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Abstract. Sanitizable signatures (SaS) allow a (single) sanitizer, chosen by the
signer, to modify and re-sign a message in a somewhat controlled way, that is,
only editing parts (or blocks) of the message that are admissible for modification.
This primitive is an efficient tool, with many formally defined security properties,
such as unlinkability, transparency, immutability, invisibility, and unforgeability.
An SaS scheme that satisfies these properties can be a great asset to the privacy
of any field it will be applied to, e.g., anonymizing medical files.
In this work, we look at the notion of γ-sanitizable signatures (γSaS): we take
the sanitizable signatures one step further by allowing the signer to not only de-
cide which blocks can be modified, but also how many of them at most can be
modified within a single sanitization, setting a limit, denoted with γ. We adapt
the security properties listed above to γSaS and propose our own scheme, ULISS
(Unlinkable Limited Invisible Sanitizable Signature), then show that it verifies
these properties. This extension of SaS can not only improve current use cases,
but also introduce new ones, e.g., restricting the number of changes in a document
within a certain timeframe.

1 Introduction

One of the main properties of digital signatures is integrity – indeed, it is important that
any modification made to a message after it was signed would invalidate said signature.
However, one might wish to modify a signed message without altering its core meaning,
for example to anonymize a document, while not wanting (or not being able) to take the
time necessary to get the original signer to sign again.

Sanitizable signatures, as introduced in [1] can serve such a purpose by allowing
a form of controlled malleability, where a signer will sign a message along with a list
of admissible modifications with respect to a second entity called the sanitizer. That
sanitizer will be allowed to re-sign a message, producing a valid signature as long as
the message was only modified within the limits defined by the list.

The relationship between the signer and the sanitizer will depend on the use case
(e.g. they can be a boss and their employee, or a service provider and their client) and
for this reason the means and content of any communication between those two entities
(including credentials used to sign/sanitize) is out of scope of this paper.

A frequent usage example for such a signature scheme would be the anonymization
of medical data destined to be analyzed: the name of the patients is – with a high prob-
ability – not relevant for the analysis, neither is their email address or phone number;
? An extended abstract of this work appeared at ACNS 2021. This is the full version.



however, it is important to know that the data is authentic, hence the need for it to still
be verifiable once it has been anonymized.

However, we do believe that this still leaves too great a latitude to the sanitizer, and
that this latitude should be somewhat narrowed down, which is the aim of this work.

Contribution. In this paper, we look at a variant of sanitizable signatures, that we refer
to as γ-Sanitizable Signatures. This variant restricts the sanitizer to only modify a cer-
tain number of blocks at once, a number which is referred to as the limit, and denoted
with γ. In this variant, even if a signature has been sanitized multiple times, the number
of blocks that differ between the original message and this one should not be above the
limit. When the signer signs the original message, they will thus also set that limit.

We detail some applications for this limit in Section 5, all of which are inachievable
with regular sanitizable signatures: for example, we show how to use γ-Sanitizable
Signatures to limit the number of changes a user can make to their social media profile
over a certain period of time, similar to what Facebook currently does with birthdays3.

This idea of adding a limit was first introduced as an important research problem by
Klonowski and Lauks [24] and later applied by Canard and Jambert in [13], but as we
detail below in related works, the scheme they proposed satisfies less security properties
and is not practical compared to this work. Our first contribution is to adapt the various
security properties of sanitizable signatures by taking the limit into account, namely:
Unforgeability: the users cannot produce a valid signature without the secret keys.
Immutability: the sanitizer cannot sanitize on an unauthorized modification.
Transparency: the verifier cannot tell whether a given signature was sanitized or not.
Unlinkability: the verifier cannot link a sanitized signature with its original.
Invisibility: the verifier cannot tell what (or how many) modifications are authorized

on a signature without knowledge of any secret key.
In this work, we do not focus on accountability, which ensures that the signer can

cancel the transparency a posteriori, as this property does not depend on the limit
and achieved for any sanitizable signature scheme by using the generic transformation
of [11]. Our second contribution is the scheme ULISS (Unlinkable Limited Invisible
Sanitizable Signature), for which we prove all of the above properties in the random
oracle model (ROM).

Our scheme. Our aim when creating ULISS was to build a signature that is originally
issued by a signer and that can be modified by the sanitizer, who has to prove that it was
done within the authorized limits (i.e., the blocks that were modified are admissible and
the number of blocks that were modified is below the limit). We also want the resulting
signatures to not leak whether they come from the signer or the sanitizer. We focused on
the idea that the sanitizer must prove that the sanitization was done properly, as allowed,
and for this we base our scheme on the use of (non-interactive) zero-knowledge proofs.

The signer first computes commitments pertaining to the authorized modifications
and the limit, and signs them, then encrypts some necessary information for the san-
itizer. To edit the signature, the sanitizer will retrieve the encrypted data and use it to
build some new proofs related to the original commitments, and sign everything (along

3 facebook.com/help/563229410363824/
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with the modified message, of course) using the ring signature. Since the information
about the modifications and the limit is committed, it cannot be deduced from the sig-
nature, which makes ULISS invisible.

Reaching both invisibility and unlinkability is a difficult task; to the best of our
knowledge, the scheme presented in Bultel et al. [11] is the only one that achieves these
two properties together, thanks to class-equivalence signatures. We use a similar trick
for ULISS: a sanitized signature uses the same signed commitments as the original sig-
nature. This could be used by an adversary to link these two signatures, however, we
use a class-equivalence signature to sign the commitments, which allows the sanitizer
to randomize the commitments and the signature in such a way that the messages in the
signed commitments are not modified.

Related Work. Sanitizable signatures were, as cited above, first introduced by Ateniese
et al. [1], proposing applications, among others, in the medical field. This primitive is
related to (but should not be confused with) redactable signatures [7], where a sanitizer
can erase some parts of the message but not modify it. The security properties were
originally presented in [1], but formalized later on by Brzuska et al. in [8] and [9], the
latter adding the idea of unlinkability. Invisibility was formalized in [12], and invisible
constructions are proposed in [12] and [3]. In [11], the authors propose a scheme that is
both unlinkable and invisible, using class-equivalent signatures. To the best our knowl-
edge, this scheme is the only one that achieves these two properties together. They also
provide a generic way to add accountability on any sanitizable signature scheme, using
verifiable ring signatures [10]. Note that these schemes allow the sanitizer modify parts
of the message in an unlimited way.

On the other hand, related primitives with a more general application can be used
to achieve γ-Sanitizable Signatures, including functional signatures [6] and delegatable
functional signatures [2], which allows a user to sign messages that verify some func-
tions or predicate, policy-based signatures [4], where signers are authorized to sign a
message if it satisfies some policy, and homomorphic signatures [23]. All of these of-
fer much more variety on what (the equivalent of) the sanitizer can do compared to
traditional sanitizable signatures, while being generally much less efficient specifically
because of their fine-grained possibilities, using heavy generic primitives (e.g., generic
zero-knowledge proofs for garbled boolean circuits or homomorphic encryption). We
believe our work lies somewhere in between, offering more control on the sanitizations
while remaining practical.

The γ-sanitizable signature schemes were introduced in [24] and revisited by Ca-
nard and Jambert in [13], the latter proposing the first security model for γ-sanitizable
signatures. To the best of our knowledge, there is no other such scheme in the literature
– moreover, these two works are neither invisible nor unlinkable. Adding unlinkability
to these schemes is not straightforward, as they use chameleon hashes [25] on modifi-
able parts of the signatures, which implies that these hashes are the same for both the
sanitized signature and the original one. Moreover, adding invisibility does not seem
trivial either, as the size of the public parameters of the sanitizer is linear in the limit
γ (which must be secret in invisible schemes). Furthermore, the design of the schemes
in [13, 24] has inherent limitations making them unsuitable for practical applications:
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– The signer must use a new public key (of size linear in γ) generated by the sani-
tizer at each new signature, implying that the signature algorithm is interactive and
requires the presence of the sanitizer.

– If the same signature is sanitized several times such that the total number of modi-
fied parts is greater than γ, then the key of the sanitizer is leaked to anybody, even
if the sanitized signatures considered separately are within the limit γ, which dras-
tically restricts the number of sanitizations of a signature.

– To verify that the limit γ is respected on a sanitized signature, the verifier must also
have the original signature. However, if the verifier knows the original signature
and the original message, sanitizable signatures are useless by design.

For these reasons, we believe that security notions and constructions of γ-Sanitizable
Signatures must be revisited, to produce a more practical and more secure scheme. As
explained above, this cannot be achieved by modifying the proposed schemes: we must
instead get our inspiration from a regular sanitizable signature scheme that satisfies both
unlinkability and invisibility – i.e., [11]. We will show that the cost of introducing a new
feature to sanitizable signatures is acceptable, especially since compared to Canard and
Jambert’s scheme, we obtain a much more practical scheme, and satisfy more security
properties.

Outline. This work is organized as follows: in Section 2, we present the different cryp-
tographic tools that we use, along with the security definitions, then in Section 3 we
describe our security model. Our scheme is explained and analysed in Section 4. Some
applications are presented in Section 5. The complete proofs are given in Appendix A.

2 Cryptographic Tools

In this section, we give or recall the definitions of various cryptographic tools that will
be used when building our scheme, or when proving its security properties.

Definition 1 (DDH). Let G be a multiplicative group of order p generated from a secu-
rity parameter λ (with blog(p)c = λ) with generator g, the Decisional Diffie-Hellman
(DDH) assumption states that for a, b and c randomly chosen in Z∗p, it is difficult for
a polynomial-time adversary A to decide whether he has been given (ga, gb, ga·b) or
(ga, gb, gc), i.e., the following function is negligible:

AdvDDH
G (λ) = |Pr[1← A(ga, gb, gc)]− Pr[1← A(ga, gb, ga·b)]|.

Definition 2 (NIZKP [16]). A non-interactive zero-knowledge proof (NIZKP) for a
language L is a pair of algorithms (Prove,Verify) such that:
Prove(s, w): It outputs a proof π that s ∈ L using witness w,
Verify(s, π): It checks whether π is a valid proof that s ∈ L.
A NIZKP must satisfy the following properties:
Soundness No adversary A (possibly unbounded in time) is such that A(L) can, with

non-negligible probability, output (x, π) where Verify(x, π) = 1 and x /∈ L.
Completeness For any statement s ∈ L and its witness w, Verify(s,Prove(s, w)) = 1.
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(Perfect) Zero-Knowledge The proof π does not leak any information, in other words,
there exists a probabilistic polynomial-time (PPT) simulator Sim (which has the
ability to program the outputs of the random oracle in the random oracle model)
such that Sim(s) follows the same probability distribution as Prove(s, w).

Definition 3 (2-Ring Signature (2RS) [5]). A 2-Ring Signature scheme R is a tuple of
4 PPT algorithms defined as follows:
R.ini(1λ): It returns a setup value set.
R.gen(set): It returns a pair of public/private keys (pk, sk).
R.sig(sk, {pk0,pk1},m): This algorithm computes a signature σ from the message m

using the secret key sk and two public keys (pk0,pk1) (such that sk is the private
key corresponding to one of them).

R.ver({pk0,pk1},m, σ): This algorithm returns a bit d.
A 2RS scheme R is said to be correct if for all (pk0, sk0), (pk1, sk1) output by the
algorithm R.gen(set) where set was output by R.ini(1λ), for any message m, and for
b ∈ {0, 1}:

R.ver({pk0,pk1},m,R.sig(skb, {pk0,pk1},m)) = 1.

We use two security notions for 2-Ring Signatures: strong unforgeability, and anon-
imity, formally defined below.

Definition 4 (Strong Unforgeability). Let P be a 2-ring signature, then P is strongly
unforgeable if for any polynomial-time adversary A, the probability Pr[ExpSUF

P,A(λ) =
1] that A wins the experiment in Figure 1 is negligible.

Definition 5 (Anonymity). Let P be a 2-ring signature, then P is (perfectly) anony-
mous if for any polynomial-time adversary A, the probability Pr[Expanon

P,A (λ) = 1] that
A wins the experiment in Figure 1 is negligibly close to 1/2.

Definition 6 (Equivalence-Class Signature (EQS) [22]). An Equivalence-Class Sig-
nature scheme S on a bilinear group of prime order p generated from a security pa-
rameter λ (described as BG = (G1,G2,Gt, g1, g2, gT , e, q)) is a tuple of 5 algorithms
defined as follows:
S.ini(1λ): It returns a setup value set which contains the bilinear group BG.
S.gen(set): It returns a public/private key pair (pk, sk).
S.sig(sk,m): It computes and returns a signature σ on the equivalence class [m] of

the message m using the private key sk.
S.ver(pk, σ,m): It verifies the signature σ under the key pk on the equivalence class

[m] of the message m.
S.ChRep(pk, σ,m, t): It computes and returns a signature σ′ on (the same) equiva-

lence class [mt] = [m] of message mt.
An EQS scheme is said to be correct if for all (pk, sk) output by S.gen(set) where set
was output by S.ini(1λ), for any message m, any scalar t ∈ Z∗p:

S.ver(pk,S.sig(sk,m),m) = 1, and

S.ver(pk,S.ChRep(pk,S.sig(sk,m),m, t),mt) = 1
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ExpSUF
P,A(λ):

set← R.ini(1λ);
(pk0, sk0)← R.gen(set);
(pk1, sk1)← R.gen(set);
S ← { };
(m,σ)← AR.sig(·,{pk0,pk1},·)(pk0, pk1);
if (m,σ) /∈ S then
return R.ver({pk0, pk1},m, σ), else 0;

Oracle R.sig(i, {pk0, pk1},m):
σ ← R.sig(ski, {pk0, pk1},m);
S ← S ∪ (m,σ);
return σ;

Expanon
P,A(λ):

b
$← {0, 1};

set← R.ini(1λ);
(pk0, sk0)← R.gen(set);
(pk1, sk1)← R.gen(set);
b∗ ← AR.sig(skb,{pk0,pk1},·)(pk0, pk1);
return b = b∗;

Oracle R.sig(skb, {pk0, pk1},m):
return R.sig(skb, {pk0, pk1},m);

ExpEUF-CMA
P,A (λ):

set← S.ini(1λ);
(pk, sk)← S.gen(set);
S ← { };
(m,σ)← AS.sig(sk,·);
if (m,σ) /∈ S
then return S.ver(pk,m, σ);
else return 0;

Oracle S.sig(sk,m):
σ ← S.sig(sk,m);
S ← S ∪ (m,σ);
return σ;

Expadapt
P,A (λ):

set← S.ini(1λ);
(pk, sk)← S.gen(set);
b∗ ← AS.Ch/Sig(b,·,·,·,·)(pk, sk);
if b∗ = b then return 1;
else return 0;

Oracle
S.Ch/Sig(b, (sk, pk), s, t,m):
if b = 0
then return S.sig(sk,mt);
return S.ChRep(pk, s,m, t);

Expclass-hid
M,A (λ):

b
$← {0, 1};

set← S.ini(1λ);

m,m0
$←M2;

m1
$← [m];

b∗ ← A(set,m,mb);
return b∗ = b;

ExpIND$-CCA
E,A (λ):

set← E.ini(1λ);

b
$← {0, 1};

(pk, sk)← E.gen(set);
b∗ ← ARREnc(pk,b,·),Dec(sk,·)(pk);
return b = b∗;

Oracle RREnc(pk, b,m):
if b = 1 then return E.enc(pk,m);

m′
$← {0, 1}|m|;

return E.enc(pk,m′);

Oracle Dec(sk, c):
if c was output by RRenc
then return⊥;
return Dec(sk, c);

Fig. 1: Security experiments and oracles of our cryptographic tools.
Definition 7 (EUF-CMA). An equivalence-class signature scheme P is said to be exis-
tentially unforgeable under chosen message attacks (EUF-CMA) if for any polynomial-
time adversary A, the probability Pr[ExpEUF-CMA

P,A (λ) = 1] that A wins the EUF-CMA
experiment given in Figure 1 is negligible.

Definition 8 ((Perfect) Signature Adaptation). An equivalence-class signature scheme
P is said to (perfectly) adapt signatures if, for all tuples (pk, sk, σ,m, t) such that
(pk, sk) is a public/private key pair and S.ver(pk, σ,m) = 1, it holds that S.sig(sk,
mt) and S.ChRep(pk, σ,m, t) are identically distributed. Formally, this translates into
the fact that for any polynomial-time adversaryA, the probability Pr[Expadapt

P,A (λ) = 1]
of winning the adapt experiment given in Figure 1 is negligibly close to 1/2.

Definition 9 (Class-Hiding). A message spaceM = G` (with ` > 1) of an equivalence-
class signature scheme is said to be class-hiding if for all polynomial-time adversary
A, the probability Pr[Expclass-hid

M,A (λ) = 1] of winning the class-hid experiment given
in Figure 1, in which [m] is the equivalence class of m, is negligibly close to 1/2.

Lemma 1. [22] A message space M = G` is class-hiding if and only if the DDH
assumption holds in G.

Definition 10 (IND$-CCA). An encryption scheme E=(E.ini,E.gen,E.enc,E.dec)
with security parameter λ is said to be indistinguishable from random under adaptive
chosen ciphertext attack (IND$-CCA) if for any polynomial-time adversaryA, the prob-
ability Pr[ExpIND$-CCA

E,A (λ) = 1] that A wins the experiment in Figure 1 is negligibly
close to 1/2. Note that this notion is equivalent to its more classic version, IND-CCA, in
which the adversary must guess which of the two messages sent to the challenger was
encrypted.
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3 Security Model

In this section, we define our notion of γ-Sanitizable Signature, as well as the various
security properties of our model.

Definition 11 (γ-Sanitizable Signature (γSaS)). A γ-Sanitizable Signature scheme is
a tuple of 6 algorithms defined as follows:
Init(1λ): It returns a setup value set.
SiGen(set): It returns a pair of signer public/private keys (pk, sk).
SaGen(set): It returns a pair of sanitizer public/private keys (spk, ssk).
Sig(m, sk, spk,ADM, γ): This algorithm computes a signature σ from the message

m using the secret key sk, the sanitizer public key spk, the admissible function
ADM and the limit γ. Note that we assume that ADM can be efficiently recovered
from any signature as in the definition of Fleischhacker et al. [19]. Moreover, for a
modification MOD we write that ADM(MOD) = 1 to signify that the modification
is allowed, and for a block number i, we write i ∈ ADM to say that the ith block
can be modified.

San(m,MOD, σ,pk, ssk, spk): Let ADM be the admissible function according to the
signature σ. If ADM(MOD) = 1 and Ver(m,σ,pk, spk) = 1 then this algorithm
returns a signature σ′ of the message m′ = MOD(m) using the signature σ, the
signer public key pk and the sanitizer public/private key pair (ssk, spk). Else it
returns ⊥.

Ver(m,σ,pk, spk): It returns a bit b: if the signature σ of m is valid for the two public
keys pk and spk then b = 1, else b = 0. This algorithm is deterministic.

A γ-SaS is said to be correct if for all set output by Init(1λ), all Sig and San key pairs
(pk, sk), (spk, ssk) output by SiGen(set) and SaGen(set), respectively, all admissi-
ble functions ADM, limits γ, modifications MOD, messages m, we have:

Ver(m,Sig(m, sk, spk,ADM, γ),pk, spk) = 1,

and for all σ such that Ver(m,σ,pk, spk) = 1, and for all σ′ output by San(m,MOD,
σ, pk, ssk, spk) such that σ′ 6=⊥:

Ver(MOD(m), σ′,pk, spk) = 1.

We now adapt the security properties of sanitizable signatures to fit our notion.
In most cases, the limit must be treated in a similar way as the admissible function
– however, it is important to consider this additional feature carefully, as it does of
course introduce new trivial attacks. The detailed meaning and formal definition of
each adapted property is given below.

Strong Unforgeability: The (strong) unforgeability property ensures that an adver-
sary cannot create a valid message-signature pair without knowing the corresponding
private key (i.e., sk for the signer and ssk for the sanitizer). The adversary has access to
the signing oracle and the sanitizing oracle, and must provide a message- signature pair.
Of course, the adversary cannot be allowed to trivially win the experiment by sending
a pair produced by either of the oracles to the challenger – but can, however, produce a
pair containing a message that had been signed by either of the oracles.
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Definition 12 (Strong Unforgeability). Let P be a γSaS of security parameter λ,
then P is strongly unforgeable if for any polynomial-time adversary A, the probability
Pr[ExpSUF

ULISS,A(λ) = 1] thatA wins the SUF experiment given in Figure 2 is negligible.

Immutability: A γSaS is immutable when no adversary is able to sanitize a sig-
nature without the corresponding sanitizer secret key or to sanitize a signature using a
modification function that is not admissible (i.e., ADM(MOD) = 0 or the number of
modifications is higher that the limit γ). The adversary has access to a signature oracle.

Definition 13 (Immutability [8]). LetP be a γSaS.P is Immut-secure (or immutable)
when for any polynomial time adversaryA, the probability Pr[Expimmut

ULISS,A(λ) = 1] that
A wins the immut experiment given in Figure 2 is negligible, where qSig is the number
of calls to the oracle Sig(·, sk, ·, ·, ·), (mi,ADMi, γi, spki) is the ith query to the oracle
Sig(·, sk, ·, ·, ·) and σi is the corresponding response.

Transparency: The transparency property guarantees that no adversary is able to
distinguish whether a signature is sanitized. In addition to the signature oracle, the ad-
versary has access to a sanitize oracle San(·, ·, ·, ·, ssk). Moreover, the adversary has
access to a challenge oracle Sa/Si(b,pk, spk, sk, ssk, ·, ·, ·, ·) that depends on a ran-
domly chosen bit b: this oracle signs a given message and sanitizes it, if b = 0 then
it outputs the original signature, otherwise it outputs the sanitized signature. To suc-
ceed in winning the experiment, the adversary must guess b. In order to exclude trivial
attacks, we must keep track of the outputs of the challenge oracle. Indeed, the adver-
sary can easily determine whether the Sa/Si called Sig or San by sanitizing the output
signature and figuring out how many modifications are allowed. The limit does indeed
introduce some new and somewhat tricky trivial attacks for the transparency property.
For example, let us consider a message m of length 2, with both blocks being admis-
sible for modifications, and a limit of γ = 1. The adversary can query Sa/Si with a
modification MOD1 on the first block, then query San on the output with a modifica-
tion MOD2 on the second block. If Sa/Si queried Sig, i.e., if the ouput is an original
signature on MOD1(m), then the modification would be allowed, as MOD1(m) and
MOD2(MOD1(m)) only have one difference, but if Sa/Si queried San, i.e., if the ouput
is a sanitized signature of m on MOD1(m), then the sanitization is not allowed, since
m and MOD2(MOD1(m)) have two differences.

Definition 14 (Transparency). Let P be a γSaS. P is Trans-secure (or transparent)
when for any polynomial time adversaryA, the probability Pr[Exptrans

ULISS,A(λ) = 1] that
A wins the trans experiment given in Figure 2 is negligible.

Unlinkability: The unlinkability property ensures that a sanitized signature cannot
be linked with the original one. We consider an adversary that has access to the signa-
ture and the sanitize oracles. Moreover, the adversary has access to a challenge oracle
LRSan(b,pk, ssk, spk, ·, ·) that depends on a bit b: this oracle takes as input two sig-
natures σ0 and σ1, the two corresponding messages m0 and m1 and two modification
functions MOD0 and MOD1 chosen by the adversary. If the two signatures have the
same admissible function ADM, if MOD0 and MOD1 are admissible according to ADM
and if MOD0(m0) = MOD1(m1) then the challenge oracle sanitizes σb using MODb
and returns it. The goal of the adversary is to guess the bit b. The adversary is allowed

8



to query LRSan on two signatures with different limits, thus to prevent trivial attacks
the resulting output will artificially be limited to the smaller of the two. This means that
the challenger must keep track of the outputs of all three oracles.

Definition 15 (Unlinkability). Let P be a γSaS of security parameter λ. P is Unlink-
secure (or unlinkable) when for any polynomial time adversary A, the probability
Pr[Expunlink

ULISS,A(λ) = 1] that A wins the unlink experiment given in Figure 2 is neg-
ligibly close to 1/2.

Invisibility: The invisibility property ensures that an adversary who does not know
any private key can neither decide whether a block is admissible for modification or
not, nor how many blocks can be modified. The adversary we consider has access to
the sign oracle, the sanitize oracle, and a left-or-right admissible oracle LRADM that
depends on the bit b chosen by the challenger. The adversary will give a message m
along with two ADM functions ADM0, ADM1 and two γ values γ0, γ1 as input to this
oracle, which will output a signature with ADMb as its admissible function, and γb as
a limit. The adversary will try to guess the value of b. To exclude trivial attacks, we
must artificially limit the number of modified blocks to min(γ0, γ1) on any signature
created by LRADM no matter the value of b, and we must also prevent the adversary
from querying a sanitization with a MOD function that is admissible by ADM0 but not
by ADM1 or vice-versa.

Definition 16 (Invisibility). Let P be a γSaS of security parameter λ, then P is said
to be Invis-secure (or invisible) if for any polynomial-time adversaryA, the probability
Pr[Expinvis

ULISS,A(λ) = 1] that A wins the invis experiment given in Figure 2 is negligibly
close to 1/2.

4 Scheme

We now present our scheme, ULISS, and detail the role of each of its building blocks.
We first give an idea of the aim of the centerpiece of our scheme, i.e., the zero-knowledge
proofs, and more specifically, their commitments, before giving the formal definition of
our scheme, after which we detail the goal of each primitive.

Recall that whoever signs a message must be able to prove that it was done within
the authorized bounds. When a message is signed, the signer also computes some com-
mitments that will be used in the zero-knowledge proofs. Each commitment is a hash
of some value concatenated with the public parameters. All commitments are initially
elevated to an identical, random exponent x, and signed by the signer. To avoid trace-
ability, the sanitizer will present them elevated to another, random exponent t in each
sanitization. This resulting exponent is used as a witness in the zero-knowledge proof.
The implications of this (change of) exponent are detailed after the definition of our
scheme, at the end of this subsection. For simplicity, we omit both the exponent and the
public parameters in the following explanation.

Commitments are divided in two categories: those meant to show that only admis-
sible blocks are modified, and those meant to show that the number of modifications is

9



Expimmut
P,A (λ):

set← Init(1λ); (pk, sk)← SiGen(set);
(spk∗,m∗, σ∗)← A

Sig(·,sk,·,·,·)(pk);
if (Ver(m∗, σ∗, pk, spk∗) = 1) and (∀ i ∈ J1, qSigK, (spk∗ 6= spki) or (∀ MOD such that ADMi(MOD) = 1,

m∗ 6= MOD(mi)) orD(mi,m∗) > γi) (whereD(mi,mj) is the number of different blocks)
then return 1, else return 0;
ExpSUF

P,A(λ):
set← Init(1λ); (pk, sk)← SiGen(set);
(spk, ssk)← SaGen(set);
S ← {};
O ← {Sig(·, sk, ·, ·, ·),San(·, ·, ·, ·, ssk)};
(m,σ)← AO(pk, spk);
if (m,σ) /∈ S
then return Ver(m,σ, pk, spk), else return 0;

Exptrans
P,A(λ):

set← Init(1λ); (pk, sk)← SiGen(set);
(spk, ssk)← SaGen(set);

b
$← {0, 1}; L ← [ ];

O ←
{

Sa/Si(b, pk, spk, sk, ssk, ·, ·, ·)
Sig(·, sk, ·, ·, ·),San(·, ·, ·, ·, ssk, ·)

}
;

b′ ← AO(pk, spk);
if (b = b′) then return 1, else return 0;

Expinvis
P,A(λ):

set← Init(1λ); (pk, sk)← SiGen(set);
(spk, ssk)← SaGen(set);

b
$← {0, 1}; L ← [ ];

O ←
{

Sig(·, sk, ·, ·, ·),San(·, ·, ·, ·, ssk),
LRADM(b, sk, spk, ·, ·, ·)

}
;

b′ ← AO(pk, spk);
if (b = b′) then return 1, else return 0;

Expunlink
P,A (λ):

set← Init(1λ); (pk, sk)← SiGen(set);
(spk, ssk)← SaGen(set);

b
$← {0, 1}; L ← [ ];

O ←
{

Sig(·, sk, ·, ·, ·),San(·, ·, ·, ·, ssk, ·),
LRSan(b, pk, ssk, spk, ·, ·)

}
;

b′ ← AO(pk, spk);
if (b = b′) then return 1, else return 0;

immut oracles:
Sig(m, sk, ADM, spk, γ):
return Sig(m, sk, spk, ADM, γ);

SUF oracles:
Sig(m, sk, ADM, spk, γ):
σ ← Sig(m, sk, ADM, spk, γ);
S = S ∪ (m,σ);
return σ;

San(m,MOD, σ, pk, ssk):
σ′ ← San(m,MOD, σ, pk, ssk);
S = S ∪ (m,σ);
return σ′;

invis oracles:
Sig(m, sk, ADM, spk, γ):
return Sig(m, sk, spk, ADM, γ);

LRADM(b, sk, spk,m, (ADM0, γ0), (ADM1, γ1)):
σ ← Sig(m, sk, spk, ADMb, γb);
L[σ]← (m,min(γ0, γ1), ADM0 ∩ ADM1);
return σ;

San(m,MOD, σ, pk, ssk):
if L[σ] =⊥
then return San(m,MOD, σ, pk, ssk, spk);
(m̄, γ, ADM)← L[σ];
ifD(MOD(m), m̄) ≤ γ and ADM(MOD) = 1
then σ′ = San(m,MOD, σ, pk, ssk);

L[σ′] = L[σ];
return σ′;

else return⊥;
trans oracles:
Sig(m, sk, ADM, spk, γ):
σ ← Sig(m, sk, spk, ADM, γ);
L[σ]← (m, γ)
return σ;

San(m,MOD, σ, pk, ssk):
if L[σ] =⊥ then return San(m,MOD, σ, pk, ssk, spk);
(m̄, γ)← L[σ];
ifD(m̄,MOD(m)) > γ then return⊥;
σ′ ← San(m,MOD, σ, pk, ssk, spk);
L[σ′]← L[σ];
returns σ′;

Sa/Si(b, pk, spk, sk, ssk,m, ADM,MOD, γ):
if ADM(MOD) = 0 then return⊥;
If b = 0 then σ ← Sig(MOD(m), sk, spk, ADM, γ);
else σ ← Sig(m, sk, spk, ADM);

σ ← San(m,MOD, σ, pk, ssk, spk);
L[σ]← (m, γ);
returns σ;

unlink oracles:
Sig(m, sk, ADM, spk, γ):
σ ← Sig(m, sk, spk, ADM, γ);
L[σ]← (m, γ);
return σ;

San(m,MOD, σ, pk, ssk):
if L[σ] =⊥
then return San(m,MOD, σ, pk, ssk, spk);
(m̄, γ)← L[σ];
ifD(MOD(m), m̄) > γ then return⊥;
σ′ ← San(m,MOD, σ, pk, ssk, spk);
L[σ′]← L[σ];
returns σ′;

LRSan(b, pk, ssk, spk, (m0,MOD0, σ0)(m1,MOD1, σ1)):
for i ∈ {0, 1}, if Ver(mi, σi, pk, spk) 6= 1 or ADM0 6= ADM1

or ADM0(MOD0) 6= ADM1(MOD1)
or MOD0(m0) 6= MOD1(m1) or L[σi] =⊥

then return 0;
(m̄i, γi)← L[σi];
for i ∈ {0, 1}, ifD(MOD0(m0), m̄0) ≤ γ0

andD(MOD1(m1), m̄1) ≤ γ1
then σ′ ← San(mb,MODb, σb, pk, ssk, spk);

L[σ′]← (m̄b,min(γ0, γ1));
return σ′;

else return⊥;

Fig. 2: Security experiments and oracles for γSaS properties.
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below the limit. For the first kind, they are as follows: if a block i can be modified, then
its corresponding commitment is a hash of its index, otherwise it is a hash of its index
concatenated with its content. The sanitizer will thus have to show that for each block
of the modified message, the commitment is either equal to the hash of the index or the
hash of the index concatenated with its content – if at least one unauthorized block was
modified, then the sanitizer cannot produce a valid proof. We also add to this batch a
commitment of the public parameters, to authenticate them.

The second kind is slightly more intricate: one commitment is the hash of the limit
γ, then for each block, the commitment is the concatenation of the index and the content
of that block. The sanitizer will have to show that there exists a value v such that the
hash of v is equal to the first commitment, and, considering there are n message blocks,
at least n − i blocks of the modified message are such that the hash of their index and
their content is equal to their corresponding commitment.

Scheme 1 (ULISS) Let G be a group of prime order p, and g be a generator of G. Let
E be a public key encryption scheme such thatE = (E.ini, E.gen, E.enc, E.dec), S be
an Equivalence-Class Signature such that S = (S.ini,S.gen,S.sig,S.ver,S.ChRep),
R be a 2-Ring Signature scheme such that R = (R.ini,R.gen,R.sig,R.ver), and F
and H be two hash functions (of domain {0, 1}∗ and codomain G). Our scheme instan-
tiated with (G, E, S, F,H) is a γ-sanitizable signature scheme defined by the following
algorithms:
Init(1λ): It runs setE ← E.ini(1λ), setR ← R.ini(1λ) and setS ← S.ini(1λ), then it

returns the setup set = (setE , setR, setS).
SiGen(set): It parses set = (setE , setR, setS), runs (pkS , skS) ← S.gen(setS),

(pkR, skR)← R.gen(setR), and returns (pk, sk) = ((pkS ,pkR), (skS , skR)).
SaGen(set): It parses set, runs (spkE , sskE) ← E.gen(setE), (spkR, sskR) ←

R.gen(setR), and returns (spk, ssk) = ((spkE , spkR), (sskE , sskR)).
Sig(m, sk, spk,ADM, γ): It parses sk as (skS , skR), spk as (spkE , spkR) and m as

m1‖ . . . ‖mn and sets pp = pk‖spk. It picks x $← Z∗p, sets V ← F (pp)x and
C = H(γ‖pp)x, then for all i in [n]:

– It computes Ai ← H(i‖mi‖pp)x.
– If i ∈ ADM, it computesBi ← F (i‖pp)x, else it computesBi ← F (i‖mi‖pp)x.

It then computes the two following proofs:
π1 ← NIZK

{
x :
∧n
i=1

(
(Bi = F (i‖pp)x ∧ V = F (pp)x)
∨ (Bi = F (i‖mi‖pp)x ∧ V = F (pp)x)

)}
π2 ← NIZK

{
x :
∨n
i=1

(
∃ J ⊆ [n], (|J| = n− i) ∧ (∀ j ∈ J,

(Aj = H(j‖mj‖pp)x) ∧ (C = H(i‖pp)x))

)}
Finally, it generates the following values:

– s← S.sig(skS , (A1, B1, . . . , An, Bn), C, V ),
– e← E.enc(spkE , (x, (Ai, Bi)i∈[n], C, V, s)),
– r ← R.sig(skR, {pkR, spkR}, (m, (Ai, Bi)i∈[n], C, V, π1, π2, s, e)),

and returns σ = ((Ai, Bi)i∈[n], C, V, π1, π2, s, e, r).
San(m,MOD, σ,pk, ssk, spk): This algorithm computes m′1‖ . . . ‖m′n ← MOD(m),

sets pp = pk‖spk, parses pk as (pkS ,pkR) and ssk as (sskE , sskR), parses σ as
((Ai, Bi)i∈[n], C, V, π1, π2, s, e, r), picks t $← Z∗p, runs (x, (Ãi, B̃i)i∈[n], C̃, Ṽ , s̃)←
E.dec(sskE , e), sets x′ = x · t, V ′ = F (pp)x

′
and C ′ = H(γ‖pp)x

′
, and

runs e′ ← E.enc(spkE , (x, (Ãi, B̃i)i∈[n], C̃, Ṽ , s̃)). The algorithm verifies that
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the signatures (s and r) are valid, and verifies that ADM(MOD) = 1, else it
aborts. For all i in [n], it sets A′i = Ãti, B

′
i = B̃ti , then it computes the signa-

ture s′ ← S.ChRep(pkS , s̃, (Ã1, B̃1, . . . , Ãn, B̃n, C̃, Ṽ ), t). It then computes the
two following proofs:

π′1 ← NIZK

{
x′ :

∧n
i=1

( (
B′i = F (i‖pp)x

′
∧ V ′ = F (pp)x

′)
∨
(
B′i = F (i‖m′i‖pp)x

′
∧ V ′ = F (pp)x

′)
)}

π′2 ← NIZK

{
x′ :

∨n
i=1

(
∃ J ⊆ [n], (|J| = n− i) ∧ (∀ j ∈ J,(

A′j = H(j‖m′j‖pp)x
′)
∧

(
C′ = H(i‖pp)x

′)))}
Finally, it computes r′ ← R.sig(sskR, {pkR, spkR}, (MOD(m), (A′i, B

′
i)i∈[n], C

′,
V ′, π′1, π

′
2, s
′, e′)) and returns σ′ = ((A′i, B

′
i)i∈[n], C

′, V ′, π′1, π
′
2, s
′, e′, r′).

Ver(m,σ,pk, spk): It parses σ as ((Ai, Bi)i∈[n], C, V, π1, π2, s, e, r), pk as (pkS ,pkR)
and spk as (spkE , spkR), then if π1 and π2 are valid, and:

– S.ver((A1, B1 . . . , An, Bn, C, V ),pkS , s) = 1,
– R.ver((m, (Ai, Bi)i∈[n], C, V, π1, π2, s, e), {pkR, spkR}, r) = 1,

then it returns 1, else 0.

From the definition of the Verify algorithm, we see that the correctness of our
scheme relies on the correctness of the NIZKP, as well as the correctness of the 2-Ring
Signature and the Equivalence-Class Signature.

Having now introduced all notations, we can give a more in-depth description.

Non-Interactive ZKPs. The commitments denoted as V and {Bi}i∈[n] are linked to
the admissible function, with Bi being the ith block’s commitment, and V being the
public parameter’s commitment. We see that it serves its purpose: the prover must show
that for each block (denoted by

∧n
i=1) in the (modified) message, the corresponding

commitment is either equal to the hash of the index, or (denoted by ∨) the hash of the
index and the content.

The C and {Aj}j∈[n] commitments are linked to the limit γ, with C committing
the limit and Aj committing the original content of block j. Again, they follow the idea
described at the beginning of the section: the prover must show that there is a value
i ∈ [n] (denoted by

∨n
i=1), for which there exists a subset J ⊆ [n] such that [n] \ J has

a size i, such that i is committed in C, and such that for all indices j ∈ J , the hash of
j and the content of block j is equal to Aj . The soundness of these proofs implies the
immutability.

Recall that, to compute a sanitization, the sanitizer will generate its own random
value t and elevate all commitments to the power of t in order to produce a signature
with different commitments, using x′ = x · t as its witness in the proofs.

All information about the admissibility or the limits are hidden by the commitments.
Since the proofs are zero-knowledge, they do not leak this information to the verifier,
which ensures that ULISS is invisible. Moreover, since all the other parts of the signa-
ture are computed in the same way by the signer and the sanitizer, ULISS is transparent.

Class-Equivalence Signature. The signer first signs the commitments using a class-
equivalence signature. Indeed, as mentioned above, the sanitizer will modify the com-
mitments by elevating them all to the same power, i.e., using different elements from
the same equivalence class. Thus, using class-equivalence signature allows the sanitizer

12



to authenticate this change by changing the representative. Thanks to the adaptability,
the sanitizer can randomize all the commitments and update the class-equivalence sig-
nature accordingly. Since the other parts of the sanitizable signature are re-generated
by the sanitizer (the ciphertext, the 2-ring signature, and the proofs), the verifier cannot
link the sanitized signature to the original one, making our scheme unlinkable.

Encryption Scheme. Each sanitization will be done on the original commitments and
not on the (potentially) sanitized ones. Thus, the signer must include an encryption of
the commitments along with the exponent x in the signature. In order for the signatures
to remain unlinkable, the sanitizer will re-encrypt the commitments and their exponent
when it sanitizes a signature instead of simply keeping the same ciphertext.

2-Ring Signature. The actual signature of the message itself is done with a 2-Ring
Signature, which has the interesting property of taking one secret key and two public
keys as input, and does not give the information of which public key verifies the sig-
nature when it is checked. This allows us to verify the transparency property, as the
signer and the sanitizer will input both of their public keys when signing the message,
and everything else that was computed, i.e., commitments, proofs, the equivalence-class
signature, and the encryption.

Instantiation of the Zero-Knowledge Proofs. ULISS uses two NIZKP for discrete
logarithm relations, as detailed above.

Prover P Verifier V
x (g1, g2, h1, h2)

r
$← Z∗p

R1 = gr1

R2 = gr2
(R1,R2)−−−−−→ c

$← Z∗p
z = r + x · c c←−−−−−

z−−−−−→ If gz1 = R1 · hc1
and gz2 = R2 · hc2
then return 1, else 0

Fig. 3: LogEq protocols.

Even if the languages of these proofs seem non-
trival, we show how to efficiently instantiate them
without heavy generic zero-knowledge proofs by us-
ing specific Schnorr-like protocols only, which guar-
antees that our signature is practical. We use the inter-
active proof of two discrete logarithms equality given
in [14] by Chaum and Pederson as a building block,
which we recall in Figure 3. We use the technique
given in [15] to transform a proof that an instance be-
longs to some language into a proof that k-out-of-n
instances belong to some languages. This transforma-
tion works on sigma protocols, like the Chaum and

Pederson proof. The proof π1 is an AND-proof of n 1-out-of-2 discrete logarithm equal-
ity proofs: we can obtain such a proof by performing n 1-out-of-2 discrete logarithm
equality proofs separately. Since each discrete logarithm equality uses the same pair of
basis/element of the group (V = F (pp)x in our protocol), the proof that each discrete
logarithm is the same x is implicit.

The proof π2 is a 1-out-of-n proof, where each of the n instances is actually i-out-
of-n discrete logarithm equality proof instances, for each i such that 1 ≤ i ≤ n. This
proof can be obtained by using the transformation of [15] on the Chaum and Pederson
proof twice. We applied the Fiat-Shamir transformation [18], in order to obtain non-
interactive versions of these proofs, by using the commitments hash as a challenge.
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Performance. We now look at the complexity of π1 and π2. More precisely, we
study the number of exponentiations performed by the prover and by the verifier, and
we deduce the size of the proof by counting the number of group elements. The size
of a k-out-of-n proof is n times the size of the original proof, and the verification al-
gorithm requires n times the computation time of the original proof verification. The
proof algorithm uses a simulator of the original proof: since the Chaum and Peder-
son proof is zero-knowledge, there exists at least one simulator that perfectly simulates
the proof. We can use the simulator Sim(g1, g2, h1, h2) that picks (c, z)

$← (Z∗p)2, com-
putesR1 = gz1/h

c
1 andR2 = gz2/h

c
2, and return (R1, R2, c, z). The proof algorithm of a

k-out-of-n proof requires k times the computation time of the original proof algorithm,
and n − k times the computation time of the simulator. We recap the performances of
our zero-knowledge proofs in Table 1.

Prove Verify Size
Chaum Pederson [14] 2 4 3

k-out-of-n on [14] 4 · n− 2 · k 4 · n 3 · n
π1 6 · n 8 · n 6 · n
π2 3 · n2 − n 4 · n2 3 · n2

Table 1: NIZKP Performance

Scheme complexity. We use the NIZKPs previously given, the class-equivalence signa-
ture presented in Fuchsbauer et al. [20], the Fujisaki-Okamoto CCA-transformation [21]
on El Gamal [17] as a Public-Key Encryption, and the Ring-Signature presented in Bul-
tel and Lafourcade [10]. Note that this ring-signature is not the most efficient one, how-
ever this scheme is verifiable, meaning it makes our scheme accountable according to
the generic transformation given in [11]. We provide the size of our parameters with
these choices in Table 2, as well as the number of exponentiations and pairings in Ta-
ble 3. For the sake of simplicity, we don’t differentiate elements of group G of prime
order p where DDH holds, and elements of Z∗p. The number of message blocks is de-
noted by n. In average, the computational and size cost of having the limit is a factor n
in comparison with [11].

Size of the parameters (group elements).
Scheme Sig. sk Sig. pk San. sk San. pk Signature
ULISS 2 2 2 2 3n2+10n+22

[11] n+1 n+1 2 2 4n+ 18

Table 2: Parameter size comparison.

Security proofs. In this section, we list the conditions under which our scheme verifies
the security properties defined in Section 3. We give brief sketches of the proofs of each
theorem, for which complete versions can be found in Appendix A .

Theorem 1 (Strong Unforgeability). For any underlying strongly unforgeable 2-Ring
Signature scheme R, our scheme ULISS is strongly unforgeable.
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Complexity (exponentiations and pairings).
Scheme Sign Sanitize Verify

ULISS
exp. 3n2+9n+16 3n2+7n+12 4n2+8n+8

pairing 0 0 2n+ 5

[11]
exp. 5n+ 13 3n+ 16 8

pairing 0 0 4n+ 6

Table 3: Complexity comparison.

Proof. The complete proof is given in Appendix A.1.
We show that if ULISS is not unforgeable, then neither is the 2-Ring Signature

SchemeR. This is done by building an adversary B against the SUF property ofR who
simulates the experiment for A by computing everything but signatures from R. B can
simply forward A’s forgery to its challenger.

Theorem 2 (Immutability). If the underlying class-equivalence signature scheme S
is existentially unforgeable under chosen-message attack, and proofs π1 and π2 are
sound, then our scheme ULISS is immutable.

Proof. The complete proof is given in Appendix A.2.
We show that ULISS is immutable by first listing how A could win the experiment

and then show how (un)likely these events are to occur. In order to produce a sanitized
signature that either (1) uses a previously unseen public key spk∗, (2) has modifica-
tions on inadmissible blocks, or (3) has too many modifications, the adversary A must:
exploit a collision in the commitments that would match two signatures, if there are
none, it must fake the zero-knowledge proofs, and if that is not possible, then it must
forge the equivalence-class signature. We thus show how the advantage of A against
the immutability of ULISS is related to these three events.

Theorem 3 (Unlinkability). If our scheme is strongly unforgeable, and for any IND$-
CCA underlying encryption scheme, any class-hiding and adaptable underlying class-
equivalence signature, any zero-knowledge NIZKP, and under the DDH assumption,
our scheme ULISS is unlinkable in the random-oracle model.

Proof. The complete proof is given in Appendix A.3.
The general idea of this proof is to follow a classical game-hops strategy where we

replace some elements with random, progressively, to show that the adversaryA cannot
distinguish which signature was sanitized if the final result is indistinguishable from
random. In the beginning, we ensure the signatures input by A using the challenger’s
signer and sanitizer keys are not forgeries, i.e., were computed by the challenger. We
then use the IND$-CCA property of the encryption to replace its input with random,
then we use the adaptability of the class-equivalence signature to replace every change
of representative (from m to mt) to a signature (of mt), breaking that link between a
sanitization and its original signature, then we use the zero-knowledge property of the
NIZKP to replace them with simulations, in order to afterwards replace the original
commitments with random (using DDH), so that we can finally use the class-hiding
property of the message space used in the class-equivalence signature to replace the
commitments with random in the sanitizations, thus breaking the final relevant link
with the original signature.
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Theorem 4 (Transparency). If our scheme ULISS is strongly unforgeable, then for
any underlying class-equivalence signature scheme with perfect signature adaptation
S, any zero-knowledge NIZKP, any underlying anonymous 2-Ring Signature scheme R,
any IND$-CCA underlying encryption scheme, and under the DDH assumption, ULISS
is transparent in the random oracle model.

Proof. The complete proof is given in Appendix A.4.
The idea of this proof is that an adversary A can either distinguish who signed via

the equivalence-class signature S (“is it a signature onmt, or a change of representative
on a signature of m?”), via the commitments (“are these hashes of m or MOD(m) ?”),
or via the 2-Ring Signature R (“was it signed by pkR or spkR?”), or by replacing the
signature with a forgery whose properties are the same but whose γ is not artificially
controlled by the challenger. If our scheme is strongly unforgeable, if S has perfect
signature adaptation, if DDH holds, the proofs are zero-knowledge, if the encryption is
IND$-CCA, and if R is anonymous, then A cannot answer any of these questions.

The proof first ensures no forgery can happen, then replaces the commitments with
random (also replacing the input to the encryption and the NIZKP), then the proof uses
a hybrid argument, with experiment 1 (E1) being the b = 1 experiment, then hybrid
experiment H which is like E1 except the 2-Ring signatures are all signed with the
signer’s key, and experiment 0 (E0) is the b = 0 experiment. Differentiating E1 from
H implies breaking the anonymity of the 2RS, and differentiating H from E0 implies
breaking the perfect adaptation of the class-equivalent signature.

Theorem 5 (Invisibility). If our scheme ULISS is strongly unforgeable, for any IND$-
CCA underlying encryption scheme, any zero-knowledge NIZKP, and under the DDH
assumption, ULISS is invisible in the random oracle model.

Proof. The complete proof is given in Appendix A.5.
Using the same logic as for the unlinkability, we first ensure that the adversary does

not produce and use forgeries, then we progressively replace elements with random
and show that the resulting signature is indistinguishable from the real one. The only
commitments linked to the limit and the admissible function are C and {Bi}i∈[n], thus
we first use the IND$-CCA property of the encryption to replace its input with ran-
dom, then we replace the zero-knowledge proofs with simulated ones, so that we can
ultimately use the DDH property to replace the C and {Bi}i∈[n] commitments with
random instead of generating them honestly.

5 Application

In this Section, we detail several examples of how γ-Sanitizable Signatures could be
used in practice. All scenarios below follow the same basic idea: someone (the signer)
wishes to allow another person (the sanitizer) to modify pre-specified blocks of some
authenticated data without losing the authentication, but not all of these pre-specified
blocks at once. Recall that this limit (the “not all allowed blocks at once”) is not present
in regular SaS, hence the need for γSaS in the following examples.
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Medical data. To keep the usual application on medical data, we believe that it
is both important to anonymize – hiding personal information and perhaps uncommon
diseases – and censor whatever is irrelevant to the data analysis, while also preventing
a too large modification that would allow dishonest results, e.g., linking two unrelated
medical conditions. In this example, the signer would be anyone from the medical staff,
while someone who is more on the administrative side would be a sanitizer.

In [11], the authors highlight the importance of having both invisibility and un-
linkability in sanitizable signature using the following example: a physician signs the
medical record of a patient in such a way that the sanitizer can (1) remove the personal
information and send the anonymized record for analysis, and (2) remove everything
except for the personal information, for financing purposes. Unlinkability ensures that
the two sanitized signatures cannot be linked, which would mean reconstructing the
full medical record. Invisibility maintains secrecy about what has been modified or not,
preventing the verifier from assuming anything about the patient’s possible pathology.
However, without limitation, the sanitizer can modify both medical and personal data
in the record, and can therefore create just about any false record. Our primitive corrects
this flaw: by preventing the sanitizer from modifying more than half of the modifiable
parts, we strongly reduce its capacities of generating false records.

Identity theft. Another (completely different) angle could be usurpation-resistance
on websites, mostly social media: some information about a user may change (name,
address, phone number, etc) but usually not all of them at once... unless the user was
pretending to be someone else.

Thus, a website moderator could sign a profile with γSaS, allowing a user to modify
γ elements at once. After some time has passed since the last modification, the modera-
tor will re-sign the current profile state, allowing the user to change “new” things. This
ensures that the profile will remain close to the original even when changes are made.

A similar control is done on Facebook, where you can only change your birthday or
the name of your page4 every once in a while.

Figure 4 explains how our scheme could be used, in a simple case where a user
can edit their name and their birthday, but only one of them each time, with the mod-
erator re-signing every time t days pass without a modification. In this case, we use
a 1SaS scheme (more generally, a γSaS scheme where the user is allowed to mod-
ify γ pieces of information). Assume that the information of the user is info0 =
“name : Alice; bday : 01/01/01”. The social media generates the signature

σ0 ← Sig(info0, sk, spk,ADM, 1)

to validate Alice’s information, where ADM accepts the messages of the form “name : ∗;
bday : ∗” where * can be replaced by any word. If Alice want to change her name to
Bob, she can sanitize σ by computing:

σ′0 ← San(info0,MOD, σ0,pk, ssk, spk),

where MOD(info0) = “name : Bob; bday : 01/01/01”. The sanitized signature still
authenticates the social network, and thanks to the transparency and the unlinkability

4 facebook.com/help/271607792873806
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properties, no user can guess what information has been modified to obtain σ′0, even
when having access to σ0. After t days, the social network generates a new signature
on info1 = “name : Alice; bday : 01/01/01”:

σ1 ← Sig(info1, sk, spk,ADM, 1).

Alice can then modify the parameters to further change her profile.

profile uploaded
name changed
profile sanitized profile re-signed

bday changed
profile sanitized profile re-signed

c
µ

c
µ

c

t t

Fig. 4: A timeline of our proposed application.

Contracts. Yet another angle is that of contracts, with a focus on employment con-
tracts. Regulations may differ within a company from branch to branch, compared to
what the country’s law dictates and what the company’s headquarters decide (e.g., in
France, trade unions may negotiate with management to obtain better deals, for exam-
ple on paid leave) and : the director (the signer) could issue and sign a basic contract
that can be edited afterwards by the branches (sanitizers), within specified bounds. In
this case, we only wish to allow modifications to cover exceptions to the contract while
staying as close as possible to the original: SaS are not fine-grained enough to obtain
this, which is why we need γSaS.

Takeaway. Ultimately, we simply wish to trust the sanitizer as little as possible:
in a broader consideration, we can argue that this limit allows the sanitizer to correct
potential mistakes made on a signed document while not being able to act dishonestly,
i.e., the signer could write something incorrect at n potential places, but will probably
not be wrong more than γ different times.

6 Conclusion

In this work, we looked at an interesting feature for Sanitizable Signatures that we call
γ-Sanitizable Signatures, which allows to not only control which blocks of a message
a sanitizer can modify, but how many of them can be changed at once. We extended the
security properties of unlinkability, invisibility, transparency, (strong) unforgeability,
and immutability to these γ-Sanitizable Signatures. We proposed our scheme, ULISS,
(which stands for Unlinkable Limited Invisible Sanitizable Signature), whose basic
building blocks are class-equivalence signatures, 2-ring signatures, and zero-knowledge
proofs, and showed that it verifies all of the properties listed above. In the future, we
aim to design a scheme as efficient as the ones without limits, i.e., with linear complex-
ity and signature size. We also intend to work on designing unlinkable and invisible
schemes for other restrictions, such as limiting the set of possible messages for each
modifiable parts, in a hidden way.
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sanitizable signatures. In Public Key Cryptography - PKC 2010, 13th International Confer-
ence on Practice and Theory in Public Key Cryptography, Paris, France, May 26-28, 2010.
Proceedings, pages 444–461, 2010.

10. Xavier Bultel and Pascal Lafourcade. Unlinkable and strongly accountable sanitizable sig-
natures from verifiable ring signatures. In Cryptology and Network Security - 16th Inter-
national Conference, CANS 2017, Hong Kong, China, November 30 - December 2, 2017,
Revised Selected Papers, pages 203–226, 2017.

19



11. Xavier Bultel, Pascal Lafourcade, Russell W. F. Lai, Giulio Malavolta, Dominique Schröder,
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A Complete Proofs

A.1 Proof of Theorem 1

Proof. Let A be an adversary that wins the strong unforgeability game for ULISS and
let B be an adversary against the strong unforgeability of the underlying 2-Ring Signa-
ture R. Let C be B’s challenger. We show how B can perfectly simulate the experiment
for A to win its own experiment.

Indeed, to simulate A’s experiment, B can compute everything on its own (the en-
cryption, the class-equivalence signatures) except for the 2-ring signature.

At the beginning of the experiment, B generates the necessary key pairs (pkE , skE)
and (pkS , skS) to simulate the encryption and the equivalence-class signatures. B also
creates an empty set S ← {}. C sends (pk0, pk1) to B, who can set pk ← (pkS ,pk0)
and spk← (pkE ,pk1) and send that to A.

Upon receiving a query for a signature (or sanitization) of a message m (or a modi-
fied message MOD(m)), B acts as follows:

Sig(·, sk, ·, ·, ·) A sends (m,ADM, spk, γ), B parses m into n blocks, generates x $←
Z∗p, sets pp = pk‖spk, then computes V ← F (pp)x and C ← H(γ||pp)x as well
as the (Ai, Bi)i∈[n] and the two proofs π1 and π2 as described in Def. 1.
B then computes s ← S.sig(skS , (Ai, Bi)i∈[n], C, V ) and e ← E.enc(spkE , x,
(Ai, Bi)i∈[n], C, V, s), and queries C for (0, (m, (Ai, Bi)i∈[n], C, V, π1, π2, s, e)),
receiving s as an answer. B finally outputs σ ← ((Ai, Bi)[n], C, V, π1, π2, s, e, r)
to A, and adds (m,σ) to S.

San(·, ·, ·, ·, ssk) A sends (m,MOD, σ,pk), B parses MOD(m) as n blocks, parses σ
as ((Ai, Bi)[n], C, V, π1, π2, s, e, r), picks t $← Z∗p, deciphers e to get c = x, (Ãi,

B̃i)[n], C̃, Ṽ , s̃ and computes x′ = x · t, before re-encrypting it as e′. B then sets
pp = pk‖spk, computes V ′ = F (pp)x

′
,C ′ = H(γ||pp)x

′
, then allA′i andB′i as de-

scribed in 1, and computes the signature s′ as S.ChRep(pkS , s, (Ãi, B̃i)i∈[n], C̃, Ṽ ,
t). B can then compute the proofs π′1 and π′2 as described in Def. 1. B then queries C
for a signature r′ as an answer to (1, (MOD(m), (A′i, B

′
i)i∈[n], C

′, V ′, π′1, π
′
2, s
′, e′)),

and finally answers A with σ′ ← ((A′i, B
′
i)i∈[n], C

′, V ′, π′1, π
′
2, s
′, e′, r′), adding

(MOD(m), σ′) to S.

At the end of the experiment, A will produce a pair (m,σ). If this pair is in S, then
B returns 0, as this is considered a trivial win and thus excluded. Otherwise, B parses σ
as ((Ai, Bi)[n], C, V, π1, π2, s, e, r), sets m̄ = (m, (Ai, Bi)[n], C, V, π1, π2, s, e)) and
sends (m̄, r) as its answer to C.

Note that the winning conditions for B and for A actually coincide: if (m, (?, r))
is in S, then C has the pair ((m, ?), r) in its own set, and vice-versa. There is a direct
correspondence between the sets.

To be thorough, let (m,σ) = (m, ((Ai, Bi)[n], C, V, π1, π2, s, e, r)) be A’s answer.
If there exists (m,σ′) = (m, ((A′i, B

′
i)[n], C

′, V ′, π′1, π
′
2, s
′, e′, r′)) with σ′ 6= σ in

S (and the corresponding (m̄0, r
′) = ((m, (A′i, B

′
i)[n], C

′, V ′, π′1, π
′
2, s
′, e′), r′) in C’s

set), then the pair (m̄1, r) = ((m, (Ai, Bi)[n], C, V, π1, π2, s, e), r) that B forwards to
C can be such that r = r′ or m̄0 = m̄1, but not both, since σ′ and σ differ by at least
one variable, and thus (m̄0, r

′) is not in C’s set.

21



For the other way around, we apply the same logic to the case where the pair (m′, σ)
such that m′ 6= m is in S to see that (m̄0, r

′) is not in C’s set in this case either. Thus:

AdvSUF
ULISS,A(λ) ≤ AdvSUF

R,B(λ).

A.2 Proof of Theorem 2
We show the conditions under which our scheme is immutable.

Proof. An adversary A can win the immutability experiment in three different ways:
either by (1) producing a sanitized signature that uses a sanitizer secret key whose
corresponding public key was not sent as an input to the Sig oracle, by (2) producing
a sanitized signature on an inadmissible message modification, or by (3) producing a
sanitized signature on a message with more modified blocks than the accepted limit.
We will first analyze each case separately then give a general game-based proof.

A new spk∗ 6= spki. IfA is using a key that wasn’t input to the oracle, thenA did not
receive a signature ”meant” to be sanitized with this key. Using the generic notations
for a signature σ∗ = ((Ai, Bi)i∈[n], C, V, π1, π2, s, e, r), A can always produce a valid
r, and e is not used in the verification, so these two elements are not interesting here.
A needs ((Ai, Bi)i∈[n], C, V, π1, π2, s) such that s is a valid signature, and such that
π1, π2 are valid proofs. We will refer to ((Ai, Bi)i∈[n], C, V ) as the commitments.

If there exists a collision on the commitments such that one tuple of commitments
would work for two pairs of message-public key (m, spk) and (m′, spk′), then A can
query the oracle for a signature on the first and reuse the commitments and the s signa-
ture, while making new proofs π′1, π

′
2 for the correct discrete log.

If there are no collisions, then either A wants to reuse a commitments-s signature
pair even though it does not match the message, in which case it must forge the NIZKPs,
orA does not want to forge the proofs, in which all that is left is to forge the s signature.

If A cannot forge anything – i.e., neither the proofs nor the signature – then there is
no option left and A cannot use a new public key spk∗.

Inadmissible blocks. Now, to fit the second condition in the immutability experiment,
the message m∗ submitted by A as an answer must not correspond to any acceptable
modification of any message queried to the oracle. As mentioned above, elements e and
r in the signature are of no interest here.

For the same reasons as above, if there exists a collision on the commitments for two
message-signature pairs, then A can reuse the corresponding s signature (and submit
what queries it needs to make the answered message inadmissible). Note that, ifm∗ has
modifications on inadmissible blocks for a previously submitted message m, but the
number of modifications is within the admissible limit, then commitmentsAi and C for
m could be valid for m∗ (and thus proof π2 also works). The ”important” collision to
find here would be a collision on F .

Once again, if there are no collisions (on F ), then A can try to forge s. If A cannot
forge s, then all that is left to forge is the NIZKPs – or at least the first one, involving
C and the Ai values.

If π1 cannot be forged, then A has no possibility left for a valid signature on a
message with modifications on inadmissible blocks.
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Over the limit. Finally, to fit the third and last condition, we fall into a very similar
situation as the previous paragraph. A must submit a message m∗ which has more
different blocks than allowed when compared to any previously submitted messages.
We set r and e aside again and focus on the rest.

As above, collisions on commitments would allowA to reuse them along with their
signature s. Once again, if the message m∗ has too many modifications compared to
previously-submitted message m but only on admissible blocks, then the Bi and V of
m are valid (and so is its π1 proof). The really important collision thus concerns the H
function for the Ai values, and C.

Using the same logic as above, if no collision exists, A can only win by forging s
or by forging the NIZKPs.

General proof. We show that:

Advimmut
ULISS(λ) ≤ 2q3H

p +
2q3F
p + AdvEUF-CMA

S (λ)

In the following sequence, we write as Si the event that A is wins in Game i. Let
aborti be the event that the challenger aborts at Game i.

Game 0. This is the original Expimmut
ULISS,A(λ) experiment.

Advimmut
ULISS,A(λ) = Pr[S0]

Game 1. This is the same as Game 0 except that the challenger aborts if the random
oracle for hash function H returned values h1, h2, h3, h4 as answers to the respective
distinct queries q1, q2, q3, q4 such that logh1

(h2) = logh3
(h4). For a given set of pairs

{(h1, h2), (h3, h4)}, there’s a 1/p probability that the logs are equal (as the group G is
of prime order p). If we denote with qH the number of queries, then there are qH(qH−1)
pairs of distinct queries, and for a given pair (hi, hj) there are 4qH − 2 pairs (hk, hl)
with hk 6= hi, hj and hl 6= hi, hj , and thus there are qH(qH − 1)(4qH − 2)/2 sets of 2
pairs with distinct elements, each of them having a probability 1/p of verifying the log
relation, thus Pr[abort1] = qH(qH − 1)(2qH − 1)/p, and

|Pr[S1]− Pr[S0]| ≤ qH(qH − 1)(2qH − 1)/p.

After this game there are no possible collisions on commitments that use hash func-
tionH , i.e., let V, {Bi}i∈[n] be the commitments for the signature ofm,ADM with pub-
lic parameters γ (the limit γ does not matter here), there exists no tuple (m′,ADM′, pp′)
distinct from (m,ADM, pp) for which there exists t ∈ Z∗p such that V t, {Bti}i∈[n] are
valid commitments.

Game 2. This is the same as Game 1 except that the challenger aborts if the random
oracle for hash function F returned values h1, h2, h3, h4 as answers to the respective
distinct queries q1, q2, q3, q4 such that logh1

(h2) = logh3
(h4). Following the same

logic as above, and if we denote with qF the number of queries, we have:

|Pr[S2]− Pr[S1]| ≤ qF (qF − 1)(2qF − 1)/p.

After this game, there are no possible collisions on commitments that use hash func-
tion F , and due to the previous game, there are no possible collisions on commitments
at all. A can thus not “re-use” them.
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Game 3. This is the same as Game 2 except that the challenger aborts if A returns
a signature σ∗ containing a valid NIZKP π1 or π2 on a statement that is not in the
language. The probability of this event is bound by the soundness of the proofs, thus:

|Pr[S3]− Pr[S2]| ≤ Advsoundπ1,π2
(λ).

Indeed, if there exists an adversary A such that the challenger aborts at game 3
(event denoted abort3, and we have | Pr[S3] − Pr[S2] |≤ Pr[abort3), then we show
how to build an adversary B against the soundness of π1 and π2.

Let C be B’s challenger, to whom B must output π1 and π2 such that one or both
proofs are valid and on a statement that is not in the language.

At the beginning of the experiment, B generates a signer key pair (pk, sk) =
((pkR,pkS), (skR, skR)) and sends pk to A.
B answers A’s queries as follows:

Sig(·, sk, ·, ·, ·): on input (m,ADM, spk, γ), B parses m as n blocks, parses spk as
(pkE , spkR) sets pp = pk‖spk, picks x $← Z∗p and computes the {Ai, Bi}i∈[n], C
and V commitments and the π1, π2 proofs as described in 1. B computes the class-
equivalence signature on ({Ai, Bi}i∈[n], C, V ) to obtain s. To complete the signa-
ture, B computes the ciphertext e ← E.enc(pkE , x, (Ai, Bi)i∈[n], C, V, s, d)) and
the 2-Ring Signature r ← R.sig(skR, {pkR, spkR}, (m, (Ai, Bi)i∈[n], C, V, π1,
π2, s, e)), sets σ ← ((Ai, Bi)i∈[n], C, V, π1, π2, s, e, r), and returns σ.
At the end of the experiment, A returns a tuple (spk∗,m∗, σ∗). B extracts π∗1 and

π∗2 and sends them to C.
IfA successfully forged the proofs then B wins, thus: Pr[abort3] = Advsoundπ1,π2,B(λ),

which yields our inequality.
After this game, signatures output byA can only contain sound NIZKPs, preventing

A from winning this way by faking the proofs.
Game 4. This is the same as Game 3, except that the challenger aborts if A returns

a valid signature σ∗ containing an equivalence-class signature s that was not in any of
the signatures output by the challenger. We have | Pr[S4] − Pr[S3] |≤ Pr[abort4], we
claim that

Pr[abort4] ≤ AdvEUF-CMA
S (λ)

and to prove it, we show how to build a PPT adversary B such that Pr[abort4] =

AdvEUF-CMA
S,B (λ).
Let C be B’s challenger. At the beginning of the experiment, C generates a signing

key pair (pkS , skS) and sends pkS to B. B generates a signing key pair (pkR, skR),
sets (pk, sk) = ((pkS ,pkR), (skS , skR)) and sends it toA. B also creates an empty set
S to keep track of A’s public keys. B will answer A’s queries as follows:
Sig(·, sk, ·, ·, ·): on input (m,ADM, spk, γ),B parsesm as n blocks, sets pp = pk‖spk,

picks x $← Z∗p and computes the {Ai, Bi}i∈[n], C and V commitments and the
π1, π2 proofs as described in 1. B queries C for a class-equivalence signature on
({Ai, Bi}i∈[n], C, V ) and receives s as an answer. B computes the ciphertext e ←
E.enc(pkE , x, (Ai, Bi)i∈[n], C, V, s, d)) and the 2-Ring Signature r ← R.sig(skR,
{pkR, spkR}, (m, (Ai, Bi)i∈[n], C, V, π1, π2, s, e)), sets σ ← ((Ai, Bi)i∈[n], C, V,
π1, π2, s, e, r), adds spk to S, and returns σ.
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In the end,A submits (m∗, spk∗, σ∗) as its answer. If σ∗ is not valid or if spk∗ is in
S, then B returns 0, else it parses σ∗ as ((A∗i , B

∗
i )i∈[n], C∗, V∗, π

∗
1 , π
∗
2 , s∗, e∗, r∗) and

sends (((A∗i , B
∗
i )i∈[n], C∗, V∗), s∗) as its answer to C.

The winning conditions of A and B coincide – if spk∗ was not in S, then, because
it is included in the A∗i , B

∗
i , C∗ and V∗ commitments, the signature s∗ on these com-

mitments cannot have been output by C already.Conversely, B will not reject an answer
that C would have accepted, simply because of how S is built, i.e., with C’s outputs.
Thus, if C returns 1, and B wins, it is becauseA successfully produced a valid sanitized
signature using a sanitizer key whose public key was not given as an input to the signer.

By the changes in the previous games, following the arguments given before the
games, A is unable to produce a valid answer, thus Pr[S4] = 0.

A.3 Proof of Theorem 3
Proof. An adversary A wins the unlinkability experiment by distinguishing which of
two signatures σ0 or σ1 was sanitized. We exclude trivial ways of winning by asking
for valid signatures with the same admissible function ADM0 = ADM1, identically
admissible modification functions (ADM0(MOD0) = ADM1(MOD1)), sanitized such
that the signed message is identical (MOD0(m0) = MOD1(m1)). Note that all calls to
H and F are implicitly simulated by a random oracle.

We show that

Advunlink
ULISS,A(λ) ≤qSigqLRSanAdv

class-hid
S (λ) + Advadapt

S (λ) + AdvIND$-CCA
E (λ)

+ qSig(qH + qF ) · AdvDDH
G (λ) + AdvSUF

ULISS(λ).

In the following sequence of games, let Si be the event that A wins at Game i.
Game 0. This is the original Expunlink

ULISS,A(λ) experiment, hence:

Advunlink
ULISS,A(λ) = Pr[S0]− 1/2

Game 1. This game is the same as Game 1 except the challenger aborts and returns
a random bit if A queries LRSan on a forgery. Denoting with abort1 the event that the
challenger aborts in this game, we have that

Pr[abort1] ≤ AdvSUF
ULISS(λ),

and since |Pr[S1]− Pr[S0]| = Pr[abort1],

|Pr[S1]− Pr[S0]| ≤ AdvSUF
ULISS(λ).

After this game, the adversary can only query LRSan on signatures output by the
challenger.

Game 2. This game is identical to Game 1 except the input to the encryption scheme
is replaced with random. We claim that :

|Pr[S2]− Pr[S1]| = AdvIND$-CCA
E (λ)

Proof. We show that if there exists a PPT adversary A capable of distinguishing be-
tween Games 2 and 1 then we can build an adversary B against the IND$-CCA security
of the encryption scheme.
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Let C be B’s challenger, we show how B can simulate A’s challenges. At the be-
ginning, C generates the encryption key pair (pkE , skE), picks a bit b, forwards pkE
to B and whenever B sends a message m, C answers with the encryption of a random
message if b = 0, and with the encryption of m if b = 1. B will embed its challenges
into A’s challenges.
B picks a random bit b′. B generates key pairs (pkS , skS) for the equivalence-class

signature S, then two key pairs (pkR, skR),(spkR, sskR) for the 2-Ring Signature, then
sets (pk, sk) ← ((pkS ,pkR), (skS , skR) and (spk, ssk) ← ((pkE , spkR), sskR). B
then forwards (pk, spk), to A, sets L ← [ ] to keep track of the limits, Q ← [ ] to keep
track of the commitments (indeed, B won’t be able to query C for decryptions on the
challenges), and answers A’s queries as follows:

Sig(·, sk, ·, ·, ·): A sends (m,ADM, ¯spk, γ), B computes the signature as described in
Scheme 1, except if ¯spk = spk, instead of encrypting c = (x, (Ai, Bi)i∈[n], C, V )
itself, it sends c to C and receives e in exchange, sets Q[e] = c, then continues
normally to obtain a signature σ, then sets L[σ] = (m, γ), and returns σ.

LRSan(b′,pk, ssk, spk, ·, ·): on input ((m0,MOD0, σ0)(m1,MOD1, σ1)), this oracle
returns⊥ if for i ∈ {0, 1}, any of the following conditions do not hold: (1) Ver(mi,
σi,pk, spk) = 1, (2) ADM0 = ADM1, (3) ADM0(MOD0) = ADM1(MOD1) and
(4) MOD0(m0) = MOD1(m1), else it gets (m̄i, γi)← L[σi] for i ∈ {0, 1}, then if
D(MOD0(m0), m̄0) ≤ γ0 and D(MOD1(m1), m̄1) ≤ γ1, it computes the sanitiza-
tion of σb′ :

– B follows all of the sanitization as described in Scheme 1 to sanitize σb′ except
for the decryption/encryption; let eb′ be the encryption in σb′ , then B retrieves
c ← Q[eb′ ], queries C for a new encryption e′ of c, then continues normally,
producing a sanitized signature σ′ using e′ as its encryption. finally, B sets
L[σ′]← (m̄b,min(γ0, γ1), and Q[e′]← c, and returns σ′,

else it returns ⊥.
San(·, ·, ·, ·, ssk, spk): on input (m,MOD, σ, p̄k), B gets (m̄, γ) ← L[σ], then if we

have D(MOD(m), m̄) ≤ γ it computes the sanitization:
– B computes the sanitized signature normally except for the encryption/decryption;

let e be the encryption in σ, if p̄k 6= pk, then B queries C for a decryption of e
and obtains c then re-encrypts it to obtain e′, else if p̄k = pk, B gets c← Q[e]
then queries C on c for an encryption e′, setting Q[e′] = c; B then uses the
content of c to follow the steps and compute the sanitized signature σ′, then
sets L[σ′] = L[σ], and returns σ′,

else it returns ⊥.

At the end of the experiment, A returns a bit b∗. If b∗ = b′, then B returns 1, else it
returns 0.

Analysis: If b = 0 thenB perfectly simulates Game 2 toA, else it perfectly simulates
Game 1. If B returns 1, it means A wins (b∗ = b′), thus :

Pr[B → 1|b = 1] = Pr[b∗ = b′|b = 1] = Pr[A wins|b = 1] = Pr[S1]

and Pr[B → 1|b = 0] = Pr[b∗ = b′|b = 0] = Pr[A wins|b = 0] = Pr[S2]

so |Pr[S1]− Pr[S2]| = |Pr[B → 1|b = 1]− Pr[B → 1|b = 0]| = AdvIND$-CCA
E (λ)
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After this game, the content of the encryption cannot be used to link the sanitization
with the signature.

Game 3. This game is the same as the previous one, except every occurrence of
S.ChRep(pkS , s,m, t) is replaced with S.sig(pkS ,m

t). We argue that

|Pr[S3]− Pr[S2]| = Advadapt
S (λ).

Proof. Indeed, we show that if there exists a PPT adversaryA capable of distinguishing
between Games 3 and 2, then we can build a PPT adversary B against the adaptability
of the underlying equivalence-class signature, S.

Let C be B’s challenger. At the beginning of the experiment, C picks a random
bit b and generates a signing key pair (pkS , skS), which is sent to B. B generates the
remaining key pairs to complete (pk, sk) and (spk, ssk) (i.e., the pairs for the 2-Ring
Signature, and the pair for the encryption scheme), and forwards pk and spk to A. B
also picks a random bit b′.
B answers A’s queries as follows:

Sig(·, sk, ·, ·, ·): A sends (m,ADM, ¯spk, γ), B computes the signature as described
in Scheme 1 and returns it, except if ¯spk = spk, instead of encrypting c =
(x, (Ai, Bi)i∈[n], C, V ), it encrypts a random string to obtain e, setsQ[e] = c, then
continues normally to obtain a signature σ, then sets L[σ] = (m, γ), and returns σ.

LRSan(b′,pk, ssk, spk, ·, ·): on input ((m0,MOD0, σ0)(m1,MOD1, σ1)), this oracle
returns⊥ if for i ∈ {0, 1}, any of the following conditions do not hold: (1) Ver(mi,
σi,pk, spk) = 1, (2) ADM0 = ADM1, (3) ADM0(MOD0) = ADM1(MOD1) and
(4) MOD0(m0) = MOD1(m1), else it gets (m̄i, γi)← L[σi] for i ∈ {0, 1}, then if
D(MOD0(m0), m̄0) ≤ γ0 and D(MOD1(m1), m̄1) ≤ γ1, it computes the sanitiza-
tion of σb′ :

– B follows all of the sanitization as described in Scheme 1 to sanitize σb′ ex-
cept for the decryption/encryption and the change of representative for the
equivalence-class signature s:
• let eb′ be the encryption in σb′ , then B retrieves c ← Q[eb′ ], encrypts a

random string to obtain e′, and sets c← Q[e′], then
• after computing everything else normally (using the content of c),B queries
C for a signature s′ with ((pkS , skS), s, ((Ai, Bi)i∈[n], C, V ), t),

then B continues ordinarily, producing a sanitized signature σ′ using e′ as its
encryption and s′ as its equivalence-class signature. Finally, B sets L[σ′] ←
(m̄b,min(γ0, γ1), and returns σ′,

else it returns ⊥.
San(·, ·, ·, ·, ssk, spk): on input (m,MOD, σ, p̄k), if p̄k 6= pk it computes the sanitiza-

tion normally, else B gets (m̄, γ)← L[σ], then ifD(MOD(m), m̄) ≤ γ it computes
the sanitization:

– B computes the sanitized signature as above, i.e., normally except for the de-
cryption/encryption for which it uses Q and encrypts a random string, respec-
tively, and for the equivalence-class signature, for which it queries C,

else it returns ⊥.
At the end of the experiment, A returns a bit b∗: if b∗ = b′, then B answers 1

(guessing that C used S.ChRep), else it answers 0.
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Analysis: If b = 0 then B is perfectly simulating Game 3 (every change of repre-
sentative is actually a new signature), and if b = 1 then B is perfectly simulating Game
2. Using the same justification as in the previous game, we have:

|Pr[S3]− Pr[S2]| = |Pr[B → 1|b = 1]− Pr[B → 1|b = 0]| = Advadapt
S (λ).

This game “unlinks” the class-equivalence signature in the sanitization from the one
in the original signature.

Game 4. This game is the same as the previous one except that the NIZKPs are
faked by the simulator Sim. As the simulator is “perfect”, we argue that: Pr[S4] =
Pr[S3].

Proof. Indeed, if there exists a PPT adversary A capable of distinguishing between
Games 4 and 3, then we can build an adversary B against the zero-knowledge property
of the NIZKP π1, π2.

Let C be B’s challenger, we show how B can simulateA’s challenges. At the begin-
ning, C picks a random bit b, and C will answer queries with a fake NIZKP if b = 0,
and a real one if b = 1.
B generates all key pairs for the encryption E, the 2-Ring Signature scheme R, and

the class-equivalence signature scheme S, and forwards the public keys toA. B picks a
random bit b′ and embeds its challenges into A’s challenges by answering the queries
as follows:
Sig(·, sk, ·, ·, ·): A sends (m,ADM, ¯spk, γ), if ¯spk 6= spk, B computes everything

normally, else B computes the signature as described in the previous game (includ-
ing adding elements to L andQ) except instead of computing π1 and π2 itself, they
are queried from C.

LRSan(b′,pk, ssk, spk, ·, ·): on input ((m0,MOD0, σ0)(m1,MOD1, σ1)), this oracle
returns⊥ if for i ∈ {0, 1}, any of the following conditions do not hold: (1) Ver(mi,
σi,pk, spk) = 1, (2) ADM0 = ADM1, (3) ADM0(MOD0) = ADM1(MOD1) and
(4) MOD0(m0) = MOD1(m1), else it gets (m̄i, γi) ← L[σi] for i ∈ {0, 1}, then
if D(MOD0(m0), m̄0) ≤ γ0 and D(MOD1(m1), m̄1) ≤ γ1, it computes the saniti-
zation of σb′ as in the previous game (again, including for L and Q), except it uses
S.sig((, c)t) instead of S.ChRep(c, t) to get s′, and queries C for the proofs π1, π2

instead of computing them; then finally returns the obtained sanitized signature σ′,
else it returns ⊥.

San(·, ·, ·, ·, ssk, spk): on input (m,MOD, σ, p̄k), if p̄k 6= pk, it computes the sani-
tizations normally, else B gets (m̄, γ) ← L[σ], then if D(MOD(m), m̄) ≤ γ it
computes the sanitization as in the previous game (once more, including for L and
Q), except it uses S.sig(,i)nstead of S.ChRep as described for LRSan, and queries
C for the proofs π1 and π2, finally returning the obtained sanitized signature σ′, else
it returns ⊥.

In the endA returns a bit b∗, if b∗ = b′ B sends 1 to C (guessing that the proofs are real)
else it answers 0.

Analysis: If b = 0 then B is perfectly simulating Game 4 (the proofs are simulated),
and if b = 1 then B is perfectly simulating Game 3. Using the same justification as in
the previous games, we have: Pr[S4] = Pr[S3].
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After this game, the commitments and the proofs are not linked.

Game 5. This game is the same as the previous one except we replace the commit-
ments with random elements when computing a signature (i.e., when generating them).

We argue that :

|Pr[S5]− Pr[S4] ≤ (qH + qF ) · AdvDDH
G (λ),

where qH (resp. qF ) is the number of queries made to the random oracle for hash func-
tion H (resp. F ).

Proof. First, we propose the definition of fixed n-DDH, based on the n-DDH:

Definition 17 (fixed n-DDH). Let G be a multiplicative group of prime order q, with
g a generator. For an instance {(ga, gbi , gcb,i)}1≤i≤n such that for i ∈ [n], bi

$← Z∗p,
and a $← Z∗p and b $← {0, 1} such that c0,i

$← Z∗p and c1,i = a · bi, the fixed n-DDH
problem is guessing b, and the fixed n-DDH assumption states than no PPT algorithm
can solve this problem with a non-negligible advantage.

Lemma 2. For any n ∈ N, fixed n-DDH holds under the DDH assumption, with

Advfn-DDH
G (λ) ≤ n · AdvDDH

G (λ).

Proof. We use a hybrid argument. Consider the following problem:

Definition 18 (fixed (j, n)-DDH:). let G be a multiplicative group of prime order p
with generator g, let j ∈ [n]. Given an instance {(ga, gbi , gcb,i)}i∈[n], with a $← Z∗p,
bi

$← Z∗p for i ∈ [n] and b $← {0, 1} such that if i ≤ j c0,i
$← Z∗p and c1,i = a · bi,

else c0,i = a · bi and c1,i
$← Z∗p. The fixed (j, n)-Decisional Diffie-Hellman problem,

or fixed (j, n)-DDH, is to guess the value of b.

Let j, n be integers such that 1 ≤ j ≤ n − 1, for any adversary A solving the
fixed (j, n)-DDH problem with advantage Adv

f(j, n)-DDH
G,A (λ), we show how to build an

adversary B against DDH.
Let C be B’s challenger. C begins by picking a random bit b, then sends B an instance

(A,B,C) = (ga, gb, gc) of DDH. B will embed this challenge in A’s challenges by
picking a random bit b′ $← {0, 1} and sending the following instance of fixed (j, n)-
DDH: for all i ∈ [n]\{j+1}, B picks bi

$← Z∗p and sets gi = gbi , and if i ≤ j hi,0 $← G
and hi,1 = Abi , else hi,0 = Abi and hi,1

$← G. B then sets gi,2 = B, hi,0 = hi,1 = C.
B sends {(A, gi,2, hi,b′)}i∈[n] toA, who answers with a bit b∗ that B forwards to C.
Analysis: if b′ = b thenB perfectly simulates (j, n), otherwise it simulates (j+1, n).

Let ExpprobT ,β be the experiment for problem prob conducted with bit β with adversary

T , e.g., Expf(j, n)-DDH
A,0 is the experiment of fixed (j, n)-DDH with bit 0, and adversary

A. We thus have that:

Adv
f(j, n)-DDH
A,G (λ) =|Pr[Exp

f(j, n)-DDH
A,1 → 1]− Pr[Exp

f(j, n)-DDH
A,0 → 1]|

=|Pr[(ExpDDH
B,1 → 1) ∩ b′ = 1]− Pr[(ExpDDH

B,0 → 1) ∩ b′ = 0]|

Adv
f(j + 1, n)-DDH
A,G (λ) =|Pr[Exp

f(j + 1, n)-DDH
A,1 → 1]− Pr[Exp

f(j + 1, n)-DDH
A,0 → 1]|

=|Pr[(ExpDDH
B,0 → 1) ∩ b′ = 1]− Pr[(ExpDDH

B,1 → 1) ∩ b′ = 0]|
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⇒ AdvDDH
B,G (λ) ≥ |Advf(j, n)-DDH

A,G (λ)− Adv
f(j + 1, n)-DDH
A,G (λ)|.

Following the same logic of decomposition-recomposition, and summing the “hy-
brids”, we obtain, concluding the proof:

n · AdvDDH
G (λ) ≥ |Advf(0, n)-DDH

A,G (λ)− Adv
f(n, n)-DDH
A,G (λ)| = Advfn-DDH

A,G (λ)

We now show the indistinguishability of Games 5 and 4 using a hybrid argument.
Let qSig be the number of queries made to the Sig oracle, let Hi be the experiment

such that the i first queries to the Sig oracle use honest commitments, and the qSig−i last
queries use random commitments. Suppose there exists an PPT adversaryA capable of
distinguishing Hi from Hi+1 for 0 ≤ i < qSig, then we show how to build an adversary
B against fixed qH + qF -DDH in G.

Let C be B’s challenger, we now show how B simulates A’s challenges. C starts by
picking a random bit b. C will sendB tuples that will amount into a fixed (qH+qF )·DDH
instance, i.e., tuples of the form (g,X = gx, Y = gy, Z = gz) with a different Y,Z in
each tuple. B generates all necessary keys to build the pair (pk, sk) for the signer and
(spk, ssk) for the sanitizer, then picks a random bit b∗, and forwards (pk, spk) to A.
B also initiates empty lists L and Q as above, along with a new list D, to keep track of
the DDH queries, and a counter cSig initated to 0, counting the number of calls to Sig.
For clarity, we separate the random oracles by expliciting them, as they are the ones
affected by the change:
H(·) (resp. F (·) upon a query u, if H[u] (resp. F [u]) exists, B returns H[u] (resp

F [u]), else if u is of the form u′||pp, B queries C for a challenge (g,X, Y, Z),
sets H[u] = Y (resp. F [u] = Y ), D[Y ] = Z, and returns Y , else it generates a
random hash h, set H[u] = h (resp. F [u] = h), and returns h.
In the beginning, B sets F (pp) = g. B will embed its challenges in A’s challenges

by answering its queries as follows:
Sig(·, sk, ·, ·, ·): A sends (m,ADM, ¯spk, γ), if ¯spk 6= spk, then B computes every-

thing normally, else B computes the signature as described in the previous game
(including adding elements to L and Q) except it always fakes the NIZKP, and
when generating the commitments, it proceeds as follows:

– if cSig ≤ i, it generates the commitments honestly,
– else if cSig = i+ 1, first, B generates a random t and sets V = Xt(= (gx)t =
F (pp)xt), then for all other commitments, if we denote with u their corre-
sponding input toH or F (e.g., for C, u = γ||pp) then we get a hash h = F (u)
(for Bi) or h = H(u) (for Ai and C), and the “actual” commitment is then
D[h]t (so if C’s bit is 1, the commitment is Zt = (Y x)t = hxt, otherwise it is
random)

– else (so, if cSig > i+ 1), B generates random commitments,
then B continues, to obtain a signature σ in the end, which it returns after incre-
menting cSig.

LRSan(b′,pk, ssk, spk, ·, ·): on input ((m0,MOD0, σ0)(m1,MOD1, σ1)), this oracle
returns⊥ if for i ∈ {0, 1}, any of the following conditions do not hold: (1) Ver(mi,
σi,pk, spk) = 1, (2) ADM0 = ADM1, (3) ADM0(MOD0) = ADM1(MOD1) and
(4) MOD0(m0) = MOD1(m1), else it gets (m̄i, γi) ← L[σi] for i ∈ {0, 1}, then
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if D(MOD0(m0), m̄0) ≤ γ0 and D(MOD1(m1), m̄1) ≤ γ1, it computes the sani-
tization of σb′ as in the previous game (again, including for L and Q), returning a
sanitized signature σ′; else it returns ⊥.

San(·, ·, ·, ·, sskR, ·): on input (m,MOD, σ,pk, spk), B gets (m̄, γ) ← L[σ], then if
D(MOD(m), m̄) ≤ γ it computes the sanitization as in the previous game (once
more, including for L and Q), finally returning a sanitized signature σ′; else it
returns ⊥.

In the endA returns a bit b∗, if b∗ = b′ B sends 1 to C (guessing that the DDH elements
are real) else it answers 0.

Analysis: In the case where b = 1, as explained in LRSan above, B simulates Hi.
Now if b = O, there is no relation between x and the y and z values, and thus the com-
mitments are completely random, simulating Hi+1. Hence, following the same logic as
in the previous games:

|Pr[Hi+1]− Pr[Hi]| = Adv
f(qH + qF )-DDH
G (λ) ≤ (qH + qF ) · AdvDDH

G (λ)

Moreover, in HqSig the commitments are done honestly, meaning H0 is identical to
Game 4, and in H0 all commitments are random, meaning HqSig is identical to Game 5.

Summing the hybrids yields the following inequality :

|Pr[S5]− Pr[S4]| = |Pr[H0]− Pr[HqSig ]|

≤ qSig(qH + qF ) · AdvDDH
G (λ)

After this game, the commitments are not linked to each other. This step is a neces-
sary setup for the next game.

Game 6. This game is the same as the previous one except the commitments are
replaced with random elements when sanitizing a signature.

We argue that :

|Pr[S6]− Pr[S5]| ≤ qLRSanqSig · Advclass-hid
S (λ),

where qSig is the number of calls to the Sig oracle and qLRSan is the number of calls
to the LRSan oracle.

Proof. We show the indistinguishability of Games 6 and 5 using a hybrid argument.
Let Hi be the experiment such that the first i queries to LRSan have honestly com-

puted commitments, while the qLRSan− i last queries are computed using random com-
mitments.

We show that if there exists a PPT adversary A capable of distinguishing Hi+1

from Hi, for 0 ≤ i < qLRSan, then we can build an adversary B against the class-
hiding property of the message space of S. Let C be B’s challenger, we now show how
B simulates A’s challenges. C starts by picking a random bit b. C will send B pairs
of the form (C,C ′) ∈ (G`)2 such that C ′ is in the equivalence class of C if b = 1,
and randomly sampled otherwise. B generates all necessary keys to build the key pair
(pk, sk) for the signer and (spk, ssk) for the sanitizer, then picks a random bit b∗, and
forwards pk and spk to A. B also initiates, as before, empty lists L and Q. It also
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generates an empty list T to remember C’s queries, and a counter cLRSan counting the
queries to LRSan.

B will embed its challenges in A’s challenges by answering its queries as follows:

Sig(·, sk, ·, ·, ·): A sends (m,ADM, ¯spk, γ), as usual, if ¯spk 6= spk, B acts normally,
else B computes the signature as described in the previous game (including adding
elements to L and Q) except when generating the commitments, it queries C to get
a pair (M,M ′) and usesM as the commitments (which are thus random), to obtain
a signature σ in the end, which it returns, and sets T [σ] = (M,M ′).

LRSan(b′,pk, ssk, spk, ·, ·): on input ((m0,MOD0, σ0)(m1,MOD1, σ1)), this oracle
returns⊥ if for i ∈ {0, 1}, any of the following conditions do not hold: (1) Ver(mi,
σi,pk, spk) = 1, (2) ADM0 = ADM1, (3) ADM0(MOD0) = ADM1(MOD1) and
(4) MOD0(m0) = MOD1(m1), else it gets (m̄i, γi) ← L[σi] for i ∈ {0, 1}, then
if D(MOD0(m0), m̄0) ≤ γ0 and D(MOD1(m1), m̄1) ≤ γ1, it computes the sani-
tization of σb′ as in the previous game (again, including for L and Q), except the
commitments are computed as follows, first B gets (M,M ′)← T [σb′ ], then

– if cLRSan ≤ i, it compute the commitments normally, i.e. using M
– else if cLRSan = i+1, it generates a random t and uses (M ′)t, i.e., the elements

of M ′ elevated to the power of t, as the commitments (which will thus be in
the class of M if M ′ also is, otherwise they will be random),

– else (if cLRSan > i+ 1), it computes random commitments,
then finally returns the obtained sanitized signature σ′ and sets T [σ′] = (M,M ′);
else it returns ⊥.

San(·, ·, ·, ·, ssk, spk): on input (m,MOD, σ, p̄k), if p̄k 6= pk, then B computes the
sanitization normally, else B gets (m̄, γ) ← L[σ], then if D(MOD(m), m̄) ≤ γ it
computes the sanitization as in the previous game (once more, including for L and
Q), except it computes commitments as described honestly for LRSan, i.e., gets
(M,M ′)← T [σ], generates a random t and usesM t as commitments, finally com-
puting the sanitized signature σ′ and returning it, then setting T [σ′] = (M,M ′);
else it returns ⊥.

In the end A returns a bit b∗, if b∗ = b′ B sends 1 to C (guessing that the elements are
in the same equivalence-class) else it answers 0.

Analysis: If b = 1, then B perfectly simulates Hi+1, as explained in LRSan above,
since the first i + 1 queries are answered honestly, else if if b = 0, then B perfectly
simulates Hi, as (M ′)t is not linked to M and thus the i + 1st query uses random
commitments. Using the same justification as in the previous games, we have:

|Pr[Hi+1]− Pr[Hi]| = |Pr[B → 1|b = 1]− Pr[B → 1|b = 0]| = qSigAdv
class-hid
S (λ).

In H0 all commitments are computed randomly, which makes it identical to Game
6, and in HqLRSan all commitments are honest, which makes it identical to Game 5.
Summing the hybrids, we get

|Pr[S5]− Pr[S6]| = |Pr[HqLRSan ]− Pr[H0]|

≤ qLRSanqSigAdv
class-hid
S (λ)
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At this point, there is no link between the original signature and its sanitization, that
would differentiate the sanitization of σ0 from that of σ1, thus the adversary cannot do
any better than just guessing. Thus: Pr[S6] = 1/2.

A.4 Proof of Theorem 4

Proof. We show that

AdvtransULISS(λ) ≤ AdvadaptS (λ) + AdvAnonR (λ) + AdvIND$−CCA
E (λ)

+ (qH + qF ) · AdvDDH
G (λ) + AdvSUFULISS(λ).

We write as Si the event “A wins at game i”. In the following, the hash functions
H and F are simulated by a random oracle.

Game 0. This is the original transparency experiment:

AdvtransULISS,A(λ) = |Pr[S0]− 1/2|

Game 1. This game is the same as game 0 except the challenger aborts and returns
a random bit if A queries the San oracle on a forged signature. We showed in A.1 that
this event has negligible probability.

|Pr[S1]− Pr[S0]| ≤ AdvSUFULISS,A(λ).

After this game, all signatures input to San were generated by the challenger. This
means, in particular, that A cannot try to guess if a signature was sanitized or not by
trying to “copy” the output of Sa/Si into a new forged signature with limit γ to try and
see how many times it can be sanitized, thus differentiating the case where b = 0, and
where b = 1.

Game 2. This game is the same as game 1 except the input to the encryption scheme
is replaced with random. We claim that:

|Pr[S2]− Pr[S3]| ≤ AdvIND$-CCA
E,A (λ)

We show that if there exists a PPT adversary A capable of distinguishing games 1
and 2, then we can build a successful adversary B against the IND$-CPA security of
the encryption scheme E.

Let C be B’s challenger, who, at the beginning of the experiment, picks a random
bit b and generates a key pair (pkE , skE), forwarding pkE to B. B will also pick a
random bit b′, then generate a key pair (pkS , skS) for the Class-Equivalent Signature
and two key pairs (pk0, sk0), (pk1, sk1) for the 2-Ring Signatures, set (pk, sk) =
((pkS ,pk1), (skS , sk1)) and (spk, ssk) = ((pkE ,pk0), sk0), and forward (pk, spk)
to A. B initiates an empty list L to keep track of the “real” limit for each signature,
and also initiates two empty list LC to store the content of the encryption, as it cannot
decrypt its challenges.
B answers A’s queries as follows:

Sig(·, sk, ·, ·, ·) on input (m, ¯spk,ADM, γ), B parses m as n blocks, generates x $←
Z∗p, then sets pp = pk|| ¯spk, and computes V ← F (pp)x, C ← H(γ||pp)x and the
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(Ai, Bi)i∈[n] as described in Def. 1. With these, B can compute the two proofs π1

and π2, again as described in Def. 1.
B then computes s ← S.sig(skS , (Ai, Bi)i∈[n], C, V ), sets c = x, (Ai, Bi)i∈[n],

C, V, s, computes e← E.enc( ¯spkE , c), and finally r ← R.sig(skR, {pkR, spkR},
(m, (Ai, Bi)i∈[n], C, V, π1, π2, s, e)). B outputs σ ← ((Ai, Bi)[n], C, V, π1, π2, s,
e, r) to A.

San(·, ·, ·, ·, ssk) A sends (m,MOD, σ, p̄k), B parses MOD(m) as n blocks, parses
σ as ((Ai, Bi)[n], C, V, π1, π2, s, e, r), picks t $← Z∗p, if LC [e] exists it sets c ←
LC [e], otherwise it queries C for the decryption c, to obtain c = x, (Ãi, B̃i)i∈[n],

C̃, Ṽ , s̃, d̃ and computes x′ = x · t. If c was not in LC [e], then B computes e′ ←
E.enc(pkE , c), else it queries C for a challenge on c to get e′, setting LC [e′] = c.
B then sets pp = p̄k||spk and computes V ′ ← F (pp)x

′
, C ′ ← H(γ||pp)x

′
and all

A′i, B
′
i as described in 1, then computes the signature s′ as S.ChRep(pkS , s, (Ãi,

B̃i)i∈[n], C̃, Ṽ , t).
B can then compute the proofs π′1 and π′2 as described in Def. 1. B then computes
r′ ← R.sig(sskR, {pkR, spkR}, (MOD(m), (A′i, B

′
i)i∈[n], C

′, V ′, π′1, π
′
2, s
′, e′)),

and sets σ′ ← ((A′i, B
′
i)i∈[n], C

′, V ′, π′1, π
′
2, s
′, e′, r′). B then checks the winning

conditions : if L[σ] is null, it returns σ′, else for (m̄, γ) ← L[σ], it checks that
D(m̄,MOD(m)) ≥ γ, in which case it sets L[σ′] = L[σ], and returns σ′, else it
returns 0.

Sa/Si(b′,pk, spk, sk, ssk, ·, ·, ·): on input (m,ADM,MOD, γ), if ADM(MOD) = 0, B
returns ⊥.
If b′ = 1, then B proceeds as follows: B first obtains a signature σ by computing
Sig on the message m, except instead of encrypting normally, it sets: c = x, (Ai,
Bi)i∈[n], C, V, s, queries C for a challenge encryption on c, receiving e and setting
LC [e] = c. Then, B computes San normally, except instead of decrypting e it
simply uses the content of c (either having kept it or extracting it from LC), and
then instead of re-encrypting it, it queries it to C as a challenge, obtaining e′ as an
answer and setting LC [e′] = c. B finally obtains a sanitization σ′.
B sets L[σ′]← (m, γ), and finally returns σ′ to A.
Else, if b′ = 0, then B obtains a signature σ by computing Sig on the mes-
sage MOD(m), and, as above, instead of encrypting normally, it sets c = x, (Ai,
Bi)i∈[n], C, V, s, queries C for a challenge encryption on c, receiving e and setting
LC [e] = c. B then sets L[σ]← (m, γ), and return σ to A.

At the end of the experiment, A returns a bit b∗. If b′ = b∗, then B forwards 1 to C,
else it returns 0. If b = 0, i.e., C encrypts a random message, then B simulated game 2,
else it simulated game 1, which yields our inequality. After this game, the encryption
cannot be of any help to A in the experiment.

Game 3. This game is the same as game 2 except that the NIZKPs are “faked” by
the simulator We claim that:

Pr[S3] = Pr[S4].

Indeed, of there exists a PPT adversary A capable of distinguishing games 2 and 3,
then we can build a successful adversary B against the zero-knowledge property of π1

and π2.
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Let C be B’s challenger, who, at the beginning of the experiment, picks a random
bit b. B will also pick a random bit b′, then generates the two key pairs (pk, sk) and
(spk, ssk) adequately, forwarding pk and spk to A. B initiates an empty list L to keep
track of the limit of each signature, and an empty list LR to keep track of what should
have been encrypted, as the encryptions in Sa/Si are random.
B answers A’s queries as follows:

Sig(·, sk, ·, ·, ·) on input (m, ¯spk,ADM, γ), B acts as in the above game. The lists are
handled as above.

San(·, ·, ·, ·, ssk) A sends (m,MOD, σ, p̄k), acts as above except : if c was in LC , it
encrypts a random message to compute e′, setting LC [e′] (otherwise it uses skE to
decrypt and then re-encrypt with pkE), then it queries C for the proofs π1 and π2,
else the proofs are computed normally. The lists are handled as above.

Sa/Si(b′,pk, spk, sk, ssk, ·, ·, ·): on input (m,ADM,MOD, γ), if ADM(MOD) = 0, B
returns ⊥.
If b′ = 1, then B proceeds as follows: B first obtains a signature σ by computing
Sig on the message m, except instead of encrypting normally, it sets: c = x, (Ai,
Bi)i∈[n], C, V, s, and LC [e] = c, then generates a random message c̄ and sets e ←
E.enc(pkE , c̄), and the proofs π1 and π2 are queried from C. Then, B computes
San normally, except instead of decrypting e it simply uses the content of c (either
having kept it or extracting it from LC), computes e′ as a random encryption, sets
LC [e′] = c, and then it queries C for π1 and π2. B finally obtains a sanitization σ′.
B sets L[σ′]← (m, γ), and finally returns σ′ to A.
Else, if b′ = 0, then B obtains a signature σ by computing Sig on the message
MOD(m), and, again, as above, sets c = x, (Ai, Bi)i∈[n], C, V, s, encrypts a ran-
dom message to get e, sets LC [e] = c, and queries C for the proofs π1, π2. B then
sets L[σ]← (m, γ), and return σ to A.

At the end of the experiment, A returns a bit b∗. B returns 1 to C if b′ = b∗, else it
returns 0. If b = 0, i.e., the proofs are fake, then B simulated game 3, else it simulated
game 2, which yields our equality. After this game, the proofs cannot be used by A to
win the experiment.

Game 4. This game is the same as game 3, except that the commitments are replaced
with random. We show that:

|Pr[S3]− Pr[S4]| ≤ qSa/Si(qF + qH) · AdvDDH
G,A (λ),

where qSa/Si is the number of calls to the Sa/Si oracle.

Proof. To prove this, we reuse the notion of fixed n-DDH defined in Def. 17. We show
the indistinguishability of Games 4 and 3 using a hybrid argument.

Let Hi be the experiment such that the first i calls to Sa/Si use honest commitments
and the qSa/Si − i last ones use random commitments.

Then, we show that if there is a PPT adversary A capable of distinguishing Hi and
Hi+1, then we can build an adversary B against fixed (qF +qH)-DDH in G, where qH is
the number of queries to the random oracle for hash function H , and qF is the number
of queries to the random oracle for F . To make things clearer, we write these random
oracles separately instead of implicitly including them in the signing oracles.
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Let C beB’s challenger, who picks a random bit b at the beginning of the experiment.
B also picks a random bit b′ and computes all necessary key material to obtain (pk, sk)
and (spk, ssk), forwarding pk, spk to A, and setting pp = pk||spk. B initiates empty
lists L, LE , as above, to keep track of the limit and the encryptions, respectively, and a
list LD, which will be used to inject the fixed DDH challenges intoA’s queries, as well
as a counter cSa/Si counting the queries to Sa/Si.

Recall that C sends B challenges of the form (g,X = gx, Y = gy, Z = gz), with a
different Y, Z every time, such that if b = 0, then z is random, else z = x · y. First, B
sets F (pp) = g, then handles the random oracles as follows:

H(·) (resp. F (·)) upon a query u, if H[u] (resp. F [u]) exists, B returns H[u] (resp
F [u]), else if u is of the form u′||pp, B queries C for a challenge (g,X, Y, Z), sets
H[u] = Y (resp. F [u] = Y ), LD[Y ] = Z, and returns Y , else generate a random
hash h, set H[u] = h (resp. F [u] = h), and return h.

Other oracles are handled as follows:

Sig(·, sk, ·, ·, ·) on input (m, ¯spk,ADM, γ), B acts as in the above game (even when
computing the commitments, recall that we simply explicited the random oracles
as they are different from usual: thus, if ¯spk = spk, we get commitments coming
from a DDH challenge, otherwise simply random hashes).

San(·, ·, ·, ·, ssk) A sends (m,MOD, σ, p̄k), acts as above except it queries a simulator
for the proofs if c was in LE (still encrypting a random message to compute e′ in
this case).

Sa/Si(b′,pk, spk, sk, ssk, ·, ·, ·): on input (m,ADM,MOD, γ), if ADM(MOD) = 0, B
returns ⊥.
If b′ = 1, then B proceeds as follows: B first obtains a signature σ by computing
Sig on the message m as follows:

– if cSa/Si ≤ i, the commitments are computed normally,
– else if cSa/Si = i + 1, B generates a random t, sets V = Xt, then for all other

commitments, if we denote with u the corresponding input for H or F (e.g.,
for Ai, u = i||mi||pp), then we get a hash h = F (u) (for Bi) or h = H(u)
(for Ai or C), and the final commitment will be (LD[h])t,

– else (if cSa/Si > i+ 1), it just computes random commitments.
They are then signed normally with the class-equivalent signature to obtain s, then
a random message is encrypted to obtain e, setting LE [e] as c = t, (Ai, Bi)i∈[n],
C, V, s. B queries the simulator for the proofs π1, π2 before signing the whole with
skR to obtain r, and thus σ.
Then, B computes San normally, except instead of decrypting e it simply uses
the content of c (either having kept it or extracting it from LE), computes e′ as a
random encryption, and B queries the simulator for π1 and π2. B finally obtains a
sanitization σ′.
B sets L[σ′]← (m, γ), and returns σ′ to A.
Else, if b′ = 0, then B obtains a signature σ by computing Sig on the message
MOD(m) the same way as described above for a signature on m if b′ = 1.
B then sets L[σ]← (m, γ), and returns σ to A.
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In the end, A returns a bit b∗, and if b′ = b∗, then B sends 1 to C, else it sends 0.
Analysis. If b = 0, then the commitments are random, and B simulates Hi, else

it simulates Hi+1, which yields our inequality, as H0 is Game 4 (commitments are
random), and HqSa/Si is Game 3 (all commitments are honest).

|Pr[S3]− Pr[S4]| = |Pr[HqSa/Si ]− Pr[H0]|

≤ qSa/Si(qH + qF )Advclass-hid
S (λ)

At this point, the commitments can no longer be used by A to answer the Sa/Si
challenge.

The only differences between the signature of MOD(m) (b = 0) and the sanitization
of m into MOD(m) (b = 1) are now in s and r: if b = 1, s has had a change of
representative and r was signed with sskR, and if b = 0 then s is an “original” and r is
signed with skR.

We use a hybrid argument to show that these are indistinguishable.
Let E1 be the experiment for b = 1, let E0 be the experiment for b = 0. Let H be

a hybrid experiment where the challenger does everything as in E1, except the 2-Ring
Signature is signed with the Signer’s key, skR.

We argue that

| Pr[1← E1]− Pr[1← H] |≤ AdvanonR (λ).

Indeed, if there exists a PPT adversary A able to distinguish between the two ex-
periments with non-negligible probability, we can build an adversary B who wins the
Anon experiment of the 2-Ring Signature scheme R with non-negligible probability.

Let C be the challenger for B, we show how B simulates the experiment for A.
At the beginning, C picks a random bit b, and gets two public/private key pairs

(pk0, sk0) and (pk1, sk1), which it forwards to B. B sets (pkR, skR)← (pk1, sk1) and
(spkR, sskR) ← (pk0, sk0), then generates two key pairs (pkE , skE) and (pkS , skS)
for the encryption and class-equivalence signature, respectively. B also initiates, as
usual, a list L for the limits, and a list LE for the encryptions. B can then set (pk, sk) =
((pkS ,pkR), skS) and (spk, ssk) = ((pkE ,pkR), skE) and send (pk, spk) to A. B’s
answers to A’s queries are as follows:

Sig(·, sk, ·, ·, ·) on input (m, ¯spk,ADM, γ), B parses m as n blocks. If ¯spk 6= spk,
it computes the signature normally, except for the 2-Ring Signature, as B doesn’t
know skR/sskR, and must thus query C for the signature r “with key 1”. Otherwise,
if ¯spk = spk it acts as described in Sig for B against fixed-DDH (including the list
additions), except the commitments are always random, and, as above, r is queried
to C.

San(·, ·, ·, ·, ssk) A sends (m,MOD, σ, p̄k), B acts as described in the fixed-DDH
above, except it must query C to obtain r′ using “key 0” (i.e., that of the sani-
tizer), and finally obtains σ′. B still checks the winning conditions : if L[σ] is null,
it returns σ′, else for (m̄, γ)← L[σ], it checks that D(m̄,MOD(m)) ≥ γ, in which
case it sets L[σ′] = L[σ], and returns σ′, else it returns 0.
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Sa/Si(1,pk, spk, sk, ssk, ·, ·, ·): on input (m,ADM,MOD, γ), if ADM(MOD) = 0, B
returns ⊥.
Then, B first obtains a signature σ by computing Sig on the message m as de-
scribed above, then B computes San on modification MOD of m using signature
σ, querying C for the 2-Ring Signature r′, resulting into signature σ′.
B sets L[σ′]← (m, γ), and finally returns σ′ to A.

At the end of the experiment,A returns a bit b∗, which B forwards to C. We can see
that if C’s bit b is 1, then in Sa/Si r′ is signed with sskR and thus B simulates E1, else
if b is 0, then r′ is signed with skR, and B is simulating H. The probability that B wins
is exactly the same as A, which yields our inequality.

In this hybrid, the 2-Ring Signature cannot be of any help to A in the experiment.
Next, we argue that

| Pr[1← E0]− Pr[1← H] |≤ AdvAdaptS (λ).

Indeed, if there exists a polynomial-time adversary A able to distinguish between
the two experiments with non-negligible probability, we can build an adversary B who
wins the Adaptation experiment of the class-equivalence signature scheme S with non-
negligible probability.

Let C be B’s challenger. At the beginning of the experiment, C picks a random
bit b and generates a signing key pair (pkS , skS), which is sent to B. B generates the
remaining key pairs to complete (pk, sk) and (spk, ssk) (i.e., the pairs for the 2-Ring
Signature, and the pair for the encryption scheme), and forwards pk and spk to A. B
also picks a random bit b′.
B answers A’s queries as follows:

Sig(·, sk, ·, ·, ·) on input (m, ¯spk,ADM, γ), if ¯spk 6= spk, B computes the signature
normally except it queries C for the class-equivalent signature, as it doesn’t know
the key. Otherwise, it acts as described in the anon game above, except it can sign
r itself, but queries C for the s signature. The lists are handled as before.

San(·, ·, ·, ·, ssk) A sends (m,MOD, σ, p̄k), then if p̄k 6= pk it computes the sani-
tization normally, querying C for the change of representative on s to obtain s′,
otherwise if p̄k = pk, it acts as described in the anon game above, except: if σ was
output by Sa/Si, it queries C for the signature s′, and signs r′ itself with skR, and
otherwise it queries C for the change of representative on s to get s′, and signs r′

itself with sskR. The lists are handled as before.
Sa/Si(1,pk, spk, sk, ssk, ·, ·, ·): on input (m,ADM,MOD, γ), if ADM(MOD) = 0, B

returns ⊥.
Then, B first computes signature σ̄ on m by following the steps of Sig described
above, then follows all the steps for San with modification MOD on m for σ̄, ex-
cept:

– it queries C for a challenge on the class-equivalence signature s′, and
– the 2-Ring Signature r′ is signed with skR.
B then returns the obtained signature σ′.
The lists are handled as before.
At the end of the experiment, A returns a bit b∗, which B forwards to C.
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If b = 0, then in Sa/Si the class-equivalence signature s′ is a fresh signature, thus
B simulates E0 perfectly, and if b = 1, then s′ is a signature that was “sanitized”, i.e.,
on a changed representative, thus B simulates H perfectly. The probability that B wins
is the same as A, proving our inequality.

Finally, we have that:
Pr[S4] = | Pr[1← E1]− Pr[1← E0] |

= | Pr[1← E1]− Pr[1← H] + Pr[1← H]− Pr[1← E0] |
≤ | Pr[1← E1]− Pr[1← H] | + | Pr[1← H]− Pr[1← E0] |
≤ AdvAnonR (λ) + AdvAdaptS (λ)

A.5 Proof of Theorem 5

Proof. Upon querying the LRADM oracle on (m, (ADM0, γ0), (ADM1, γ1)), the ad-
versary A receives a signature σ = ((Ai, Bi)i∈[n], C, V, π1, π2, s, e, r), on m with
ADMb, γb, where b is the challenger’s bit. In σ, the C value is directly linked to γb,
and the Bi values are directly linked to ADMb. No other value depends on them. The
idea of this proof is thus to randomize C and Bi in an indistinguishable way.

We show that:

Advinvis
ULISS,A(λ) ≤AdvSUFULISS(λ) + AdvIND$−CCA

E (λ) + (qH + qF ) · AdvDDH
G (λ),

where qH and qF are the number of queries to the random oracle simulating H and
F , respectively. We follow a logic very similar to the proof for the unlinkability and
will thus refer to this proof for the straightforward game hops.

Game 0. This is the original Expinvis
ULISS,A(λ) experiment, hence:

Advinvis
ULISS,A(λ) = |Pr[S0]− 1/2|

Game 1. This game is the same as the previous one except the challenger aborts
and returns a random bit if A queries the San oracle on a forged signature.

|Pr[S1]− Pr[S0]| ≤ AdvSUFULISS,A(λ).

We showed in A.1 that this is negligible. After this game, all signatures input to San
were generated by the challenger. This means, in particular, that A cannot try to guess
if a signature was sanitized or not by trying to “copy” the output of LRADM into a new
forged signature to test the limit or admissibility.

Game 2. This game is the same as the previous one, except the challenger replaces
the input to the encryption scheme with random. We claim that:

|Pr[S2]− Pr[S1]| ≤ AdvIND$-CCA
E (λ).

Proof. Follows the idea of the proof of Game 2 in the proof of unlinkability, i.e., we
construct a secondary adversary B against IND$-CCA who injects its challenges by
using them as the encryptions in A’s queries to LRADM, and in San if A wishes to
sanitize a signature that was output by LRADM. As in previous proofs, B must keep
track of what should have been encrypted, as it cannot decrypt its challenges.

Game 3. This game is the same as the previous one, except that the NIZKPs are
faked by the Simulator. We argue that: Pr[S3] = Pr[S2].
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Proof. Follows the idea of the proof of Game 4 in the proof of unlinkability. We con-
struct a secondary adversary B against the zero-knowledge property of the NIZKPs.
Now, in LRADM and in calls to San for signatures output by LRADM, B encrypts
random messages instead of the commitments, to apply game 2 above, and queries its
challenger for the proofs π1 and π2.

Game 4. This game is the same as the previous one, except that the commitments
that are computed when creating a signature are generated randomly. We argue that:

|Pr[S4]− Pr[S3]| ≤ qLRADM(qF + qH) · AdvDDH
G (λ).

Proof. Follows the idea of the proof of Game 5 in the proof of unlinkability. As in that
game, we use hybrids, i.e. in experiment Hi the first i queries to LRADM have honest
commitments and the rest are random, from which we construct an adversary B against
fixed (qH + qF )-DDH, as defined in 17. Recall that a challenger for (qH + qF )-DDH
outputs tuples (g,X = gx, Yi = gyi , Zi = gzi) for i ∈ [n], with the same x every time
but a different yi, and such that either every zi is equal to x · yi, or they are all random.
As in the proof of unlinkability (and transparency), we set F (pp) = g, and B uses the
random oracles as described in these proofs, setting hashes of values ending with pp as
the Yi challenges. In LRADM, as in the unlinkability and transparency, B will use the
Zi values as commitments in the i + 1st query, which will be legit if B’s challenger
is giving real DH elements, thus simulating hybrid Hi+1, and random otherwise, thus
simulating Hi. As all elements of the signatures output by LRADM linked to ADM or γ
are random, we have that Pr[S4] = 1/2.
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