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Pseudo-boolean functions and polynomial optimization

with binary variables

We consider the Unconstrained Binary Polynomial Programming problem

min  f(x) = Z aMHx,-

MemM  ieM
s. t.  x €{0,1} Vi € [n]

If degree of f= 2: the quadratic case of gpb functions
We suppose all monomials have degree 3 or more

Quadratic reformulations for the optimization 2 /29



Resolution through quadratic reformulation

We focus on solution approaches in two phases:

O Reuwrite into a binary quadratic problem (Quadratic
reformulation)

e we know this is possible from (Rosenberg 75)
e but many other ways exist

@ Solve the obtained binary quadratic problem

Our work: unify Phase 1 and study the links between Phase 1 and Phase 2
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© Quadratic reformulation of the pseudoboolean function into a quadratic
problem

© The unifying notion of quadratization scheme

© Possible reformulations from the quadratization scheme
@ Solving the reformulated quadratic problem

e Building quadratization schemes

@ A few computational results
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© Quadratic reformulation of the pseudoboolean function into a quadratic
problem

Quadratic reformulations for the optimization



Rewrite into a binary quadratic problem (Quadratic

reformulation)

@ (Rosenberg 75) Iteratively, substitute the product of two variables by
a new one until degree 2 is reached for all monomials. Enforce the
equivalence by a penality function.

@ (Buchheim & Rinaldi 2007) Add enough submonomials to make your
instance reducible i.e. each monomial is the union of two others.
Build a linear reformulation together with a family of valid
inequalities.

@ (Anthony et al. 2017) Represent f by a hypergraph and find a
pairwise cover. Enforce the equivalence by a penality function.

o (Lazare 2020) lteratively partition each monomial (degree >2) into

two (new)submonomials. Write an equivalent binary quadratic
problem with linear constraints.

We show: These methods rely on a commun decomposition principle and
use different reformulations into quadratic or linear problems
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© The unifying notion of quadratization scheme
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Definition (Quadratization scheme of a monomial)

A quadratization scheme for a monomial M, with |[M| > 3, is a directed

acyclic graph Gy = (Vu, Am) with the following properties:

i) each vertex in V) is a subset of M, M € V), and {i} € V) for all
i€ M,

i) vertex M is the root of Gy: it has indegree 0, and every other vertex
has nonzero indegree;

i) the singletons {i}, i € M, are the leaves of Gp: they have outdegree
0;

iv) when a vertex E € V is not a leaf, its outdegree is 2; the arcs leaving
E are denoted as (E, Iy(E)) € Am and (E, rm(E)) € Am,
respectively; Iy(E) and ry(E) are the children of E;

v) when E is not a leaf, Iy(E) and ry(E) define a nontrivial
decomposition of E into two subsets: 0 < |Iy(E)| < |E],

0 < |rm(E)| < |E|, and E = Im(E) U rm(E).

v
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Example- Quadratization scheme for M = {1,2,3,4,5}

{1,2,3,4,5}
v
{152737475} {1’27374}
e
(1,2,3,4) Z N

2,3} {3,4}

VN
wr e o \ I\
/N /N

1 2 {8 ¥ {5}{1} {2} 8} {4 {8

non-disjoint quadratization scheme




Definition (Quadratization scheme for a set of monomials)

A quadratization scheme for a polynomial M C 2[" is a collection of
quadratization schemes {GM =(Vm,Am) : M € M} where each Gy is a
quadratization scheme for the corresponding monomial M € M.

Example : f = a1x1x0Xx3X4X5 + apX1X2X3X4

12345 {1,2,3,4}
{1 2.3, 4} {1,2,3}
/
{1 2} {3 4} (1,2} \
[\
{1} {2} {3} {4} {5} {1y {2 {3} {4}
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© Possible reformulations from the quadratization scheme
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Straightforward reformulation as a QCQP

@ Rename the initial variables x; ...x, into z1 ... z,

@ Add a new variable zg per new monomial E € £ in the quadratization
scheme — get a total of N binary variables

min ~ g(z) = AMZiy (M) Zrpy(M
,min ggé (M) 21 ()

(QCQRP) 9 st
ZE = Z},)(E)Zry(E) VE€eE M e M E€éy

ieM ieM

E
@ Proof of equivalence: Iteratively check
/ \ Zia(M)Zr(M) = HZ" - HX"
Im(E)  rm(E)
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Example- Straightforward reformulation for

f = a1X1X0X3X4X5 -+ A2X1 X0 X3 X4

{1,2,3,4,5} 1234
{1,2,3,4} 21034 {1, 2 3}2123
I'e N
{1,2}212 {3,4}234 {1 2}212
v oy AR

{1}zd2}z, {3}z{4}z {5}z {1}21{2}22 {3}z {4}z

min 317123425 + 32212324
ze{0,1}10

s.t.
21234 = Z12234 Z12 = Z122 234 = Z3Z4

2123 = 21223 Z12 = 2122
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A more pratical quadratic reformulation

@ Linearly constrained binary quadratic problem (use Fortet inequalities)

min Z amzyy ,(M)Zry, (M)
LCBQ{ {013V picm M M

zZE SZ/M(E).ZE inM(E)-ZEEZIM(E) t 2, (E) 1,z >0 VEE€E,YMe M E €&y

Enforce ze = z;,,(g)2,,, () in any feasible solution
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@ Solving the reformulated quadratic problem
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Phase 2- Solution of the obtained binary quadratic

problems

How to solve LCBQR ?
© Linearize again: add a new variable and Fortet's inequalities per
quadratic term — get a MILP
@ Use Quadratic Convex Reformulation methods — get an MIQP with
a convex continuous relaxation
@ The Smallest Eigenvalue method

@ "basic’ QCR
© QCR improved by the valid quadratic equalities: PQCR
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Quadratic Convex Reformulation methods

Smallest Eigenvalue Method

. _ T n
min g(x) = x" Qx min x7 Qx + [A(Q)| z:(xl2 — X;)
s. t. i=1
BQP
( ) Ax < b =\ st
x € {0,1}" Ax < b
x € {0,1}" convex continuous relaxation
basic Quadratic Convex Reformulation QCR (Billionnet and E. 2007)
@ Q. How to find coefficients u; s.th. the
n continuous relaxation bound is the tightest?
min x” Qx + Z ui(X,-2 - Xi) @ A. Solve a semidefinite programming problem
i=1 .
.t min < Q, X >
Ax < b st
x € {0,1}" convex continuous relaxation (SDP) Xii = i
Ax < b

for some correct choices of u;
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Quadratic Convex Reformulation methods

@ QCR works in 2 steps:

@ solve (SDP) and deduce optimal coefficients uf
@ solve the "convex” MIQP

n

min xT Qx + Z uF (x2 — x;)
i=1

s. t.

Ax < b

x € {0,1}"

@ PQCR (Lazare 2020; E. et al. 2021) uses the Valid Quadratic
Equalities associated to the quadratization scheme in order to build
more parametrized reformulations, based on a stronger SDP

® ZE = Z,,(E)Zry(E) VE€cE VM e M :Ecé&y
° ZEZF:ZEVE,FEEZ FCE
@ ZEZEr = ZFZF/ VE,E/,F,F/ €cf: EUEE=FUF
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For a given a quadratization scheme, we can derive 3 solution methods

LCBQ
Lin (LCBQ + Lin)
QCR (LCBQ + QCR)
PQCR | (LCBQ + QCR+ Valid Quadratic Equalities)

Questions:
@ how to build quadratization schemes?

@ how does the quadratization scheme impact the performance of the
solution methods? that is, how does Phase 1 interact with Phase 27
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© Building quadratization schemes
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Our four quadratization algorithms

@ QA (Lazare 2020) Sort the monomial set in lexicographical order. In
this order, iteratively (i) Select the first product of variables x;x; that
appears in a monomial of degree at least 3. (ii) For any monomial M
containing i and j, set (M) to {i,j} and ryy(M) to M\ {i,j}. (iii)
Add Iy (M) and ry(M) to the sorted monomial set

o (B (Rodriguez-Heck 2018) is similar to QA. The product x;x; that
appears the most frequently is selected

° Recursively split any monomial M = {1,...,d} with d > 2 into
Im(M)={1,...,d — 1} and ry(M) = {d}

@ (D Recursively split any monomial M = {1,...,d} with d > 2 into
Im(M)={1,...,d —1} and r;y(M) = {2,...,d}. This is our only
quadratization scheme with non-disjoint subsets /; and ry;.
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QA and QB

{1,2, 3 4}
e N {1 2, 3}
{i,J} MA A7 J}
Yy VAN {1 2}
1SR V2 S B 3 O {1} {2} (3} (4
QD
{172’ 37 4}
VAR
{1,2,342,3,4} @ In our test instances, we got in average
/N /N N = 217, 234, 656, and 885 by QA, QB,
1,2} {23} {3,4) and 0D resp.
/NN LN

{1 {2 8 @4
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@ A few computational results

Quadratic reformulations for the optimization



@ We use 8 instances of the Low Autocorrelation Binary Sequence
problem (polynomials of degree 4, up to 35 variables)

@ We use Gurobi to solve MILPs or convex MIQPs
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MILP reformulation

(LCQP + Lin) Root gap

QC=QD=0A
2000
1500 N —aA
/_/\/\ p
1000
500

0
B.20.10B.20.15B.25.13B.25.19B.25.25B.30.08B.30.15B.35.09

(LCQP + Lin) Total Time

12000
10000

8000 QA

= QB

6000 ac

4000 =QD

2000 I
0
0. B 35.09
B.20. 10 0.

gap: QA, 1, and QD are the best
time: QA and are the best
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QCR reformulation

(LCQP + QCR) Root gap
3000
200 /\/\/\
—aQA
2000 pol
1500 ac
1000 —a
500
0
B.20.10B.20.15B.25.138.25.19B.25.258.30.088.30.15B.35.09
(LCQP + QCR) Total Time10800
12000
10000
8000 QA
= QB
6000 ac
4000 = QD
2000 '
0 m
0. 5. a B 35.09
52010 52513 52 25 0.

gap: QA is the best
time: QA is the best
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PQCR

(PQCR) Root gap

45
40

35
30
25
20
15

10
5

0
B.20.10B.20.15B.25.13 B.25.19B.25.25B.30.08 B.30.15B.35.09

—QA
—QB

Qc
——QDb

(PQCR) Total Time

12000

10000
8000
6000
4000
2000 I
0 L=

B.20. 10

83509

mQA
=QB

Qc
=QD

gap: QA is the best
time: QA is the best

@ In PQCR, QA (followed by
@B) performs much better than
and QD

@ PQCR is the best method.
When coupled to QA, the 8
instances are solved within 3
minutes in av.

@ Over the 4 quadratizations,
QA is globally the best and
0D is the worst. Recall N =
217, 234, 656, and 885
variables by QA, @B, /", and (D
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Conclusions

We provide a unifying notion of "quadratization scheme”

We show that several reformulations and solution methods can be
deduced from a given quadratization scheme

@ We present some computational results suggesting that
quadratization schemes with fewer variables have best performances

@ Similar results are obtained with the unconstrained penalized
quadratic reformulations of (Rosenberg 75) and (Anthony et al. 2017)

@ Similar results with other instances
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