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ABSTRACT

In this work, we propose a novel self-attention based neural net-
work for robust multi-speaker localization from Ambisonics record-
ings. Starting from a state-of-the-art convolutional recurrent neural
network, we investigate the benefit of replacing the recurrent layers
by self-attention encoders, inherited from the Transformer architec-
ture. We evaluate these models on synthetic and real-world data,
with up to 3 simultaneous speakers. The obtained results indicate
that the majority of the proposed architectures either perform on
par, or outperform the CRNN baseline, especially in the multisource
scenario. Moreover, by avoiding the recurrent layers, the proposed
models lend themselves to parallel computing, which is shown to
produce considerable savings in execution time.

Index Terms— Sound source localization, neural networks,
self-attention, Ambisonics, parallel computing.

1. INTRODUCTION

Sound source localization (SSL) is an active research field with var-
ious applications such as source separation [1], speech recognition
[2]] or human-robot interaction [3]]. Traditional methods to address
SSL are based on eigenvalue decomposition of a multichannel sig-
nal covariance matrix [4], time-difference of arrival (TDOA) esti-
mation [5]], or beamforming [6]. These methods, and their variants,
enjoy widespread popularity, but are known to lack robustness in
noisy and reverberant environments.

More recently, machine learning methods have greatly im-
proved the performance of SSL systems. In particular, deep neural
networks have been proposed to improve single-source [7], as well
as multi-source DOA estimation [8, |9]. They were shown to im-
prove the robustness of SSL in challenging conditions compared
to traditional methods. Among deep learning models, different
architectures have been proposed: convolutional neural networks
(CNNs) [[10], convolutional recurrent neural networks (CRNNs)
[18,19], U-net architectures [ 1], autoencoders (AEs) [L1] or attention-
based neural networks [[12]. Also, various types of input features
have been used, such as raw signal waveforms [10], features based
on the short-time Fourier transform (STFT) [13]], correlation-based
features [[7,[11], Ambisonics features [9.|8]], or combinations of dif-
ferent input features [[14}[15]. These neural network-based systems
function either in regression [7} [10, [12] or in classification mode
[9LI8LI11]]. On the one hand, regression-based SSL provides DOA es-
timates with any arbitrary resolution, at the expense of dealing with
the well-known source permutation problem in the case of multiple
sources localization [16]. On the other hand, classification-based
SSL directly provides (multiple) DOA estimates on a discrete spa-
tial grid.

When considering multiple sound source localization for Am-
bisonic signals, the CRNN-based neural networks perform particu-
larly well, as reported in e.g. [8, 9} [17, [18]. The major downside
of such models is their sequential nature, i.e. their recurrent layers
cannot be efficiently parallelized. However, these recurrent layers
are important for modeling the temporal dynamics, therefore, it is
suboptimal to have them simply discarded or replaced by convo-
lutional layers, as it it leads to significant drop in localization ac-
curacy [17, 9]. Beyond computational concerns, another potential
issue is that the recurrent layers are essentially based on the first or-
der Markov model, meaning that their output depends only on the
hidden state and the current input, hence they do not directly incor-
porate information from the other elements of a sequence.

Recently, the attention mechanism has emerged as a promising
alternative to model temporal dependencies. Originally proposed in
[19] in conjunction with recurrent neural networks (RNNs) for nat-
ural language processing (NLP), attention efficiently learns the in-
terdependencies of elements (e.g. vectors) between two sequences.
It has been lately applied to the localization problem in [12], in
the context of sound event detection and localization (SELD). Self-
attention is a particular variant of attention that analyses a single
sequence, i.e. it models the similarity of its elements. In [20], the
authors proposed to couple a CRNN with self-attention mechanism,
also in order to improve the SELD baseline.

In this work, we are interested in adapting the CRNNs used
for multiple speaker localization (thus, different from SELD). We
propose to replace the recurrent layers by the encoder modules of
the so-called Transformer architecture [21]]. Transformer uses stan-
dalone self-attention blocks, i.e. it does not include recurrent lay-
ers at all. Originally applied to NLP tasks, it has since become
very popular, as it can actually surpass the performance of classical
RNNs. We thus propose to replace the bidirectional long short-
term memory (BiLSTM) layers of a state-of-the-art CRNN [[18]] by
one or several self-attention encoders, depending on the model. As
demonstrated on the simulated and real data, this modification actu-
ally improves the overall accuracy of the considered CRNN, while
avoiding the recurrent layers and thus being better suited for paral-
lel computing. We term these new architectures Self-Attentive mul-
tisource Localization in the Ambisonics Domain (SALAD) nets.

2. PROPOSED METHOD

In this section, we present the proposed SSL system, including input
features, output format and network architecture.
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2.1. Input features

We use the same input features as in [9, [18], namely the intensity
vector from the first-order Ambisonics (FOA) representation of the
audio signal. The Ambisonics format has proven to be well-suited
for SSL [9} 8] as it provides a convenient way of representing the
spatial properties of the soundfield. The FOA consists of the om-
nidirectional channel W (¢, f), and three figure-of-eight channels,
aligned with Cartesian coordinate axes, denoted as X (¢, f), Y (¢, f)
and Z(t, f) (¢t and f denote the STFT time and frequency bins, re-
spectively).
footnoteWe adopt the N3D Ambisonics normalization standard.
We can then derive the expressions for the active and reactive
intensity vectors in the FOA representation [?] (indexes ¢ and f are
omitted for concision, and * denotes the complex conjugate):

Re{WX*} Im{W X"}
I.= |Re{WY*}|, I.= |Im{WY"}|. (1)
Re{WZ*} Im{WZ*}

For each time-frequency (TF) bin, the above active and reac-
tive intensity vectors are concatenated to form a 6-channel vector
which is normalized by the sound power given by |W (¢, f)|> +
LIXEHP + Y& FIP + |Z(¢, f)I?). The resulting vector is
reminiscent of the so-called Frequency Domain Velocity Vector rep-
resentation [22]. Finally, the input features are given as the collec-
tion of these vectors for all time-frequency bins, assembled into a
tensor of size N x F' x 6, with N the number of frames and F'
the number of frequency bins. In our experiments, the signals are
sampled at 16 kHz and we use a 1,024-point (64 ms) STFT (i.e.
F' = 513) with sinusoidal analysis window and 50 % overlap. The
input sequences contains 25 frames (representing 800 ms of signal),
hence the shape input feature is 25 x 513 x 6.

2.2. Output

As in [18], we treat SSL as a classification problem. The 2D sphere
is divided into a quasi-uniform grid of candidate DOA regions with
elevation ¢; € [—90, 90] and azimuth 6/ € [—180, 180] given by:
¢i =—90+ % x 180 with i € {0, ..., I} @
67 = —180 + i X 360 withj € {0,..,J'},
where I = [ 18] and J* = | 2% cos¢; | with « the grid resolution
in degrees. Using classification-based localization, each region cor-
respond to a class and the output vector y is of size C' (which is the
total number of classes). For example for the target, y(c) = 1 ifa
source is present in a zone corresponding to class ¢, and y(c) = 0
otherwise. We set « = 10°, resulting in a total of C' = 429 classes.

2.3. Network architecture

As stated above, the proposed architecture is based on the archi-
tecture called Model 6-4 in [18], which is composed of a convo-
lutional module followed by a recurrent module and ending with
feed-forward layers for classification. Taking into account the lim-
itations of the recurrent layers mentioned in the introduction, and
the empirical observation that certain frames are more informative
than others with regards to the SSL task [9], we propose to replace
the recurrent part of the model in [18] with a self-attention-based
encoder module. While recurrent layers only perform the analysis
of temporal sequences in a sequential way, the use of self-attention
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Figure 1: Proposed architecture based on convolutional layers and
self-attention encoders. Left: overall architecture, with L stacked
self-attention encoders; Right: Detail of a self-attention encoder.

allows for comparison of alﬂ frames with each other. Fig.|l{shows
the diagram of the proposed neural network architecture, which is
detailed in the remainder of this section.

Convolutional module: The N x F' x 6 input features are first
provided to a convolutional module identical to the one of Model 6-
4 in [18], which was chosen due to its good trade-off between local-
ization accuracy and model size. It is composed of 6 convolutional
blocks, each block being made of two consecutive convolutional
layers with 64 filters of size 3 x 3, followed by a max-pooling layer
with various size on the second dimension. This module performs
feature extraction by reducing the overall feature size while keep-
ing the temporal dimension (/N = 25) of the input intact. After the
convolutional module, the feature maps are concatenated together to
form a 2D tensor of size N x GG (reshaping module; here G = 128).

Self-attention module: The sequence of reshaped features
goes into a stack of L self-attention encoders. Each self-attention
encoder follows the structure shown in the right side of Fig. m
which is the encoder of the Transformer architecture [21]]. It is com-
posed first of a multi-head self-attention layer (classical multi-head
or cross multi-head according to the experiment, detailed below)
which produces an encoded feature for each feature of the input N-
sequence. Each encoded feature is then added to the corresponding
input feature with a residual connection, and the sum is normalized.
After that, each sequence item goes through the same two-layer
feed-forward module, the first layer being linear and the second
layer having a ReLU activation. Then again, a residual connection
and normalization are applied. The output of such a self-attention
encoder has the same dimension as its input (here N x G).

Self-attention has been originally proposed for sequential data,

!In the present study, we do not use positional encoding c.f. [21]].
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and works as following (see [21] for more details). For each vec-
tor x; of the input sequence of length IV, three vectors q;, k; and
v; (usually labelled as query, key and value, respectively) are com-
puted by multiplying x; with learnt matrices W<, W% and WV .
Then, for each vector x;, an encoded vector z; is calculated via
weighted sum of all {v;}: z, = Zj\;l si;Vj, where s;; is the
score of x; against x;. The score s;; is calculated as the softmax of
a scaled dot product of q; and k;, so that the sum of s;; over j is
equal to 1:

o qi -k )
Sij softmax( NG 3)
In summary, self-attention applied on the temporal axis computes
at each time index ¢ an output vector z; that takes into account the
input vector x; at time ¢ and its dependencies (the scores) with the
other (past and future) vectors x; in the sequence. Note that x; and
z; are vectors of the same size.

In the Transformer paper [21]], the authors also introduce the
concept of multi-head self-attention, which consists of learning H
independent sets of matrices Wg, WE and WY, with b € (1, H]
and H the number of heads, thus leading to H vectors q;, ki, and
v;n, for each input x;. The score are computed independently for
each head h :
dinZn) @)

VG
In this case, a multi-head version of z; is calculated as a weighted
sum of all v : zin = Z;.V:l 5ijnVjn. The z;;, are finally concate-

Sijh = softmax(

nated in the head dimension and another learnt matrix W is used
to output one vector z; for each input vector x; as in single-head
self-attention. This multi-head aspect provides more flexibility in
the self-attention mechanism.

We also evaluate the use of a more general way of computing
the multi-head attention scores, where a score is calculated inde-
pendently for each head pair (h, k') (while in [2]] the scores are
calculated head-wise) :

din 'kjh/>
VG

Then z;;, is obtained as a weighted sum on j and h' : z;, =
Zé\f:l Zf,:l Sijnh/Vins. We call this method cross multi-head
(CMH) self-attention to distinguish it from original multi-head self-
attention [21]]. In our experiments , H is a hyperparameter.
Feed-forward fully-connected module: At the end, each vec-
tor of the output sequence of the self-attention module is sent to the
same two-layer feed-forward network, with 429 units in each layer.
The first layer is linear, and the second one has the sigmoid activa-
tion, to provide output values homogeneous to probability of having
a source present in the corresponding DOA region (see Section[2.2).

&)

Sijhh! = softmax(

3. EXPERIMENTS
3.1. Data

To generate data for training and testing, we used the same method-
ology as in [18]]. Beforehand, we adapted the spatial room im-
pulse response (SRIR) generator of [23] (based on the image-source
method [24]) to synthesize FOA impulse responses for many dif-
ferent room configurations: room lengths, widths and heights ran-
domly drawn in [2,10] m, [2,10] m and [2,3] m, respectively;
RT60s lie in [200, 800] ms; microphone and source positions are
randomly picked in the room with the microphone at least 0.5 m
from the walls. These synthetic SRIRs are used for the training
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dataset as well as for the first test dataset. For a second more real-
istic test dataset, we also recorded SRIRs in our acoustic lab (RT60
~ 500 ms), using all combinations from 36 microphone positions
and 16 static loudspeaker positions. We generated microphone sig-
nals by convolving the SRIRs (either real or synthetic) with TIMIT
speech signals [25]. For each room configuration, we created sig-
nals corresponding to a single source, 2- and 3- source mixture. The
signal-to-interference ratio between speakers is randomly drawn be-
tween 0 and 10 dB. Some diffuse babble noise, obtained by averag-
ing the late reverberation part of two random synthetic RIRs, was
added to those mixtures with a random SNR between 0 and 20 dB.
The resulting training dataset was composed of 247,400 sequences
for each number of speakers (1 to 3), i.e. a total of 772,200 training
sequences (about 172 hours of signals). Each test set (synthetic and
real data) contains 1152 sequences for each number of speakers,
corresponding to about 45 minutes of signals.

3.2. Training procedure & parameters

We designed and trained the proposed model using Keras frame-
work on Nvidia GTX 1080 GPUs. We use the Nadam optimizer
[26] with default parameters. Early stopping was applied with a
patience of 20 epochs by monitoring the accuracy on a validation
set, and the learning rate was divided by two when the validation
accuracy was not improving after 10 epochs.

3.3. Configurations

We trained and tested several variants of the proposed model to eval-
uate the capacity of the self-attention module to replace the recur-
rent layers for SSL. In the presented results, we use the naming
convention “X-Nencenc-HH”, where X is MH or CMH whether
multi-head or cross multi-head is used, respectively, Nenc denotes
the number of encoders, and H is the number of attention heads.
First, we tested H € {1,2,3,10} using classical multi-head at-
tention. Then, we evaluated the benefit of using cross multi-head
self-attention for H € {3,10}. Finally, we investigated the use
of two cross multi-head self-attention encoders instead of 1, with
H € {5,10}.

3.4. Metrics, evaluation and baseline

During the inference, the output of the neural network is averaged
over the frames, meaning that we end up with one probability dis-
tribution for the whole input sequence. Knowing the number of
sources S in the test signal, we extract the S highest peaks in the
probability distribution, in which a peak represents a local maxi-
mum within the spherical geometry. The DOA estimation task is
evaluated by computing the sequence-wise accuracy, i.e. the per-
centage of sequences with a predicted DOA angular error lower than
a given tolerance (the higher the better). Since the minimal angular
separation between two points in our grid is 7°, we set tolerance
threshold to 10° or 15°. We also evaluated the performance with
the mean and median angular error, averaged on all test sequences
(the lower the better), thus we indicate the standard deviation as
well. As the proposed architectures are based on the CRNN model
called Model 6-4 in [18]], we use this model as a common baseline,
referred as Baseline (CRNN). A DNN-free baseline is also referred
as Baseline (TRAMP): this method is based on the histogram - over
all frames and frequencies of the sequence - of the DOAs derived
from the pseudointensity vector; each DOA is weighted by an ad-
hoc plane-wave indicator (see [27]] for more details).
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3.5. Results

The results obtained on the synthetic and real SRIRs test datasets
are shown in Table [T] and Table 2] respectively. First, we can see
that all neural-based systems largely surpass the DNN-free baseline
from [27]. Second, we can see that the performance of all the tested
self-attention-based neural networks are roughly similar to the per-
formance of the baseline CRNN, sometimes a bit below and some-
times better, depending on the configuration (we detail below). This
shows that it is possible to replace the recurrent layers with self-
attention encoders without losing in performance. Importantly, we
can see in Table [3] that the gain in inference time over the baseline
is quite significant. The median inference time using self-attention-
based networks is 44% lower than for the baseline (when using one
self-attention encoder; it is 33% lower when using 2 encoders). We
also see that this inference time is not correlated with the number of
parameters, but rather with the number of self-attention encoders,
which is to be expected.

Generally, the MH attention-based networks with 1, 2 or 3
heads perform slightly below the baseline. However, the MH self-
attention network with 10 attention heads outperforms the base-
line in the multi-source configurations: for example, on 3-source
mixtures with synthetic SRIRs, the accuracy (< 10°) is 78.2 % vs
74.7 % for the baseline, and the mean angular error is lower by 1.5°.
The same trend can be observed for the real SRIRs configuration,
though with a more moderate performance gain. This suggests that
adding more heads to the self-attention mechanism may be particu-
larly beneficial for multi-source localization.

The results for the models with CMH self-attention are also
globally better than the baseline (in the multi-source configura-
tions), and also better than MH self-attention when comparison is
made with the same number of heads. CMH self-attention leads to
an improvement for both 3 and 10 heads over MH self-attention,
especially in terms of mean and median angular error. For exam-
ple, going from MH to CMH self-attention with 10 heads reduce
the mean error by 0.6° and 1° for 2-source and 3-source mixtures
(synthetic SRIRSs), respectively, and by 0.7° and 1.7° for 2-source
and 3-source mixtures (real SRIRs). The accuracy is also improved,
up to 78.2% (< 10°) for synthetic SRIRs and 58.2% for real SRIRs,
representing a performance gain of 3.5% and 1.4% over the base-
line, respectively. Allowing the score calculation across all heads
seems to provide more flexibility to the self-attention mechanism
thus leading to more robust multi-source localization.

Finally, the results of Models CMH-2enc-5H and CMH-2enc-
10H shows what happens when we stack two CMH self-attention
encoders (for the same number of heads). We can see that the per-
formance of model CMH-2enc-5H model is better than the one of
model CMH-1enc-10H for 2-source mixtures (for both synthetic or
real SRIRs), but lose performance on 3-source signals. The mean
error increases by 1.1°. When dealing with 2 encoders with 10 at-
tention heads each, the performance gets even worse, somehow go-
ing back near to the baseline performance. The shows that adding
more encoders does not necessarily improve the performance, pos-
sibly because the complexity of the network becomes too high for
this task or for the amount of training data available.

4. CONCLUSION

We have presented a novel multi-head self-attentive neural network
for SSL of up to 3 speakers. We first showed that self-attention en-
coders are suitable for replacing recurrent layers of a state-of-the-
art CRNN without losing in localization performance, while sav-
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ing computations and inference time. We also compared the per-
formance for different configurations of the self-attention module.
Overall, the best performance was obtained with a cross multi-head
self-attention model with one 10-head encoder, which clearly out-
performes the baseline state-of-the-art CRNN in the multi-source
configuration (again for a lower computation cost). Future work
will further investigate the performance of these models, e.g. why
the increase of the number of stacked encoders does not improve
the performance in our experiments.
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Model 1 source 2 sources 3 sources
Acc. <10°  Acc.<15° Mean Med. Std. | Acc. <10° Acc.<15° Mean Med. Std. | Acc. <10° Acc.<15° Mean Med. Std.
Baseline (TRAMP) 437 64.2 16.7 1.5 203 279 39.9 44.0 219 446 22.4 33.6 48.4 30.0 449
Baseline (CRNN) 98.6 99.7 44 4.1 4.6 88.3 93.3 7.7 4.7 19.4 74.7 83.4 12.8 59 297
MH-lenc-1H 98.3 99.7 45 42 45 87.9 93.6 79 49 13.8 71.6 81.5 13.5 65  21.1
MH-lenc-2H 98.1 99.7 4.7 42 52 87.1 93.0 8.7 49 15.3 722 80.6 15.8 62 239
MH-lenc-3H 98.1 99.6 47 42 5.5 87.7 92.7 8.8 48 16.0 72.9 80.7 16.2 6.0  25.1
MH-1enc-10H 98.5 99.6 45 4.1 5.5 90.4 94.5 74 4.7 154 77.3 84.7 12.3 5.6 242
CMH-1enc-3H 98.5 99.8 4.4 4.1 5.1 89.3 94.1 7.6 4.8 15.1 75.9 84.1 12.7 5.9 23.6
CMH-1enc-10H 98.4 99.5 45 4.1 5.1 89.9 94.5 6.8 4.7 14.6 78.2 85.7 113 56 230
CMH-2enc-5H 98.5 99.6 4.6 42 49 90.4 94.7 7.0 4.7 14.3 75.6 84.2 12.4 6.0 2238
CMH-2enc-10H 97.9 99.3 4.8 4.2 5.0 88.7 94.9 7.3 5.0 14.1 72.8 83.7 13.0 6.5 225

Table 1: SSL results on the test dataset generated with synthetic SRIRs (best results are in bold).

Model 1 source 2 sources 3 sources
Acc. <10°  Acc.<15° Mean Med. Std. | Acc. <10° Acc.<15° Mean Med. Std. | Acc. <10° Acc.<15° Mean Med. Std.
Baseline (TRAMP) 529 72.8 14.5 9.4 19.2 30.5 429 37.0 19.1 38.6 25.1 35.6 43.0 26.0 41.1
Baseline (CRNN) 79.0 93.7 7.6 6.1 10.3 68.2 84.7 11.9 72 2438 56.8 73.3 17.3 8.7 329
MH-lenc-1H 71.0 93.5 7.5 6.2 6.5 67.4 83.5 11.5 7.2 15.8 53.8 69.9 18.9 9.1 26.1
MH-lenc-2H 76.8 93.4 7.6 6.3 6.8 67.9 83.8 12.7 7.5 18.3 53.6 68.5 22.5 9.1 29.2
MH-lenc-3H 76.2 92.7 8.1 6.3 8.1 67.4 84.9 12.3 7.3 184 54.6 68.3 21.8 9.1 29.4
MH-1enc-10H 713 93.0 8.3 6.2 9.0 68.2 86.3 11.2 7.3 18.0 57.8 74.0 16.9 85 282
CMH-1enc-3H 71.5 92.6 8.0 6.3 9.1 68.6 85.6 10.7 7.3 17.3 56.4 72.3 18.2 89 278
CMH-1enc-10H 77.0 92.6 8.0 6.2 9.1 68.6 85.8 10.5 7.3 16.7 58.2 74.8 15.2 8.5 26.8
CMH-2enc-5H 75.7 92.6 8.4 6.3 9.4 70.0 87.1 104 7.2 16.4 57.7 74.2 16.3 8.6 263
CMH-2enc-10H 757 91.1 8.8 6.2 9.9 69.0 86.9 10.6 7.2 16.2 56.3 73.3 17.1 89 260

Table 2: SSL results on the test dataset generated with real SRIRs (best results are in bold).

Model real-time %  # parameters
Baseline (CRNN) 437 913,907
MH-lenc-1H 244 796,125
MH-1enc-2H 244 862,045
MH-1enc-3H 244 927,965
MH-lenc-10H 244 1,389,405
CMH-1enc-3H 244 927,965
CMH-1enc-10H 244 1,389,405
CMH-2enc-5H 281 1,653,341
CMH-2enc-10H 281 2,312,541

Table 3: Real-time percentage for inference and number of param-
eters for the different models (in our experiments, frame length =
0.032s).
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