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Abstract

In this work we address the problem of elaborating domain
descriptions (alias action theories), in particular those that
are expressed in dynamic logic. We define a general method
based on contraction of formulas in a version of propositional
dynamic logic with an incorporated solution to the frame
problem. We present the semantics of our theory change and
define syntactical operators for contracting a domain descrip-
tion. We establish soundness and completeness of the opera-
tors w.r.t. the semantics for descriptions that satisfy a princi-
ple of modularity that we have proposed elsewhere. We also
investigate an example of changing non-modular domain de-
scriptions.

I ntroduction

Suppose a situation where an agent has always believed that
if the light switch is up, then there is light in the room. Sup-
pose now that someday, she observes that even if the switch
is in the upper position, the light is off. In such a case, the
agent must change her beliefs about the relation between the
propositions “the switch is up” and “the light is on”. This
example is an instance of the problem of changing propo-
sitional belief bases and is largely addressed in the litera-
ture about belief change (Gérdenfors 1988) and belief up-
date (Katsuno & Mendelzon 1992).

Next, let our agent believe that whenever the switch is
down, after toggling it, there is light in the room. This means
that if the light is off, in every state of the world that fol-
lows the execution of toggling the switch, the room is lit up.
Then, during a blackout, the agent toggles the switch and
surprisingly the room is still dark.

Imagine now that the agent never worried about the rela-
tion between toggling the switch and the material it is made
of, in the sense that she ever believed that just toggling the
switch does not break it. Nevertheless, in a stressful day, she
toggles the switch and then observes that she had broken it.

Completing the wayside cross our agent experiments in
discovering the world’s behavior, suppose she has believed
that it is always possible to toggle the switch, provided some
conditions like being close enough to it, having a free hand,
the switch is not broken, etc, are satisfied. However, in a
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beautiful April fool’s day, the agent discovers that someone
has glued the switch and, consequently, it is no longer pos-
sible to toggle it.

The last three examples illustrate situations where chang-
ing the beliefs about the behavior of the action of toggling
the switch is mandatory. In the first one, toggling the switch,
once believed to be deterministic, has now to be seen as non-
deterministic, or alternatively to have a different outcome in
a specific context (e.g. if the power station is overloaded).
In the second example, toggling the switch is known to have
side-effects (ramifications) one was not aware of. In the
last example, the executability of the action under concern
is questioned in the light of new information showing a con-
text that was not known to preclude its execution. Carrying
out modifications is what we here call elaborating a domain
description, which has to do with the principle of elabora-
tion tolerance (McCarthy 1988).

Such cases of theory change are very important when one
deals with logical descriptions of dynamic domains: it may
always happen that one discovers that an action actually has
a behavior that is different from that one has always believed
it had.

Up to now, theory change has been studied mainly for
knowledge bases in classical logics, both in terms of revi-
sion and update. Only in a few recent works it has been
considered in the realm of modal logics, viz. in epistemic
logic (Hansson 1999), and in action languages (Eiter et
al. 2005). Recently, several works (Shapiro et al. 2000;
Jin & Thielscher 2005) have investigated revision of beliefs
about facts of the world. In our examples, this would con-
cern e.g. the current status of the switch: the agent believes
it is up, but is wrong about this and might subsequently be
forced to revise his beliefs about the current state of affairs.
Such belief revision operations do not modify the agent’s
beliefs about the action laws. In opposition to that, here
we are interested exactly in such modifications. The aim of
this work is to make a step toward that issue and propose a
framework that deals with the contraction of action theories.

Dynamic logic, more specifically propositional dynamic
logic (PDL (Harel 1984)), has been extensively used in
reasoning about actions in the last years (Castilho, Gas-
quet, & Herzig 1999; Castilho, Herzig, & Varzinczak 2002;
Zhang & Foo 2001; Foo & Zhang 2002; Zhang, Chopra, &



Foo 2002). It has shown to be a viable alternative to situ-
ation calculus approaches because of its simplicity and ex-
istence of proof procedures for it. In this work we inves-
tigate the elaboration of domain descriptions encoded in a
simplified version of such a logical formalism, viz. the mul-
timodal logic K,,. We show how a theory expressed in terms
of static laws, effect laws and executability laws is elabo-
rated: usually, a law has to be changed due to its generality,
i.e., the law is too strong and has to be weakened. It fol-
lows that elaborating an action theory means contracting it
by static, effect or executability laws, before expanding the
theory with more specific laws.

The present text is organized as follows: in the next sec-
tion we define the logical framework we use throughout this
work and show how action theories are encoded. Then we
present our semantics of theory change and its syntactical
counterpart. After that we establish soundness and com-
pleteness of our change operators w.r.t. the semantics, where
completeness is conditioned by a notion of modularity that
we have proposed in previous work. We then analyse an
example of correcting a non-modular theory. Before con-
cluding, we address related work on the field and discuss on
how elaboration tolerant the framework here proposed is.

Background

Following the tradition in the reasoning about actions com-
munity, action theories are going to be collections of state-
ments that have the particular form: “if context, then ef-
fect after every execution of action” (effect laws); and “if
precondition, then action executable” (executability laws).
Statements mentioning no action at all represent laws about
the world (static laws). Besides that, statements of the form
“if context, then effect after some execution of action” will
be used as a causal notion to solve the frame and the ramifi-
cation problems.

Logical preliminaries

Let Act = {a1, az, ...} be the set of all atomic action con-
stants of a given domain. An example of atomic action is
toggle. To each atomic action a there is associated a modal
operator [a].

Prop = {p;, P, - - .} denotes the set of all propositional
constants, also called fluents or atoms. Examples of those
are light (“the light is on”) and up (“the switch is up”). The
set of all literals is £it = {l4, l2,...}, where each |; is either
p or —p, for some p € Prop. If | = —p, then we identify -l
with p.

We use small Greek letters ¢, ), ... to denote classical
formulas. They are recursively defined in the usual way:

pu=p|T|L]-ploApleVelo—plpeep

gml is the set of all classical formulas. An example of
a classical formula is up — light. By val(y) we de-
note the set of valuations making ¢ true. We view a
valuation as a maximally-consistent set of literals. For
Prop = {light, up}, there are four valuations: {light, up},
{light, —up}, {-light, up} and {-light, —up}. Given a set of

formulas ¥, by lit(X) we denote the set of all literals appear-
ing in formulas of X.

We denote complex formulas (with modal operators) by
®,¥, ... They are recursively defined in the following way:

b =g |[ad| -S| IND|OVE| D> B| b &
(a) is the dual operator of [a], defined as (a)® =g ~[a]P.
An example of a complex formula is —up — [toggle]up.

The semantics is that of multimodal logic K (Popkorn
1994).

Definition 1 A K,-model is a tuple .# = (W,R) where
W is a set of valuations, and R a function mapping action
constants a to accessibility relations Rz C W x W.

Definition 2 Given a K,,-model .# = (W,R),
. |:f/ p (p is true at world w of model .#) if p € w;

M . I S
. |:w [a]® if for every w' such that wRaw’, |:w, ;
e truth conditions for the other connectives are as usual.
Definition 3 .# is a model of & (noted |:/t &) if and only
if forallw € W, |::jl &. . is a model of a set of formulas

¥ (noted |=//{ Y) if and only if \:ﬂ & forevery ¢ € 3. A
formula @ is a consequence of the set of global axioms I in
the class of all K,,-models (noted I" |:K @) if and only if for

every K,,-model .#, if |=J” T, then |=M P.

Describing the behavior of actionsin K,

Given a domain, we are interested in theories whose state-
ments describe the behavior of actions. K,, allows for the
representation of such statements, that we call action laws.
Here we distinguish several types of them. The first kind of
statement represents the static laws, which are formulas that
must hold in every possible state of the world.

Definition 4 A static law is a formula ¢ € Fml.

An example of a static law is up — light, saying that if the
switch is up, then the light is on. The set of all static laws of
a domain is denoted by S C gml.

The second kind of action law we consider is given by
the effect laws. These are formulas relating an action to its
effects, which can be conditional.

Definition 5 An effect law for action a is of the form ¢ —
[a]y, where @, 1) € Fml.

The consequent 1 is the effect which always obtains when
action a is executed in a state where the antecedent ¢ holds.
If a is a nondeterministic action, then the consequent ¥ is
typically a disjunction. The set of effect laws of a domain
is denoted by £. An example of an effect law is —up —
[toggle]light, saying that whenever the switch is down, after
toggling it, the room is lit up. If ¢ is inconsistent, we have
a special kind of effect law that we call an inexecutability
law. For example, broken — [toggle] L expresses that toggle
cannot be executed if the switch is broken.

Finally, we also define executability laws, which stipulate
the context where an action is guaranteed to be executable.
In K,,, the operator () is used to express executability. {(a) T
thus reads “the execution of a is possible”.



Definition 6 An executability law for action a is of the form
@ — ()T, where ¢ € gml.

For instance, —broken — (toggle) T says that toggling can
be executed whenever the switch is not broken. The set of
all executability laws of a given domain is denoted by X.

The rest of this work is devoted to the elaboration of ac-
tion models and theories.

M odels of contraction

When an action theory has to be changed, the basic operation
is that of contraction. (In belief-base update (Winslett 1988;
Katsuno & Mendelzon 1992) it has also been called era-
sure.) In this section we define its semantics.

In general we might contract by any formula ¢. Here we
focus on contraction by one of the three kinds of laws. We
therefore suppose that @ is either ¢, where ¢ is classical, or

p = [aJp,orp = (@)T.

For the case of contracting static laws we resort to existing
approaches in order to change the set of static laws. In the
following, we consider any belief change operator such as
Forbus’ update method (Forbus 1989), or the possible mod-
els approach (Winslett 1988; 1995), or WSS (Herzig & Rifi
1999) or MPMA (Doherty, Lukaszewicz, & Madalinska-
Bugaj 1998).

Contraction by ¢ corresponds to adding new possible
worlds to W. Let © be a contraction operator for classical
logic.

Definition 7 Let (W,R) be a K,,-model and ¢ a classical
formula. The set of models resulting from contracting by
¢ is the singleton (W,R)_ = {(W',R)} such that W' =
W o val(y).

Observe that R should, a priori, change as well, otherwise
contracting a classical formula may conflict with X.! Forin-
stance, if - — (a) T € X and we contract by ¢, the result
may make X untrue. However, given the amount of infor-
mation we have at hand, we think that whatever we do with
R (adding or removing edges), we will always be able to find
a counter-example to the intuitiveness of the operation, since
it is domain dependent. For instance, adding edges for a de-
terministic action may render it nondeterministic. Deciding
on what changes to carry out on R when contracting static
laws depends on the user’s intuition, and unfortunately this
information cannot be generalized and established once for
all. We opt for a priori doing nothing with R and postponing
correction of executability laws.

Action theories being defined in terms of effect and exe-
cutability laws, elaborating an action theory will mainly in-
volve changes in these two sets of laws. Let us consider now
both these cases.

Suppose the knowledge engineer acquires new informa-
tion regarding the effect of action a. Then it means that the

'We are indebted to the anonymous referees for pointing this
out to us.

law under consideration is probably too strong, i.e., the ex-
pected effect may not occur and thus the law has to be weak-
ened. Consider e.g. ~up — [toggle]light, and suppose it has
to be weakened to the more specific (—up A =blackout) —
[toggle]light.? In order to carry out such a weakening, first
the designer has to contract the set of effect laws and second
to expand the resulting set with the weakened law.

Contraction by ¢ — [a]e) amounts to adding some ‘coun-
terexample’ arrows from -worlds to —ip-worlds. To ease
such a task, we need a definition. Let Pl{¢) denote the set
of prime implicates of ¢.

Definition 8 Let ¢1,902 € Fml.  NewCons,, (p2) =
Pl(¢1 A ¢2) \ PI(p1) computes the new consequences of
2 W..t. p1: the set of strongest clauses that follow from
1 A @2, but do not follow from ¢ alone (cf. e.g. (Inoue
1992)).

For example, the set of prime implicates of p; is just
{p;}, that of the formula p; A (-=p; V py) A (—p; V
P; V py) is {P;,Py,P5 V Py}, hence we have that
Nei/vConspl((ﬂplvpz) A(=P1VP3VPy) = {Py;Ps V
Pas-

Definition 9 Let (W, R) be a K,,-model and ¢ — [a]¢) an
effect law. The models resulting from contracting by ¢ —
8l is (W,R) gy = {(W,RUR) : Ry C {(w,w')

p—[d]
EYR o B and w' \ w C lit(NewConss(—wh))}}.
In our context, lit(NewConss(—))) corresponds to all the
ramifications that action a can produce.

Suppose now the knowledge engineer learns new infor-
mation about the executability of a. This usually occurs
when there are executability laws that are too strong, i.e.,
the condition in the theory guaranteeing the executability of
a is too weak and has to be made more restrictive. Let e.g.
(toggle) T be the law to be contracted, and suppose it has
to be weakened to the more specific —broken — (toggle)T.
To implement such a weakening, the designer has to first
contract the set of executability laws and then to expand the
resulting set with the weakened law.

Contraction by ¢ — () T corresponds to removing some
arrows leaving worlds where ¢ holds. Removing such ar-
rows has as consequence that a is no longer always exe-
cutable in context (.

Definition 10 Let (W,R) be a K,-model and ¢ — (a)T
an executability law. The set of models that result from the
contraction by ¢ — ()T is (W,R)__, o+ = {(W,R')

R'=R\RYL,RY C {(w,u') : wRaw' and K™ o}}.

w
In the next section we make a step toward syntactical op-
erators that reflect the semantic foundations for contraction.

The other possibility of weakening the law, i.e., replacing it by
—up — [toggle](light v —light) looks silly. We were not able to
find examples where changing the consequent could give a more
intuitive result. In this sense, we prefer to always weaken a given
law by strengthening its antecedent.



Contracting an action theory

Having established the semantics of action theory contrac-
tion, we can turn to its syntactical counterpart. Nevertheless,
before doing that we have to consider an important issue. As
the reader might have expected, the logical formalism of K,
alone does not solve the frame problem. For instance,

up — light,
—up — [toggle]up,
up — [toggle]-up,

(toggle) T

Thus, we need a consequence relation powerful enough to
deal with the frame and ramification problems. This means
that the deductive power of K,, has to be augmented in or-
der to ensure that the relevant frame axioms follow from
the theory. Following the logical framework developed
in (Castilho, Gasquet, & Herzig 1999), we consider meta-
logical information given in the form of a dependence rela-
tion:

/s broken — [toggle]broken.

Definition 11 A dependence relation is a binary relation
~C Act x Lit.

The expression a ~ | denotes that the execution of action
a may change the truth value of the literal |. On the other
hand, (a,l) ¢ ~» (written a % |) means that | can never
be caused by a. In our example we have toggle ~» light
and toggle ~ —light, which means that action toggle may
cause a change in literals light and —light. We do not have
toggle ~» —broken, for toggling the switch never repairs it.

We assume ~» is finite.

Definition 12 A model of a dependence relation ~» is a K, -
model .# such that |=j[ {=l—=[a-l : a1}

Given a dependence relation ~», the associated conse-
quence relation in the set of models for ~+ is noted |= . For
our example we obtain

up — light,
—up — [toggle]up,
up — [toggle]-up,

(toggle) T

=, broken — [toggle]broken.

We have toggle +» —broken, i.e., —broken is never caused by
toggle. Therefore in all contexts where broken is true, after
every execution of toggle, broken still remains true. The
consequence of this independence is that the frame axiom
broken — [toggle]broken is valid in the models of ~».

Such a dependence-based approach has been shown (De-
molombe, Herzig, & Varzinczak 2003) to subsume Reiter’s
solution to the frame problem (Reiter 1991) and moreover
treats the ramification problem, even when actions with both
indeterminate and indirect effects are involved (Castilho,
Herzig, & Varzinczak 2002; Herzig & Varzinczak 2004a).

Definition 13 An action theory is a tuple of the form
<8757X7M>'

In our example, the corresponding action theory is

- _ _ | —up — [toggle]up,
S = {up — light}, £ = { up — [toggle]-up

(toggle, light),
(toggle, —light),

(toggle, up),

(toggle, —up)
And we have §,&,&X = -up — [toggle]light. (For par-
simony’s sake, we write S,£, X = & instead of SUE U
XE &)

Let (S, &, X, ~) be an action theory and @ a K,,-formula.
(S,&,X,~s)g is the action theory resulting from the con-
traction of (S, &, X', ~) by &.

Contracting a theory by a static law ¢ amounts to using
any existing contraction operator for classical logic. Let ©
be such an operator. Moreover, based on (Herzig & Varz-
inczak 2005b), we also need to guarantee that ¢ does not
follow from £, X and ~». We define contraction of a do-
main description by a static law as follows:

Definition 14 (S,S,X,M); = (§,&,X,~), where

ST =80 pand X~ = {(piAp) = @T : ¢; =
@T e XJ.

We now consider the case of contracting an action theory
by an executability law ¢ — (@) T. For every executability
in X', we ensure that action a is executable only in contexts
where - is the case. The following operator does the job.
Definition 15 (S, &, X, ~) (a7 (S,E,X7,~),
where X~ = {(p;i A @) = (@)T : p; = (@)T € X}

For instance, contracting glued — (toggle) T in our example
would give us X~ = {—glued — {toggle) T }.

X = {(toggle)T}, ~ =

Finally, to contract a theory by ¢ — [a]¢, for every effect
law in &, we first ensure that a still has effect ¢ whenever
¢ does not hold, second we enforce that a has no effect in
context — except on those literals that are consequences of
—p. Combining this with the new dependence relation also
linking a to literals involved by —1), we have that a may now
produce —1) as outcome. In other words, the effect law has
been contracted. The operator below formalizes this:

Definition 16 (S, &, X,~), 4y (S, 7, X,~7),
with ~~=~» U{(a,I) I € lit(NewConss(—%))} and
E-={(pi N—p) = [alY : @i = (Al € EFU{(mp A
-l = [a]ol : (al) € (»7 \ )}

For instance, contracting the law blackout — [toggle]light
from our theory would give us £~ = {(—upA—blackout) —
[toggle]up, (up A —blackout) — [toggle]—up}.

Results

In this section we present the main results that follow from
our framework. These require the action theory under con-
sideration to be modular (Herzig & Varzinczak 2005b). In
our framework, an action theory is said to be modular if a
formula of a given type entailed by the whole theory can also
be derived solely from its respective module (the set of for-
mulas of the same type) together with the static laws S. As
shown in (Herzig & Varzinczak 2005b), to make a domain
description satisfy such a property it is enough to guarantee



that there is no classical formula entailed by the theory that
is not entailed by the static laws alone.

Definition 17 ¢ € Fml is an implicit static law of
(S,€,X,~)ifandonly if S,E, X | pand S [~ ¢.

A theory is modular if it has no implicit static laws. Our
concept of modularity of theories was originally defined
in (Herzig & Varzinczak 2004b; 2005b), but similar notions
have also been addressed in the literature (Cholvy 1999;
Amir 2000a; Zhang, Chopra, & Foo 2002; Lang, Lin, &
Marquis 2003; Herzig & Varzinczak 2005a). A modularity-
based approach for narrative reasoning about actions is given
in (Kakas, Michael, & Miller 2005).

To witness how implicit static laws can show up, consider
the quite simple action theory below, depicting the walking
turkey scenario (Thielscher 1995):

S = {walking — alive}, £ = { [tease]walking, }

loaded — [shoot]—alive

X = { (tease)T, (shoot) T },

_ (shoot, —loaded), (shoot, —alive}),
™=\ (shoot, ~walking), {tease, walking)

With this domain description we have S,&, X |= = alive:
first, {walking — alive, [tease]walking} = [tease]alive,
second |=_ —alive — [tease]-alive (from the independence
tease -4 alive), and then S, € = —alive — [tease] L. As
long as §,&,X |= (tease) T, we must have S,&, X |
alive. As S [~ alive, the formula alive is an implicit static
law of (S,E, X ,~»).

Modular theories have several advantages (Herzig &
Varzinczak 2004b; ). For example, consistency of a modular
action theory can be checked by just checking consistency
of S if (S, &, X ,~) is modular, then S, £, X |= L if and
only if S | L. Deduction of an effect of a sequence of
actions aj;...;ay, (prediction) does not need to take into
account the effect laws for actions other than a;,...,a,.
This applies in particular to plan validation when deciding
whether (a;; . ..;a,) is the case.

Throughout this work we have used multimodal logic K,,.
For an assessment of the modularity principle in the Situa-
tion Calculus, see (Herzig & Varzinczak 2005a).

Here we establish that our operators are correct w.r.t. the
semantics. Our first theorem establishes that the semantical
contraction of the models of (S,&,X,~) by & produces
models of (S,&,X,~)5.

Theorem 1 Let (W, R) be a model of (S, &, X',~), and let
& be a formula that has the form of one of the three laws.
For all models ., if # € (W,R)g, then .# is a model of

<Sa g; X5M><;

It remains to prove that the other way round, the mod-
els of (S,€,X,~»), result from the semantical contrac-
tion of models of (S,&, X,~») by é. This does not hold
in general, as shown by the following example: suppose
there is only one atom p and one action @, and consider

the theory (S,&,X,~) such that S = 0, £ = {p —
[a]L}, X = {(@T}, and ~= 0. The only model of

that action theory is .# = ({{-p}},{({-p},{-P}H}).

By definition, p__>(a)T = {#}. On the other hand,

<SagaXaM>;;—>(a)T = (0)7 {p - [a]J-}a {_'p - <a>T}a@)'
The contracted theory has two models: .# and .#' =

({{p}, {-p}}, ({—p},{=p})). While -p is valid in the con-
traction of the models of (S, &, X,~), it is invalid in the

models of (S, &, X"\”)E—Ma)T'

Fortunately, we can establish a result for those action the-
ories that are modular. The proof requires three lemmas.
The first one says that for a modular theory we can restrict
our attention to its ‘big’ models.

Lemmal Let(S,&, X,~») be modular. Then S, &, X =

& if and only if |:<W’R> ¢ for every model (W,R) of

(S, &, X,~») such that W = val(S).

Note that the lemma does not hold for non-modular theories,
as {(W,R) : (W,R)isamodelof (§,£,X,~)and W =
val(S)} is empty then.

The second lemma says that modularity is preserved un-
der contraction.

Lemma2 Let (S,&,X,~) be modular, and let ¢ be a
formula of the form of one of the three laws. Then
(S,&,X,~s)gp is modular.

The third one establishes the required link between the
contraction operators and contraction of ‘big” models.

Lemma 3 Let (S,&,X,~) be modular, and let & be a
formula of the form of one of the three laws. If .Z' =
(val(S),R') is a model of (S,&,X,~)z, then there is a
model 4 of (S,E, X ,~) such that #' € M .

Putting the three above lemmas together we get:

Theorem 2 Let (S, &, X' ,~) be modular, ¢ be a formula of
the form of one of the three laws, and (S~ ,£~, X~ ,~ ") be
(8,€,X,~)g. Ifitholds that S7,€7, X~ | _ ¥, then
for every model .# of (S,&, X ,~) and every A" € My
it holds that = .

Our two theorems together establish correctness of the op-
erators:

Corollary 1 Let (S,&, X ,~) be modular, ¢ be a formula
of the form of one of the three laws, and (S, £, X~ ,~™)
be (S,E,X,~)g. ThenS™, &7, X~ E _ ¥if and only if
for every model 4 of (S,&,X,~) and every A" € MG
it holds that =7 .

We give a necessary condition for success of contraction:
Theorem 3 Let & be an effect or an executability law such
thatS W @. Let(S™,E&7, X7 ,~7) be (S, &, X ,~)g. If
(S,€,X,~) is modular, then §7,E7, X7 [£ _ &.



Contracting implicit static laws

There can be many reasons why a theory should be changed.
Following (Herzig & Varzinczak 2004b; 2005b; ), here we
focus on the case where it has some classical consequence ¢
the designer is not aware of.

If ¢ is taken as intuitive, then, normally, no change has to
be done at all, unless we want to keep abide on the modu-
larity principle and thus make ¢ explicit by adding it to S.
In the scenario example of last section, if the knowledge en-
gineer’s universe has immortal turkeys, then she would add
the static law alive to S.

The other way round, if ¢ is not intuitive, as long as
o is entailed by (S,&,X,~), the goal is to avoid such
an entailment, i.e., what we want is S—,&~, X~ [;éM_ ©,

where (§7,&, X ,~")is (S5,€,X,~)5. In the men-
tioned scenario, the knowledge engineer considers that hav-
ing immortal turkeys is not reasonable and thus decides to
change the domain description to (S, £~, X' ~,~»7) so that
§,E7, X7 £ _ alive.

This means that action theories that are not modular need
to be changed, too. Such a changing process is driven
by the problematic part of the theory detected by the al-
gorithms defined in (Herzig & Varzinczak 2004b) and im-
proved in (Herzig & Varzinczak ).

The algorithm works as follows: for each executability
law ¢ — (a)T in the theory, construct from £ and ~ a
set of inexecutabilities {1 — [a]L,..., ¢, — [a]L} that
potentially conflict with ¢ — (@) T. Foreachi, 1 < i < m,
if @ A p; is satisfiable w.r.t. S, mark —=(¢ A ;) as an implicit
static law. Incrementally repeat this procedure (adding all
the =(¢ A ;) that were caught to S) until no implicit static
law is obtained.

For an example of the execution of the algorithm, con-
sider (S, &, X' ,~») as above. For the action tease, we have
the executability (tease) T. Now, from &, and ~ we try to
build an inexecutability for tease. We take [tease]walking
and compute then all indirect effects of tease w.r.t. S. From
walking — alive, we get that alive is an indirect effect of
tease, giving us [tease]alive. But (tease,alive) ¢~», which
means the frame axiom —alive — [tease]-alive holds. To-
gether with [tease]alive, this gives us the inexecutability
—alive — [tease] L. As SU {T,—alive} is satisfiable (T
is the antecedent of the executability (tease) T), we get the
implicit static law alive. For this example no other inexe-
cutability for tease can be derived, so the computation stops.

It seems that in general implicit static laws are not intu-
itive. Therefore their contraction is more likely to happen
than their addition.? In the example above, the action theory
has to be contracted by alive.* In order to contract the action
theory, the designer has several choices:

3In all the examples in which we have found implicit static laws
that are intuitive they are so evident that the only explanation for
not having them explicitly stated is that they have been forgotten
by the theory’s designer.

“Here the change operation is a revision-based operation rather
than an update-based operation since we mainly “fix” the theory.

1) Contract the set S. (In this case, such an operation is not
enough, since alive is a consequence of the rest of the the-

ory.)

2) Weaken the effect law [tease]walking to alive —
[tease]walking, since the original effect law is too strong.
This means that in a first stage the designer has to contract
the theory and in a second one expand the effect laws with
the weaker law. The designer will usually choose this option
if she focuses on the preconditions of the effects of actions.

3) Weaken the executability law (tease) T by rephrasing it
as alive — (tease)T: first the executability is contracted
and then the weaker one is added to the resulting set of ex-
ecutability laws. The designer will choose this option if she
focuses on preconditions for action execution.

The analysis of this example shows that the choice of
what change has to be carried out is up to the knowledge
engineer. Such a task can get more complicated when
ramifications are involved. To witness, suppose our sce-
nario has been formalized as follows: & = {walking —
alive}, £ = {[shoot]-alive}, X = {(shoot) T}, and ~=
{{(shoot, —alive)}. From this action theory we can derive
the inexecutability walking — [shoot] L and thus the im-
plicit static law —walking. In this case we have to change
the theory by contracting the frame axiom walking —
[shoot]walking (which amounts to adding the missing indi-
rect dependence shoot ~» —walking).

Elabor ation tolerance

The principle of elaboration tolerance has been proposed by
McCarthy (McCarthy 1988). Roughly, it states that the ef-
fort required to add new information to a given representa-
tion (new laws or entities) should be proportional to the com-
plexity of the information being added, i.e., it should not re-
quire the complete reconstruction of the old theory (Shana-
han 1997).

Since then many formalisms in the reasoning about ac-
tions field claim, in a more or less tacit way, to satisfy such
a principle. However, for all this time there has been a lack
of good formal criteria allowing for the evaluation of theory
change difficulty and, consequently, comparisons between
different frameworks are carried out in a subjective way.

The proposal by Amir (Amir 2000b) made the first steps
in formally answering what difficulty of changing a theory
means by formalizing one aspect of elaboration tolerance.
The basic idea is as follows: let 7, be the original theory
and let 7; and 7, be two equivalent (and different) theo-
ries such that each one results from 7, by the application of
some sequence of operations (additions and/or deletions of
formulas). The resulting theory whose transformation from
7T, has the shortest length (number of operations) is taken as
the most elaboration tolerant.

Nevertheless, in the referred work only addition/deletion
of axioms is considered, i.e., changes in the logical lan-
guage or contraction of consequences of the theory not ex-
plicitly stated in the original set of axioms are not taken
into account. This means that even the formal setting given
in (Amir 2000b) is not enough to evaluate the complexity of



theory change in a broad sense. Hence the community still
needs formal criteria that allow for the comparison between
more complex changes carried out by frameworks like ours,
for example.

Of course, how elaboration tolerant a given up-
date/revision method is strongly depends on its underlying
formalism for reasoning about actions, i.e., its logical back-
ground, the solution to the frame problem it implements, the
hypothesis it relies on, etc. In what follows we discuss how
the dependence-based approach here used behaves when ex-
pansion is considered. Most of the comments concerning
consequences of expansion can also be stated for contrac-
tion. We do that with respect to some of the qualitative crite-
ria given in (McCarthy 1998). In all that follows we suppose
that the resulting theory is consistent.

Adding effect laws In the dependence-based framework,
adding the new effect law ¢ — [a]ty) to the theory de-
mands a change in the dependence module ~». In that
case, the maximum number of statements added to ~» is
[{l : I € lit(NewConss(¢))}| (dependences for all indirect
effects have to be stated, too). This is due to the explanation
closure nature of the reasoning behind dependence (for more
details, see (Castilho, Gasquet, & Herzig 1999)). Because
of this, according to Shanahan (Shanahan 1997), explana-
tion closure approaches are not elaboration tolerant when
dealing with the ramification problem. In order to achieve
that, the framework should have a mechanism behaving like
circumscription that automatically deals with ramifications.
This raises the question: “if we had an automatic (or even
semi-automatic) procedure to do the job of generating the
indirect dependences, could we say the framework is elabo-
ration tolerant?”. We think we can answer positively to such
a question, and, supported by Reiter (Reiter 2001), we are
working on a semi-automatic procedure for generating the
dependence relation from a set of effect laws.

Adding executability laws Such a task demands only a
change in the set X' of executabilities, possibly introducing
implicit static laws as a side effect.

Adding static laws Besides expanding the set S, adding new
(indirect) dependences may be required (see above).

Adding frame axioms If the frame axiom —| — [a]—-l has
to be valid in the resulting theory, expunging the dependence
a~» | should do the job.

Adding a new action hame Without loss of generality we
can assume the action in question was already in the lan-
guage. In that case, we expect just to add effect or exe-
cutability laws for it. For the former, at most |£it| depen-
dences will be added to ~». (We point out nevertheless that
the requirement made in (McCarthy 1998) that the addition
of an action irrelevant for a given plan in the old theory
should not preclude it in the resulting theory is too strong.
Indeed, it is not difficult to imagine a new action forcing an
implicit static law from which an inexecutability for some
action in the plan can be derived. The same holds for the
item below.)

Adding a new fluent name In the same way, we can sup-
pose the fluent was already in the language. Such a task

amounts thus to one or more of the above expansions. There
will be at most 2 x |2ct| new elements added to ~».

Related wor k

Following (Li & Pereira 1996; Liberatore 2000),
Eiter etal. (Eiter et al. 2005) have investigated update
of action domain descriptions. They define a version
of action theory update in an action language and give
complexity results showing how hard such a task can be.

Update of action descriptions in their sense is always rel-
ative to some conditions (interpreted as knowledge possibly
obtained from earlier observations and that should be kept).
This characterizes a constraint-based update. In the example
they give, change must be carried out preserving the assump-
tion that pushing the button of the remote control is always
executable. Actually, the method is more subtle, as new ef-
fect laws are added constrained by the addition of viz. an
executability law for the new action under concern. In the
example, the constraint (executability of push) was not in
the original action description and must figure in the updated
theory.

They describe domains of actions in a fragment of the ac-
tion language C (Gelfond & Lifschitz 1998). However they
do not specify which fragment, so it is not clear whether
the claimed advantages C has over A really transfer to their
framework. At one hand, their approach deals with indirect
effects, but they do not talk about updating a theory by a law
with a nondeterministic action. Anyway, except for concur-
rency, their account can be translated into ours, as shown
in (Castilho, Gasquet, & Herzig 1999).

Eiter et al. consider an action theory 7" as comprising two
main components: 7, the part of the theory that must re-
main unchanged, and 7, the part concerning the statements
that are allowed to change. The crucial information to the
associated solution to the frame problem is always in 7,.

Given an action theory 7 = T, U7,,. (T,UT,,),T",C)
is the problem of updating 7 by 7' C SU £ warranting the
result satisfies all constraints in C C SU X',

Even though they do not explicitly state postulates for
their kind of theory update, they establish conditions for the
update operator to be successful. Basically, they claim for
consistency of the resulting theory; maintenance of the new
knowledge and the invariable part of the description; satis-
faction of the constraints in C'; and minimal change.

In some examples that they develop, the illustrated “par-
tial solution” does not satisfy C' due to the existence of im-
plicit laws (cf. Example 1, where there is an implicit inex-
ecutability law). To achieve a solution, while keeping C,
some other laws must be dropped (in the example, the agent
gives up a static law).’

Just to see the link between update by subsumed laws
and addition of implicit static laws, we note that Propo-
sition 1 in the referred work is the same as Theorem 14
in (Herzig & Varzinczak 2005b): every implicit static law
in Herzig and Varzinczak’s sense is trivially a subsumed law
in Eiter et al.’s sense.

5This does not mean however that the updated theory will nec-
essarily contain no implicit law.



With their method we can also contract by a static and an
effect law. Contraction of executabilities are not explicitly
addressed, and weakening (replacing a law by a weaker one)
is left as future work.

A main difference between the approach in (Eiter et al.
2005) and ours is that we do not need to add new fluents at
every elaboration stage: we still work on the same set of flu-
ents, refining their behavior w.r.t. an action a. In Eiter et al.’s
proposal an update forces changing all the variable rules ap-
pearing in the action theory by adding to each one a new
update fluent. This is a constraint when elaborating action
theories.

Concluding remarks

In this work we have presented a general method for chang-
ing a domain description (alias action theory) given any for-
mula we want to contract.

We have defined a semantics for theory contraction and
also presented its syntactical counterpart through contrac-
tion operators. Soundness and completeness of such oper-
ators with respect to the semantics have been established
(Corollary 1).

We have also shown that modularity is a necessary con-
dition for a contraction to be successful (Theorem 3). This
gives further evidence that our modularity notion is fruitful.

We have analysed an example of contraction of a non-
modular theory by an implicit static law that is unintended.

Because of forcing formulas to be explicitly stated in their
respective modules (and thus possibly making them infer-
able in independently different ways), intuitively modular-
ity could be seen to diminish elaboration tolerance. For in-
stance, when contracting a classical formula ¢ from a non-
modular theory, it seems reasonable to expect not to change
the set of static laws S, while the theory being modular
surely forces changing such a module. However it is not
difficult to conceive non-modular theories in which contrac-
tion of a formula ¢ may demand a change in S as well. To
witness, suppose S = {¢1 — @2} in an action theory from
whose dynamic part we (implicitly) infer 5. In this case,
a contraction of —; keeping —p2 would necessarily ask for
a change in S. We point out nevertheless that in both cases
(modular and non-modular) the extra work in changing other
modules stays in the mechanical level, i.e., in the machinery
that carries out the modification, and does not augment in a
significant way the amount of work the knowledge engineer
is expected to do.

What is the status of the AGM-postulates for contraction
in our framework? First, contraction of static laws satisfies
all the postulates, as soon as the underlying classical con-
traction operation © satisfies all of them.

In the general case, however, our constructions do not sat-
isfy the central postulate of preservation (S,&, X ,~)g5 =
(S,€,X,~) if §,€,X [£ &. Indeed, suppose we have a
language with only one atom p, and a model .# with two
worlds w = {p} and w’ = {—p} such that wRw', w'Raw,
and w'Raw’. Then |:Jﬂ p — [a]-p and [a-p, ie., A
is a model of the effect law p — [a]—p, but not of [a]—p.

Now the contraction .#;_, yields the model .#" such that

Ra = W x W. Then [;5% p — [a]-p, ie., the effect law
p — [a]—p is not preserved. Our contraction operation thus
behaves rather like an update operation.

Now let us focus on the other postulates. Since our opera-
tor has a behavior which is close to the update postulate, we
focus on the following basic erasure postulates introduced
in (Katsuno & Mendelzon 1991). Let Cn(7) be the set of
all logical consequences of a theory 7 .

KM1Cn({S,E, X,~)5) C Cn((S, &, X ,~))

Postulate KM1 does not always hold because it is possible
to make the formula ¢ — [a]L valid in the resulting theory
by removing elements of R, (cf. Definition 10).

KM2 & ¢ Cn((S,£,X,~)5)

Under the condition that (S,&, X ,~) is modular, Postu-
late KM2 is satisfied (cf. Theorem 3).

KM3 If Cn((S1,&, A1,~)) = Cn((S2, &, Ay, ~))
and |, @1 < Do, then Cn((S1,&, X,~)g,) =

Cn(<827 527 XQ:'\”);l)'

Theorem 4 If (S;1,&,&;,~) and (S2,&,, Xy,~) are
modular and the propositional contraction operator & sat-
isfies Postulate KM3, then Postulate KM3 is satisfied for
every &1, P, € Fml.

Here we have presented the case for contraction, but our
definitions can be extended to revision, too. Our results can
also be generalized to the case where learning new actions
or fluents is involved. This means in general that more than
one simple formula should be added to the belief base and
must fit together with the rest of the theory with as little side-
effects as possible. We are currently defining algorithms
based on our operators to achieve that.
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