precision ur and rounding to
precision u gives

ψ(F, x̂i, u, ur) ≈ γrn+1(‖b‖ + ‖A‖‖ x̂i ‖).

where γr
n+1 = (n + 1)ur/(1 − (n + 1)ur). Hence Theorem 5.2 shows a limiting

accuracy

‖ x̂i+1 − x∗‖
‖x∗‖

≈
‖A−1‖

‖x∗‖
γrn+1(‖b‖ + ‖A‖‖ x̂i ‖) + u

. 2κ(A)γrn+1 + u,

since ‖ x̂i ‖ ≈ ‖x∗‖ and ‖b‖ ≤ ‖A‖‖x∗‖. Hence if ur = u2, the limiting accuracy is
of order u for κ(A) < u−1. Theorem 5.3 gives a limiting residual

‖b − Ax̂i+1‖ ≈ γ
r
n+1(‖b‖ + ‖A‖‖ x̂i ‖) + u‖A‖‖ x̂i ‖

. (nur + u)(‖b‖ + ‖A‖‖ x̂i ‖),

which means a backward error of order nur + u. Both theorems require (5.7) to
hold, and since we expect φ to be proportional to u` for a solver in precision u` ,
this condition is essentially of the form cnκ(A)u` < 1 for some constant cn.

This very general analysis of Newton’s method for Ax = b provides significant
insight into mixed precision iterative refinement, even though we have not specified
the details of the solver. We will derive more specific and detailed results in the
next section.

6. Iterative refinement for Ax = b

We consider the general iterative refinement algorithm given in Algorithm 6.1 for
solving a nonsingular linear system Ax = b, based on the use of precisions ur ≤ u

Mixed precision numerical linear algebra 23

and u` ≥ u in addition to the working precision u. The method used to solve for
the update vector di on line 3 is arbitrary; we will specialize to particular solvers
in the following sections.
For a discussion of stopping tests see (Higham 2002, Sec. 12.3).

Algorithm 6.1. Given a nonsingular matrix A ∈ Rn×n, b ∈ Rn, and an initial
approximation x1, this algorithm uses iterative refinement to solve Ax = b. The
algorithm uses three precisions satisfying ur ≤ u ≤ u` .

1 for i = 1: imax or until converged
2 Compute ri = b − Axi in precision ur .
3 Solve Adi = ri at precision u` .
4 Update xi+1 = xi + di in precision u.
5 end

We denote the relative error in the solution computed on line 3 by

ξi =
‖di − d̂i ‖∞
‖di ‖∞

. (6.1)

Let

µi =
‖A(xi − x̂i)‖∞
‖A‖∞‖x1 − x̂i ‖∞

≤ 1, (6.2)

φi = 2 min
(
cond(A), κ∞(A)µi

)
u` + ξi, (6.3)

where the condition number cond(A) = ‖ |A−1 | |A| ‖∞. We also need the condition
number

cond(A, x) =
‖ |A−1 | |A| |x | ‖∞

‖x‖∞
.

Note that cond(A, x) ≤ cond(A) ≤ κ∞(A). The next result is by Carson and Higham
(2018, Cor. 3.3).

Theorem 6.2. LetAlgorithm6.1 be appliedwith any x1 to a linear system Ax = b,
where A ∈ Rn×n is nonsingular. As long as φi in (6.3) is sufficiently less than 1,
the forward error is reduced on the ith iteration by a factor approximately φi until
an iterate x̂ is produced for which

‖ x̂ − x‖∞
‖x‖∞

. u + 4p cond(A, x)ur, (6.4)

where p is the maximum number of nonzeros in any row of [A b].

Theorem 6.2 shows that the limiting accuracy (6.4) depends on the precisions
u and ur but does not depend on the precision u` , on x1, or on how the system
Adi = ri at line 3 is solved, provided that it is solved with some relative accuracy
ξi � 1.

24 N. J. Higham and T. Mary

The limiting accuracy (6.4) motivates the use of extended precision in the com-
putation of the residual. Indeed, if we set ur = u2, we obtain a limiting accuracy of
order u, independent of the conditioning of the problem as long as cond(A, x)u ≤ 1.

6.1. Historical development

6.1.1. Traditional iterative refinement
Iterative refinement was programmed on a digital computer by Wilkinson in 1948
(Wilkinson 1948, p. 111 ff.), using LU factorization with partial pivoting as the
solver. Wilkinson, and subsequent authors, took advantage in computing the
residual of the ability of many machines of the time to accumulate inner products
at twice the working precision at little or no extra cost (as discussed at the start
of Section 2). The method was also used by Wilkinson and colleagues on desk
calculating machines, making use of their extra length accumulators in computing
residuals (Fox, Huskey and Wilkinson 1948a,b).

Iterative refinement with extra precision residuals fell out of favor in the 1970s
because machines began to lack the ability to accumulate inner products in extra
precision. Indeed the LINPACK library did not include it because it could not be
implemented in a portable way in Fortran (Dongarra, Bunch, Moler and Stewart
1979).

6.1.2. Fixed precision iterative refinement
As the traditional form of iterative refinement declined in popularity, another
usage came to the fore: fixed precision refinement, in which only one precision is
used. Jankowski andWoźniakowski (1977) proved that an arbitrary linear equation
solver is made normwise backward stable by the use of fixed precision iterative
refinement, as long as the solver is not too unstable to begin with and A is not too
ill conditioned. Skeel (1980) analysed fixed precision iterative refinement for LU
factorization with partial pivoting and showed that one step of refinement yields a
small componentwise backward error under suitable conditions. Higham (1991)
extended the componentwise backward error analysis of fixed precision iterative
refinement to a general solver, and Higham (1997) gave an analysis that covers the
traditional and fixed precision forms and a general solver.

6.1.3. Iterative refinement with lower precision solves
In the 2000s, hardware emerged in which fp32 arithmetic was much faster than
fp64 arithmetic, such as Intel chips with SSE instructions (a factor about 2) and the
Sony/Toshiba/IBM (STI) Cell processor (a factor up to 14) (Kurzak and Dongarra
2007). Motivated by this speed difference, Langou et al. (2006) proposed a new
usage of iterative refinement in which LU factors computed at a precision lower
than the working precision (specifically, single versus double precision) are used
to solve on line 3 in Algorithm 6.1.
Carson and Higham (2017) showed how preconditioned GMRES can be ex-

ploited on line 3 in Algorithm 6.1, giving an algorithm called GMRES-based

Mixed precision numerical linear algebra 25

iterative refinement (GMRES-IR). Carson and Higham (2018) proposed a three-
precision version of iterative refinement, essentially Algorithm 6.1, and gave de-
tailed convergence analysis for the backward error (normwise and componentwise)
and the forward error.
Amestoy et al. (2021c) extended the analysis of Carson and Higham (2018) to a

five-precision form of GMRES-IR.
More details of these works are given in Sections 7 and 8.

6.2. Specialized applications

Muchwork has been done on specializing iterative refinement to particular contexts.
We mention just a few examples.
Govaerts and Pryce (1990) develop and analyze an iterative refinement-based

algorithm for solving bordered linear systems Ax = b of order n in which a
black box solver is assumed to be available for systems involving the submatrix
A(1 : n − 1, 1 : n − 1). An application is to numerical continuation problems.
In some structured problems the elements of A are never formed and so resid-

uals cannot be computed in the usual way via matrix–vector multiplication. An
example is when A is a Vandermonde matrix and a fast O(n2) flops algorithm
tailored to the structure is being used. Higham (1988) develops algorithms for
solving Vandermonde-like systems where ai j = pi−1(αj), with {pi(x)}n−1

i=0 a set of
polynomials satisfying a three-term recurrence relation, such as orthogonal poly-
nomials. The algorithms are numerically unstable for the Chebyshev polynomials,
but one step of iterative refinement at the working precision is found to give stabil-
ity. The residual is evaluated by a nested multiplication algorithm for orthogonal
polynomials.
By steadily increasing the precision during the iterative refinement process it is

possible to compute solutions to arbitrarily high accuracy, assuming that arithmetic
of suitable precisions is available. This idea, first suggested in an exercise by
Stewart (1973, pp. 206–207) has been investigated by Kiełbasiński (1981) and
Smoktunowicz and Sokolnicka (1984).

7. Direct methods for Ax = b

In this section we discuss the solution of linear systems by direct methods based
on a factorization of the matrix.

7.1. LU factorization–based iterative refinement

Algorithm 7.1 is a version of Algorithm 6.1 based on an LU factorization of A,
hereinafter referred to as LU-IR. The LU factorization is computed in precision
u` and is used to compute the initial solution x1 and solve the update equation on
line 5.
The only line of the algorithm that costs O(n3) flops is the first line, as the

substitutions cost only O(n2) flops. The factorization is carried out at precision

26 N. J. Higham and T. Mary

u` , so if u` � u then if the iteration converges quickly the algorithm is potentially
significantly faster than solving Ax = b by LU factorization at precision u.

Algorithm 7.1 (LU-IR). Given a nonsingular matrix A ∈ Rn×n and b ∈ Rn this
algorithm uses LU factorization–based iterative refinement with three precisions
satisfying ur ≤ u ≤ u` , to solve Ax = b.

1 Compute the factorization A = LU in precision u` .
2 Solve LUx1 = b by substitution in precision u` .
3 for i = 1: imax or until converged
4 Compute ri = b − Axi in precision ur .
5 Solve LUdi = ri by substitution in precision u` .
6 Update xi+1 = xi + di in precision u.
7 end

Standard error analysis (Higham 2002, Thm. 9.4) shows that solving a linear
system by substitution in precision u` with LU factors computed in precision
u` achieves a relative error bounded approximately by 3n‖|A−1 | | L̂ | |Û |‖u` . The-
orem 6.2 therefore yields the following result.

Theorem 7.2. Let LU-IR (Algorithm 7.1) be applied to a linear system Ax = b,
where A ∈ Rn×n is nonsingular. If ‖|A−1 | | L̂ | |Û |‖u` is sufficiently less than 1 then
the algorithm produces an iterate x̂ satisfying (6.4).

As mentioned in section 6, the traditional and fixed precision forms of iterative
refinement use an LU factorization computed by LU factorization with partial
pivoting with u` = u. With such a stable LU factorization, the convergence
condition in Theorem 7.2 reduces to κ(A)u � 1. However, as already mentioned,
unstable solvers can still lead to convergence. In the context of LU-IR, two main
approaches have been proposed that introduce potential instability in an attempt to
increase speed.
The first approach is to use a potentially unstable LU factorization in precision

u, where the instability can come from different sources. For example, using a
weaker form of pivoting to accelerate the factorization and preserve the sparsity of
the matrix, such as static pivoting (Li and Demmel 1998, Arioli, Duff, Gratton and
Pralet 2007) can still lead to the convergence of LU-IR. Several sparse direct solv-
ers incorporate static pivoting strategies as an option, such as MUMPS (Amestoy
et al. 2001, Amestoy, Buttari, L’Excellent and Mary 2019), which implements
the approach proposed by Duff and Pralet (2007), or as the default, such as Su-
perLU_DIST (Li and Demmel 2003) and PARDISO (Schenk, Gärtner, Fichtner
and Stricker 2001). Other potentially unstable, but faster, factorizations have been
combined with iterative refinement to remedy their instability, such as incom-
plete LU factorization (Zlatev 1982) or Cholesky factorization for quasidefinite
systems (Gill, Saunders and Shinnerl 1996).

The second approach is to use an LU factorization in lower precision u` > u.

Mixed precision numerical linear algebra 27

If the LU factorization algorithm is numerically stable, convergence is guaranteed
provided that κ(A)u` � 1, as noted above. This approach is attractive because
most of the work (O(n3) flops for dense systems) is done in the factorization phase;
the iterative phase (O(n2) flops) has negligible cost for large n, as long as the
number of iterations remains reasonable. Thus, asymptotically, we may expect the
speed of the entire solution to be determined by the speed of the lower precision
arithmetic. Using the Cell processor, Langou et al. (2006) solve double precision
linear systems (u = u64) with speedups of up to a factor eight over a double
precision LU factorization by using LU-IR (Algorithm 7.1) with u` = u32 and
ur = u. Further experimental results are reported by Buttari et al. (2007) for dense
linear systems and by Buttari et al. (2008) for sparse ones. See Baboulin et al.
(2009) for an overview of the methods developed in this period.
Iterative refinement with LU factorization in lower precision has also been ex-

ploited on FPGAs (Sun, Peterson and Storaasli 2008).
The popularity of LU-IR with a lower precision factorization grew again with the

emergence of half precision arithmetic (fp16 and bfloat16). Indeed, half precision
arithmetic is at least four times faster than double precision arithmetic, and possibly
much more than that on some hardware, notably on NVIDIA tensor cores (see
section 7.3). Haidar, Wu, Tomov and Dongarra (2017) provide the first evaluation
of the potential of half precision for iterative refinement, obtaining speedups of up
to 2.7 on an NVIDIA P100 GPU using LU-IR with u = ur = u64 and u` = u16.
Kudo et al. (2020a,b) implement LU-IR on the Fugaku supercomputer, which is
equipped with ARM-based Fujitsu A64FX processors that support fp16 arithmetic,
for use in the HPL-AI Mixed Precision Benchmark (see Section 1.2.4).
LU-IR with a half precision factorization can only guarantee convergence for

well conditioned problems: the condition κ(A)u` � 1 translates to κ(A) � 2000
in fp16 and κ(A) � 300 in bfloat16. Two main approaches have been proposed
to extend the applicability of half precision iterative refinement to a wider range
of problems: the first uses a more accurate solver on line 5 of Algorithm 7.1 (see
section 7.2) and the second uses more accurate hardware such as tensor cores (see
section 7.3).

7.2. GMRES-based iterative refinement

GMRES-IR (Carson and Higham 2017), mentioned in Section 6.1.3, is described
in Algorithm 7.3.

Algorithm 7.3 (GMRES-IR). Given a nonsingular matrix A ∈ Rn×n and b ∈ Rn

this algorithm solves Ax = b using by GMRES-IR in five precisions: ur , ug, up, u,
and u` .

1 Compute the factorization A = LU in precision u` .
2 Solve LUx1 = b by substitution in precision u` .
3 for i = 1: imax or until converged

28 N. J. Higham and T. Mary

4 Compute ri = b − Axi in precision ur .
5 Solve U−1L−1 Adi = U−1L−1ri by GMRES in precision ug, performing

the products with U−1L−1 A in precision up.
6 Compute xi+1 = xi + di in precision u.
7 end

Note that the application of the preconditioner on line 5 involves a multiplication
by A and substitutions with the LU factors. The results quoted below assume
the use of a backward stable implementation of GMRES, such as MGS-GMRES
(Paige, Rozložník and Strakoš 2006).

7.2.1. High accuracy solution of ill-conditioned systems
Carson and Higham (2017) proposed GMRES-IR with two precisions, u = u` and
ur = ug = up = u2, and were interested in solving ill-conditioned systems to high
accuracy. They showed that the quantity µi defined in (6.2) tends to be small in
the early iterations and gradually grows to order 1 as the iteration proceeds. This
means that in φi in (6.3) the min term is negligible in the early iterations and so
φi ≈ ξi. Carson and Higham (2017) also show that ξi ≈ u as long as κ(A) is not
much larger than u−1. Hence Theorem 6.2 guarantees a limiting accuracy of order
u will be achieved. In other words, by using a small amount of computation at
twice the working precision it is possible to solve Ax = b to full accuracy even if
A is numerically singular!
It is important to emphasize that standard methods, such as even the singular

value decomposition (SVD), will not in general yield an accurate solution to an
ill-conditioned system. GMRES-IR computes an accurate solution to the update
equation, which is relatively well conditioned thanks to the preconditioning and
which has an accurate right-hand side. The behavior of µi is also crucial, and it
had not been previously been proved or exploited, though Wilkinson (1977) did
make an observation that is equivalent to saying that the µi increase with i.

7.2.2. Exploiting low precision LU factors of an ill-conditioned matrix
As mentioned in Section 7.1, one of the main limitations of LU-IR (Algorithm 7.1)
is that its success is guaranteed only when κ(A)u` � 1. If the LU factorization is
computed in low precision, LU-IR is therefore limited towell-conditionedmatrices.
In this setting, GMRES-IR becomes particularly useful. Indeed, even though
GMRES-IR was originally intended to solve linear systems nearly singular to the
working precision u, as described in the previous subsection, Carson and Higham
(2018) subsequently proposed to use it to exploit LU factors computed in a precision
u` (potentially much) lower than the working precision u. They assume that the
preconditioner is applied in precision ug = up = u2. Amestoy et al. (2021c) relax
this requirement by allowing the products with Ã to be carried out in a precision up

possibly lower than u2, and additionally allow the rest of the GMRES computations

Mixed precision numerical linear algebra 29

to be performed in a precision ug possibly lower than u. This results in the five-
precision algorithm described in Algorithm 7.3. To obtain convergence guarantees
for this algorithm, Amestoy et al. (2021c) generalize the analysis of Paige et al.
(2006) on the backward stability of GMRES to a two-precision GMRES with LU
preconditioning, and they prove the following theorem.

Theorem 7.4. Let GMRES-IR (Algorithm 7.3) be applied to a linear system
Ax = b, where A ∈ Rn×n is nonsingular. If κ(A)2u2

`

(
ug + κ(A)up

)
is sufficiently

less than 1 then the algorithm produces an iterate x̂ satisfying (6.4).

Amestoy et al. (2021c) consider the thousands of possible combinations of the
five precisions in Algorithm 7.3 and narrow down the choice to a few combinations
of practical interest, from among which one can balance accuracy, robustness, and
performance. The bounds on κ(A) for convergence guarantees are not always sharp,
so it can be difficult to decide which variant should be preferred for a particular
problem. To address this issue, Oktay and Carson (2021) propose a multistage
iterative refinement that switches to increasingly robust, but also more expensive
variants by monitoring key quantities during the iterative process.
Haidar, Tomov, Dongarra and Higham (2018b) and Haidar et al. (2020) imple-

ment GMRES-IR with just two precisions: the factorization is in half precision
(u`) and the rest of the operations are in double precision (ug = up = ur = u).
They show that for several matrices where LU-IR takes a large number of iterations
to converge, GMRES-IR can still converge in a small number of iterations and
thus retains an attractive performance boost compared with LU-IR with a single
precision factorization.
Higham andMary (2019b) propose a new preconditioner that builds upon the low

precision LU factors and exploits a low-rank approximation to speed up GMRES-
IR.

7.3. Harnessing tensor cores

NVIDIA tensor cores present two benefits for iterative refinement compared with
standard half precision arithmetic on NVIDIA GPUs. The first is that they are
significantly faster and so computing theLU factorizationwith tensor cores provides
more room to amortize the cost of the iterations in the iterative phase. The second
benefit is their improved accuracy since, as discussed in section 2.4, tensor cores
accumulate intermediate operations in fp32 arithmetic.
Tensor cores can carry out arbitrary sized matrix products using Algorithm 4.1

and so can be naturally exploited by standard blocked LU factorization algorithms,
which mostly consist of matrix–matrix products. Haidar et al. (2018b) propose
an algorithm that harnesses tensor cores to accelerate the updates of the trailing
submatrix, which account for the O(n3) flops of the factorization; the remaining
O(n2) flops are carried out by standard floating-point units in fp32 arithmetic.
Blanchard et al. (2020b, Thm. 4.4) analyze this algorithm and prove that it possesses

30 N. J. Higham and T. Mary

a reduced backward error bound of order u16 + nu32 instead of the standard bound
nu16 of an LU factorization entirely in fp16 arithmetic.
Using theirmixed precisionLU factorization algorithmwithinLU-IRorGMRES-

IR, Haidar et al. (2018b) are able to solve linear systems with fp64 accuracy at a
speed of up to 24 TFLOPS on an NVIDIA V100 GPU, which represents a spee-
dup of 4 over a double precision solver. Moreover, for some of the more difficult
matrices in their test set, the solution entirely in fp16 arithmetic requires many
iterations or does not converge at all, whereas the algorithm using tensor cores
maintains a fast convergence. This shows that the accuracy boost of tensor cores
can strongly improve the convergence of iterative refinement. The use of half
precision and/or tensor cores also improves the energy efficiency of the solution,
reducing power consumption by up to a factor 5 (Haidar et al. 2018a). See Haidar
et al. (2020) for a more complete discussion of iterative refinement with tensor
cores and Abdelfattah, Tomov and Dongarra (2019b) for an extension of these
approaches to complex matrices. These ideas are implemented in the MAGMA
library27, in the NVIDIA cuSOLVER library28, and also in the SLATE library29
(Charara et al. 2020), which targets machines with large numbers of cores and
multiple hardware accelerators per node.
In addition to its speed and energy benefits, fp16 arithmetic can also be used to

reduce memory consumption and data movement. However, special care has to be
taken not to lose the accuracy boost of tensor cores. Indeed, tensor cores carry out
computations internally in fp32 arithmetic, and so to benefit from their improved
accuracy the input matrix C in (2.2) needs to be stored in fp32. Lopez and Mary
(2020) propose a modification of the above approaches of Haidar et al., based on a
left-looking Crout factorization that allows them to store the matrix in fp16 while
accumulating computations in fp32 buffers of controlled size. As a result, memory
consumption is halved and data movement costs are greatly reduced, making the
factorization faster by up to a factor two on NVIDIA V100 GPUs.

7.4. Scaling strategies

A limitation of iterative refinement with fp16 as the low precision arithmetic is the
narrow range of the arithmetic: as seen in Table 2.1, numbers of magnitude outside
the interval [xsmin, xmax] = [5.96 × 10−8, 6.55 × 104] are not representable and will
underflow or overflow when converted to fp16. Moreover, numbers of magnitude
smaller than xmin = 6.10 × 10−5 are often flushed to zero in practice, to avoid the
possibly heavy performance penalty of handling subnormal numbers.
In the LU factorization of a matrix A in fp16 arithmetic, overflow and underflow

may occur during the initial conversion of A to fp16 and also during the LU
factorization itself. In particular, note that even LU factorization algorithms using

27 https://icl.utk.edu/magma/
28 https://developer.nvidia.com/cusolver
29 https://icl.utk.edu/slate/

https://icl.utk.edu/magma/
https://developer.nvidia.com/cusolver
https://icl.utk.edu/slate/

Mixed precision numerical linear algebra 31

tensor cores that keep the original matrix in fp32 are not immune to overflow and
underflow, since the LU factors must be converted to fp16.
One way to deal with overflow in rounding A to fp16 is to replace any element

ai j that overflows by sign(ai j)θxmax, where θ ∈ (0, 1] is a parameter. We will refer
to this as the overflow mapping strategy. This approach is used in Haidar et al.
(2017, 2018a,b).
Higham, Pranesh and Zounon (2019) suggest Algorithm 7.5, which uses a two-

sided diagonal scaling at the working precision and only rounds to fp16 once all
the matrix elements do not exceed xmax. The algorithm applies row and column
equilibration, which produces a matrix Ã in which every row and column has
maximum element in modulus equal to 1. Then it scales Ã so that the maximum
element in modulus of the scaled matrix is θxmax and rounds to fp16. Here, θ is
intended to be reasonably close to 1, in order to maximize the use of the limited
fp16 range and keep the numbers away from the subnormal zone. If A is symmetric,
a symmetry-preserving two-sided scaling of Knight, Ruiz and Uçar (2014) can be
used instead of row and column equilibration.

Algorithm 7.5. This algorithm rounds A ∈ Rn×n to the fp16 matrix A(h), scaling
all elements to avoid overflow. θ ∈ (0, 1] is a parameter.

1 R = diag
(
‖A(i, :)‖−1

∞

)
2 Ã = RA % Ã is row equilibrated.
3 S = diag

(
‖ Ã(: , j)‖−1

∞

)
4 Ã = ÃS % Ã is now row and column equilibrated.
5 Let β be the maximum magnitude of any entry of Ã.
6 µ = θxmax/β

7 A(h) = flh(µÃ)

How should θ be chosen? The main requirement is that there is no overflow in
the LU factorization, which means that we need θ ≤ ρ−1

n , where ρn is the growth
factor for LU factorization on A. With partial pivoting, ρn is typically not large,
so one might take θ = 0.1, as used in Higham et al. (2019). However, large
growth factors can occur, notably for “randsvd matrices” having one small singular
value (Higham, Higham and Pranesh 2021), and this led to poor performance with
θ = 0.1 in one of the experiments in Haidar et al. (2020, Section 14(b)).
Higham et al. (2019) show experimentally that compared with the overflow

mapping strategy, Algorithm 7.5 leads to faster and more reliable convergence of
GMRES-IR on badly scaled matrices.
Unless the LU factors are converted to fp32 precision at the end of the fac-

torization (or are already available in fp32, such as when using tensor cores), the
substitution operations must also be performed in fp16 arithmetic, and are therefore
vulnerable to overflow and underflow, especially as the elements of the residual vec-
tor ri on line 4 of Algorithm 7.1 must eventually become of order u(‖A‖‖x‖+ ‖b‖),

32 N. J. Higham and T. Mary

and so are likely to underflow in fp16. Techniques for avoiding overflow in solving
triangular systems can be found in Anderson (1991) and Demmel and Li (1994)
(these are used in the LAPACK subroutine xLATRS) and they can be combined with
the simple scaling suggested by Carson and Higham (2018, Sec. 6) and Luszczek,
Yamazaki and Dongarra (2019).

7.5. Exploiting symmetry and positive definiteness

Suppose, now, that A ∈ Rn×n is symmetric positive definite. In principle, LU-IR
can be adapted in a straightforward way by replacing LU factorization by Cholesky
factorization. However, there is a problem to overcome: a matrix that has elements
stored in a given precision and is symmetric positive definite may lose definiteness
when rounded to a lower precision, and in Algorithm 7.1 we round A to precision
u` on the first step. We can guarantee to preserve definiteness in the rounding only
if κ2(A)u` < 1, which is a severe restriction if we are using half precision. Higham
and Pranesh (2021) suggest Algorithm 7.6, which scales and shifts in order to
ensure a successful Cholesky factorization. The two-sided scaling H = D−1 AD−1,
where D = diag(a1/2

ii), produces a unit diagonal matrix with off-diagonal elements
bounded in magnitude by 1. This matrix is then shifted by an amount intended
to lift the smallest eigenvalue sufficiently above zero, and a multiplicative factor θ
is applied that plays the same role as as that in Algorithm 7.5. As explained by
Higham and Pranesh (2021), shifting H by a multiple of I is better than shifting A
by a multiple of I, as it is equivalent to shifting A by a multiple of diag(aii) and so
it makes the same relative perturbation to each diagonal element of A.

Algorithm 7.6. Given a symmetric positive definite A ∈ Rn×n in precision u this
algorithm computes an approximate Cholesky factorization RTR ≈ µD−1 AD−1 at
precision u` > u, where D = diag(a1/2

ii). The scalar θ ∈ (0, 1] and the positive
integer c are parameters.

1 D = diag(a1/2
ii), H = D−1 AD−1 % Set hii ≡ 1 instead of computing it.

2 G = H + cu` I
3 β = 1 + cu`
4 µ = θxmax/β
5 A` = fl`(µG)
6 Attempt Cholesky factorization A` = RTR in precision u` .
7 if Cholesky factorization failed
8 c← 2c, goto line 2
9 end

Higham and Pranesh (2021) give perturbation analysis and error analysis that
suggests taking c ≈ n2 in Algorithm 7.6, but they find this is too pessimistic in
practice. They recommend taking c as a small constant and found c = 2 to work
well in practice, with no need for the doubling on line 8. They use this idea with

Mixed precision numerical linear algebra 33

an appropriate modification of GMRES-IR in which GMRES is applied to the
preconditioned update equation M Adi = Mri, where M = µD−1R−1R−T D−1.

Note that since A is symmetric positive definite it is more natural to use the
conjugate gradient (CG) method instead of GMRES, but the supporting rounding
error analysis works only for GMRES, because it relies on the backward stabil-
ity of GMRES and preconditioned CG is not guaranteed to be backward stable
(Greenbaum 1997, eq. (34)). However, Higham and Pranesh (2021) find that in
their experiments CG works as well as GMRES.
Algorithm 7.6 has been implemented on an NVIDIA V100 GPU by Abdelfattah,

Tomov and Dongarra (2020), effectively taking u` = u16, u = ur = u64, with
Cholesky factorization computed inmixed fp16 and fp32 precisions. Withmatrices
of dimensions up to 42,000, they obtained speedups of up to 4.7 over a double
precision solver.

7.6. Sparse matrix considerations

Sparsity presents both opportunities and obstacles to the use of iterative refinement.
On the one hand, while LU factorization of dense matrices tends to run twice as

fast in single precision as in double precision, this speedup may not be attained for
sparse matrices, for two reasons explained by Zounon, Higham, Lucas and Tisseur
(2020). The first reason is that real-life sparse double precision matrices, such as
many of those in the SuiteSparse Matrix Collection30 (Davis and Hu 2011), can
have elements of widely varying magnitudes. While the matrix elements usually fit
into the range of single precision numbers, LU factorization can generate cascading
fill-ins in which small multipliers combine to produce subnormal numbers. This
can cause a significant performance loss because floating-point operations on sub-
normal numbers can be very slow. A cure is to set a compiler flag to flush subnormal
numbers to zero. The second reason why LU factorization of a sparse matrix in
single precision may not give the expected speedup over double precision is that
the reordering and analysis phase of the algorithm does not involve floating-point
arithmetic (Duff, Erisman and Reid 2017) and so does not benefit from reducing
the precision. Moreover, if the reordering and analysis is sequential rather than
parallelized then increasing the number of cores increases the proportion of time
spent on non-floating-point arithmetic computations.
On the other hand, some of the features of iterative refinement are especially

attractive when the matrix is sparse. First, as explained by Amestoy et al. (2021b),
iterative refinement with a lower precision LU factorization can lead to significant
memory savings due to the fact that the LU factors of a sparse matrix are typically
much denser, and unlike for densematrices, the overhead of keeping a high precision
copy of the original matrix is negligible. Second, to best preserve the sparsity of
the matrix, sparse direct solvers often employ relaxed pivoting strategies, such as

30 https://sparse.tamu.edu/. Previously known as the University of Florida Sparse Matrix
Collection.

https://sparse.tamu.edu/

34 N. J. Higham and T. Mary

threshold partial pivoting (Duff et al. 2017, Chap. 7) or the more aggressive static
pivoting (Li and Demmel 1998), which can lead to large growth factors; iterative
refinement can overcome any resulting numerical instability.
Amestoy et al. (2021b) develop implementations of LU-IR andGMRES-IRbased

on a single precision sparse LU factorization computed with the multifrontal solver
MUMPS and use them to solve with double precision accuracy a range of large and
ill-conditioned sparse systems coming from a variety of applications. They obtain
reductions of up to a factor 2 in both execution time and memory consumption
over the double precision MUMPS solver, with LU-IR being usually faster than
GMRES-IR, although the latter is more robust and successfully converged for all
test problems.

7.7. Exploiting data sparsity

In many applications, the matrix possesses a so-called data sparse structure: many
of its off-diagonal blocks have low numerical rank. In the last two decades, several
approaches have been devised to leverage this property to accelerate the solution
of linear solvers, such as hierarchical (H) or block low-rank (BLR) methods.

The low rank approximations are computedwith a truncation threshold parameter
ε, which controls the accuracy of these data sparse solvers, as proven by Higham
and Mary (2020b) in the case of BLR solvers. Thus, data sparse solvers can be
used either as direct solvers (setting ε to the target accuracy) or as preconditioners
to iterative methods. In particular, they can be used in conjunction with iterative
refinement. Amestoy et al. (2021b) use the BLR sparse solver MUMPS (Amestoy
et al. 2019) at low accuracy with LU-IR and GMRES-IR, and obtain large perform-
ance gains with respect to the double precision solver, reducing execution time by
up to 5.5× and memory consumption by up to 3.5×. Moreover, GMRES-IR can
converge for larger values of the parameter ε than LU-IR, which leads to increased
performance in some cases.
In addition to their use in lower precision, data sparse solvers can also benefit

frommixed precision. Indeed, data sparsematrices exhibit blocks of highly unequal
importance: those that correspond to weak interactions (and that are usually far
away from the diagonal) contain less significant information and are more resilient
to the use of reduced precision. As a result, Abdulah et al. (2019) propose to store
blocks that are sufficiently far way from the diagonal in single precision instead of
double precision. They apply this strategy to the Cholesky factorization of data
sparse covariance matrices arising in geostatistical modeling, obtaining an average
1.6× speedup. The approach is extended to also include half precision in Abdulah
et al. (2022), leading to an improved 2.6× speedup. Doucet, Ltaief, Gratadour and
Keyes (2019) use the same approach in a different application in computational
astronomy (tomographic reconstructors) using only single and half precisions on
NVIDIA V100 GPUs.
To go even further, in addition to storing different blocks in different precisions,

Mixed precision numerical linear algebra 35

each block can also use a mixed precision representation. Since most of the blocks
of data sparse matrices exhibit rapidly decaying singular values, they are amenable
to the mixed precision low-rank representation proposed by Amestoy et al. (2021a)
and described in section 12.2. Amestoy et al. (2021a) apply this approach to the
LU factorization of BLR matrices and obtain storage and flops reductions of up to
a factor 3 using fp64, fp32, and bfloat16 arithmetics.

8. Iterative methods for Ax = b

We outline three classes of approaches to exploit mixed precision arithmetic in
iterative methods. The first approach is to use an inner–outer scheme such as
GMRES-IR, where the low precision is used by the inner scheme (section 8.1).
The second approach is to use low precision arithmetic to compute and/or apply
the preconditioner in a higher precision iterative method (section 8.2). The third
approach is to intrinsically use mixed precision within the iterative method, such
as for inexact Krylov methods (section 8.3). Finally, we also comment on specific
methods such as communication-avoiding or multigrid methods.

8.1. GMRES-IR without an LU factorization

Computing an LU factorization can be expensive, especially for large, sparse
matrices. GMRES-IR can also be effective with a cheaper preconditioner M−1,
or with no preconditioner at all. In this latter case, Algorithm 7.3 reduces to
Algorithm 8.1, which has the form of an inner–outer scheme: the outer loop for
iterative refinement (in precision u, with the residual computed at a possibly higher
precision ur), and the inner loop for solving the correction equations with GMRES
(assumed backward stable) in lower precision u` . By Theorem 6.2 (or indeed
Theorem 5.3), convergence to an iterate satisfying (6.4) is guaranteed as long as
κ(A)u` � 1. Note that inner solvers other than GMRES can be used, and, as long
as they are backward stable, the convergence condition κ(A)u` � 1 still holds.

Algorithm 8.1. GMRES-based iterative refinement in three precisions for the
solution of Ax = b with no preconditioner.

1 Choose an initial x1.
2 for i = 1: imax or until converged
3 Compute ri = b − Axi in precision ur .
4 Solve Adi = ri by GMRES in precision u` .
5 Compute xi+1 = xi + di in precision u.
6 end

Algorithm 8.1 is one form of mixed precision restarted GMRES, although to
guarantee convergence the GMRES call on line 4 must not terminate after a fixed
number of iterations, but ratherwhen a sufficiently small residual has been achieved.
Algorithm 8.1 was first described by Turner and Walker (1992), who perform

36 N. J. Higham and T. Mary

the inner loop in single precision (u`) and the outer loop in double precision
(u and ur), and use a fixed number of inner GMRES iterations. Buttari et al.
(2008) implement several inner–outer iterative algorithms similar to GMRES-IR
employing single and double precisions for the solution of sparse linear systems.
In particular, one version uses GMRES for the inner loop and FGMRES for the
outer loop; this version is also studied by Baboulin et al. (2009).

More recent implementations of thesemethods, still using only single and double
precisions, are described by Lindquist, Luszczek and Dongarra (2020, 2022) for
CPUs and by Loe et al. (2021a,b) for GPUs. Iwashita, Suzuki and Fukaya (2020)
propose a restarted GMRES where the inner loop uses integer arithmetic and the
outer loop uses floating-point arithmetic.
To find a compromise between computing an LU factorization and using no

preconditioner at all, cheaper preconditioners can be considered. Algorithm 8.2 is
obtained by replacing U−1L−1 in Algorithm 7.3 by a general preconditioner M−1.

Algorithm 8.2. GMRES-based iterative refinement in five precisions for the solu-
tion of Ax = b with a general preconditioner M−1 ≈ A−1 stored in precision u` .

1 Compute x1 = M−1b in precision u` .
2 for i = 1: imax or until converged
3 Compute ri = b − Axi in precision ur .
4 Solve M−1 Adi = M−1ri by GMRES in precision ug, performing the

products with M−1 A in precision up.
5 Compute xi+1 = xi + di in precision u.
6 end

There is a tradeoff involved, since a better quality preconditionerwill lead to faster
convergence but will be more expensive to compute. More subtly, the closer M−1

is to A−1, the more significant the rounding errors incurred in the matrix–vector
products with M−1 A become. Indeed, with M−1 = U−1L−1 (LU factorization–
based preconditioner), we have explained in section 7.2.2 that the products with
U−1L−1 A introduce an extra κ(A) term in the convergence condition, which can be
attenuated by performing them in higher precision up. This error analysis has not
been extended to a general preconditioner M−1 in the literature, but we can expect
κ(A) in the error bound to be replaced by a more general term depending on both
A and M−1.
Examples of implementations that use a preconditioner other than a low precision

LU factorization are found in Lindquist et al. (2020, 2022), who use GMRES-IR
preconditioned by an incomplete LU factorization, or in Loe et al. (2021a,b), where
block Jacobi and polynomial preconditioners are used.

Mixed precision numerical linear algebra 37

8.2. Iterative methods with low or mixed precision preconditioner

Another approach to exploitmixed precision arithmetic in iterativemethods is to use
low precision to compute and/or apply the preconditioner. If the iterative method
is iterative refinement, and the preconditioner is a low precision LU factorization,
this corresponds to LU-IR (Algorithm 7.1). The idea can be extended to other
iterative methods or preconditioners.
For example, Arioli and Duff (2009) show that FGMRES implemented in double

precision and preconditionedwith an LU factorization computed in single precision
can give backward stability at double precision, even for ill conditioned systems.
Building on this work, Hogg and Scott (2010) implement an algorithm for sym-
metric indefinite systems that computes a solution using a direct solver in single
precision, performs iterative refinement using the factorization of A, and then uses
mixed precision FGMRES preconditioned by the direct solver to solve the original
system.
Giraud, Haidar and Watson (2008) propose an fp32 domain decomposition

preconditioner applied to an fp64 CG solver. Similarly, Emans and van der Meer
(2012) propose the use of an fp32 algebraic multigrid method as preconditioner for
an fp64 CG.
Anzt et al. (2019a) and Flegar, Anzt, Cojean and Quintana-Ortí (2021) imple-

ment a block Jacobi preconditioner within the preconditioned conjugate gradient
method and store the explicitly inverted diagonal blocks of the preconditioner in
half, single, or double precision arithmetic according to a criterion based on the
condition number of each block. In experiments that use the preconditioner within
a conjugate gradient solver, Flegar et al. (2021) report reductions in run time of
10%–30% compared with a full precision implementation. Göbel, Grützmacher,
Ribizel and Anzt (2021) apply the same idea to sparse approximate inverse pre-
conditioning with a BiCGSTAB solver. It is worth noting that in these papers the
preconditioner does not simply use low precision throughout but is itself in mixed
precision.

8.3. Mixed precision GMRES

The previously described approaches introduce mixed precision in GMRES either
in the preconditioner or via an inner–outer iteration scheme. However, there are
opportunities to exploit multiple precisions even within a nonrestarted, unprecon-
ditioned GMRES.
A first approach is to use lower precision in the matrix–vector products with A,

based on the theory of inexact Krylov methods (Simoncini and Szyld 2003, van den
Eshof and Sleijpen 2004), which proves that an increasing level of inexactness as the
iteration proceeds can be tolerated in the matrix–vector products without degrading
the achievable accuracy. This was first experimentally observed byBouras, Frayssé,
and Giraud (Bouras, Frayssé and Giraud 2000, Bouras and Frayssé 2005). The

38 N. J. Higham and T. Mary

effect of inexactness on the convergence rate of the method is, however, not well
understood.
In addition, Gratton, Simon, Titley-Peloquin and Toint (2019) prove that the

orthonormalization of the Krylov basis can also be performed inexactly. This
observation is leveraged by Aliaga et al. (2020), who propose to store the Krylov
basis in lower precision.

8.4. Communication-avoiding iterative methods

On modern computers, communication has become a significant performance bot-
tleneck. Communication-avoiding (CA) methods seek to reduce the communica-
tion costs, sometimes at the expense of additional flops, in order to achieve higher
performance, especially when scaling to large numbers of processors. In particular,
CA iterative methods often compute blocks of s iterations at a time to reduce syn-
chronization costs. However, these s-step approaches are known to be sometimes
unstable. Mixed precision arithmetic has been used to overcome this potential
instability.
Yamazaki, Tomov, Dong and Dongarra (2014) and Yamazaki, Tomov and Don-

garra (2015a) propose a mixed precision Cholesky–QR orthonormalization (de-
scribed in section 9) that they use to stabilize CA-GMRES. They show that the use
of this stabilized orthonormalization avoids the need to orthogonalize twice and
speeds up the convergence of GMRES.
Carson and Gergelits (2021) propose mixed precision s-step Lanczos and con-

jugate gradient methods that compute the Gram matrix in higher precision. This
allows for reducing the loss of orthogonality by a factor relating to the condition
number of the s-step Krylov bases, speeding up the convergence of the method at
the expense of an increase of the per-iteration cost that is expected to be small in
latency-bound applications.

8.5. Multigrid iterative refinement

In addition to Krylov methods, mixed precision has also been investigated for
multigrid methods. The most popular approach has been to use a multigrid method
as the inner solver for iterative refinement, that is, to use Algorithm 6.1 with a
multigrid solver on line 3, usually run in lower precision. Single precisionmultigrid
methods have, for example, been used within double precision iterative refinement
algorithms by Göddeke, Strzodka and Turek (2007), Goddeke and Strzodka (2011),
Sumiyoshi, Fujii, Nukada and Tanaka (2014), and Kronbichler and Ljungkvist
(2019). More recently, Oo and Vogel (2020) also use fp16 arithmetic on V100
GPUs. The first error analysis of multigrid methods in this context is performed by
McCormick, Benzaken and Tamstorf (2021), who observe that different levels in
the grid hierarchy should use different precisions: coarser grids aremore resilient to
lower precisions. This “progressive-precision” approach is applied to the solution
of elliptic PDEs by Tamstorf, Benzaken and McCormick (2021).

Mixed precision numerical linear algebra 39

For more details of mixed precision multigrid algorithms see Abdelfattah et al.
(2021a).

8.6. Other iterative solvers

Clark et al. (2010) give an early investigation into mixed precision implementation
of conjugate gradients (CG) and BiCGstab solvers on GPUs, for a lattice quantum
chromodynamics application. They use half precision for storage only, since half
precision computation was not available to them.
Anzt, Dongarra and Quintana-Ortí (2015) carry out the Jacobi iterative method

with different solution components represented in different precisions, using an
inexpensive test to decide when to increase precisions during the iteration.

8.7. Decoupling formats for data storage and processing

One specific feature of exploiting reduced precision in GMRES and iterative meth-
ods more generally is that performance is often limited by the memory bandwidth.
This leads to the idea of storing the data in compressed form and uncompressing
it before performing arithmetic operations on the processor. The aim is that the
compression reduces the data movement costs enough to outweigh the costs of
compressing and uncompressing. Anzt, Flegar, Grützmacher and Quintana-Ortí
(2019b) propose this approach of decoupling the data storage format from the
processing format, and they focus on storing the data at a lower precision than
that at which the computations are performed. This approach has been used in
the papers mentioned at the end of Section 8.2 and for level-1 and level-2 BLAS
by Grützmacher, Anzt and Quintana-Ortí (2021). A similar approach is proposed
for flexible GMRES by Agullo et al. (2020), using as compression either reduced
precision or the lossy floating-point SZ compressor (Di and Cappello 2016).

9. Mixed precision orthogonalization and QR factorization
There exist many algorithms to orthogonalize a set of vectors and to carry out the
related task of computing the QR factorization of a matrix A ∈ Rm×n, where we
assume m ≥ n. Householder QR factorization is the most widely used and is un-
conditionally stable: it achieves a backward error and a loss of orthogonality of the
computed Q̂ (if it is explicitly formed) both of order the unit roundoff u (Higham
2002, Sec. 19.3). However, Householder QR factorization offers relatively little
parallelism and requires expensive synchronizations. Alternative algorithms that
are more suitable for parallel computers are unfortunately also less stable: for ex-
ample, the classical and modified Gram–Schmidt algorithms (CGS and MGS) lead
to a loss of orthogonality of order κ(A)2u (Giraud, Langou, Rozložník and van den
Eshof 2005) and κ(A)u, respectively. Developing orthogonalization algorithms
that are both parallel and stable is an active field of research. In this section,
we discuss how mixed precision arithmetic can be used to stabilize or accelerate
these algorithms. We refer to the recent survey by Carson, Lund, Rozložník and

40 N. J. Higham and T. Mary

Thomas (2020b) for a description of what is known about the stability of block
Gram–Schmidt algorithms.

Yang, Fox and Sanders (2021) perform rounding error analysis of Householder
QR factorization under a model of mixed precision computation that assumes that
inner products are computed in high precision uhigh and then rounded to lower
precision ulow. This model is thus applicable to the use of block FMAs. They show
that the bound for both the backward error and the loss of orthogonality, which is
of order n3/2mu in uniform precision u (Higham 2002, p. 361), becomes of order
n1/2(nulow + mnuhigh) under this mixed precision model. Unlike the error bound
2ulow + nuhigh of Blanchard et al. (2020b) for LU factorization with block FMAs
(see section 7.3), their bound for QR factorization still growswith n at the ulow level.
This is because the model assumes the result of the inner products to be rounded
to precision ulow at each step of the factorization. Yang et al. (2021) also analyze a
blocked version of Householder QR assuming that the rounding to precision ulow
takes place only once per block-column. They show that the term nulow can then
be replaced by Nulow, where N is the number of block-columns. Taking advantage
of the capability of some block FMAs (such as NVIDIA tensor cores) of keeping
the result in high precision, one can also imagine a Householder QR factorization
which starts with the original matrix A in high precision and rounds its QR factors
to low precision on-the-fly, similarly to the LU factorization algorithm proposed
by Haidar et al. (2018b) and analyzed by Blanchard et al. (2020b). We expect
this algorithm to further reduce the constant in the error bound at the ulow level by
dropping the dependence on N , although this is not covered by the analysis of Yang
et al. (2021).

Zhang, Baharlouei and Wu (2020) implement Householder QR factorization
using NVIDIA tensor cores to accelerate the matrix–matrix products, but obtain
only modest speedups due to the panel factorization being the performance bot-
tleneck. For this reason, they propose to switch to a recursive QR factorization
employing MGS for the orthogonalization, which requires more flops and is po-
tentially less stable but makes a more intensive use of matrix–matrix operations.
They also propose to use communication-avoiding QR (CAQR) for the panel fac-
torizations. These two modifications allows them to efficiently leverage the tensor
core performance, significantly accelerating the factorization. They demonstrate
experimentally that their algorithm can solve least squares problems with double
precision accuracy by using the computed QR factors to precondition the CGLS
iterative method.
The Cholesky–QR algorithm computes the QR factorization of A ∈ Rm×n by a

three-step process:

1 Compute the matrix product B = ATA.
2 Compute the Cholesky factorization RTR = B.
3 Compute Q = AR−1 by a multiple right-hand side triangular solve.

For tall, thin matrices (m � n), most of the flops take place at steps 1 and 3,

Mixed precision numerical linear algebra 41

which are very parallel and make intensive use of BLAS-3 operations. However,
Cholesky–QR in uniform precision u leads to a loss of orthogonality of order
κ(A)2u (Stathopoulos and Wu 2002), and can fail if the Cholesky factorization
at step 2 breaks down. Cholesky–QR can be partially stabilized by using mixed
precision arithmetic: Yamazaki et al. (2015a) show that, if the first two steps above
are carried out at precision uhigh and the third step is carried out at precision u, the
loss of orthogonality can be bounded by (Yamazaki et al. 2015a, Thm. 3.2)

‖I − Q̂T Q̂‖ = O
(
κ(A)2(uhigh + u2) + κ(A)u

)
. (9.1)

Thus, by using doubled precision for the first two steps (uhigh = u2), the loss
of orthogonality is nO(κ(A)2u2 + κ(A)u) and is therefore of order O(κ(A)u) as
long as κ(A) < u−1. In this context, mixed precision arithmetic can therefore be
used not to accelerate the algorithm, but to (partially) stabilize it, by reducing the
loss of orthogonality by a factor κ(A). Yamazaki et al. (2015a) implement this
mixed precision Cholesky–QR algorithm with fp64 as the working precision u, and
employ double-double arithmetic for the first two steps. Despite requiring 8.5×
more flops due to the use of software-emulated arithmetic, they show that the mixed
precision Cholesky–QR algorithm can be only moderately slower than in uniform
precision (about 1.4× slower in the best case) when the number of columns n to
orthogonalize is small, because in this case the performance of Cholesky–QR is
memory bound. They apply this mixed precision Cholesky–QR algorithm to the
solution of linear systems with a communication-avoiding GMRES method, and
show that the use of this more stable Cholesky–QR algorithm avoids the need for
reorthogonalization and allows GMRES to converge faster, leading to significant
speedups. See also Yamazaki et al. (2014) for early results on this approach. When
the number of columns to orthogonalize is larger, the performance of Cholesky–
QR tends to become compute bound and the overhead associated with the use
of double-double arithmetic becomes more significant. To overcome this issue,
Yamazaki, Tomov, Kurzak, Dongarra and Barlow (2015b) propose a block MGS
method that partitions the matrix into block-columns of smaller size and uses the
mixed precision Cholesky–QR to orthogonalize each block. This method can be
up to seven times faster than applying mixed precision Cholesky–QR to the entire
matrix and numerical experiments show that it can also be as stable, despite the
lack of error analysis bounding the loss of orthogonality.
A drawback of Cholesky–QR-based methods is that they can fail if the Cholesky

factorization breaks down (because it encounters a nonpositive pivot). Break-
down can be avoided by shifting the matrix to ensure the success of the Cholesky
factorization (Fukaya et al. 2020).

Another solution is the singular value QR (SVQR) factorization (Stathopoulos
and Wu 2002), which takes the following steps.

1 Compute the matrix product B = ATA.
2 Compute the singular value decomposition UΣUT = B.
3 Compute the QR factorization Q̄R = Σ1/2UT .

42 N. J. Higham and T. Mary

4 Compute Q = AR−1 by multiple right-hand side triangular solve.

Steps 2 and 3 require more flops than simply computing the Cholesky factorization
of B, but if m � n the overhead is negligible compared with the flops required by
steps 1 and 4. The advantage of SVQR is that when B is singular to the working
precision, step 2 will directly identify the entire subspace of the nearly dependent
columns and one can replace all the associated singular values by an appropriately
large value. Stathopoulos and Wu (2002) suggest replacing singular values smaller
than uσ1 by uσ1, whereσ1 is the largest singular value of B. In uniform precision u,
SVQR also suffers from a loss of orthogonality proportional to κ(A)2u. Yamazaki,
Tomov andDongarra (2016) propose amixed precision version of SVQR analogous
to their mixed precision Cholesky–QR (Yamazaki et al. 2015a), where step 4 is
carried out in halved precision u1/2 compared with the first two steps. The loss of
orthogonality can then be bounded by (Yamazaki et al. 2016, Thm. 5.1)

‖I − Q̂T Q̂‖ = O
(
κ(A)2u + κ(A)u1/2). (9.2)

When κ(A) is larger than u−1/2, the use of halved precision in step 4 therefore does
not significantly impact the loss of orthogonality. For smaller values of κ(A), the
loss of orthogonality is increased but remains a factor κ(A) smaller than if SVQR
were carried out entirely in halved precision.

10. Least squares problems
Consider the linear least squares (LS) problem minx ‖Ax − b‖2, where A ∈ Rm×n

with m ≥ n has full rank. Recall that the unique LS solution is the solution of the
normal equations

ATAx = AT b (10.1)

and that the normal equations can be rewritten as the (m + n) × (m + n) augmented
system [

I A
AT 0

] [
r
x

]
=

[
b
0

]
. (10.2)

Björck (1967) proposed refining an approximate LS solution by applying iterative
refinement to the augmented system, with residuals calculated at twice the working
precision, and he showed how to efficiently solve the augmented system given a QR
factorization of A. He also gave rounding error analysis for the method. Björck’s
method and analysis was extended to constrained and weighted LS problems by
Gulliksson (1994).
Demmel, Hida, Riedy and Li (2009) discuss practical implementation details

such as convergence tests and how to compute error bounds, and they exploit the
XBLAS.
For more on traditional and fixed precision forms of iterative refinement for the

LS problem, see Björck (1996) and Higham (2002, Chap. 20).

Mixed precision numerical linear algebra 43

Recently, mixed precision algorithms for solving the LS problem have been
developed by building on GMRES-IR for square linear systems.
Higham and Pranesh (2021) assume that A is well conditioned and make use

of the normal equations (10.1). Their idea is a modification of the algorithm of
Section 7.5 that uses GMRES-IR with Cholesky preconditioning. It chooses a
diagonal matrix S so that B = AS has columns of unit 2-norm, forms C = BTB
at precision u` , computes the Cholesky factorization of a shifted C at precision
u` , then applies GMRES-IR to the normal equations, computing the residual in
precision ur as ri = AT (b−Axi) and applyingGMRES to the preconditioned update
equation M ATAdi = Mri, where M = SR−1R−T S. Solving the normal equations is
usually avoided by numerical analysts because it gives a backward error bound of
order κ2(A)u (Higham 2002, sect. 20.4) and the Cholesky factorization can break
down for κ2(A) > u−1/2. Its use here is justified by the facts that A is assumed
to be well conditioned, the Cholesky factorization of the cross-product matrix is
being used as a preconditioner rather than to compute the solution directly, and if
a block FMA is available it can be exploited in forming C, boosting the speed and
accuracy.
Carson, Higham and Pranesh (2020a) make use of the augmented system (10.2).

Their method computes a QR factorization at precision u` then applies GMRES-
IR to the augmented system with a left preconditioner constructed in one of two
possible ways from the QR factors. Backward error analysis given in Carson
et al. (2020a), combined with the analysis of Carson and Higham (2017, 2018)
and Amestoy et al. (2021c), shows that the method yields a forward error, and a
backward error for the augmented system, of order the working precision under
reasonable assumptions. Numerical experiments in Carson et al. (2020a) with
various combinations of the three precisions show that the method behaves as
predicted by the theory.

11. Eigenvalue decomposition
A natural way to refine approximate solutions to the eigenvalue problem is by
Newton’s method, and it presents opportunities for exploiting different arithmetic
precisions. Early references developing Newton’s method for mixed precision
iterative refinement for the standard eigenvalue problem are Dongarra (1980, 1982)
and Dongarra, Moler and Wilkinson (1983).
We consider the generalized eigenvalue problem Ax = λBx, where A, B ∈ Rn×n.

Setting B = I gives the standard eigenvalue problem. We suppose that we have an
approximate eigenpair that we wish to improve. We will use Newton’s method, so
we need to put the problem in the form of a nonlinear system.
Since an eigenvector remains an eigenvector whenmultiplied by a nonzero scalar,

we need to normalize x, whichwewill do by requiring that eTs x = 1 for some chosen

44 N. J. Higham and T. Mary

s, where es is the unit vector with a 1 in position s. Define

F(v) =
[

(A − λB)x
eTs x − 1

]
: Cn+1 → Cn+1, v =

[
x
λ

]
.

The Jacobian is

J(v) =
(
∂Fi

∂vj

)
=

[
A − λB −Bx

eTs 0

]
.

It is easy to see that ‖J(w)−J(v)‖∞ ≤ 2‖B‖∞‖w−v‖∞, so J is Lipschitz continuous
with constant 2‖B‖∞. Moreover, it can be shown that J is nonsingular when λ is a
simple (non-multiple) eigenvalue (Tisseur 2001, Lem. 3.3).
By applying Theorems 5.2 and 5.3, Tisseur (2001, Section 3.2) shows that if

(x0, λ0) is a sufficiently good approximation to an eigenpair (x∗, λ∗), λ∗ is simple, J
is not too ill conditioned at (x∗, λ∗), and the linear system solver is not too unstable,
then Newton’s method is well defined and the limiting forward error is bounded by

‖(x̂T , λ)T − (xT∗ , λ∗)T ‖∞
‖(xT∗ , λ∗)T ‖∞

. cnur ‖J(v∗)−1‖∞max(‖A‖∞, ‖B‖∞) + u,

where c is a small integer constant and ur is the precision in which the residual
F(v) is evaluated. If ur = u2 this bound can be shown to reduce to cnu. Moreover
the limiting backward error is bounded by

η∞(x̂, λ̂) . cnur + u(3 + |λ |) max
(
‖A‖∞
‖B‖∞

,
‖B‖∞
‖A‖∞

)
. (11.1)

Note that as for linear systems, instability in the linear system solver does not affect
the bounds for the limiting forward error and backward error.
Each Newton iteration involves the solution of a linear system with the Jacobian

matrix evaluated at the current iterate. If this is done using LU factorization
of J(v) it costs O(n3) flops per step, which is expensive. If an approximate
eigendecomposition is available then this cost can be reduced to O(n2) flops per
iteration. We specialize to the symmetric definite generalized eigenvalue problem
in which A is symmetric and B is symmetric positive definite. The following
algorithm is given by Tisseur (2001, Alg 4.2) and is used by Davies, Higham and
Tisseur (2001) to refine solutions from the Cholesky–Jacobi method, which uses
a Cholesky decomposition of B to reduce the problem to a standard symmetric
eigenvalue problem and then applies the Jacobi method.

Algorithm 11.1. Given a symmetric A ∈ Rn×n, a symmetric positive definite
B ∈ Rn×n, X ∈ Rn×n and a diagonal Λ ∈ Rn×n such that XTAX ≈ Λ and XT BX ≈ I,
and an approximate eigenpair (x, λ) with ‖x‖∞ = xs = 1, this algorithm applies
iterative refinement to λ and x at a cost of O(n2) flops per iteration. Computations
are at precision u unless otherwise stated.

1 repeat until converged

Mixed precision numerical linear algebra 45

2 Compute r = λBx − Ax in precision ur .
3 Dλ = Λ − λI
4 d = −Bx − cs, where cs is the sth column of A − λB.
5 v = XT d, f = XT es
6 Compute Givens rotations Jk in the (k, k + 1) plane, such that

QT
1 v := JT1 . . . JT

n−1v = ‖v‖2e1.
7 Compute orthogonal Q2 such that

T = QT
2 QT

1 (Dλ + v f T) is upper triangular.
8 z = QT

2 QT
1 XT r

9 Solve Tw = z for w.
10 δ = Xw
11 λ = λ + δs, δs = 0
12 x = x + δ
13 end

Newton’s method is well suited to refining a small number of eigenpairs but not
a complete eigensystem, as in the latter case it is expensive and may not converge
for all eigenpairs.
Tsai, Luszczek and Dongarra (2021) revisit the Newton method for the standard

symmetric eigenvalue problem and develop a mixed precision algorithm that trans-
forms the matrix to tridiagonal form in single precision, computes the eigensystem
by divide and conquer in double precision, then refines the eigenpairs in double
precision.
Ogita andAishima (2018) develop an iteration for refining thewhole eigensystem

of a symmetric matrix. It requires four matrix multiplications per iteration, all
executed in a higher precision than the working precision. Quadratic convergence
is proved for sufficiently good initial approximations. The algorithm does not work
well when there are nearly multiple eigenvalues. The latter limitation is addressed
in Ogita and Aishima (2019) by using further steps that work with clusters of
eigenvalues.
Petschow, Quintana-Ortí and Bientinesi (2014) use extra precision to improve

the accuracy of the multiple relatively robust representations (MRRR) method for
the symmetric tridiagonal eigenvalue problem without sacrificing performance.
Ralha (2018) considers carrying out the bisection method for symmetric tridi-

agonal matrices with early iterations in single precision before switching to the
working precision of double, and develops criteria for deciding when to make the
switch.
Stor, Slapničar and Barlow (2015) give an algorithm for the eigendecomposition

of symmetric arrowhead matrices that employs bisection and a shift and invert
technique, and in the latter it uses arithmetic at twice the working precision for one
element of the inverse in order to ensure forward stability.
Tsuchida and Choe (2012) consider a trace minimization method for computing

the complete eigensystem of a symmetric matrix and explore running different parts

46 N. J. Higham and T. Mary

of the method at half the working precision. Gains of over 30 percent in execution
time are reported with little loss of accuracy.
Alvermann et al. (2019) report on two projects that are developing eigensolvers

based on the (block) Jacobi–Davidson method, subspace iteration, and other meth-
ods, and are using lower precision in early iterations for speed and higher precision
within the orthogonalizations for robustness.

12. Singular value decomposition
Wenow consider the singular value decomposition (SVD) of A ∈ Rm×n withm ≥ n:
A = UΣVT with U ∈ Rm×m and V ∈ Rn×n orthogonal and Σ = diag(σi) ∈ Rm×n.

12.1. Iterative refinement

The Newton approach to refining eigenpairs can be extended to singular value
triples of A ∈ Rm×n by using the function

F(x) =

Av − µ1u

ATu − µ2v
uTu − 1
vT v − 1

 , x =

u
v
µ1
µ2

 .
The Jacobian of f is

J(x) =

−µ1I A −u 0

AT −µ2I 0 −v
2uT 0 0 0

0 2vT 0 0

 .
The approximate singular value is updated by (µ1 + µ2)/2. Dongarra (1983),
extending the work in Dongarra et al. (1983), shows how to solve systems with
J(x) in O(mn) flops, given an SVD or bidiagonal factorization of A. Again, the
Newton theory of Section 5 applies.
Ogita and Aishima (2020) extend their algorithm for the symmetric eigenvalue

problem, mentioned in the previous section, to the SVD in order to refine the
complete SVD; the algorithm uses higher precision and is dominated by matrix
multiplication.

12.2. SVD with rapidly decaying singular values

Another opportunity for mixed precision arithmetic arises in the case of matrices
with rapidly decaying singular values. Given a target accuracy ε, it is well known
that singular values smaller than ε and the corresponding singular vectors can be
dropped to provide a low-rank approximation to the matrix with an error bound of
order ε. Amestoy et al. (2021a) explain that among the singular values that remain,
those that are small enough can be represented, along with their associated singular
vectors, in lower precision. For example, singular vectors associated with singular

Mixed precision numerical linear algebra 47

values less than ε/us, where us = 2−24 is the unit roundoff for single precision, can
be stored in single precision, even when ε � us. They introduce a mixed precision
SVD representation that uses p precisions,

A = UΣVT =
[
U1 U2 . . .Up

]
Σ

[
V1 V2 . . .Vp

]T
, (12.1)

where Ui and Vi are stored in precision ui, with u1 < u2 < · · · < up. They give an
explicit rule on how to partition U and V in order to guarantee an overall accuracy
of order ε (Amestoy et al. 2021a, Thm. 2.2). Note that this approach is applicable
not only to the SVD, but also to other types of rank-revealing decompositions, such
as QR factorization with column pivoting.
Ooi et al. (2020) propose three different methods to introduce mixed precision

arithmetic in the product of a low-rank matrix with a vector. Their method 3 is
similar to the representation (12.1), which they use with fp64 and fp32 arithmetics.
They apply this approach to the solution of linear systems exploiting products of a
hierachical (H) matrix with a vector, using the iterative BiCGstab solver.

13. Multiword arithmetic
Multiword arithmetic is a well-known approach to enhance the accuracy of com-
putations while employing fast arithmetic supported in hardware. It consists of
representing high precision numbers by the unevaluated sum of lower precision
numbers. An example is double–double arithmetic which, as mentioned in Sec-
tion 2.2, approximates an fp128 number as the sum of two fp64 numbers and
replaces fp128 operations by fp64 operations.
The emergence of specialized hardware supporting low precision matrix multi-

plication with high precision accumulators, such as the NVIDIA GPU tensor cores,
provides new opportunities for multiword arithmetic. Indeed, these units are much
faster than standard fp32 arithmetic (up to 8 and 16 times faster on the Volta and
Ampere GPUs, for example). Therefore an approach to accelerate the computation
of an fp32 matrix product C = AB is to approximate A ≈ A1 + A2 as the sum
of two fp16 matrices, and similarly B ≈ B1 + B2. Then C can be computed as
C ≈ A1B1 + A1B2 + A2B1 + A2B2 using block FMAs to compute each of the AiBj

terms using internal tensor core arithmetic at fp32 accuracy. Since there are only
four terms (and in fact, we can reduce that number to three, as explained below),
this approach can potentially be much faster than standard fp32 arithmetic.
This approach was first used with NVIDIA tensor cores by Markidis et al.

(2018) to accelerate matrix products, and by Sorna et al. (2018) to accelerate
the fast Fourier transform (FFT). Pisha and Ligowski (2021) similarly use the
TensorFloat32 format in computing the FFT on the NVIDIA A100 GPUs. Henry,
Tang and Heinecke (2019) describe an approach based on block FMA hardware
using the bfloat16 format instead of the fp16 one, where A and B are split into
three bfloat16 matrices, which requires nine products to compute C = AB. Finally,
Mukunoki, Ozaki, Ogita and Imamura (2020) explain how to achieve not only fp32

48 N. J. Higham and T. Mary

accuracy, but also fp64 accuracy with this approach, by using the Ozaki scheme.
Their approach, however, requires splitting both A and B a large number of times,
which leads to several dozens if not hundreds of products. Their algorithm is
therefore only beneficial on GPUs on which fp64 arithmetic is very slow, such as
some of the Turing models.
Fasi et al. (2021a) generalize these approaches by considering any low precision

ulow and any number of splits p. They give the next algorithm.

Algorithm 13.1 (Multiword matrix multiplication). This algorithm computes
the matrix–matrix productC = AB using p-word arithmetic with a mixed precision
block FMA with precisions ulow and uhigh.

1 for i = 1: p
2 Ai = fllow(A −

∑i−1
k=1 Ak)

3 Bi = fllow(B −
∑i−1

k=1 Bk)
4 end
5 for i = 1: p
6 for j = 1: p
7 Compute Ci j = AiBj with Algorithm 4.1.
8 C ← C + Ci j

9 end
10 end

The algorithm recursively computes Ai (and similarly Bj) as the residual from
the (i − 1)-way split A ≈ A1 + · · · + Ai−1 and rounds it to precision ulow, that is,

Ai = fllow

(
A −

i−1∑
k=1

Ak

)

Bi = fllow

(
B −

i−1∑
k=1

Bk

)

i = 1 : p. (13.1)

This gives the approximations

A =
p∑
i=1

Ai + ∆A, |∆A| ≤ up
low |A|, (13.2)

B =
p∑
i=1

Bi + ∆B, |∆B| ≤ up
low |B|. (13.3)

Then, ifC is approximated by the sum of the p2 products AiBj , which are computed
by chaining calls to a block FMA with internal precision uhigh, by Theorem 4.2 we
obtain a computed Ĉ satisfying (Fasi et al. 2021a)

Ĉ = AB + E, |E | .
(
2up

low + u2p
low + (n + p2 − 1)uhigh

)
|A| |B|. (13.4)

Mixed precision numerical linear algebra 49

Clearly, for practical choices of ulow and uhigh a small value of p is sufficient. For
example for fp16 (ulow = 2−11) and fp32 (uhigh = 2−24), p = 2 is enough since in
this case u2

low = 4uhigh. Taking larger values of p will not significantly improve
the bound (13.4) since the term (n + p2)uhigh will then dominate. For bfloat16
(ulow = 2−8) and fp32, the case p = 3 is also of interest because the significand of
one fp32 number fits exactly into the significands of three bfloat16 numbers.
Importantly, in practice not all p2 products AiBj need be computed. As a result

of the construction (13.1), the magnitude of the elements of Ai and Bj rapidly
decreases as we increase i and j. More precisely, we have

|Ai | ≤ ui−1
low(1 + ulow)|A|, |Bi | ≤ ui−1

low(1 + ulow)|B|, i = 1: p,

and thus
|Ai | |Bj | ≤ ui+j−2

low (1 + ulow)2 |A| |B|. (13.5)

Therefore ignoring any product AiBj such that i + j > p + 1 only introduces an
error of order up

low or higher, which does not significantly impact the bound (13.4).
Indeed, by only computing the products AiBj such that i + j ≤ p+ 1, we obtain the
modified bound

Ĉ = AB + E,

|E | .
(

2up
low + u2p

low + (n + p2)uhigh +

p−1∑
i=1

(p − i)up+i−1
low (1 + ulow)2

)
|A| |B|.

The constant in this bound is (p + 1)up
low plus higher order terms, so to order up

low
we have only increased the constant 2 from (13.4) to p+1, and we have reduced the
number of products from p2 to p(p+1)/2. Concretely, with fp32 and fp16 (p = 2),
we only need three products, which is less than the four used by Markidis et al.
(2018), and with bfloat16 and fp32 (p = 3), we can reduce the number of products
from nine to six, as already suggested by Henry et al. (2019).
Note that further reducing the number of products (such as using two products

for p = 2, as attempted by Markidis et al. (2018)) is possible, but the analysis
tells us it should not be beneficial. Indeed, ignoring any product AiBj such that
i + j ≤ p + 1 would introduce an error of order at least up−1

low , and so could not be
significantly more accurate than simply using p − 1 splits rather than p.
The above analysis encompasses previously proposed algorithms, and also in-

cludes new cases. For example, we may use a 2-way split (p = 2) with bfloat16
and fp32, which requires three products rather than six (when p = 3) and delivers
an accuracy of order 2−16 rather than 2−24.
Note that this analysis deals with worst-case error bounds and so does not

guarantee that multiword arithmetic with low precision block FMAs will be as
accurate as higher precision standard arithmetic in the case where the latter does
not attain its worst-case error. In fact, in their experiments with NVIDIA tensor
cores, Fasi et al. (2021a) find that double–fp16 arithmetic can bemuch less accurate

50 N. J. Higham and T. Mary

than fp32 arithmetic due to the rounding mode of these devices, which can make
the worst-case bounds for double–fp16 sharp. To overcome this issue, Fasi et al.
(2021a) propose the use of FABsum (see subsection 4.2) to reduce the worst-case
error bound.

14. Data-driven algorithms
Several mixed precision algorithms described in the previous sections share the
same foundation: use lower precision to represent the less important or significant
part of the data. As an example, consider the computation of the sum a + b,
where |b| � |a|. Because of the widely different magnitudes of a and b, the least
significant bits of b do not play a significant role in the computed value of the
result. Indeed if we round b to b̃ = fllow(b) = b(1+ δlow), where |δlow | ≤ ulow, then

fl(a + b̃) = (a + b̃)(1 + δ) (|δ | ≤ u)
= (a + b(1 + δlow))(1 + δ)

= (a + b)(1 + δ)
(

1 +
b

a + b
δlow

)
,

and so we have an extra term 1 + bδlow/(a + b), which is insignificant as long
as |b|ulow � |a + b|u. Therefore, b can be stored in lower precision without
significantly impacting the accuracy of the computation. Moreover, if b is the
result of a previous computation, that computation can also be carried out in lower
precision. This example illustrates that computations performed on data of small
magnitude need not use very high precision. This is a simple but fundamental
observation that has given birth to several data-driven mixed precision algorithms.
The object of this section is to show that these algorithms share strong connections.
Data-driven mixed precision algorithms seek to exploit this observation by ad-

apting the precision to be inversely proportional to the weight of the data, where
the weight is defined by some metric such as the maximum magnitude or the norm
of the data. In numerical linear algebra algorithms, this can be done at different
levels of the computation: at the element, block, column/row, or matrix levels.

14.1. At the matrix level

In computations involving several matrices, we may choose to compute and store
some of them in lower precision. For example, in computing C = A1B1 + A2B2
where |A1 | ≥ |A2 | and |B1 | ≥ |B2 |, if |A2 | |B2 | � |A1 | |B1 | then the matrix product
A2B2 can be computed in lower precision than A1B1. An example where this
situation arises is the use of multiword arithmetic, as illustrated by (13.5). In fact,
we have already explained that the products AiBj of highest order can be ignored;
data-driven analysis also shows that most of the products that cannot be ignored
can however be computed in lower precision. For example, with ulow as fp16 and
p = 2, the products A1B2 and A2B1 can be computed in fp16 arithmetic, because
the magnitude of their entries is proportional to ulow. Only the first term A1B1

Mixed precision numerical linear algebra 51

actually needs to be computed in fp32 arithmetic. This observation is especially
important when implementing multiword arithmetic on GPU tensor cores, which
lead to heavy rounding error accumulation in the products AiBj because of their
rounding mode: Fasi et al. (2021a) explain that it is only necessary to take care of
reducing the effect of error accumulation on the A1B1 term.

14.2. At the column level (or, equivalently, at the row level)

Given a matrix, we may think of storing each of its columns (or rows) in a different
precision. This approach makes the most sense when dealing with matrices that
can be decomposed as low-rank components of rapidly decreasing norm. This can
be the case, for example, of SVDs or rank-revealing factorizations. In fact, the
mixed precision truncated SVD approaches described in Section 12.2 (Amestoy
et al. 2021a, Ooi et al. 2020) are precisely based on this property: rounding errors
introduced by converting singular vectors to lower precision are demagnified by
the associated singular value, and so the precision of each vector should be selected
based on its associated singular value.
Note that, given the SVD UΣVT of a matrix A, we can express the matrix as

A =
∑

i Ai with Ai = uiσiv
T
i , where ‖Ai+1‖F ≤ ‖Ai ‖F . Thus, even though the

matrices Ai are never formed or manipulated explicitly, the link with the matrix-
level case is clear.

14.3. At the block level

In some applications, it pays to partition a matrix in several blocks and adapt the
precision to each block. We have, for example, described in Section 7.7 approaches
where the precision of each block is based on its distance to the diagonal (Abdulah
et al. 2019, 2022, Doucet et al. 2019). The success of these approaches is explained
by the fact that, for many data-sparse matrices, blocks distant from the diagonal
tend to have smaller norm. Indeed, storing each block in a precision inversely pro-
portional to its norm can allow for significant gains with potentially little accuracy
loss. As an example, consider a matrix A ∈ Rpb×pb partitioned into p2 blocks
Ai j ∈ R

b×b and assume we have two precisions uhigh and ulow at our disposal.
Then, the matrix Â obtained by storing blocks Ai j of Frobenius norm less than
uhigh‖A‖F/(pulow) in precision ulow satisfies ‖ Â− A‖F ≤ uhigh‖A‖F . Thus we can
store selected blocks of A in precision ulow and still recover a global approximation
at accuracy uhigh. This example trivially extends to more than two precisions.

Another example of a data-driven algorithm at the block level is the adaptive
precision block Jacobi preconditioner discussed in Section 8.2 (Anzt et al. 2019a,
Flegar et al. 2021). In this case the precisions of the blocks are selected based on
their condition number, rather than their norm, because this is the relevant metric
when applying the inverse of the blocks as part of the preconditioner.

52 N. J. Higham and T. Mary

14.4. At the element level

The data-driven algorithms described above seek to exploit the underlying structure
of the data. However, the question arises as to whether it can be beneficial to adapt
the precision at the element level: that is, to allow each variable in the computation
to have its own precision, without any special structure (by blocks or by columns,
for instance). This is similar in goal to transprecision computing and precision
auto-tuning tools, which we briefly discuss in Section 15.1.
While this approach maximizes the use of reduced precision, it also destroys

the granularity of the computation and should therefore only be used for memory-
bound applications, such as for sparse matrix–vector products (SpMV) y = Ax. In
particular, Ahmad, Sundar and Hall (2019) propose to split A as Ad + As, where As

contains the small nonzero elements of A and is stored in single precision, whereas
Ad is kept in double precision.
More generally, given p precisions, one could split the elements of A into

p different matrices and compute p independent products in the corresponding
precision. This idea is then similar to bucket summation (Demmel and Hida 2004,
Zhu and Hayes 2009), in which summands are split into buckets based on their
exponent. The novelty comes from summing each bucket in a different precision.
Diffenderfer, Osei-Kuffuor and Menon (2021) propose such a bucket algorithm for
the inner product that uses the four IEEE arithmetics as well as “perforation”, that
is, the option to ignore some of the smallest summands. Graillat, Jézéquel, Mary
and Molina (2021) propose an adaptive precision sparse matrix–vector product
algorithm of similar spirit that, given p precisions u1 < · · · < up, splits A into p
buckets based on the magnitude of the elements: bucket number i contains all the
elements whose absolute value lies in the interval [ε/ui, ε/ui+1], for a given target
accuracy ε.
One common weakness of these approaches is that the accuracy of a matrix–

vector produt y = Ax depends on the magnitude of the summands ai j xj , rather
than simply ai j . However, in most practical scenarios, the matrix A may be fixed
but the vector x is discovered at runtime: the choice of precisions for A cannot
realistically be changed for every x. One application where this issue can be safely
ignored is Krylov solvers, where A is only multiplied with orthonormal vectors.
Graillat et al. (2021) apply their adaptive precision SpMV to the solution of linear

systems with GMRES, and obtain significant reductions of the data movement costs
without slowing down the convergence of the method.

15. Miscellany
15.1. Tuning precisions

A very different approach to mixed precision computing is to focus on the code
rather than the algorithm. Given a code to solve a particular problem and a set of
arithmetics of different precisions one can ask what is the best selection of precision
in which to store each variable. Here, “best” means a choice that minimizes some

Mixed precision numerical linear algebra 53

suitable performance metric subject to achieving a computed result of acceptable
quality. The motivation is the assumption that reducing precisions means faster
execution and lower storage and energy requirements, though conversion between
different precisions is required and adds overhead costs.
This problem is clearly combinatorial in nature, as if there are n variables and p

precisions there are pn possible implementations. Ensuring results of acceptable
quality requires, in principle, a parametrized rounding error analysis that encapsu-
lates all the possible input data.
Much research has been done on algorithms that attempt to solve this problem.

Usually, optimization of code is done for a “representative” data set, with the
assumption that the code will be used on related data for which the quality of the
results will be similar. At best a local minimum of the objective function can be
expected. No guarantee is provided that the code with the chosen precisions will
satisfy error requirements across all possible input data.
Tools can be categorized as using static analysis (carried out before the code is

run) or dynamic analysis. Dynamic analysis tools typically instrument the compiled
code in order to try different combinations of precisions, and a popular way to do
so is via the LLVM compiler infrastructure31.

Any attempt to reduce precisions of variables must ensure that sufficient range
is maintained to avoid overflow and harmful underflow, which is particularly im-
portant if fp16 is one of the formats, given its narrow range.
An example of such work is the tool Precimonious, by Rubio-González et al.

(2013), which uses execution time as the performance metric. It takes a C program
as input and outputs a description of the precisions to be assigned to the variables.
The experiments in Rubio-González et al. (2013) demonstrate a speedup of up to a
factor 1.4 by replacing certain double precision variables by single precision ones
in the benchmarks codes tested.
A more recent example, focused on GPUs, is GRAM, which chooses the preci-

sions at run time (Ho, De Silva and Wong 2021). Each block of threads is kept at
the same precision and a proportion α of the blocks is assigned a lower precision,
with a binary search used to select α. Speedups on an NVIDIA GPU of up to 1.8
over single precision are reported, by exploiting half precision arithmetic. GRAM
does not support the use of tensor cores.
Brun et al. (2021) develop a tool that uses a heuristic search strategy to select

the precisions at which elementary functions are evaluated in a code, aiming to
minimize the precisions subject to achieving output of a given accuracy. They
use the Intel Vector Mathematics functions (VM) in the Intel oneAPI Math Kernel
Library, which have an input argument that allows the user to select “high accuracy”,
“low accuracy”, or “enhanced performance accuracy” modes for the functions.
They are able to obtain up to an approximate halving of the execution time on

31 https://llvm.org/

https://llvm.org/

54 N. J. Higham and T. Mary

a Monte Carlo code that spends 70 percent of its time in mathematical library
functions.
Precision tuning has also been used in climate and weather models. Tintó Prims

et al. (2019) use the rpe Fortran library that emulates reduced precision, which
we mentioned in Section 2.6. For two widely used ocean model codes they use a
divide and conquer approach to find assignments of precisions to variables, finding
that half precision or single precision can be use for large portions of the codes.
Similar findings were made by Düben, Subramanian, Dawson and Palmer (2017)
for a cloud resolving model within a general circulation model.
It needs to be kept in mind that simply lowering the precisions of variables in a

code may not be all that can be done. In some problems the choice of algorithm,
or the algorithm itself, is precision-dependent. For example, an algorithm for
computing an elementary function may be built upon a rational approximation that
depends on the target accuracy, so that different approximations can be used for
half, single, and double precision.

15.2. Multiprecision algorithms

Multiprecision algorithms for the matrix logarithm and the matrix exponential are
developed by Fasi and Higham (2018, 2019). These algorithms take as input the
unit roundoff u of the arithmetic and then determine a suitable level of (inverse)
scaling and squaring transformations and degree of Taylor or Padé approximants
such that the functions are approximated to precision u. The key algorithmic
parameters are determined at run time, which contrasts with the state of the art
algorithms for double precision arithmetic, where some of the parameters have
been determined in advance. A similar strategy is followed by Al-Mohy, Higham
and Liu (2021) in a multiprecision algorithm for computing for the matrix cosine
and its Fréchet derivative.
Higham and Liu (2021) develop a multiprecision version of the Schur–Parlett

algorithm for computing general analytic functions at a matrix argument. It avoids
the need for derivatives by computing the function of the diagonal blocks of the
reordered and blocked Schur form by diagonalizing, at a suitable precision, a small
random perturbation of each block.

Acknowledgements
The work of the first author was supported by Engineering and Physical Sciences
Research Council grant EP/P020720/1, the Royal Society, and the Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of the U.S. Department of
Energy Office of Science and the National Nuclear Security Administration. The
work of the second author was supported by the InterFLOP project (ANR-20-
CE46-0009) of the French National Agency for Research.
We thankMassimilianoFasi, SvenHammarling, Claude-Pierre Jeannerod,Mantas

Mikaitis, and Françoise Tisseur for their comments on a draft manuscript.

Mixed precision numerical linear algebra 55

References
A.Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, A. Fox, M. Gates,

N. J. Higham, X. S. Li, J. Loe, P. Luszczek, S. Pranesh, S. Rajamanickam, T. Ribizel,
B. F. Smith, K. Swirydowicz, S. Thomas, S. Tomov, Y. M. Tsai and U. M. Yang (2021a),
A survey of numerical linear algebra methods utilizing mixed-precision arithmetic, Int
J. High Perform. Comput. Appl. 35(4), 344–369. (Cited on pp. 2, 39.)

A. Abdelfattah, T. Costa, J. Dongarra, M. Gates, A. Haidar, S. Hammarling, N. J. Higham,
J. Kurzak, P. Luszczek, S. Tomov and M. Zounon (2021b), A set of Batched Basic
Linear Algebra Subprograms and LAPACK routines, ACM Trans. Math. Software 47(3),
21:1–21:23. (Cited on p. 16.)

A. Abdelfattah, S. Tomov and J. Dongarra (2019a), Fast batched matrix multiplication
for small sizes using half-precision arithmetic on GPUs, in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 111–122. (Cited on p. 16.)

A. Abdelfattah, S. Tomov and J. Dongarra (2019b), Towards half-precision computation
for complex matrices: A case study for mixed-precision solvers on GPUs, in 2019
IEEE/ACM 10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems (ScalA), IEEE, pp. 17–24. (Cited on p. 30.)

A. Abdelfattah, S. Tomov and J. Dongarra (2020), Investigating the benefit of FP16-
enabled mixed-precision solvers for symmetric positive definite matrices using GPUs,
in Computational Science—ICCS 2020 (V. V. Krzhizhanovskaya, G. Závodszky, M. H.
Lees, J. J. Dongarra, P. M. A. Sloot and S. B. J. Teixeira, eds), number 12138 in ‘Lecture
Notes in Computer Science’, Springer International Publishing, pp. 237–250. (Cited on
p. 33.)

S. Abdulah, Q. Cao, Y. Pei, G. Bosilca, J. Dongarra, M. G. Genton, D. E. Keyes, H. Ltaief
and Y. Sun (2022), Accelerating geostatistical modeling and prediction with mixed-
precision computations: A high-productivity approach with PaRSEC, IEEE Trans.
Parallel Distrib. Syst. 33(4), 964–976. (Cited on pp. 34, 51.)

S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton and D. E. Keyes (2019), Geostatistical
modeling and prediction usingmixed precision tile Cholesky factorization, in 2019 IEEE
26th International Conference on High Performance Computing, Data, and Analytics
(HiPC), IEEE. (Cited on pp. 34, 51.)

E. Agullo, F. Cappello, S. Di, L. Giraud, X. Liang and N. Schenkels (2020), Exploring
variable accuracy storage through lossy compression techniques in numerical linear al-
gebra: a first application to flexible GMRES, Research Report RR-9342, Inria Bordeaux
Sud-Ouest. (Cited on p. 39.)

K. Ahmad, H. Sundar and M. Hall (2019), Data-driven mixed precision sparse matrix
vector multiplication for GPUs, ACM Trans. Archit. Code Optim. 16(4), 51:1–51:24.
(Cited on p. 52.)

A. H. Al-Mohy, N. J. Higham and X. Liu (2021), Arbitrary precision algorithms for com-
puting the matrix cosine and its Fréchet derivative, MIMS EPrint 2021.13, Manchester
Institute for Mathematical Sciences, The University of Manchester. Revised November
2021. To appear in SIAM J. Matrix Anal. Appl. (Cited on p. 54.)

J. I. Aliaga, H. Anzt, T. Grützmacher, E. S. Quintana-Ortí and A. E. Tomás (2020), Com-
pressed basis GMRES on high performance GPUs, arXiv preprint arXiv:2009.12101.
(Cited on p. 38.)

56 N. J. Higham and T. Mary

A. Alvermann, A. Basermann, H.-J. Bungartz, C. Carbogno, D. Ernst, H. Fehske,
Y. Futamura, M. Galgon, G. Hager, S. Huber, T. Huckle, A. Ida, A. Imakura, M. Kawai,
S. Köcher, M. Kreutzer, P. Kus, B. Lang, H. Lederer, V. Manin, A. Marek, K. Nakajima,
L. Nemec, K. Reuter, M. Rippl, M. Röhrig-Zöllner, T. Sakurai, M. Scheffler, C. Scheurer,
F. Shahzad, D. Simoes Brambila, J. Thies and G. Wellein (2019), Benefits from using
mixed precision computations in the ELPA-AEO and ESSEX-II eigensolver projects,
Japan J. Indust. Appl. Math. 36(2), 699–717. (Cited on p. 46.)

P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L’Excellent and T. Mary
(2021a), ‘Mixed precision low rank approximations and their application to block low
rank LU factorization’. HAL EPrint hal-03251738, June 2021. (Cited on pp. 35, 46, 47,
51.)

P. Amestoy, A. Buttari, N. J. Higham, J.-Y. L’Excellent, T. Mary and B. Vieublé (2021b),
Combining sparse approximate factorizations with mixed precision iterative refinement,
Technical report. in preparation. (Cited on pp. 33, 34.)

P. Amestoy, A. Buttari, N. J. Higham, J.-Y. L’Excellent, T. Mary and B. Vieublé (2021c),
Five-precision GMRES-based iterative refinement, MIMS EPrint 2021.5, Manchester
Institute for Mathematical Sciences, The University of Manchester, UK. (Cited on
pp. 25, 28, 29, 43.)

P. R. Amestoy, A. Buttari, J.-Y. L’Excellent and T.Mary (2019), Performance and scalability
of the block low-rank multifrontal factorization on multicore architectures, ACM Trans.
Math. Software 45(1), 2:1–2:26. (Cited on pp. 26, 34.)

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and J. Koster (2001), A fully asynchronous
multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl.
23(1), 15–41. (Cited on p. 26.)

E. Anderson (1991), Robust triangular solves for use in condition estimation, Technical Re-
port CS-91-142, Department of Computer Science, University of Tennessee, Knoxville,
TN, USA. LAPACK Working Note 36. (Cited on p. 32.)

ANSI (1966), American National Standard FORTRAN, American National Standards In-
stitute, New York, NY, USA. (Cited on p. 6.)

H. Anzt, J. Dongarra and E. S. Quintana-Ortí (2015), Adaptive precision solvers for sparse
linear systems, in Proceedings of the 3rd International Workshop on Energy Efficient
Supercomputing, E2SC ’15, ACM, New York, NY, USA, pp. 2:1–2:10. (Cited on p. 39.)

H. Anzt, J. Dongarra, G. Flegar, N. J. Higham and E. S. Quintana-Ortí (2019a), Adapt-
ive precision in block-Jacobi preconditioning for iterative sparse linear system solvers,
Concurrency Computat. Pract. Exper. 31(6), e4460. (Cited on pp. 37, 51.)

H. Anzt, G. Flegar, T. Grützmacher and E. S. Quintana-Ortí (2019b), Toward a modular
precision ecosystem for high-performance computing, Int J. High Perform. Comput.
Appl. 33(6), 1069âĂŞ1078. (Cited on p. 39.)

J. Appleyard and S. Yokim (2017), ‘Programming tensor cores in CUDA 9’, https://
devblogs.nvidia.com/programming-tensor-cores-cuda-9/. Accessed March
25, 2019. (Cited on p. 10.)

M. Arioli and I. S. Duff (2009), Using FGMRES to obtain backward stability in mixed
precision, Electron. Trans. Numer. Anal. 33, 31–44. (Cited on p. 37.)

M. Arioli, I. S. Duff, S. Gratton and S. Pralet (2007), A note on GMRES preconditioned
by a perturbed LDLT decomposition with static pivoting, SIAM J. Sci. Comput. 29(5),
2024–2044. (Cited on p. 26.)

https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

Mixed precision numerical linear algebra 57

ARM (2018), ARM Architecture Reference Manual. ARMv8, for ARMv8-A Architecture
Profile, ARM Limited, Cambridge, UK. Version dated 31 October 2018. Original
release dated 30 April 2013. (Cited on p. 9.)

ARM (2019), Arm A64 Instruction Set Architecture Armv8, for Armv8-A Architecture
Profile, ARM Limited, Cambridge, UK. (Cited on p. 9.)

ARM (2020), Arm Architecture Reference Manual. Armv8, for Armv8-A Architecture
Profile, number ARMDDI 0487F.b (ID040120), ARMLimited, Cambridge, UK. (Cited
on p. 11.)

M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek and
S. Tomov (2009), Accelerating scientific computations with mixed precision algorithms,
Comput. Phys. Comm. 180(12), 2526–2533. (Cited on pp. 27, 36.)

D. H. Bailey, Y. Hida, X. S. Li and B. Thompson (2002), ARPREC: An arbitrary precision
computation package, Technical Report LBNL-53651, Lawrence Berkeley National
Laboratory, Berkeley, California. (Cited on p. 12.)

P. Bauer, P. D. Dueben, T. Hoefler, T. Quintino, T. C. Schulthess and N. P.Wedi (2021), The
digital revolution of earth-system science,Nature Computational Science 1(2), 104–113.
(Cited on p. 4.)

J. Bezanson, A. Edelman, S. Karpinski and V. B. Shah (2017), Julia: A fresh approach to
numerical computing, SIAM Rev. 59(1), 65–98. (Cited on p. 12.)

Å. Björck (1967), Iterative refinement of linear least squares solutions I, BIT 7, 257–278.
(Cited on p. 42.)

Å. Björck (1996), Numerical Methods for Least Squares Problems, Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA. (Cited on p. 42.)

P. Blanchard, N. J. Higham and T. Mary (2020a), A class of fast and accurate summation
algorithms, SIAM J. Sci. Comput. 42(3), A1541–A1557. (Cited on pp. 4, 17.)

P. Blanchard, N. J. Higham, F. Lopez, T. Mary and S. Pranesh (2020b), Mixed precision
block fused multiply-add: Error analysis and application to GPU tensor cores, SIAM J.
Sci. Comput. 42(3), C124–C141. (Cited on pp. 16, 29, 40.)

A. Bouras and V. Frayssé (2005), Inexact matrix-vector products in Krylov methods for
solving linear systems: A relaxation strategy, SIAM J. Matrix Anal. Appl. 26(3), 660–
678. (Cited on p. 37.)

A. Bouras, V. Frayssé and L. Giraud (2000), A relaxation strategy for inner-outer linear
solvers in domain decomposition methods. Technical report TR/PA/00/17, CERFACS,
Toulouse, France. (Cited on p. 37.)

E. Brun, D. Defour, P. De Oliveira Castro, M. Iştoan, D. Mancusi, E. Petit and A. Vaquet
(2021), A study of the effects and benefits of custom-precision mathematical libraries
for HPC codes, IEEE Transactions on Emerging Topics in Computing 9(3), 1467–1478.
(Cited on p. 53.)

A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek and S. Tomov (2008), Usingmixed precision
for sparse matrix computations to enhance the performance while achieving 64-bit
accuracy, ACM Trans. Math. Software 34(4), 17:1–17:22. (Cited on pp. 27, 36.)

A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek and J. Kurzak (2007), Mixed
precision iterative refinement techniques for the solution of dense linear systems, Int J.
High Perform. Comput. Appl. 21(4), 457–466. (Cited on p. 27.)

E. Carson and T. Gergelits (2021), Mixed precision s-step Lanczos and conjugate gradient
algorithms, arXiv preprint arXiv:2103.09210. (Cited on p. 38.)

58 N. J. Higham and T. Mary

E. Carson and N. J. Higham (2017), A new analysis of iterative refinement and its applica-
tion to accurate solution of ill-conditioned sparse linear systems, SIAM J. Sci. Comput.
39(6), A2834–A2856. (Cited on pp. 24, 27, 28, 43.)

E. Carson and N. J. Higham (2018), Accelerating the solution of linear systems by iterative
refinement in three precisions, SIAM J. Sci. Comput. 40(2), A817–A847. (Cited on
pp. 23, 25, 28, 32, 43.)

E. Carson, N. J. Higham and S. Pranesh (2020a), Three-precision GMRES-based iterative
refinement for least squares problems, SIAM J. Sci. Comput. 42(6), A4063–A4083.
(Cited on p. 43.)

E. Carson, K. Lund, M. Rozložník and S. Thomas (2020b), An overview of block Gram–
Schmidt methods and their stability properties, ArXiv:2010.12058. (Cited on p. 39.)

A. Charara, M. Gates, J. Kurzak, A. YarKhan and J. Dongarra (2020), SLATE developers’
guide, SLATEWorking Notes 11, Innovative Computing Laboratory, The University of
Tennessee, Knoxville, TN, USA. (Cited on p. 30.)

J. Choquette, W. Gandhi, O. Giroux, N. Stam and R. Krashinsky (2021), NVIDIA A100
tensor core GPU: Performance and innovation, IEEE Micro 41(2), 29–35. (Cited on
pp. 9, 11.)

M. A. Clark, R. Babich, K. Barros, R. C. Brower and C. Rebbi (2010), Solving lattice QCD
systems of equations using mixed precision solvers on GPUs, Comput. Phys. Comm.
181(9), 1517–1528. (Cited on p. 39.)

M. P. Connolly and N. J. Higham (2021), Probabilistic rounding error analysis of House-
holder QR factorization, MIMS EPrint 2021.xx, Manchester Institute for Mathematical
Sciences, The University of Manchester. In Preparation. (Cited on p. 17.)

M. P. Connolly, N. J. Higham and T. Mary (2021), Stochastic rounding and its probabilistic
backward error analysis, SIAM J. Sci. Comput. 43(1), A566–A585. (Cited on pp. 5, 17.)

M. Courbariaux, Y. Bengio and J.-P. David (2015), Training deep neural networks with
low precision multiplications, ArXiv:1412.7024v5. (Cited on p. 5.)

M. G. Croarken (1985), The Centralization of Scientific Computation in Britain 1925–
1955, PhD thesis, University of Warwick, Coventry, UK. (Cited on p. 6.)

M. Croci, M. Fasi, N. J. Higham, T. Mary and M. Mikaitis (2021), Stochastic rounding:
Implementation, error analysis, and applications, MIMS EPrint 2021.17, Manchester
Institute for Mathematical Sciences, The University of Manchester, New York. (Cited
on p. 5.)

P. I. Davies, N. J. Higham and F. Tisseur (2001), Analysis of the Cholesky method with
iterative refinement for solving the symmetric definite generalized eigenproblem, SIAM
J. Matrix Anal. Appl. 23(2), 472–493. (Cited on p. 44.)

T. A. Davis and Y. Hu (2011), The University of Florida Sparse Matrix Collection, ACM
Trans. Math. Software 38(1), 1:1–1:25. (Cited on p. 33.)

A. Dawson and P. D. Düben (2017), rpe v5: An emulator for reduced floating-point
precision in large numerical simulations,GeoscientificModel Development 10(6), 2221–
2230. (Cited on p. 14.)

A. Dawson, P. D. Düben, D. A. MacLeod and T. N. Palmer (2018), Reliable low precision
simulations in land surface models, Climate Dynamics 51(7), 2657–2666. (Cited on
p. 4.)

J. Dean (2020), The deep learning revolution and its implications for computer architecture
and chip design, in 2020 IEEE International Solid- State Circuits Conference - (ISSCC),
IEEE. (Cited on p. 4.)

Mixed precision numerical linear algebra 59

J. Demmel and Y. Hida (2004), Accurate and efficient floating point summation, SIAM J.
Sci. Comput. 25(4), 1214–1248. (Cited on p. 52.)

J. Demmel, Y. Hida, E. J. Riedy and X. S. Li (2009), Extra-precise iterative refinement for
overdetermined least squares problems, ACM Trans. Math. Software 35(4), 28:1–28:32.
(Cited on p. 42.)

J. W. Demmel and X. Li (1994), Faster numerical algorithms via exception handling, IEEE
Trans. Comput. 43(8), 983–992. (Cited on p. 32.)

J. E. Dennis, Jr. and R. B. Schnabel (1983), Numerical Methods for Unconstrained Optim-
ization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, USA. Reprinted
by Society for Industrial and AppliedMathematics, Philadelphia, PA, USA, 1996. (Cited
on p. 19.)

S. Di and F. Cappello (2016), Fast error-bounded lossy HPC data compression with SZ, in
2016 IEEE international parallel and distributed processing symposium (ipdps), IEEE,
pp. 730–739. (Cited on p. 39.)

J. Diffenderfer, D. Osei-Kuffuor and H. Menon (2021), QDOT: Quantized dot product
kernel for approximate high-performance computing, ArXiv:2105.00115. (Cited on
p. 52.)

J. J. Dongarra (1980), Improving the accuracy of computed matrix eigenvalues, Preprint
ANL-80-84, Mathematics and Computer Science Division, Argonne National Laborat-
ory, Argonne, IL, USA. (Cited on p. 43.)

J. J. Dongarra (1982), Algorithm 589 SICEDR: A FORTRAN subroutine for improving the
accuracy of computed matrix eigenvalues, ACM Trans. Math. Software 8(4), 371–375.
(Cited on p. 43.)

J. J. Dongarra (1983), Improving the accuracy of computed singular values, SIAM J. Sci.
Statist. Comput. 4, 712–719. (Cited on p. 46.)

J. J. Dongarra (2020), Report on the Fujitsu Fugaku system, Technical Report ICL-UT-20-
06, Innovative Computing Laboratory, University of Tennessee. (Cited on p. 9.)

J. J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart (1979), LINPACK Users’
Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. (Cited
on p. 24.)

J. J. Dongarra, C. B.Moler and J.H.Wilkinson (1983), Improving the accuracy of computed
eigenvalues and eigenvectors, SIAM J. Numer. Anal. 20(1), 23–45. (Cited on pp. 43,
46.)

N. Doucet, H. Ltaief, D. Gratadour and D. Keyes (2019), Mixed-precision tomographic
reconstructor computations on hardware accelerators, in 2019 IEEE/ACM 9th Workshop
on Irregular Applications: Architectures and Algorithms (IA3), IEEE, pp. 31–38. (Cited
on pp. 34, 51.)

P. D. Düben, A. Subramanian, A. Dawson and T. N. Palmer (2017), A study of reduced
numerical precision to make superparameterization more competitive using a hardware
emulator in the OpenIFS model, Journal of Advances in Modeling Earth Systems 9(1),
566–584. (Cited on p. 54.)

I. S. Duff and S. Pralet (2007), Towards stable mixed pivoting strategies for the sequential
and parallel solution of sparse symmetric indefinite systems, SIAM J. Matrix Anal. Appl.
29(3), 1007–1024. (Cited on p. 26.)

I. S. Duff, A. M. Erisman and J. K. Reid (2017), Direct Methods for Sparse Matrices,
second edition, Oxford University Press. (Cited on pp. 33, 34.)

60 N. J. Higham and T. Mary

M. Emans and A. van der Meer (2012), Mixed-precision AMG as linear equation solver
for definite systems, Procedia Computer Science 1(1), 175–183. (Cited on p. 37.)

M. Fasi and N. J. Higham (2018), Multiprecision algorithms for computing the matrix
logarithm, SIAM J. Matrix Anal. Appl. 39(1), 472–491. (Cited on p. 54.)

M. Fasi and N. J. Higham (2019), An arbitrary precision scaling and squaring algorithm
for the matrix exponential, SIAM J. Matrix Anal. Appl. 40(4), 1233–1256. (Cited on
p. 54.)

M. Fasi and N. J. Higham (2021), Matrices with tunable infinity-norm condition number
and no need for pivoting in LU factorization, SIAM J.Matrix Anal. Appl. 42(1), 417–435.
(Cited on p. 6.)

M. Fasi and M. Mikaitis (2020), CPFloat: A C library for emulating low-precision arith-
metic, MIMS EPrint 2020.22, Manchester Institute for Mathematical Sciences, The
University of Manchester, UK. (Cited on p. 13.)

M. Fasi, N. J. Higham, F. Lopez, T. Mary and M. Mikaitis (2021a), Matrix multiplication
in multiword arithmetic: error analysis and application to GPU tensor cores, Technical
report. in preparation. (Cited on pp. 17, 48, 49, 50, 51.)

M. Fasi, N. J. Higham,M.Mikaitis and S. Pranesh (2021b), Numerical behavior of NVIDIA
tensor cores, PeerJ Comput. Sci. 7, e330(1–19). (Cited on p. 11.)

G. Flegar, H. Anzt, T. Cojean and E. S. Quintana-Ortí (2021), Adaptive precision block-
Jacobi for high performance preconditioning in the Ginkgo linear algebra software, ACM
Trans. Math. Software 47(2), 1–28. (Cited on pp. 37, 51.)

L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier and P. Zimmermann (2007), MPFR: A
multiple-precision binary floating-point librarywith correct rounding,ACMTrans.Math.
Software 33(2), 13:1–13:15. (Cited on p. 12.)

L. Fox, H. D. Huskey and J. H.Wilkinson (1948a), Notes on the solution of algebraic linear
simultaneous equations, Quart. J. Mech. Appl. Math. 1, 149–173. (Cited on pp. 24, 60.)

L. Fox, H. D. Huskey and J. H. Wilkinson (1948b), The solution of algebraic linear simul-
taneous equations by punched cardmethods, Report, Mathematics Division, Department
of Scientific and Industrial Research, National Physical Laboratory, Teddington, UK.
“This note was intended to be included as” section 5 of (Fox et al. 1948a), “but was
finally omitted for reasons of economy of space”. (Cited on p. 24.)

T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto and Y. Yanagisawa (2020), Shifted
Cholesky QR for computing the QR factorization of ill-conditioned matrices, SIAM J.
Sci. Comput. 42(1), A477–A503. (Cited on p. 41.)

J. Gao, F. Zheng, F. Qi, Y. Ding, H. Li, H. Lu, W. He, H. Wei, L. Jin, X. Liu, D. Gong,
F. Wang, Y. Zheng, H. Sun, Z. Zhou, Y. Liu and H. You (2021), Sunway supercom-
puter architecture towards exascale computing: Analysis and practice, Science China
Information Sciences 64(4), 141101:1–141101:21. (Cited on p. 9.)

P. E. Gill, M. A. Saunders and J. R. Shinnerl (1996), On the stability of Cholesky factor-
ization for symmetric quasidefinite systems, SIAM J. Matrix Anal. Appl. 17(1), 35–46.
(Cited on p. 26.)

L. Giraud, A. Haidar and L. T. Watson (2008), Mixed-precision preconditioners in parallel
domain decomposition solvers, in Domain Decomposition Methods in Science and En-
gineering XVII (U. Langer, M. Discacciati, D. E. Keyes, O. B.Widlund andW. Zulehner,
eds), Lecture Notes in Computational Science and Engineering, Springer-Verlag, Berlin,
Germany, pp. 357–364. (Cited on p. 37.)

Mixed precision numerical linear algebra 61

L. Giraud, J. Langou, M. Rozložník and J. van den Eshof (2005), Rounding error analysis of
the classical Gram–Schmidt orthogonalization process, Numer. Math. 101(1), 87–100.
(Cited on p. 39.)

F. Göbel, T. Grützmacher, T. Ribizel and H. Anzt (2021), Mixed precision incomplete and
factorized sparse approximate inverse preconditioning onGPUs, inEuro-Par 2021: Par-
allel Processing, Lecture Notes in Computer Science, Springer-Verlag, Cham, Switzer-
land, pp. 550–564. (Cited on p. 37.)

D. Goddeke and R. Strzodka (2011), Cyclic reduction tridiagonal solvers on GPUs applied
to mixed-precision multigrid, IEEE Trans. Parallel Distrib. Syst. 22(1), 22–32. (Cited
on p. 38.)

D. Göddeke, R. Strzodka and S. Turek (2007), Performance and accuracy of hardware-
oriented native-, emulated- and mixed-precision solvers in FEM simulations, Interna-
tional Journal of Parallel, Emergent and Distributed Systems 22(4), 221–256. (Cited
on p. 38.)

W. Govaerts and J. D. Pryce (1990), Block elimination with one iterative refinement solves
bordered linear systems accurately, BIT 30, 490–507. (Cited on p. 25.)

S. Graillat, F. Jézéquel, T. Mary and R. Molina (2021), ‘Adaptive precision sparse matrix–
vector product and its application to GMRES’. in preparation. (Cited on p. 52.)

S. Gratton, E. Simon, D. Titley-Peloquin and P. Toint (2019), Exploiting variable precision
in GMRES, ArXiv:1907.10550. Revised February 2020. (Cited on p. 38.)

A. Greenbaum (1997), Estimating the attainable accuracy of recursively computed residual
methods, SIAM J. Matrix Anal. Appl. 18(3), 535–551. (Cited on p. 33.)

J. F. Groote, R. Morel, J. Schmaltz and A. Watkins (2021), Logic Gates, Circuits, Pro-
cessors, Compilers and Computers, Springer-Verlag, Cham, Switzerland. (Cited on
p. 9.)

T. Grützmacher, H. Anzt and E. S. Quintana-Ortí (2021), Using Ginkgo’s memory accessor
for improving the accuracy of memory-bound low precision BLAS, Software—Practice
and Experience. (Cited on p. 39.)

M.Gulliksson (1994), Iterative refinement for constrained andweighted linear least squares,
BIT 34, 239–253. (Cited on p. 42.)

S. Gupta, A. Agrawal, K. Gopalakrishnan and P. Narayanan (2015), Deep learning with
limited numerical precision, in Proceedings of the 32nd International Conference on
Machine Learning (F. Bach and D. Blei, eds), Vol. 37 of JMLR: Workshop and Confer-
ence Proceedings, pp. 1737–1746. (Cited on p. 5.)

A. Haidar, A. Abdelfattah, M. Zounon, P. Wu, S. Pranesh, S. Tomov and J. Dongarra
(2018a), The design of fast and energy-efficient linear solvers: On the potential of half-
precision arithmetic and iterative refinement techniques, in Computational Science—
ICCS 2018 (Y. Shi, H. Fu, Y. Tian, V. V. Krzhizhanovskaya, M. H. Lees, J. Dongarra
and P. M. A. Sloot, eds), Springer, Cham, Switzerland, pp. 586–600. (Cited on pp. 30,
31.)

A. Haidar, H. Bayraktar, S. Tomov, J. Dongarra and N. J. Higham (2020), Mixed-precision
iterative refinement using tensor cores on GPUs to accelerate solution of linear systems,
Proc. Roy. Soc. London A 476(2243), 20200110. (Cited on pp. 29, 30, 31.)

A. Haidar, S. Tomov, J. Dongarra and N. J. Higham (2018b), Harnessing GPU tensor cores
for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers, in Pro-
ceedings of the International Conference for High Performance Computing, Networking,
Storage, and Analysis, SC18 (Dallas, TX), IEEE, Piscataway, NJ, USA, pp. 47:1–47:11.
(Cited on pp. 29, 30, 31, 40.)

62 N. J. Higham and T. Mary

A. Haidar, P. Wu, S. Tomov and J. Dongarra (2017), Investigating half precision arithmetic
to accelerate dense linear system solvers, in Proceedings of the 8th Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems, ScalA ’17 (Denver, CO),
ACM Press, New York, pp. 10:1–10:8. (Cited on pp. 27, 31.)

R. Harvey and D. L. Verseghy (2015), The reliability of single precision computations in
the simulation of deep soil heat diffusion in a land surface model, Climate Dynamics
16(11), 3865âĂŞ3882. (Cited on p. 4.)

G. Henry, P. T. P. Tang and A. Heinecke (2019), Leveraging the bfloat16 artificial intel-
ligence datatype for higher-precision computations, in 2019 IEEE 26th Symposium on
Computer Arithmetic (ARITH), IEEE, pp. 69–76. (Cited on pp. 47, 49.)

D. J. Higham, N. J. Higham and S. Pranesh (2021), Random matrices generating large
growth in LU factorization with pivoting, SIAM J. Matrix Anal. Appl. 42(1), 185–201.
(Cited on p. 31.)

N. J. Higham (1986), Computing the polar decomposition—with applications, SIAM J.
Sci. Statist. Comput. 7(4), 1160–1174. (Cited on p. 19.)

N. J. Higham (1988), Fast solution of Vandermonde-like systems involving orthogonal
polynomials, IMA J. Numer. Anal. 8, 473–486. (Cited on p. 25.)

N. J. Higham (1991), Iterative refinement enhances the stability of QR factorization meth-
ods for solving linear equations, BIT 31, 447–468. (Cited on p. 24.)

N. J. Higham (1997), Iterative refinement for linear systems and LAPACK, IMA J. Numer.
Anal. 17(4), 495–509. (Cited on p. 24.)

N. J. Higham (2002), Accuracy and Stability of Numerical Algorithms, second edition,
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. (Cited on
pp. 14, 15, 23, 26, 39, 40, 42, 43.)

N. J. Higham (2008), Functions of Matrices: Theory and Computation, Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA. (Cited on p. 19.)

N. J. Higham (2021), Numerical stability of algorithms at extreme scale and low precisions,
MIMS EPrint 2021.14, Manchester Institute for Mathematical Sciences, The University
of Manchester, UK. (Cited on p. 14.)

N. J. Higham and X. Liu (2021), A multiprecision derivative-free Schur–Parlett algorithm
for computing matrix functions, SIAM J. Matrix Anal. Appl. 42(3), 1401–1422. (Cited
on p. 54.)

N. J. Higham and T.Mary (2019a), A new approach to probabilistic rounding error analysis,
SIAM J. Sci. Comput. 41(5), A2815–A2835. (Cited on p. 17.)

N. J. Higham and T. Mary (2019b), A new preconditioner that exploits low-rank approx-
imations to factorization error, SIAM J. Sci. Comput. 41(1), A59–A82. (Cited on p. 29.)

N. J. Higham and T. Mary (2020a), Sharper probabilistic backward error analysis for basic
linear algebra kernels with random data, SIAM J. Sci. Comput. 42(5), A3427–A3446.
(Cited on p. 17.)

N. J. Higham and T. Mary (2020b), Solving block low-rank linear systems by LU factoriz-
ation is numerically stable, IMA J. Numer. Anal. pp. 1–30. (Cited on p. 34.)

N. J. Higham and S. Pranesh (2019), Simulating low precision floating-point arithmetic,
SIAM J. Sci. Comput. 41(5), C585–C602. (Cited on pp. 13, 14.)

N. J. Higham and S. Pranesh (2021), Exploiting lower precision arithmetic in solving
symmetric positive definite linear systems and least squares problems, SIAM J. Sci.
Comput. 43(1), A258–A277. (Cited on pp. 32, 33, 43.)

Mixed precision numerical linear algebra 63

N. J. Higham, S. Pranesh and M. Zounon (2019), Squeezing a matrix into half precision,
with an application to solving linear systems, SIAM J. Sci. Comput. 41(4), A2536–
A2551. (Cited on p. 31.)

N.-M. Ho, H. De Silva and W.-F. Wong (2021), GRAM: A framework for dynamically
mixing precisions in GPU applications, ACM Trans. Archit. Code Optim. 18(2), 1–24.
(Cited on p. 53.)

J. D. Hogg and J. A. Scott (2010), A fast and robust mixed-precision solver for the solution
of sparse symmetric linear systems, ACM Trans. Math. Software 37(2), 17:1–17:24.
(Cited on p. 37.)

Y. Idomura, T. Ina, Y. Ali and T. Imamura (2020), Acceleration of fusion plasma turbu-
lence simulations using themixed-precision communication-avoidingKrylovmethod, in
SC20: International Conference for High Performance Computing, Networking, Storage
and Analysis, IEEE, Piscataway, NJ, USA, pp. 1–13. (Cited on p. 3.)

IEEE (1985), IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard
754-1985, Institute of Electrical and Electronics Engineers, New York. (Cited on p. 6.)

IEEE (2008), IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008 (Revision
of IEEE 754-1985), IEEE Computer Society, New York. (Cited on p. 7.)

Intel Corporation (2018), ‘BFLOAT16—Hardware Numerics Definition’. White paper.
Document number 338302-001US. (Cited on pp. 7, 8.)

I. C. F. Ipsen and H. Zhou (2020), Probabilistic error analysis for inner products, SIAM J.
Matrix Anal. Appl. 41(4), 1726–1741. (Cited on p. 17.)

T. Iwashita, K. Suzuki and T. Fukaya (2020), An integer arithmetic-based sparse linear
solver using a GMRES method and iterative refinement, in 2020 IEEE/ACM 11th Work-
shop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), IEEE,
pp. 1–8. (Cited on p. 36.)

M. Jankowski and H. Woźniakowski (1977), Iterative refinement implies numerical stabil-
ity, BIT 17, 303–311. (Cited on p. 24.)

F. Johansson et al. (2013), ‘Mpmath: A Python library for arbitrary-precision floating-point
arithmetic’. http://mpmath.org. (Cited on p. 12.)

M. Joldes, J.-M. Muller and V. Popescu (2017), Tight and rigorous error bounds for
basic building blocks of double-word arithmetic, ACM Trans. Math. Software 44(2),
15res1–15res:27. (Cited on p. 9.)

N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin, G. Kurian, J. Laudon,
S. Li, P. Ma, X. Ma, T. Norrie, N. Patil, S. Prasad, C. Young, Z. Zhou and D. Patterson
(2021), Ten lessons from three generations shaped Google’s TPUv4i: Industrial product,
in 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), IEEE, pp. 1–14. (Cited on p. 11.)

N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young and D. Patterson
(2020), A domain-specific supercomputer for training deep neural networks, Comm.
ACM 63(7), 67âĂŞ78. (Cited on p. 11.)

W. Kahan (1981), Why do we need a floating-point arithmetic standard?, Technical report,
University of California, Berkeley, CA, USA. (Cited on p. 7.)

C. T. Kelley (1995), Iterative Methods for Linear and Nonlinear Equations, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA. (Cited on p. 20.)

C. T. Kelley (2021), Newton’s method in mixed-precision, SIAM Rev. To appear. (Cited
on p. 20.)

http://mpmath.org

64 N. J. Higham and T. Mary

A. Kiełbasiński (1981), Iterative refinement for linear systems in variable-precision arith-
metic, BIT 21(1), 97–103. (Cited on p. 25.)

P. A. Knight, D. Ruiz and B. Uçar (2014), A symmetry preserving algorithm for matrix
scaling, SIAM J. Matrix Anal. Appl. 35(3), 931–955. (Cited on p. 31.)

M. Kronbichler and K. Ljungkvist (2019), Multigrid for matrix-free high-order finite
element computations on graphics processors, ACM Trans. Parallel Comput. 6(1), 2:2–
3:32. (Cited on p. 38.)

S. Kudo, K. Nitadori, T. Ina and T. Imamura (2020a), Implementation and numerical
techniques for one EFlop/s HPL-AI benchmark on Fugaku, in Proceedings of the 11th
IEEE/ACMWorkshop on Latest Advances in Scalable Algorithms for Large-Scale, Vol. 1,
IEEE Computer Society, Los Alamitos, CA, USA, pp. 69–76. (Cited on pp. 6, 27.)

S. Kudo, K. Nitadori, T. Ina and T. Imamura (2020b), Prompt report on exa-scale HPL-AI
benchmark, in 2020 IEEE International Conference on Cluster Computing (CLUSTER),
IEEE, pp. 418–419. (Cited on pp. 6, 27.)

J. Kurzak and J. Dongarra (2007), Implementation of mixed precision in solving systems
of linear equations on the Cell processor, Concurrency Computat. Pract. Exper. 19(10),
1371–1385. (Cited on p. 24.)

J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari and J. Dongarra (2006), Exploiting
the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revis-
iting iterative refinement for linear systems), in Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, IEEE. (Cited on pp. 9, 24, 27.)

V. Lefèvre and P. Zimmermann (2017), Optimized binary64 and binary128 arithmetic with
GNU MPFR, in 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH), IEEE,
pp. 18–26. (Cited on p. 12.)

X. S. Li and J. W. Demmel (1998), Making sparse Gaussian elimination scalable by static
pivoting, in Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, IEEE
Computer Society, Washington, DC, USA, pp. 1–17. (Cited on pp. 26, 34.)

X. S. Li and J. W. Demmel (2003), Superlu_dist: A scalable distributed-memory sparse
direct solver for unsymmetric linear systems, ACM Trans. Math. Software 29(2), 110–
140. (Cited on p. 26.)

X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y.
Kang, A. Kapur, M. C. Martin, B. J. Thompson, T. Tung and D. J. Yoo (2002), Design,
implementation and testing of extended and mixed precision BLAS, ACM Trans. Math.
Software 28(2), 152–205. (Cited on pp. 9, 10.)

C. Lichtenau, S. Carlough and S. M. Mueller (2016), Quad precision floating point on
the IBM z13, in 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH), IEEE,
pp. 87–94. (Cited on p. 10.)

N. Lindquist, P. Luszczek and J. Dongarra (2020), Improving the performance of the
GMRES method using mixed-precision techniques, in Communications in Computer
and Information Science (J. Nichols, B. Verastegui, A. B. Maccabe, O. Hernandez,
S. Parete-Koon and T. Ahearn, eds), Springer, Cham, Switzerland, pp. 51–66. (Cited on
p. 36.)

N. Lindquist, P. Luszczek and J. Dongarra (2022), Accelerating restarted GMRES with
mixed precision arithmetic, IEEE Trans. Parallel Distrib. Syst. 33(4), 1027–1037. (Cited
on p. 36.)

J. A. Loe, C. A. Glusa, I. Yamazaki, E. G. Boman and S. Rajamanickam (2021a), Experi-
mental evaluation ofmultiprecision strategies for GMRES onGPUs, ArXiv:2105.07544.
(Cited on p. 36.)

Mixed precision numerical linear algebra 65

J. A. Loe, C. A. Glusa, I. Yamazaki, E. G. Boman and S. Rajamanickam (2021b), A study of
mixed precision strategies for GMRES on GPUs, ArXiv:2109.01232. (Cited on p. 36.)

F. Lopez and T. Mary (2020), Mixed precision LU factorization on GPU tensor cores:
Reducing data movement and memory footprint, MIMS EPrint 2020.20, Manchester
Institute for Mathematical Sciences, The University of Manchester. (Cited on p. 30.)

P. Luszczek, I. Yamazaki and J. Dongarra (2019), Increasing accuracy of iterative refine-
ment in limited floating-point arithmetic on half-precision accelerators, in 2019 IEEE
High Performance Extreme Computing Conference (HPEC), IEEE, pp. 1–6. (Cited on
p. 32.)

S. Markidis, S. Wei Der Chien, E. Laure, I. B. Peng and J. S. Vetter (2018), NVIDIA tensor
core programmability, performance & precision, in 2018 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), IEEE, pp. 522–531.
(Cited on pp. 47, 49.)

C. M. Maynard and D. N. Walters (2019), Mixed-precision arithmetic in the ENDGame
dynamical core of the unified model, a numerical weather prediction and climate model
code, Comput. Phys. Comm. 244, 69–75. (Cited on p. 4.)

S. F. McCormick, J. Benzaken and R. Tamstorf (2021), Algebraic error analysis for mixed-
precision multigrid solvers, SIAM J. Sci. Comput. 43(5), S392–S419. (Cited on p. 38.)

A. Meurer, C. P. Smith, M. Paprocki, O. C̆ertik, S. B. Kirpichev, M. Rocklin, A. Kumar,
S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller,
F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel,
Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman and A. Scopatz (2017), SymPy:
Symbolic computing in Python, PeerJ Comput. Sci. 3, e103. (Cited on p. 12.)

C. B. Moler (1967), Iterative refinement in floating point, J. ACM 14(2), 316–321. (Cited
on p. 6.)

C. B. Moler (2017), “‘Half precision” 16-bit floating point arithmetic’,
http://blogs.mathworks.com/cleve/2017/05/08/half-precision-16-
bit-floating-point-arithmetic/. (Cited on pp. 8, 13.)

C. B. Moler (2019), ‘Variable format half precision floating point arithmetic’,
https://blogs.mathworks.com/cleve/2019/01/16/variable-format-
half-precision-floating-point-arithmetic/. (Cited on p. 13.)

D. Mukunoki, K. Ozaki, T. Ogita and T. Imamura (2020), DGEMM using tensor cores, and
its accurate and reproducible versions, inHigh Performance Computing (P. Sadayappan,
B. L. Chamberlain, G. Juckeland and H. Ltaief, eds), Springer, Cham, Switzerland,
pp. 230–248. (Cited on p. 47.)

J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V. Lefèvre,
G. Melquiond, N. Revol and S. Torres (2018), Handbook of Floating-Point Arithmetic,
second edition, Birkhäuser, Boston, MA, USA. (Cited on pp. 8, 10.)

M. Nakata (2021), LAPACK version 1.0.0 user manual, ArXiv:2109.13406. (Cited on
p. 12.)

T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon, C. Young, N. Jouppi and
D. Patterson (2021), The design process for Google’s training chips: TPUv2 and TPUv3,
IEEE Micro 41(2), 56–63. (Cited on pp. 9, 11.)

NVIDIACorporation (2020), ‘NVIDIAA100Tensor CoreGPUArchitecture’. v1.0. (Cited
on pp. 9, 11.)

T. Ogita and K. Aishima (2018), Iterative refinement for symmetric eigenvalue decompos-
ition, Japan J. Indust. Appl. Math. 35, 1007âĂŞ1035. (Cited on p. 45.)

http://blogs.mathworks.com/cleve/2017/05/08/half-precision-16-bit-floating-point-arithmetic/
http://blogs.mathworks.com/cleve/2017/05/08/half-precision-16-bit-floating-point-arithmetic/
https://blogs.mathworks.com/cleve/2019/01/16/variable-format-half-precision-floating-point-arithmetic/
https://blogs.mathworks.com/cleve/2019/01/16/variable-format-half-precision-floating-point-arithmetic/

66 N. J. Higham and T. Mary

T. Ogita and K. Aishima (2019), Iterative refinement for symmetric eigenvalue decompos-
ition II: Clustered eigenvalues, Japan J. Indust. Appl. Math. 36(2), 435–459. (Cited on
p. 45.)

T. Ogita and K. Aishima (2020), Iterative refinement for singular value decomposition
based on matrix multiplication, J. Comput. Appl. Math. 369, 112512. (Cited on p. 46.)

E. Oktay and E. Carson (2021), Multistage mixed precision iterative refinement,
ArXiv:2107.06200. (Cited on p. 29.)

K. L. Oo and A. Vogel (2020), Accelerating geometric multigrid preconditioning with
half-precision arithmetic on GPUs, ArXiv:2007.07539. (Cited on p. 38.)

R. Ooi, T. Iwashita, T. Fukaya, A. Ida and R. Yokota (2020), Effect of mixed precision
computing on H-matrix vector multiplication in BEM analysis, in Proceedings of the
International Conference onHighPerformanceComputing in Asia-Pacific Region, ACM
Press, New York. (Cited on pp. 47, 51.)

S.-i. O’uchi, H. Fuketa, T. Ikegami, W. Nogami, T. Matsukawa, T. Kudoh and R. Takano
(2018), Image-classifier deep convolutional neural network training by 9-bit dedicated
hardware to realize validation accuracy and energy efficiency superior to the half pre-
cision floating point format, in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), IEEE, pp. 1–5. (Cited on p. 9.)

C. C. Paige, M. Rozložník and Z. Strakoš (2006), Modified Gram-Schmidt (MGS), least
squares, and backward stability of MGS-GMRES, SIAM J. Matrix Anal. Appl. 28(1),
264–284. (Cited on pp. 28, 29.)

T. N. Palmer (2020), The physics of numerical analysis: A climate modelling case study,
Phil. Trans. R. Soc. A 378(2166), 1–6. (Cited on p. 4.)

M. Petschow, E. Quintana-Ortí and P. Bientinesi (2014), Improved accuracy and parallelism
for MRRR-based eigensolvers—A mixed precision approach, SIAM J. Sci. Comput.
36(2), C240–C263. (Cited on p. 45.)

L. Pisha and L. Ligowski (2021), Accelerating non-power-of-2 size Fourier transforms
with GPU tensor cores, in 2021 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Portland, OR, USA, pp. 507–516. (Cited on p. 47.)

R. Ralha (2018), Mixed precision bisection, Mathematics in Computer Science 12(2),
173–181. (Cited on p. 45.)

C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen, D. H.
Bailey, C. Iancu and D. Hough (2013), Precimonious: Tuning assistant for floating-
point precision, in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’13, ACMPress, NewYork, pp. 27:1–
27:12. (Cited on p. 53.)

P. San Juan, R. Rodríguez-Sánchez, F. D. Igual, P. Alonso-Jordá and E. S. Quintana-
Ortí (2021), Low precision matrix multiplication for efficient deep learning in NVIDIA
carmel processors, J. Supercomputing 77(10), 11257–11269. (Cited on p. 16.)

M. Sato, Y. Ishikawa, H. Tomita, Y. Kodama, T. Odajima, M. Tsuji, H. Yashiro, M. Aoki,
N. Shida, I.Miyoshi, K.Hirai, A. Furuya, A.Asato, K.Morita andT. Shimizu (2020), Co-
design forA64FXmanycore processor and “Fugaku”, inProceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC
’20, IEEE Press. (Cited on p. 9.)

K. Scheinberg (2016), Evolution of randomness in optimization methods for supervised
machine learning, SIAG/OPT Views and News 24(1), 1–8. (Cited on p. 5.)

Mixed precision numerical linear algebra 67

O. Schenk, K. Gärtner, W. Fichtner and A. Stricker (2001), PARDISO: A high-performance
serial and parallel sparse linear solver in semiconductor device simulation, Future Gen-
eration Computer Systems 18(1), 69–78. (Cited on p. 26.)

V. Simoncini and D. B. Szyld (2003), Theory of inexact Krylov subspace methods and
applications to scientific computing, SIAM J. Sci. Comput. 25(2), 454–477. (Cited on
p. 37.)

R. D. Skeel (1980), Iterative refinement implies numerical stability for Gaussian elimina-
tion, Math. Comp. 35(151), 817–832. (Cited on p. 24.)

A. Smoktunowicz and J. Sokolnicka (1984), Binary cascades iterative refinement in
doubled-mantissa arithmetics, BIT 24(1), 123–127. (Cited on p. 25.)

A. Sorna, X. Cheng, E. D’Azevedo, K. Won and S. Tomov (2018), Optimizing the fast
Fourier transform using mixed precision on tensor core hardware, in 2018 IEEE 25th
International Conference on High Performance ComputingWorkshops (HiPCW), IEEE,
pp. 3–7. (Cited on p. 47.)

A. Stathopoulos and K. Wu (2002), A block orthogonalization procedure with constant
synchronization requirements, SIAMJ. Sci. Comput. 23(6), 2165–2182. (Cited on pp. 41,
42.)

G. W. Stewart (1973), Introduction to Matrix Computations, Academic Press, New York.
(Cited on p. 25.)

N. J. Stor, I. Slapničar and J. L. Barlow (2015), Accurate eigenvalue decomposition of
real symmetric arrowhead matrices and applications, Linear Algebra Appl. 464, 62–89.
(Cited on p. 45.)

Y. Sumiyoshi, A. Fujii, A. Nukada and T. Tanaka (2014), Mixed-precision AMG method
for many core accelerators, in Proceedings of the 21st European MPI UsersâĂŹ Group
Meeting, EuroMPI/ASIA âĂŹ14, ACM Press, New York, p. 127âĂŞ132. (Cited on
p. 38.)

J. Sun, G. D. Peterson and O. O. Storaasli (2008), High-performance mixed-precision
linear solver for FPGAs, IEEE Trans. Comput. 57(12), 1614–1623. (Cited on p. 27.)

G. Tagliavini, S. Mach, D. Rossi, A. Marongiu and L. Benin (2018), A transprecision
floating-point platform for ultra-low power computing, in 2018 Design, Automation and
Test in Europe Conference and Exhibition (DATE), pp. 1051–1056. (Cited on p. 8.)

R. Tamstorf, J. Benzaken and S. F. McCormick (2021), Discretization-error-accurate
mixed-precision multigrid solvers, SIAM J. Sci. Comput. 43(5), S420–S447. (Cited
on p. 38.)

O. Tintó Prims, M. C. Acosta, A. M. Moore, M. Castrillo, K. Serradell, A. Cortés and
F. J. Doblas-Reyes (2019), How to use mixed precision in ocean models: Exploring a
potential reduction of numerical precision in NEMO 4.0 and ROMS 3.6, Geoscientific
Model Development 12(7), 3135–3148. (Cited on pp. 4, 54.)

F. Tisseur (2001), Newton’s method in floating point arithmetic and iterative refinement of
generalized eigenvalue problems, SIAM J. Matrix Anal. Appl. 22(4), 1038–1057. (Cited
on pp. 20, 44.)

T. Trader (2016), ‘IBMadvances against x86with Power9’, https://www.hpcwire.com/
2016/08/30/ibm-unveils-power9-details/. Accessed May 21, 2021. (Cited on
p. 10.)

Y. M. Tsai, P. Luszczek and J. Dongarra (2021), Mixed-precision algorithm for finding
selected eigenvalues and eigenvectors of symmetric and Hermitian matrices, Technical
Report ICL-UT-21-05, Innovative Computing Laboratory, The University of Tennessee,
Knoxville, TN, USA. (Cited on p. 45.)

https://www.hpcwire.com/2016/08/30/ibm-unveils-power9-details/
https://www.hpcwire.com/2016/08/30/ibm-unveils-power9-details/

68 N. J. Higham and T. Mary

E. Tsuchida and Y.-K. Choe (2012), Iterative diagonalization of symmetric matrices in
mixed precision and its application to electronic structure calculations, Comput. Phys.
Comm. 183(4), 980–985. (Cited on p. 45.)

K. Turner and H. F. Walker (1992), Efficient high accuracy solutions with GMRES(m),
SIAM J. Sci. Statist. Comput. 12(3), 815–825. (Cited on p. 35.)

J. van den Eshof and G. L. G. Sleijpen (2004), Inexact Krylov subspace methods for linear
systems, SIAM J. Matrix Anal. Appl. 26(1), 125–153. (Cited on p. 37.)

F. Váňa, P. Düben, S. Lang, T. Palmer, M. Leutbecher, D. Salmond and G. Carver (2017),
Single precision in weather forecasting models: An evaluation with the IFS, Mon.
Weather Rev. 145(2), 495–502. (Cited on p. 4.)

J. von Neumann and H. H. Goldstine (1947), Numerical inverting of matrices of high order,
Bull. Amer. Math. Soc. 53, 1021–1099. (Cited on p. 6.)

E. Wang, J. J. Davis, R. Zhao, H.-C. Ng, X. Niu, W. Luk, P. Y. K. Cheung and G. A.
Constantinides (2019), Deep neural network approximation for custom hardware, ACM
Comput. Surv. 52(2), 1–39. (Cited on p. 5.)

N. Wang, J. Choi, D. Brand, C.-Y. Chen and K. Gopalakrishnan (2018), Training deep
neural networks with 8-bit floating point numbers, in Advances in Neural Information
Processing Systems 31 (S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi and R. Garnett, eds), Curran Associates, pp. 7686–7695. (Cited on p. 8.)

S. Wang and P. Kanwar (2019), ‘BFloat16: the secret to high performance on cloud
TPUs’, https://cloud.google.com/blog/products/ai-machine-learning/
bfloat16-the-secret-to-high-performance-on-cloud-tpus. Accessed
September 14, 2019. (Cited on p. 11.)

J. H. Wilkinson (1948), Progress report on the Automatic Computing Engine, Report
MA/17/1024, Mathematics Division, Department of Scientific and Industrial Research,
National Physical Laboratory, Teddington, UK. (Cited on pp. 6, 24.)

J. H. Wilkinson (1961), Error analysis of direct methods of matrix inversion, J. ACM 8,
281–330. (Cited on p. 6.)

J. H.Wilkinson (1963), Rounding Errors in Algebraic Processes, Notes onApplied Science
No. 32, Her Majesty’s Stationery Office, London. Also published by Prentice-Hall,
Englewood Cliffs, NJ, USA. Reprinted by Dover, New York, 1994. (Cited on p. 5.)

J. H. Wilkinson (1977), The use of the single-precision residual in the solution of linear
systems, Unpublished manuscript. (Cited on p. 28.)

I. Yamazaki, S. Tomov and J. Dongarra (2015a), Mixed-precision Cholesky QR factoriza-
tion and its case studies on multicore CPU with multiple GPUs, SIAM J. Sci. Comput.
37(1), C307–C330. (Cited on pp. 38, 41, 42.)

I. Yamazaki, S. Tomov and J. Dongarra (2016), Stability and performance of various
singular value QR implementations on multicore CPU with a GPU, ACM Trans. Math.
Software 43(2), 10:1–10:18. (Cited on p. 42.)

I. Yamazaki, S. Tomov, T. Dong and J. Dongarra (2014), Mixed-precision orthogonal-
ization scheme and adaptive step size for improving the stability and performance of
CA-GMRES on GPUs, in International Conference on High Performance Computing
for Computational Science (J. Nichols, B. Verastegui, A. B. Maccabe, O. Hernandez,
S. Parete-Koon and T. Ahearn, eds), Springer, Cham, Switzerland, pp. 17–30. (Cited on
pp. 38, 41.)

https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus

Mixed precision numerical linear algebra 69

I. Yamazaki, S. Tomov, J. Kurzak, J. Dongarra and J. Barlow (2015b), Mixed-precision
block Gram Schmidt orthogonalization, in Proceedings of the 6th Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems, ScalA âĂŹ15, ACM Press,
New York. (Cited on p. 41.)

K. Yang, Y.-F. Chen, G. Roumpos, C. Colby and J. Anderson (2019), High performance
Monte Carlo simulation of Ising model on TPU clusters, in Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’19), ACM Press, New York. (Cited on p. 3.)

L. M. Yang, A. Fox and G. Sanders (2021), Rounding error analysis of mixed precision
block Householder QR algorithms, SIAM J. Sci. Comput. 43(3), A1723–A1753. (Cited
on p. 40.)

S. Zhang, E. Baharlouei and P. Wu (2020), High accuracy matrix computations on neural
engines: A study of QR factorization and its applications, in Proceedings of the 29th
International Symposium on High-Performance Parallel and Distributed Computing,
ACM. (Cited on p. 40.)

Y.-K. Zhu and W. B. Hayes (2009), Correct rounding and a hybrid approach to exact
floating-point summation, SIAM J. Sci. Comput. 31(4), 2981–3001. (Cited on p. 52.)

Z. Zlatev (1982), Use of iterative refinement in the solution of sparse linear systems, SIAM
J. Numer. Anal. 19(2), 381–399. (Cited on p. 26.)

M. Zounon, N. J. Higham, C. Lucas and F. Tisseur (2020), Performance impact of precision
reduction in sparse linear systems solvers, MIMS EPrint 2020.21, Manchester Institute
for Mathematical Sciences, The University of Manchester, UK. Revised June 2021. To
appear in PeerJ Comput. Sci. (Cited on p. 33.)

	Introduction
	Floating-point arithmetics
	Rounding error analysis model
	Matrix multiplication
	Nonlinear equations
	Iterative refinement for Ax = b
	Direct methods for Ax=b
	Iterative methods for Ax=b
	Mixed precision orthogonalization and QR factorization
	Least squares problems
	Eigenvalue decomposition
	Singular value decomposition
	Multiword arithmetic
	Data-driven algorithms
	Miscellany

