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Abstract—In the last decade, Approximate Computing (AxC)
has been studied as a possible alternative computing paradigm.
It has been used to reduce the overhead cost of conventional
fault tolerant schemes, such as the Triple Modular Redundancy
(TMR). One of the most recent propositions is the concept of
Quadruple Approximate Modular Redundancy (QAMR). QAMR
reduces the overhead cost w.r.t. conventional TMR structures,
while guaranteeing the same fault-tolerance capability. In this
paper, we propose a new approximation technique to realize
the QAMR and we perform a Design Space Exploration (DSE)
to find QAMR Pareto-optimal implementations. Moreover, we
provide the design of a new majority voter for the proposed
architecture. Experimental results show that it is possible to find
QAMR variants achieving area and/or delay gains compared
to the TMR counterpart, for 85.4% and 97% of the examined
circuits for FPGA and ASIC technologies respectively.

Index Terms—Fault tolerance; error correction; triple modular
redundancy; TMR; approximate computing; quadruple approxi-
mate modular redundancy; QAMR; digital circuits; approximate
computing

I. INTRODUCTION

Electronic systems operating in harsh environments (e.g. radia-
tive) face multiple physical phenomena which might lead to de-
graded performance or to errors [1]. The main effects in advanced
nanometer electronics leading to permanent faults – hence to
repeating failures – are aging and wear-out. Conversely, transient
faults (soft errors) may be caused by energetic charged particles.
Their propagation through the logic may ultimately cause a system
malfunction. To mitigate the effects of these events on electronic
circuits, several fault-tolerance approaches have been proposed.
One of the most established fault-tolerant architectures is the
Triple Modular Redundancy (TMR) [2]. Triplicating the circuit
and performing a majority vote of the outputs of the three replicas
ensures soft and hard error tolerance; this comes at the cost of
200% overhead and of extra area and delay of the majority voter.

Approximate Computing (AxC) is an increasingly established
alternative computation paradigm that exploits the intrinsic re-
silience of some applications to achieve gains in terms of re-
sources [3]. Indeed, for some applications, relaxing non-critical
specifications and obtaining an inaccurate result does not necessar-
ily impact the final outcome catastrophically. At the same time, this
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may provide disproportionate savings in terms of resources [4],
[5]. AxC has been applied at different layers of computing sys-
tems, from hardware to software [4]. In this work, we focus on
Approximate Integrated Circuits (AxICs), stemming from AxC
application to Integrated Circuits (ICs). In particular, we focus on
functional hardware approximation that selectively changes the
circuit functionality to reduce the area and/or delay. Functional
hardware approximation approaches proposed in the literature can
be grouped into three main categories [4]. 1) Ad-hoc approxima-
tion, necessary to alter very specific functionalities of the original
circuit [6], [7]. Although efficient, ad-hoc approximation usually
entails high design efforts. 2) Automatic synthesis methodologies
for approximate circuits, which help to reduce the circuit cost
while trying to minimize accuracy reduction [8], [9]. Such syn-
thesis methodologies can help to manage the approximation of
large circuits. 3) Hardware accelerated Neural Networks (NNs),
which are well known to accurately mimic logic functions while
consuming often less than conventional circuits [10]. NNs can be
efficiently accelerated by dedicated hardware.

AxC has also been applied to TMR to reduce the overhead stem-
ming from the circuit triplication [11]–[15]. Rather than three pre-
cise replicas, three different AxICs are used to implement the Ap-
proximate Triple Modular Redundancy (ATMR). Unfortunately,
while AxICs lead to lower TMR overhead, their error-masking
capability is reduced. This makes the ATMR not a viable option for
safety-critical scenarios. To overcome the above issue, the study
in [16] proposed the concept of Quadruple Approximate Modular
Redundancy (QAMR) to ensure the same fault tolerance properties
as the TMR while still benefiting from approximation advantages.
QAMR is not based on using three but rather four AxICs. Prelimi-
nary results reported in [16] proved the feasibility and the interest
in the QAMR approach. However, so far, the proposed QAMR-
oriented approximation method is based on realizing the AxICs by
selectively removing outputs and the related logic cones driving
them [16]. Although this approach allows using a conventional
three-bit majority voter as in the TMR, the lack of an efficient four-
bit voter prevents the use of other approximation approaches.

In this paper, we propose a novel QAMR approach. The main
contributions of this work are:

1) a different approximation approach, based on logic falsifica-
tion [17], to realize the four QAMR replicas;

2) the design of a new efficient four-bit majority voter enabling
the new QAMR concept;

3) a Design Space Exploration (DSE) approach to find Pareto-



optimal implementations w.r.t. area and delay, along with
the analysis of achievable trade-offs in comparison to clas-
sic TMR and to a simple heuristic approach to determine
optimized QAMR implementations, as proposed in [16].

The remainder of the paper is organized as follows. Section II
reviews previous studies on AxC-based fault tolerance. Section III
illustrates the proposed approach. Section IV details the DSE flow
and shows the experimental results. Finally, Section V draws some
conclusions.

II. APPROXIMATION-BASED FAULT TOLERANCE

As already mentioned, several AxC-based proposals exist in
the literature to reduce the overhead of TMR. This research area
is generally known as Approximate TMR (ATMR) [11]. The
ATMR approach employs three AxICs instead of three fully-
precise replicas. For a given input, only one AxIC can give an
incorrect answer. However, ATMR suffers from severe reliability
limitations, unacceptable in safety-critical scenarios. Let us resort
to an example to illustrate this issue. Let X be an input vector
for the ATMR replicas. Let one of the three AxICs produce a
wrong response – due to the approximation – while the other two
produce a correct response. Let us imagine that a soft error occurs
in one of the AxICs, thus modifying its output. If it occurs in
the AxIC providing the approximate output, then the voter will
still be able to produce the correct response, thanks to the two
remaining AxICs. Conversely, if an AxIC providing the correct
output to X experiences the error, there will be two incorrect
responses, i.e., the approximate one and the faulty one. Thus, the
voter may likely produce a wrong response. In summary, input
vectors for which only two out of three AxICs compute correctly
are not protected against faults. A possible alternative to mitigate
the problem is to adopt a modified checker that computes the
average of the results, as proposed in [18] for a software ATMR
implementation. However, in this case the outputs are approximate
(i.e., not precise). Finally, since designing fault tolerance architec-
tures for safety-critical applications is a crucial task, realizing it
by using AxC-based schemes entails some important challenges.
For instance, to use the ATMR solution in safety-critical scenarios,
unprotected input vectors must not be critical for the application.
Unfortunately, such requirement may be impossible to satisfy, even
for resilient applications.

Recently, a novel approach referred to as QAMR was pre-
sented [16]. The QAMR is the first approximation-based fault-
tolerant architecture not sacrificing fault-masking capabilities.
Let us resort to Figure 1 to explain the QAMR approach. Let
f be a Boolean function, whose input domain D can be split
into four subsets D1, D2, D3, D4, as shown in Figure 1a. The
conventional TMR approach, sketched in Figure 1b, uses three
identical copies of the circuit implementing f and a voting scheme.
This ensures fault tolerance when one of the three circuit replicas
incurs some defective conditions. In such a case, the defective
copy will produce incorrect outputs, for some inputs. Thanks to
the other two correct copies, the majority voter can still provide
the correct output. As sketched in Figure 1c, the QAMR employs
four circuits suitably approximated to ensure the desired fault
tolerance but achieve efficiency gains. Specifically, the four AxICs
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Fig. 1: (a) Boolean function’s input domain split into four subsets
(D1-D4); (b) the TMR uses three identical circuit copies: all the
circuits produce accurate results for all the subsets (D1-D4), when
no errors occur; (c) QAMR [16] uses four approximate circuits. As
it can be seen, each input subset is covered three times, as in TMR.

should be approximated so that all the function domain subsets
are covered three times – as in the TMR scheme. At the same
time, using AxICs enables the opportunity to achieve reductions
in cost [16]. The underlying insight is that a good AxC technique
achieves higher reductions in circuit cost than it reduces the
asserted fault tolerance properties. The approximation technique
presented in [16] is based on a selective removal of outputs: a
specific output is removed only from one replica and kept in the
others. In this way, only three replicas are obtained for each output
signal. Thus, a conventional majority voter can be used. Although
innovative, the study in [16] provides only results obtained based
on a random search-based exploration of the QAMR design space.
Moreover, using four AxICs calls for concepts for four-bit majority
voting. This hinders the utilization of different approximation
approaches, which do not remove the circuit outputs. Finally, no
automatic DSE strategies have been proposed for determining
Pareto-optimal QAMR implementations. In this paper, we address
these issues to discover the potential of QAMR to full extent.

III. PROPOSED QAMR APPROACH

In the following, we present a new QAMR-oriented approx-
imation methodology, a new voting strategy, and we perform a
thorough exploration of the QAMR design space. The approxi-
mations are applied to each replica individually to reduce its cost
while keeping all output signals. This calls for a new four-bit
voting approach. The straightforward method would be to put a
selector circuitry between the four AxICs and the majority voter to
prevent the wrong (approximate) response from propagating to the
voter. However, there are two major drawbacks of this method:
(i) the selector needs information on which replica delivers the
wrong (approximate) response, at any time; (ii) the selector entails
a big overhead that may undermine the approximation gains; we
measured its overhead for ASIC technology (FreePDK45 45nm
library [19]): +132% in area and +65% in delay, w.r.t. the conven-
tional 3-bit majority voter. In the following, a new efficient voting
strategy is proposed, based on the approximation choices made
at design time. In the next subsection, we introduce the proposed
approximation approach and, in Subsection III-B, we present the
new voting strategy. Finally, in III-C, we illustrate the DSE and



present achieved trade-off solutions in terms of circuit cost and
delay.

A. Approximation approach

To perform approximations in each of the AxICs, we resort to an
approximate multi-level logic minimization methodology, namely
logic falsification [17]. It refers to the process of modifying the on-
set or alternatively the off-set of a given Boolean function, thereby
introducing errors in its definition on purpose. The proposed
QAMR approach produces approximated circuits satisfying the
following conditions:

(i) for each given input subset (approximation subset), only one
AxIC is allowed to produce an incorrect (i.e., approximate)
response, whereas the other three AxICs must produce non-
approximate responses;

(ii) for each given output, the four AxICs must provide the
same fixed-by-design value, for their respective approxima-
tion subset. This condition enables the efficient design of
the novel four-bit voting solution – as introduced in Subsec-
tion III-B.

To clarify, in Table I we report a simple example of approximation
by logic falsification satisfying the above conditions. We firstly

TABLE I: Example of a 3-input and 2-output Boolean function with
approximation applied by logic falsification (affected output values
shown in red circles)

Inputs Original AxIC0 AxIC1 AxIC2 AxIC3

A B C out0 out1 out0 out1 out0 out1 out0 out1 out0 out1

Subset0
0 0 0 1 0 0 1 1 0 1 0 1 0
0 0 1 0 0 0 1 0 0 0 0 0 0

Subset1
0 1 0 0 1 0 1 0 1 0 1 0 1
0 1 1 1 1 1 1 0 1 1 1 1 1

Subset2
1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1

Subset3
1 1 0 1 0 1 0 1 0 1 0 0 1
1 1 1 1 0 1 0 1 0 1 0 0 1

Approximate output values chosen: out0 = 0, out1 = 1

partition the set of input-literal assignments into four subsets.
For each subset, we apply logic falsification (i.e., we modify the
output response) of only one of the replicas (as shown in red
in Table I). The only constraint we put on the falsification of
output values is that we require the different replicas to use the
same falsification values for their input subset. Let us refer to
the example circuit specified in Table I. Here, AxIC0 provides
out0 = ‘0’ and out1 = ‘1’ as response to all the inputs in
subset0 and a correct response to inputs in other subsets; the same
goes for AxIC1 which provides out0 = ‘0’ and out1 = ‘1’ as
response to the inputs in subset1 and a correct response to inputs
in other subsets, and so on. In this way, we obtain four AxIC
replicas with a corresponding QAMR structure providing the same
robustness as the conventional (non-approximate) TMR while also
enabling, thanks to the approximation, possible reductions in terms
of resource costs, as it will be shown in Section IV.

Note that, depending on how we choose a) the input subsets
and b) the values for the approximate outputs, we obtain different
outcomes in terms of final area and delay after circuit synthesis. To
explore this vast search space systematically, a DSE (discussed in

Subsection III-C) is applied to find optimal circuits. In particular,
we are interested in finding solutions close to Pareto-optimality
in terms of circuit cost and delay and compare these trade-offs
with that of the classical TMR version. First, we introduce the new
voting strategy needed.

B. A sorting-network-based voting approach
As described in Subsection III-A, we generate four AxICs, such

that any given one may provide approximate responses only when
the other three provide non-approximate responses. To be able to
correctly and efficiently perform a majority vote, we propose a
voting approach based on the well-known binary Sorting Networks
(SortNets) [20]. SortNets are made of comparators and wires. A
wire carries a binary value through the network. A comparator
connects two wires and sorts the two values carried by the wires.
Figure 2a shows the symbolic representation of a comparator;
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Fig. 2: (a) comparator symbol: two signals are sorted when
connected; (b) logic-gate implementation of the comparator and (c)
corresponding truth table. (d) Four-wire sorting network representa-
tion and (e) corresponding gate-level implementation.

Figure 2b represents the corresponding logic-gate implementation,
and Figure 2c the related truth table. As shown in the figure, the
comparator employs a logic OR and a logic AND to perform the
binary max and min functions, respectively. The function of the
network is to produce a vector of sorted signals, by arranging
the comparators accordingly. In our context, the above network is
applied to sort the four outputs produced by the four AxICs. In Fig-
ure 2d, a corresponding four-wire sorting network representation
is shown and in Figure 2e the corresponding logic-gate implemen-
tation. This leads to a clear separation of the zero (‘0’) values from
the one (‘1’) values, at the bottom and at the top of the SortNet
output, respectively. Let us resort to an example to show the merit
of the idea. Figures 3a and 3b depict two simple examples where
one AxIC produces a wrong value, due to the approximation. Let
the correct response of an output signal be ‘0’ but let one of the
replicas produce a ‘1’ due to the approximation (Figure 3a), the
SortNet arranges the values so that the wrong response ends up
at the top. Conversely, in case the correct response for an output
signal is ‘1’ (Figure 3b) but one of the replicas produces a ‘0’
due to the approximation, the SortNet arranges the values so that
the wrong response ends up at the bottom. In this way, the three
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Fig. 3: (a) and (b) four-wire SortNet working principle (see Table I,
input ‘000’). (c) Example showing the correctness of the SortNet-
based voting strategy under occurrence of a fault.

non-approximate values wrapped in the green ovals in Figure 3
can be voted. As final vote signal we use the middle value in
the ovals, i.e., co in Figure 3a and bo in Figure 3b. Indeed, we
resort to the mid-value select approach [21] stating that “sorting
three signals – one incorrect and two correct – leads a correct one
to lay between the other two”. This is shown in the example in
Figure 3c: even when a fault strikes an AxIC producing a non-
approximate response and turns it into a wrong one, the SortNet-
based voter is still able to deliver the correct response, i.e., bo = 1
in the example. To suitably embed the voting structures depicted
in Figure 3 into the QAMR architecture, we choose – at design
time and for each output – the suitable variant of the SortNet
among those in Figures 3a and 3b. Indeed, thanks to the second
approximation condition (Sec. III-A), we guarantee – by design –
that the AxIC replicas produce the same approximate response for
each given output (see Table I).

Finally, since we do not need all the four output values of
the SortNet, we can optimize the implementation. This leads to
the logic-gate implementations shown in Figures 4a and 4b. The
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Fig. 4: (a) and (b) sorting-network-based voter implementations (see
Figures 3a and 3b); (c) conventional majority voter

former (4a), has to be used to perform a vote for approximate
outputs equal to ‘1’ (i.e., Figure 3a and out1 in Table I). The latter
(4b), has to be used to perform a vote for approximate outputs
equal to ‘0’ (i.e., Figure 3b and out0 in Table I). For comparison,
in Figure 4c, we report the conventional 3-bit majority voter logic-
gate implementation. The proposed SortNet-based voter entails a
moderate overhead in terms of logic gates (7 instead of 5) and still
has three logic levels, thus it has no impact on the circuit delay,
compared to the 3-bit counterpart.

C. Design space exploration

To explore the front of Pareto-optimal QAMR variants, we
perform a DSE. We want to obtain optimized QAMR variants and
compare these w.r.t. area cost and delay trade-offs with the TMR
version. We model the DSE as a Multi-objective Optimization
Problem (MOP). Basically, a MOP consists of a set of objective
functions to be either minimized or maximized subject to a set of
constraints. Since different objectives often represent conflicting
objectives, the DSE goal is to seek for a set of equally good
solutions being close to the Pareto front. Given two solutions
x, y : x 6= y, x is said to dominate y iff x is better or equally
good in all objectives than y and at least better in one objective.
If a solution is not dominated by any others, it is called a Pareto-
optimal solution.

In the case of NP-hard MOPs, exact resolution algorithms turn
out to be too computationally expensive. Therefore, usually they
are not applicable when the search space is very large. Con-
sequently, we resort to a Multi-objective evolutionary algorithm
(MOEA) heuristic to produce an approximation of the Pareto front
in a rather reasonable time. These are largely used in the literature
to find Pareto fronts for MOPs [22]–[24]. MOEAs operate on a
set of individuals, called population, that evolves and, eventually,
converges to a set of Pareto-optimal solutions. Each individual
is represented as a chromosome, i.e., a data structure encoding
the search space. During the evolution process, new offspring
is generated either through or in combination of mutation and
crossover. A crossover takes two parent chromosomes to produce
a new chromosome.

Applied to our problem of QAMR synthesis, we consider its
final area and delay as the two objectives, both to be minimized.
Indeed, since it is well-known that power consumption and area
are non-competing objectives (i.e., reducing area generally leads
to a reduced power consumption), we chose to optimize area and
delay. These two objectives are well known to be competing. An
individual of the MOEA corresponds to a QAMR implementation,
i.e., the attributes of the four approximate replicas and the voter. In
particular, we resorted to NSGA-II [23] and used binary encoding
for two chromosomes introduced to encode the search space: the
first chromosome encodes the choice of which two input literals
shall be used for selecting the partition of the input domain of
the given Boolean function into four subsets, whilst the second
chromosome is used to select the values of the falsified outputs
(as shown in red in Table I). In this way, by mutating the chro-
mosomes, the MOEA makes the QAMR implementations evolve
towards the Pareto front. The next section describes our DSE flow
in more details.

IV. QAMR DSE FLOW AND EXPERIMENTAL RESULTS

In this section, we firstly describe the adopted DSE flow, then
we show and comment our experimental setup and results, and
compare them with the state of the art.

A. DSE flow

Figure 5 shows the flow of the proposed DSE. It is based
on the utilization of a MOEA (i.e., NSGA-II [23]) to explore
the different possible approximation opportunities. As a point
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of reference, also for the original Boolean function, a logic op-
timization is applied to create an optimized precise (i.e., non-
approximate) function implementation. Three identical replicas
will form the TMR reference implementation along with a conven-
tional majority voter. For this design point and also each explored
approximate QAMR implementation as proposed by the MOEA,
Espresso [25] and ABC resyn2 [26] are used to perform different
logic optimizations1 oriented to the final implementation in 6-
LookUp Tables (LUTs) Field Programmable Gate Array (FPGA)
and Application Specific Integrated Circuit (ASIC) technologies.
Considering the DSE, a first population of solutions (i.e., multiple
different input subsets and approximate output values) is generated
randomly. According to its chromosome, the logic falsification
operation is applied to the Boolean function for each individual
in the population, as described in Subsection III-A, to obtain four
approximate Boolean functions (see Table I for an example). The
subsequent logic optimization creates four optimized approximate
functions; these will form the QAMR along with the SortNet-
based voter. Finally, the fitness functions are evaluated, i.e., the
costs in terms of area and delay of each explored QAMR is eval-
uated w.r.t. the target technology. For the ASIC target, the circuit
area cost is determined by the number of logic gates, for the FPGA
as the number of used LUTs in the respective synthesis reports. For
both the technologies, the critical path delay is obtained from the
synthesis reports. Finally, the chosen MOEA is elitistic: at each
time, it keeps an archive of so-far non-dominated individuals (i.e.,
QAMR versions providing improvements in terms of area and/or
delay). The dominance-free archive is also updated from popula-
tion to population. The process iterates until a stop condition is
reached, hence obtaining a final population of QAMR solutions
on the Pareto front or at least close to it. Last, each solution in
the final dominance-free archive is Place&Routed according to
the target technology (i.e., FPGA or ASIC). The obtained QAMR
implementations are then compared with the reference TMR and
the results are reported.

1For a fair comparison, we applied exactly the same logic optimizations to
both QAMR and TMR.

The size of the design space can be calculated as follows:(
n

2

)
· 2m =

n! · 2m

2! · (n− 2)!
(1)

In Equation 1, n is the number of function inputs and m the
number of function outputs. In particular,

(n
2

)
corresponds to

the number possible choices of which two input literals shall be
used for selecting the partition of the input domain of the given
Boolean function into four subsets; 2m is the number of possible
combinations of the values of the falsified outputs.

B. Experimental Setup

We evaluated our approach on 41 generic combinational circuits
from the publicly available LGSynth’91 benchmark suite [27],
ranging in complexity from n = 4 to 128 inputs and m = 5 to 66
outputs. For each circuit, we applied the flow described in Figure 5.
The genetic algorithm parameters were set as follows: the mutation
probabilities of the chromosomes choosing the input subsets and
fixing the output values were set to n−1 and 0.5, respectively,
where n is the number of input literals; both chromosomes had
a crossover probability of 0.6; both the population size and the
number of epochs were set to 256. After the DSE, to evaluate
the obtained final set of non-dominated solutions for FPGA and
ASIC target technologies, we applied a Place&Route phase for
each non-dominated solution (see Fig. 5). For the FPGA target, we
used Xilinx Vivado and targeted the Xilinx Zynq-7020 FPGA; for
the ASIC technology we used Genus Synthesis Solution from Ca-
dence and targeted the FreePDK45 45nm technology library [19].
For both, we used standard synthesis commands without further
optimizations. To obtain the final area/delay results, we resorted
to the tool reports. As point of comparison to analyze the QAMR
gains, we applied the same process to the reference TMR. More-
over, we synthesized, in both technologies, the proposed SortNet-
based voter to compare it to the conventional majority voter.

C. Experimental Results

In Table II, we present the results of the synthesis for the pro-
posed new SortNet-based voter and compare it to the conventional
majority voter in terms of area and delay.



TABLE II: Synthesis results for the proposed SortNet-based voter
and comparison with the conventional majority voter

Attribute SortNet-based voter Majority voter

FPGA Area (LUTs) 1 1
Delay (ns) 5.229 5.229

ASIC Area (µm2) 16.425 11.732
Delay (ns) 0.138 0.138

Concerning FPGA technology, both voters occupy a sin-
gle LUT, since both implement a simple logic function. Conse-
quently, also the delay is the same. We report the maximum delay
for the slowest process corner allowed by Xilinx.

Concerning ASIC technology, the SortNet voter has the same
delay as the conventional majority voter and a moderate area
overhead (+40%). However, considering that the voter is usually
smaller than the circuits to vote for, the introduced overhead is
likely to be negligible compared to the gains achieved thanks to the
approximation. In the following, reported results take into account
the whole architecture, i.e., AxICs and voter.

As already mentioned, the results provided by the MOEA is
a set of Pareto-optimal QAMR variants. The results reported are
expressed as relative gains for both area and delay, according to
the following formula:

gain (%) =
(TMR value − QAMR value)

TMR value
· 100 (2)

We organized the results on a Cartesian plane where x-axis rep-
resents the area gain w.r.t. TMR and the y-axis the delay gain
w.r.t. TMR. The reference TMR version lays in the origin of the
Cartesian axes. The QAMR variants can be positioned in different
quadrants of the Cartesian plane. Specifically:
• if a variant lies in the Q1 quadrant (x > 0 ∧ y > 0), it

achieves gains in terms of both area and delay;
• if a variant lies in the Q2 quadrant (x ≤ 0 ∧ y > 0), it

achieves gains only in terms of delay;
• if a variant lies in the Q4 quadrant (x > 0 ∧ y ≤ 0), it

achieves gains only in terms of area;
• if a variant lies in the Q3 quadrant (x ≤ 0 ∧ y ≤ 0), it does

not achieve gains, at all.
To give a detailed example, in Figure 6, we report the final
population for the SEQ circuit mapped to ASIC, along with the
relative Pareto front. The figure highlights that for a lot of QAMR
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Fig. 6: Example of QAMR population and related MOEA-generated
Pareto front, for the SEQ circuit [27]

TABLE III: Experimental results organized in categories

Circuit Inputs Outputs Target Quadrant∗ Runtime (hours)
5xp1 7 10 ASIC Q1 9.04

FPGA Q2 8.69
alu2 10 6 ASIC Q1 10.69

FPGA Q2 10.22
alu4 14 8 ASIC Q2 35.24

FPGA Q1 33.96
apex1 45 45 ASIC Q1 28.74

FPGA Q2 29.90
apex3 54 50 ASIC Q2 30.30

FPGA Q2 31.22
apex4 9 19 ASIC Q1 39.17

FPGA Q2 39.54
b12 15 9 ASIC Q2 9.09

FPGA Q2 8.72
b9 41 21 ASIC Q2 10.47

FPGA Q3 10.47
c8 28 18 ASIC Q2 9.22

FPGA Q2 8.64
cc 21 20 ASIC Q2 8.66

FPGA Q2 8.33
cht 47 36 ASIC Q2 9.16

FPGA Q2 8.83
clip 9 5 ASIC Q2 10.22

FPGA Q1 9.69
cm138a 6 8 ASIC Q2 8.07

FPGA Q4 7.28
cm162a 14 5 ASIC Q2 8.28

FPGA Q2 8.04
cm163a 16 5 ASIC Q1 8.28

FPGA Q2 7.91
cm42a 4 10 ASIC Q2 8.18

FPGA Q3 7.75
count 35 16 ASIC Q2 10.20

FPGA Q1 9.82
cu 14 11 ASIC Q2 8.32

FPGA Q1 7.79
dalu 75 16 ASIC Q2 8.09

FPGA Q2 or Q4 55.10
decod 5 16 ASIC Q2 12.17

FPGA Q3 7.55
duke2 22 29 ASIC Q2 13.86

FPGA Q1 10.84
e64 65 65 ASIC Q2 106.35

FPGA Q1 12.54
ex4 128 28 ASIC Q2 14.89

FPGA Q2 31.56
ex5 63 63 ASIC Q2 16.53

FPGA Q1 15.29
example2 85 66 ASIC Q2 8.49

FPGA Q2 14.59
i1 25 16 ASIC Q2 28.16

FPGA Q3 7.78
k2 45 45 ASIC Q1 9.15

FPGA Q1 23.16
lal 26 19 ASIC Q2 8.44

FPGA Q2 8.31
misex1 8 7 ASIC Q1 8.95

FPGA Q1 7.95
misex2 25 18 ASIC Q2 33.40

FPGA Q1 8.15
misex3 14 14 ASIC Q1 8.66

FPGA Q1 34.24
pcle 19 9 ASIC Q2 9.17

FPGA Q2 7.78
pcler8 27 17 ASIC Q2 8.27

FPGA Q2 or Q4 7.21
pm1 16 13 ASIC Q2 8.78

FPGA Q2 7.22
sct 19 15 ASIC Q2 28.05

FPGA Q2 7.60
seq 41 35 ASIC Q1 8.16

FPGA Q2 or Q4 28.10
tcon 17 16 ASIC Q3 10.23

FPGA Q3 7.22
term1 34 10 ASIC Q2 9.02

FPGA Q1 11.46
unreg 36 16 ASIC Q2 9.83

FPGA Q3 7.69
vg2 25 8 ASIC Q2 6.54

FPGA Q1 9.03
x2 10 7 ASIC Q2 64.84

FPGA Q1 7.32
Min. 4 5 – – 6.54
Max. 128 66 – – 106.35
Avg. 30 21 – – 15.8

∗The circuit has non-dominated variants in the reported quadrant
Summary FPGA ASIC

Circuits
with
non-dominated
variants

in Q1 34.1% (14) 22.0% (9)
in Q2 41.5% (17) 75.6% (31)
in Q4 2.4% (1) 0.0% (0)
in Q2 or Q4 7.3% (3) 0.0% (0)
in Q3 14.6% (6) 2.4% (1)

Max Area Gain 39.75% 9.4%
Max Delay Gain 14.6% 30.32%

Circuits with gaining
variants (i.e., Q1, Q2, Q4): 85.4% 97.6%



variants (i.e., individuals in the population) we achieved a gain
in both area and delay (quadrant Q1), or only in time (quadrant
Q2), or only in area (quadrant Q4); for some variants, the DSE also
achieved no gains at all (quadrant Q3). More importantly, the DSE
allowed us to find Pareto-optimal solutions (highlighted in red),
including even solutions achieving a gain in terms of both area and
delay (Q1) or at least in terms of one of them (Q2, Q4).

We grouped the results into 5 categories:
1) circuits presenting at least one Pareto-optimal solution in the

Q1 quadrant;
2) circuits (not in Q1) presenting at least one Pareto-optimal

solution in the Q2 quadrant;
3) circuits (not in Q1) presenting at least one Pareto-optimal

solution in the Q4 quadrant;
4) circuits (not in Q1) presenting Pareto-optimal solutions either

in the Q2 or in the Q4 quadrants; and
5) circuits presenting all Pareto-optimal solutions in the Q3

quadrant.
In Table III, we report the results of the DSE in terms of number

of circuits in each category, for FPGA and ASIC technologies.
For FPGA technology, we were able to find, for 34.1% of the

circuits, QAMR variants achieving gains in terms of both area
and delay; for 41.5% of the circuits, we found variants achieving
gains in terms of delay; 2.4% of the circuits achieved gains in terms
of area and other 7.3% in terms of either area or delay. Only for six
circuits (15%) we did not find any variants achieving a gain. For
two of them the QAMR versions are equivalent to the TMR (they
are located in the origin of the Cartesian plane). The maximum
achieved gains were 39.75% in area and 14.6% in delay.

Concerning ASIC technology, for 22% of the circuits we found
variants achieving gains in terms of both area and delay; for
75.6% of the circuits we found variants achieving gains in terms
of delay. Only for one circuit (2%) the DSE did not produce
any variants achieving gains. The maximum achieved gains were
30.32% in delay and 9.4% in area.

In general, the approach always succeeded in finding QAMR
variants in Q1 for large circuits: their non-approximate versions
had on average ≈ 125 LUTs and ≈ 7.21 ns of delay for FPGA,
and ≈ 1797.2 µm2 area and ≈ 0.843 ns of delay for ASIC.
Conversely, circuits with QAMR versions in Q3 occurred only in
case of very small test circuits: their non-approximate versions
counted on average ≈ 11 LUTs and ≈ 5.52 ns of delay for
FPGA, and ≈ 41.298 µm2 area and ≈ 0.061 ns of delay for
ASIC. For example, for the tcon circuit, we did not manage to
find any TMR-dominating QAMR solution, neither for FPGA nor
for the ASIC targets: its non-approximate version just occupies 4
LUTs and has 5.255 ns delay when mapped to FPGA, and occupies
41.298 µm2 and has 0.061 ns delay when mapped to ASIC.
Finally, the runtime needed to complete the MOEA-based DSE
spans from 6.5 hours to 106.35 hours, with an average of 15.8
hours.

D. Comparing and extending previous results on QAMR
In this subsection, we report another comparison of the ap-

proach presented in this paper with the state-of-the-art QAMR
approach as reported in [16], being based on the output removal

approximation. However, in [16], no technique to co-optimize area
and delay was proposed and no optimizer (such as NSGA-II) was
employed to select the best subset of outputs to remove from each
replica. Rather, the work was based on random search. Therefore,
to extend and realize a fair comparison, we replicated the technique
described in [16], i.e., output removal, and performed a MOEA-
based DSE on a reduced subset of the experimental circuits and
Place&Routed the resulting non-dominated solutions to the 45nm
ASIC technology, as in [16]. In this DSE, the MOEA’s task was to
select the best subset of outputs to remove from each replica.

Figure 7 reports in the Cartesian planes the experimental results:
the green squares ( ) represent the non-dominated solutions ob-
tained from the DSE when using the logic falsification approxima-
tion, as presented in this paper; the orange circles ( ) represent the
non-dominated solutions obtained from the DSE when using the
output removal approximation; and the blue triangles ( ) represent
the results reported in [16], i.e., the non-dominated solutions
obtained from random search when using the output removal
approximation. Finally, the reference TMR version is depicted as
a black star ( ) in the origin of the axes.

As expected, the proposed MOEA-based DSE allowed to find
solutions dominating those obtained using the simple random
search used in [16]. Indeed, for the output removal approximation,
the non-dominated solutions found with the DSE ( ) dominate the
solutions found with the random exploration ( ).

On the other hand, when comparing the outcomes of the two
DSE, i.e., performed by using logic falsification ( ) and output
removal ( ) respectively, it is not possible to identify a clear
dominance of one front of the other front. To suitably measure and
illustrate this condition, let us resort to the Coverage of two sets
metric, proposed in [28]. Let A and B be two sets of non-dominated
solutions for a MOP. The function C maps the pair (A, B) to the
interval [0, 1]:

C (A,B) :=
| {∀β ∈ B; ∃ α ∈ A : α � β} |

|B|
(3)

where the expression α covers β (α � β) means that the solution
α dominates the solution β or they are the same solution. The value
C (A,B) = 1 means that all points in B are dominated or equal
to at least one point in A. Conversely, the value C (A,B) = 0
represents the situation where no points in B are dominated or
equal to any point in A. When using this metric, both C (A,B)
and C (B,A) have to be considered, as they are not necessarily
equal. In Table IV, we report the values of the above described
C metric applied to the outcomes of the two DSE (i.e., with
logic falsification ( ) and output removal ( )), for the circuits in
Figure 7. While for some circuits – such as clip and seq – solutions

TABLE IV: Coverage of two sets metric evaluation over the DSE
results when using logic falsification (LF) and output removal (OR),
for the circuits in Figure 7.

Circuit 5xp1 alu2 clip cm42a count decod pcle pm1 seq
C (LF,OR) 0.00 0.50 1.00 0.00 0.00 0.00 0.00 0.00 1.00
C (OR,LF) 1.00 0.29 0.00 0.00 0.85 1.00 0.19 1.00 0.00
LF: Logic Falsification ( ), OR: Output Removal ( )
C (A,B): coverage of two sets metric [28]

obtained using logic falsification clearly cover those obtained with
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Fig. 7: Comparison with the study in [16]. Pareto fronts for selected circuits, obtained as follows: (i) by using the systematic DSE of
logic falsifications as proposed in this paper (depicted as ), (ii) by applying the DSE – as proposed in this paper – to the output removal
approach from [16] (depicted as ), and (iii) by using the output removal approach randomly, i.e., the results reported in [16], (depicted as

). The results are expressed in terms of area and delay percentage gain.

output removal (C (LF,OR) = 1), for other circuits – such as
5xp1, decod, and pm1 – the solutions obtained with output removal
cover those obtained with logic falsification (C (OR,LF) = 1).
For the remaining circuits, both the approaches are able to identify
non-dominated solutions not covered by those of the other method.
In particular, for the count and pcle circuits, using the output
removal approach, it was possible to find some solutions covering
the ones found by logic falsification (85% and 19%, respectively),
and others equally good. For alu2, the solutions found using logic
falsification covered 50% of those found with output removal; at
the same time, the solutions found with output removal covered
29% of those found with logic falsification. Finally, for the cm42a
circuit, the solutions found by both approaches show both methods
to be equally good, as mutually, the Pareto front of one did not
cover any point of the Pareto front of the other one.

V. CONCLUSION

In the context of error-tolerant applications, various studies pro-
posed to apply approximate computing (AxC) to relax reliability
constraints and achieve efficiency gains. Unfortunately, in most
advanced safety-critical computing systems, sacrificing reliability
may result in endangering human lives. Recently, the first AxC-
based fault-tolerant approach not sacrificing the reliability re-
quirements has been presented, i.e., the Quadruple Approximate
Modular Redundancy (QAMR) [16]. It uses four AxICs to reduce

the standard TMR overhead without sacrificing fault tolerance
capabilities. So far, QAMR-oriented circuits approximation was
based on output removal, i.e., selectively removing output cones.
The main problem preventing the use of other approximations was
the lack of an efficient four-bit voter. In this paper we proposed
to use another approximation approach, i.e., based on logic falsi-
fication, to explore QAMR architectures. To do so, we proposed a
new sorting-network-based four-bit majority voter and adapted it
to the new proposed approach. Finally, we performed an extended
Design Space Exploration (DSE), based on a Multi-objective
evolutionary algorithm (MOEA), to find Pareto-optimal QAMR
configurations for both FPGA and ASIC technology implementa-
tions.

Results showed that it is possible to find QAMR variants
achieving gains compared to the TMR counterpart for 85.4% and
97% of the examined circuits, for FPGA and ASIC technologies,
respectively. In particular, for FPGAs, QAMR variants superior in
terms of both area and delay were found for ≈34% of the circuits
and in terms of either of them for≈51% of the circuits; for ASICs,
QAMR variants superior in terms of both area and delay were
found for ≈22% of the circuits and in terms of timing for ≈75%
of the circuits. Moreover, we applied the proposed MOEA-based
DSE also to the output-removal-based approximation approach
proposed in [16] and showed that the DSE delivers non-dominated
solutions also w.r.t. the random search used in [16].
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