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Pseudo-boolean functions and polynomial optimization
with binary variables

We consider the Unconstrained Binary Polynomial Programming problem

 min f (x) =
∑

M∈M
aM

∏
i∈M

xi

s. t. xi ∈ {0, 1} ∀i ∈ [n]

If degree of f = 2: the quadratic case of qpb functions
We suppose all monomials have degree 3 or more
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Resolution through quadratic reformulation

We focus on solution approaches in two phases:

1 Rewrite into a binary quadratic problem (Quadratic
reformulation)

we know this is possible from (Rosenberg 75)
but many other ways exist

2 Solve the obtained binary quadratic problem

Our work: unify Phase 1 and study the links between Phase 1 and Phase 2
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Rewrite into a binary quadratic problem (Quadratic
reformulation)

(Rosenberg 75) Iteratively, substitute the product of two variables by
a new one until degree 2 is reached for all monomials. Enforce the
equivalence by a penality function.

(Buchheim & Rinaldi 2007) Add enough submonomials to make your
instance reducible i.e. each monomial is the union of two others.
Build a linear reformulation together with a family of valid
inequalities.

(Anthony et al. 2017) Represent f by a hypergraph and find a
pairwise cover. Enforce the equivalence by a penality function.

(Lazare 2020) Iteratively partition each monomial (degree >2) into
two (new)submonomials. Write an equivalent binary quadratic
problem with linear constraints.

We show: These methods rely on a commun decomposition principle and
use different reformulations into quadratic or linear problems
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Definition (Quadratization scheme of a monomial)

A quadratization scheme for a monomial M, with |M| ≥ 3, is a directed
acyclic graph GM = (VM ,AM) with the following properties:

i) each vertex in VM is a subset of M, M ∈ VM , and {i} ∈ VM for all
i ∈ M;

ii) vertex M is the root of GM : it has indegree 0, and every other vertex
has nonzero indegree;

iii) the singletons {i}, i ∈ M, are the leaves of GM : they have outdegree
0;

iv) when a vertex E ∈ V is not a leaf, its outdegree is 2; the arcs leaving
E are denoted as (E , lM(E )) ∈ AM and (E , rM(E )) ∈ AM ,
respectively; lM(E ) and rM(E ) are the children of E ;

v) when E is not a leaf, lM(E ) and rM(E ) define a nontrivial
decomposition of E into two subsets: 0 < |lM(E )| < |E |,
0 < |rM(E )| < |E |, and E = lM(E ) ∪ rM(E ).
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Example- Quadratization scheme for M = {1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

{1, 2} {3, 4}

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

{1, 2}

{1, 2, 3} {3, 4}

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

non-disjoint quadratization scheme
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Definition (Quadratization scheme for a set of monomials)

A quadratization scheme for a polynomial M⊆ 2[n] is a collection of

quadratization schemes
{
GM = (VM ,AM) : M ∈M

}
, where each GM is a

quadratization scheme for the corresponding monomial M ∈M.

Example : f = a1x1x2x3x4x5 + a2x1x2x3x4

{1} {2} {3} {4} {5}

{1, 2} {3, 4}

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

{1} {2} {3} {4}

{1, 2}

{1, 2, 3}

{1, 2, 3, 4}
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Straightforward reformulation as a QCQP

Rename the initial variables x1 . . . xn into z1 . . . zn

Add a new variable zE per new monomial E ∈ E in the quadratization
scheme → get a total of N binary variables

(QCQP)


min

z∈{0,1}N
g(z) =

∑
M∈M

aMzlM(M)zrM(M)

s.t.

zE = zlM(E)zrM(E) ∀E ∈ E ,∀M ∈M : E ∈ EM

lM(E ) rM(E )

E
Proof of equivalence: Iteratively check

zlM (M)zrM (M) =
∏
i∈M

zi =
∏
i∈M

xi
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Example- Straightforward reformulation for
f = a1x1x2x3x4x5 + a2x1x2x3x4

{1}z1{2}z2 {3}z3{4}z4 {5}z5

{1, 2}z12 {3, 4}z34

{1, 2, 3, 4}z1234

{1, 2, 3, 4, 5}

{1}z1{2}z2 {3}z3 {4}z4

{1, 2}z12

{1, 2, 3}z123

{1, 2, 3, 4}


min

z∈{0,1}10
a1z1234z5 + a2z123z4

s.t.

z1234 = z12z34 z12 = z1z2 z34 = z3z4

z123 = z12z3 z12 = z1z2
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A more pratical quadratic reformulation

Linearly constrained binary quadratic problem (use Fortet inequalities)

LCBQ


min

z∈{0,1}N

∑
M∈M

aM zlM (M)zrM (M)

zE ≤ zlM (E), zE ≤ zrM (E), zE ≥ zlM (E) + zrM (E) − 1, zE ≥ 0 ∀E ∈ E, ∀M ∈ M : E ∈ EM

Enforce zE = zlM(E)zrM(E) in any feasible solution
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Phase 2- Solution of the obtained binary quadratic
problems

How to solve LCBQ ?

1 Linearize again: add a new variable and Fortet’s inequalities per
quadratic term → get a MILP

2 Use Quadratic Convex Reformulation methods → get an MIQP with
a convex continuous relaxation

1 The Smallest Eigenvalue method
2 ”basic” QCR
3 QCR improved by the valid quadratic equalities: PQCR
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Quadratic Convex Reformulation methods

(BQP)


min q(x) = xTQx

s. t.

Ax ≤ b

x ∈ {0, 1}n

Smallest Eigenvalue Method

⇐⇒



min xTQx + |λ1(Q)|
n∑

i=1

(x2
i − xi )

s. t.

Ax ≤ b

x ∈ {0, 1}n convex continuous relaxation

basic Quadratic Convex Reformulation QCR (Billionnet and E. 2007)



min xTQx +
n∑

i=1

ui (x
2
i − xi )

s. t.

Ax ≤ b

x ∈ {0, 1}n convex continuous relaxation

for some correct choices of ui

Q. How to find coefficients ui s.th. the
continuous relaxation bound is the tightest?

A. Solve a semidefinite programming problem

(SDP)



min < Q,X >

s. t.

Xii = xi

Ax ≤ b(
1 xT

x X

)
� 0
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Quadratic Convex Reformulation methods

QCR works in 2 steps:
1 solve (SDP) and deduce optimal coefficients u∗i
2 solve the ”convex” MIQP

min xTQx +
n∑

i=1

u∗i (x2
i − xi )

s. t.

Ax ≤ b

x ∈ {0, 1}n

PQCR (Lazare 2020; E. et al. 2021) uses the Valid Quadratic
Equalities associated to the quadratization scheme in order to build
more parametrized reformulations, based on a stronger SDP

zE = zlM (E)zrM (E) ∀E ∈ E ,∀M ∈M : E ∈ EM
zE zF = zE ∀E ,F ∈ E : F ⊂ E
zE zE ′ = zF zF ′ ∀E ,E ′,F ,F ′ ∈ E : E ∪ E ′ = F ∪ F ′

Quadratic reformulations for the optimization of pseudo-boolean functions 18 / 29



Summary

For a given a quadratization scheme, we can derive 3 solution methods

LCBQ

Lin (LCBQ + Lin)

QCR (LCBQ + QCR)

PQCR (LCBQ + QCR+ Valid Quadratic Equalities)

Questions:

how to build quadratization schemes?

how does the quadratization scheme impact the performance of the
solution methods? that is, how does Phase 1 interact with Phase 2?
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Our four quadratization algorithms

QA (Lazare 2020) Sort the monomial set in lexicographical order. In
this order, iteratively (i) Select the first product of variables xixj that
appears in a monomial of degree at least 3. (ii) For any monomial M
containing i and j , set lM(M) to {i , j} and rM(M) to M \ {i , j}. (iii)
Add lM(M) and rM(M) to the sorted monomial set

QB (Rodriguez-Heck 2018) is similar to QA. The product xixj that
appears the most frequently is selected

QC Recursively split any monomial M = {1, . . . , d} with d ≥ 2 into
lM(M) = {1, . . . , d − 1} and rM(M) = {d}
QD Recursively split any monomial M = {1, . . . , d} with d ≥ 2 into
lM(M) = {1, . . . , d − 1} and rM(M) = {2, . . . , d}. This is our only
quadratization scheme with non-disjoint subsets lM and rM .
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QA and QB

{i} {j} {...} {...}

{i , j} M \ {i , j}

M

QC

{1} {2} {3} {4}

{1, 2}

{1, 2, 3}

{1, 2, 3, 4}

QD

{1} {2} {3} {4}

{1, 2} {2, 3} {3, 4}

{1, 2, 3}{2, 3, 4}

{1, 2, 3, 4}

In our test instances, we got in average
N = 217, 234, 656, and 885 by QA, QB, QC,
and QD resp.
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Settings

We use 8 instances of the Low Autocorrelation Binary Sequence
problem (polynomials of degree 4, up to 35 variables)

We use Gurobi to solve MILPs or convex MIQPs
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MILP reformulation

gap: QA, QC, and QD are the best
time: QA and QC are the best
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QCR reformulation

gap: QA is the best
time: QA is the best
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PQCR

gap: QA is the best
time: QA is the best

In PQCR, QA (followed by
QB) performs much better than
QC and QD

PQCR is the best method.
When coupled to QA, the 8
instances are solved within 3
minutes in av.

Over the 4 quadratizations,
QA is globally the best and
QD is the worst. Recall N =
217, 234, 656, and 885
variables by QA, QB, QC, and QD
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Conclusions

We provide a unifying notion of ”quadratization scheme”

We show that several reformulations and solution methods can be
deduced from a given quadratization scheme

We present some computational results suggesting that
quadratization schemes with fewer variables have best performances

Similar results are obtained with the unconstrained penalized
quadratic reformulations of (Rosenberg 75) and (Anthony et al. 2017)

Similar results with other instances
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