Andreas Herzig 
email: herzig@irit.fr
  
Laurent Perrussel 
email: perrusse@irit.fr
  
Ivan Varzinczak 
  
Elaborating domain descriptions

In this work we address the problem of elaborating domain descriptions (alias action theories), in particular those that are expressed in dynamic logic. We define a general method based on contraction of formulas in a version of propositional dynamic logic with an incorporated solution to the frame problem. We present the semantics of our theory change and define syntactical operators for contracting a domain description. We establish soundness and completeness of the operators w.r.t. the semantics for descriptions that satisfy a principle of modularity that we have proposed elsewhere. We also investigate an example of changing non-modular domain descriptions.

Introduction

Suppose a situation where an agent has always believed that if the light switch is up, then there is light in the room. Suppose now that someday, she observes that even if the switch is in the upper position, the light is off. In such a case, the agent must change her beliefs about the relation between the propositions "the switch is up" and "the light is on". This example is an instance of the problem of changing propositional belief bases and is largely addressed in the literature about belief change [START_REF] Kaufmann | Knowledge in Flux: Modeling the Dynamics of Epistemic States[END_REF] and belief update [START_REF] Katsuno | On the difference between updating a knowledge base and revising it[END_REF].

Next, let our agent believe that whenever the switch is down, after toggling it, there is light in the room. This means that if the light is off, in every state of the world that follows the execution of toggling the switch, the room is lit up. Then, during a blackout, the agent toggles the switch and surprisingly the room is still dark.

Imagine now that the agent never worried about the relation between toggling the switch and the material it is made of, in the sense that she ever believed that just toggling the switch does not break it. Nevertheless, in a stressful day, she toggles the switch and then observes that she had broken it.

Completing the wayside cross our agent experiments in discovering the world's behavior, suppose she has believed that it is always possible to toggle the switch, provided some conditions like being close enough to it, having a free hand, the switch is not broken, etc, are satisfied. However, in a £ Supported by a fellowship from the government of the FED-ERATIVE REPUBLIC OF BRAZIL. Grant: CAPES BEX 1389/01-7.

beautiful April fool's day, the agent discovers that someone has glued the switch and, consequently, it is no longer possible to toggle it.

The last three examples illustrate situations where changing the beliefs about the behavior of the action of toggling the switch is mandatory. In the first one, toggling the switch, once believed to be deterministic, has now to be seen as nondeterministic, or alternatively to have a different outcome in a specific context (e.g. if the power station is overloaded). In the second example, toggling the switch is known to have side-effects (ramifications) one was not aware of. In the last example, the executability of the action under concern is questioned in the light of new information showing a context that was not known to preclude its execution. Carrying out modifications is what we here call elaborating a domain description, which has to do with the principle of elaboration tolerance [START_REF] Mccarthy | Mathematical logic in artificial intelligence[END_REF].

Such cases of theory change are very important when one deals with logical descriptions of dynamic domains: it may always happen that one discovers that an action actually has a behavior that is different from that one has always believed it had.

Up to now, theory change has been studied mainly for knowledge bases in classical logics, both in terms of revision and update. Only in a few recent works it has been considered in the realm of modal logics, viz. in epistemic logic [START_REF] Hansson | A Textbook of Belief Dynamics: Theory Change and Database Updating[END_REF], and in action languages [START_REF] Eiter | Updating action domain descriptions[END_REF]. Recently, several works [START_REF] Shapiro | Iterated belief change in the situation calculus[END_REF][START_REF] Jin | Iterated belief revision, revised[END_REF] have investigated revision of beliefs about facts of the world. In our examples, this would concern e.g. the current status of the switch: the agent believes it is up, but is wrong about this and might subsequently be forced to revise his beliefs about the current state of affairs. Such belief revision operations do not modify the agent's beliefs about the action laws. In opposition to that, here we are interested exactly in such modifications. The aim of this work is to make a step toward that issue and propose a framework that deals with the contraction of action theories.

Dynamic logic, more specifically propositional dynamic logic (PDL [START_REF] Harel | Dynamic logic[END_REF])), has been extensively used in reasoning about actions in the last years [START_REF] Castilho | Formalizing action and change in modal logic I: the frame problem[END_REF][START_REF] Castilho | It depends on the context! a decidable logic of actions and plans based on a ternary dependence relation[END_REF][START_REF] Zhang | EPDL: A logic for causal reasoning[END_REF]Foo & Zhang 2002;[START_REF] Zhang | Consistency of action descriptions[END_REF]. It has shown to be a viable alternative to situation calculus approaches because of its simplicity and existence of proof procedures for it. In this work we investigate the elaboration of domain descriptions encoded in a simplified version of such a logical formalism, viz. the multimodal logic ¢¡ . We show how a theory expressed in terms of static laws, effect laws and executability laws is elaborated: usually, a law has to be changed due to its generality, i.e., the law is too strong and has to be weakened. It follows that elaborating an action theory means contracting it by static, effect or executability laws, before expanding the theory with more specific laws.

The present text is organized as follows: in the next section we define the logical framework we use throughout this work and show how action theories are encoded. Then we present our semantics of theory change and its syntactical counterpart. After that we establish soundness and completeness of our change operators w.r.t. the semantics, where completeness is conditioned by a notion of modularity that we have proposed in previous work. We then analyse an example of correcting a non-modular theory. Before concluding, we address related work on the field and discuss on how elaboration tolerant the framework here proposed is.

Background

Following the tradition in the reasoning about actions community, action theories are going to be collections of statements that have the particular form: "if context, then effect after every execution of action" (effect laws); and "if precondition, then action executable" (executability laws). Statements mentioning no action at all represent laws about the world (static laws). Besides that, statements of the form "if context, then effect after some execution of action" will be used as a causal notion to solve the frame and the ramification problems.

Logical preliminaries

Let £ ¥¤ §¦ ©¨¡ a a ¢ be the set of all atomic action con- stants of a given domain. An example of atomic action is toggle. To each atomic action a there is associated a modal operator a .

"! $# % ¨¡ p p ¢ denotes the set of all propositional constants, also called fluents or atoms. Examples of those are light ("the light is on") and up ("the switch is up"). The set of all literals is & ¢' (¦ ¢¨¡ l l ¢ , where each l) is either p or 0 p, for some p 1 2! $# % . If l 30 p, then we identify 0 l with p.

We use small Greek letters 4 5 76 8 to denote classical formulas. They are recursively defined in the usual way:

4 @9 (9 ACB ED F 3D G 3D H0 I4 PD Q4 SR S4 PD Q4 UT S4 PD Q4 WV X4 PD 4 CY `4 a cb ed is the set of all classical formulas. An example of a classical formula is up V light. By valf g4 Ih we denote the set of valuations making 4 true. We view a valuation as a maximally-consistent set of literals. For 2! i# % ¨¡ light up¢ , there are four valuations: ¡ light up¢ , ¡ light p0 up¢ , ¡ 0 light up¢ and ¡ 0 light p0 up¢ . Given a set of formulas q , by litf §q rh we denote the set of all literals appear- ing in formulas of q .

We denote complex formulas (with modal operators) by s 7t u They are recursively defined in the following way: s 9 v9 wẍ4 PD y a s D H0 s D s R s D s T s D s V s D s Y s a is the dual operator of a , defined as a s ¨def 0 r a 0 s . An example of a complex formula is 0 up V toggle up.

The semantics is that of multimodal logic K [START_REF] Popkorn | First Steps in Modal Logic[END_REF]. 

Definition 1 A ¢¡ -model is a tuple ¨ W R

Describing the behavior of actions in f ©g

Given a domain, we are interested in theories whose statements describe the behavior of actions. ¡ allows for the representation of such statements, that we call action laws.

Here we distinguish several types of them. The first kind of statement represents the static laws, which are formulas that must hold in every possible state of the world.

Definition 4 A static law is a formula 4 h1 a cb ed .

An example of a static law is up V light, saying that if the switch is up, then the light is on. The set of all static laws of a domain is denoted by i a cb ed .

The second kind of action law we consider is given by the effect laws. These are formulas relating an action to its effects, which can be conditional.

Definition 5 An effect law for action a is of the form 4 V a j6 , where 4 5 76 x1 a cb ed .

The consequent 6 is the effect which always obtains when action a is executed in a state where the antecedent 4 holds. If a is a nondeterministic action, then the consequent 6 is typically a disjunction. The set of effect laws of a domain is denoted by k . An example of an effect law is 0 up V toggle light, saying that whenever the switch is down, after toggling it, the room is lit up. If 6 is inconsistent, we have a special kind of effect law that we call an inexecutability law. For example, broken V e toggle G expresses that toggle cannot be executed if the switch is broken. Finally, we also define executability laws, which stipulate the context where an action is guaranteed to be executable.

In l¡ , the operator a is used to express executability.

a pF thus reads "the execution of a is possible".

Definition 6 An executability law for action a is of the form 4 V a pF , where 4 h1 a b d .

For instance, 0 broken V toggle pF says that toggling can be executed whenever the switch is not broken. The set of all executability laws of a given domain is denoted by ¡ .

The rest of this work is devoted to the elaboration of action models and theories.

Models of contraction

When an action theory has to be changed, the basic operation is that of contraction. (In belief-base update [START_REF] Winslett | Reasoning about action using a possible models approach[END_REF][START_REF] Katsuno | On the difference between updating a knowledge base and revising it[END_REF]) it has also been called erasure.) In this section we define its semantics.

In general we might contract by any formula

s . Here we focus on contraction by one of the three kinds of laws. We therefore suppose that s is either 4 , where 4 is classical, or 4 V e a (6 , or 4 V a F .

For the case of contracting static laws we resort to existing approaches in order to change the set of static laws. In the following, we consider any belief change operator such as Forbus' update method [START_REF] Forbus | Introducing actions into qualitative simulation[END_REF], or the possible models approach [START_REF] Winslett | Reasoning about action using a possible models approach[END_REF][START_REF] Winslett | Updating logical databases[END_REF], or WSS [START_REF] Herzig | Propositional belief base update and minimal change[END_REF] or MPMA [START_REF] Doherty | The PMA and relativizing change for action update[END_REF].

Contraction by 4 corresponds to adding new possible worlds to W. Let ¢ be a contraction operator for classical logic.

Definition 7 Let

W R be a ¢¡ -model and 4 a classical formula. The set of models resulting from contracting by

4 is the singleton W R ¤£ ¥ ¨¡ y W R ¢ such that W Ẅ ¢ valf g4 Ih .
Observe that R should, a priori, change as well, otherwise contracting a classical formula may conflict with ¡ .1 For instance, if 0 I4 PV a F 1 ¡ and we contract by 4 , the result may make ¡ untrue. However, given the amount of information we have at hand, we think that whatever we do with R (adding or removing edges), we will always be able to find a counter-example to the intuitiveness of the operation, since it is domain dependent. For instance, adding edges for a deterministic action may render it nondeterministic. Deciding on what changes to carry out on R when contracting static laws depends on the user's intuition, and unfortunately this information cannot be generalized and established once for all. We opt for a priori doing nothing with R and postponing correction of executability laws.

Action theories being defined in terms of effect and executability laws, elaborating an action theory will mainly involve changes in these two sets of laws. Let us consider now both these cases.

Suppose the knowledge engineer acquires new information regarding the effect of action a. Then it means that the law under consideration is probably too strong, i.e., the expected effect may not occur and thus the law has to be weakened. Consider e.g. 0 up V e toggle light, and suppose it has to be weakened to the more specific f g0 up R 0 blackouth ¥V toggle light.2 In order to carry out such a weakening, first the designer has to contract the set of effect laws and second to expand the resulting set with the weakened law.

Contraction by 4 WV a (6 amounts to adding some 'coun- terexample' arrows from 4 -worlds to 0 ¢6 -worlds. To ease such a task, we need a definition. Let PIf g4 h denote the set of prime implicates of 4 . Definition 8 Let 4 p4 I 1 a cb ed . NewCons ¥ §¦ f g4 I Qh XP If g4 R U4 h ©¨PI f 4 h computes the new consequences of 4 ¢ w.r.t. 4 : the set of strongest clauses that follow from 4 uR W4 ¢ , but do not follow from 4 alone (cf. e.g. (Inoue 1992)).

For example, the set of prime implicates of p is just

¡ p ¢ , that of the formula p R f 0 p T p h eR f 0 p T p T p Qh is ¡ p p p T p ¢ , hence we have that NewCons p ¦ f 7f 0 p T p h cR f g0 p T p T p h 7h X¨¡ p p T p ¢ .

Definition 9 Let

W R be a I¡ -model and 4 V a j6 an effect law. The models resulting from contracting by 4 V

a j6 is W R £ ¥ a ¨¡ y W R R a 9 R a ¡ f 7 8 h 9 D ! W " R # 4 5 QD ! W " R # 0 ¢6 and ¨ litf NewCons$ If 0 ¢6 5h ph ¢ ¢ .
In our context, lit f NewCons$ f g0 ¢6 5h ph corresponds to all the ramifications that action a can produce.

Suppose now the knowledge engineer learns new information about the executability of a. This usually occurs when there are executability laws that are too strong, i.e., the condition in the theory guaranteeing the executability of a is too weak and has to be made more restrictive. Let e.g. toggle F be the law to be contracted, and suppose it has to be weakened to the more specific 0 broken V toggle F .

To implement such a weakening, the designer has to first contract the set of executability laws and then to expand the resulting set with the weakened law.

Contraction by 4 WV a F corresponds to removing some arrows leaving worlds where 4 holds. Removing such ar- rows has as consequence that a is no longer always executable in context 4 .

Definition 10 Let

W R be a ¢¡ -model and 4 V a F an executability law. The set of models that result from the

contraction by 4 V a pF is W R £ ¥ % a# '& ¨¡ y W R 9 R ¨R ¨R a R a ¡ f 7 ¥ h W9 8 R a 8 and D ( W " R # 4 ¢ ¢ .
In the next section we make a step toward syntactical operators that reflect the semantic foundations for contraction.

Contracting an action theory

Having established the semantics of action theory contraction, we can turn to its syntactical counterpart. Nevertheless, before doing that we have to consider an important issue. As the reader might have expected, the logical formalism of ¡ alone does not solve the frame problem. For instance,

¡ ¢ ¡ £ up V light 0 up V toggle up up V toggle 0 up toggle pF ¤ ¡ ¥ ¡ ¦ ¨ § D broken V toggle broken
Thus, we need a consequence relation powerful enough to deal with the frame and ramification problems. This means that the deductive power of ¡ has to be augmented in or- der to ensure that the relevant frame axioms follow from the theory. Following the logical framework developed in [START_REF] Castilho | Formalizing action and change in modal logic I: the frame problem[END_REF], we consider metalogical information given in the form of a dependence relation:

Definition 11 A dependence relation is a binary relation © £ ¥¤ ¦ S& ¢' j¦ .
The expression a © l denotes that the execution of action a may change the truth value of the literal l. On the other hand, a l 1 © (written a § © l) means that l can never be caused by a. In our example we have toggle © light and toggle © 0 light, which means that action toggle may cause a change in literals light and 0 light. We do not have toggle © 0 broken, for toggling the switch never repairs it.

We assume © is finite.

Definition 12 A model of a dependence relation © is a ¡ - model such that D ¡ 0 l V a 0 l 9 a §
© l¢ . Given a dependence relation © , the associated conse- quence relation in the set of models for © is noted D . For our example we obtain

¡ ¢ ¡ £ up V light 0 up V toggle up up V toggle 0 up toggle pF ¤ ¡ ¥ ¡ ¦ D ¨ broken V toggle broken
We have toggle § © 0 broken, i.e., 0 broken is never caused by toggle. Therefore in all contexts where broken is true, after every execution of toggle, broken still remains true. The consequence of this independence is that the frame axiom broken V e toggle broken is valid in the models of © .

Such a dependence-based approach has been shown (Demolombe, [START_REF] Demolombe | Regression in modal logic[END_REF] to subsume Reiter's solution to the frame problem [START_REF] Reiter | The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression[END_REF]) and moreover treats the ramification problem, even when actions with both indeterminate and indirect effects are involved [START_REF] Castilho | It depends on the context! a decidable logic of actions and plans based on a ternary dependence relation[END_REF]Herzig & Varzinczak 2004a).

Definition 13 An action theory is a tuple of the form i © k u ¡ © .

In our example, the corresponding action theory is

i C¨¡ up V light¢ k 0 up V toggle up up V toggle 0 up ¡ ¨¡ toggle F ¢ y © ¨ ¡ ¢ ¡ £ toggle light $ toggle p0 light i toggle up $ toggle 0 up ¤ ¡ ¥ ¡ ¦
And we have i © 7k u ¡ D 0 up V toggle light. (For par- simony's sake, we write i r k u

¡ D s instead of i Ek ¡ D s .) Let i © 7k u
¡ © be an action theory and s a I¡ -formula.

i © 7k u ¡ © £ is the action theory resulting from the con-

traction of i © k u ¡ © by s .
Contracting a theory by a static law 4 amounts to using any existing contraction operator for classical logic. Let ¢ be such an operator. Moreover, based on (Herzig & Varzinczak 2005b), we also need to guarantee that 4 does not follow from k , ¡ and © . We define contraction of a do- main description by a static law as follows:

Definition 14 i r k u ¡ © £ ¥ ¨ i £ 7k 8 ¡ £ © , where i £ ¨i ¢ 4 and ¡ £ ¨¡ f 4 I) lR W4 h V a pF 9 4 I) "V a pF 1 ¡ ¢ .
We now consider the case of contracting an action theory by an executability law 4 V a F . For every executability in ¡ , we ensure that action a is executable only in contexts where 0 I4 is the case. The following operator does the job.

Definition 15 i r k u ¡ © £ ¥ a# '& ¨ i © 7k 8 ¡ £ © , where ¡ £ ¨¡ f g4 ) R S0 I4 h V a pF 9 ¥4 ) V a F 1 ¡ ¢ .
For instance, contracting glued V toggle pF in our example would give us ¡ £ ¨¡ 0 glued V toggle F ¢ . Finally, to contract a theory by 4 WV a (6 , for every effect law in k , we first ensure that a still has effect 6 whenever 4 does not hold, second we enforce that a has no effect in context 0 I4 except on those literals that are consequences of 0 ¢6 . Combining this with the new dependence relation also linking a to literals involved by 0 ¢6 , we have that a may now produce 0 ¢6 as outcome. In other words, the effect law has been contracted. The operator below formalizes this:

Definition 16 i r k u ¡ © £ ¥ a ¨ i © 7k £ ¡ © £ , with © £ ¨© ¡ y a l 9 l 1 lit f NewCons$ If 0 ¢6 5h ph ¢ and k £ ¨¡ f g4 ) R 0 I4 Ih V a (6 9 E4 ) V a j6 1 Ck ¢ © ¡ f 0 I4 R 0 lh V a 0 l 9 a l 51 Cf © £ ¨© h ¢ .
For instance, contracting the law blackout V toggle light from our theory would give us k £ ¨¡ f g0 up R 80 blackouth V toggle up f up R E0 blackouth V toggle 0 up¢ .

Results

In this section we present the main results that follow from our framework. These require the action theory under consideration to be modular (Herzig & Varzinczak 2005b). In our framework, an action theory is said to be modular if a formula of a given type entailed by the whole theory can also be derived solely from its respective module (the set of formulas of the same type) together with the static laws i . As shown in (Herzig & Varzinczak 2005b), to make a domain description satisfy such a property it is enough to guarantee that there is no classical formula entailed by the theory that is not entailed by the static laws alone.

Definition 17 4 1 a cb ed is an implicit static law of i © k u ¡ © if and only if i r k u ¡ D 4 and i § D ẍ4 .

A theory is modular if it has no implicit static laws. Our concept of modularity of theories was originally defined in (Herzig & Varzinczak 2004b;2005b), but similar notions have also been addressed in the literature [START_REF] Cholvy | Checking regulation consistency by using SOL-resolution[END_REF]Amir 2000a;[START_REF] Zhang | Consistency of action descriptions[END_REF][START_REF] Lang | Causal theories of action -a computational core[END_REF]Herzig & Varzinczak 2005a). A modularitybased approach for narrative reasoning about actions is given in [START_REF] Kaufmann | odulark : an elaboration tolerant approach to the ramification and qualification problems[END_REF].

To witness how implicit static laws can show up, consider the quite simple action theory below, depicting the walking turkey scenario (Thielscher 1995):

i C¨¡ walking V alive¢ y k ¨ 

i : if i © 7k 8 ¡ © is modular, then i © 7k u ¡ D ¨ G if and
only if i D ¨G . Deduction of an effect of a sequence of actions a ¡ ¢ a¡ (prediction) does not need to take into account the effect laws for actions other than a a¡ .

This applies in particular to plan validation when deciding whether a £ ¢ a¡ 4 is the case. Throughout this work we have used multimodal logic ¡ .

For an assessment of the modularity principle in the Situation Calculus, see (Herzig & Varzinczak 2005a).

Here we establish that our operators are correct w.r.t. the semantics. Our first theorem establishes that the semantical contraction of the models of i © 7k 8 ¡ © by s produces models of i © 7k 8 ¡ © £ .

Theorem 1 Let W R be a model of i © 7k u ¡ © , and let s be a formula that has the form of one of the three laws. For all models , if 1

W R £ , then is a model of i © k u ¡ © ¤£ .
It remains to prove that the other way round, the models of i © 7k u Fortunately, we can establish a result for those action theories that are modular. The proof requires three lemmas. The first one says that for a modular theory we can restrict our attention to its 'big' models.

i © 7k u ¡ © £ p a# & ¨ ¤ ¡ p V a G ¢ ¡ 0 p V a F ¢ §¤
Lemma 1 Let i © 7k u ¡ © be modular. Then i © 7k u ¡ D s if and only if D ! W " R # s for every model W R of i © 7k u ¡ © such that W ¨valf i h .
Note that the lemma does not hold for non-modular theories, as

¡ W R 9 W R is a model of i © 7k u ¡ © and W valf i h ¢ is empty then.
The second lemma says that modularity is preserved under contraction.

Lemma 2 Let i © k u ¡ © be modular, and let s be a formula of the form of one of the three laws. Then i © 7k u ¡ © £ is modular.

The third one establishes the required link between the contraction operators and contraction of 'big' models.

Lemma 3 Let

i © k u ¡ © be modular, and let s be a formula of the form of one of the three laws. If X valf i h R is a model of i © k u ¡ © ¤£ , then there is a model of i © 7k u ¡ © such that ` 1 £ .

Putting the three above lemmas together we get:

Theorem 2 Let i © 7k u ¡ © be modular, s be a formula of the form of one of the three laws, and

i £ 7k £ ¡ £ © £ be i © 7k u ¡ © £ . If it holds that i £ k £ ¡
£ D ¨ ©¨t , then for every model of i © 7k u ¡ © and every ` 1 C £ it holds that D t .

Our two theorems together establish correctness of the operators:

Corollary 1 Let i © 7k u ¡ © be modular, s be a formula of the form of one of the three laws, and

i £ 7k £ ¡ £ © £ be i r k u ¡ © £ . Then i £ k £ ¡ £ D ¨ ¨t if and only if for every model of i © 7k u ¡ © and every ` 1 C £ it holds that D ¨ t .
We give a necessary condition for success of contraction:

Theorem 3 Let s be an effect or an executability law such

that i § D s . Let i £ k £ ¡ £ © £ be i © 7k u ¡ © £ . If i © 7k u ¡ © is modular, then i £ k £ ¡ £ § D ¨ ©¨s .

Contracting implicit static laws

There can be many reasons why a theory should be changed. Following (Herzig & Varzinczak 2004b;2005b; ), here we focus on the case where it has some classical consequence 4 the designer is not aware of.

If 4 is taken as intuitive, then, normally, no change has to be done at all, unless we want to keep abide on the modularity principle and thus make 4 explicit by adding it to i .

In the scenario example of last section, if the knowledge engineer's universe has immortal turkeys, then she would add the static law alive to i . The other way round, if 4 is not intuitive, as long as 4 is entailed by i © 7k 8 ¡ © , the goal is to avoid such an entailment, i.e., what we want is i

£ 7k £ ¡ £ § D ¨ ¨4 , where i £ k £ ¡ £ © £ is i © 7k 8 ¡ © £ .
In the men- tioned scenario, the knowledge engineer considers that having immortal turkeys is not reasonable and thus decides to change the domain description to

i £ k £ ¡ £ © £ so that i £ 7k £ ¡ £ § D ¨ ¨alive.
This means that action theories that are not modular need to be changed, too. Such a changing process is driven by the problematic part of the theory detected by the algorithms defined in (Herzig & Varzinczak 2004b) and improved in (Herzig & Varzinczak ).

The algorithm works as follows: for each executability law 4 V a pF in the theory, construct from k and © a set of inexecutabilities

¡ 4 V a G " $ 4 I¡ CV a G ¢ that potentially conflict with 4 V a pF . For each , ¡ £¢ ¤ ¥¢ ¤¦ , if 4 R 4 I) is satisfiable w.r.t.
i , mark 0 rf g4 R 4 ) h as an implicit static law. Incrementally repeat this procedure (adding all the 0 rf g4 R U4 ) h that were caught to i ) until no implicit static law is obtained.

For an example of the execution of the algorithm, consider i © k u ¡ © as above. For the action tease, we have the executability tease pF . Now, from k , and © we try to build an inexecutability for tease. We take tease walking and compute then all indirect effects of tease w.r.t. i . From walking V alive, we get that alive is an indirect effect of tease, giving us tease alive. But tease alive 1 © , which means the frame axiom 0 alive V tease 0 alive holds. To- gether with tease alive, this gives us the inexecutability 0 alive V tease G . As i ¡ F " p0 alive¢ is satisfiable (F is the antecedent of the executability tease F ), we get the implicit static law alive. For this example no other inexecutability for tease can be derived, so the computation stops.

It seems that in general implicit static laws are not intuitive. Therefore their contraction is more likely to happen than their addition.3 In the example above, the action theory has to be contracted by alive. 4 In order to contract the action theory, the designer has several choices: 1) Contract the set i . (In this case, such an operation is not enough, since alive is a consequence of the rest of the theory.)

2) Weaken the effect law tease walking to alive V tease walking, since the original effect law is too strong. This means that in a first stage the designer has to contract the theory and in a second one expand the effect laws with the weaker law. The designer will usually choose this option if she focuses on the preconditions of the effects of actions.

3) Weaken the executability law tease F by rephrasing it as alive V tease F : first the executability is contracted and then the weaker one is added to the resulting set of executability laws. The designer will choose this option if she focuses on preconditions for action execution. The analysis of this example shows that the choice of what change has to be carried out is up to the knowledge engineer. Such a task can get more complicated when ramifications are involved. To witness, suppose our scenario has been formalized as follows: i ¨¡ walking V alive¢ , k ¨¡ shoot 0 alive¢ , ¡ ¨¡ y shoot pF ¢ , and © ¡y shoot p0 alive ¢ . From this action theory we can derive the inexecutability walking V shoot G and thus the im- plicit static law 0 walking. In this case we have to change the theory by contracting the frame axiom walking V shoot walking (which amounts to adding the missing indi- rect dependence shoot © 0 walking).

Elaboration tolerance

The principle of elaboration tolerance has been proposed by [START_REF] Mccarthy | Mathematical logic in artificial intelligence[END_REF]. Roughly, it states that the effort required to add new information to a given representation (new laws or entities) should be proportional to the complexity of the information being added, i.e., it should not require the complete reconstruction of the old theory (Shanahan 1997).

Since then many formalisms in the reasoning about actions field claim, in a more or less tacit way, to satisfy such a principle. However, for all this time there has been a lack of good formal criteria allowing for the evaluation of theory change difficulty and, consequently, comparisons between different frameworks are carried out in a subjective way.

The proposal by Amir (Amir 2000b) made the first steps in formally answering what difficulty of changing a theory means by formalizing one aspect of elaboration tolerance.

The basic idea is as follows: let § ©¨be the original theory and let § and § be two equivalent (and different) theo- ries such that each one results from § ¨by the application of some sequence of operations (additions and/or deletions of formulas). The resulting theory whose transformation from § ¨has the shortest length (number of operations) is taken as the most elaboration tolerant.

Nevertheless, in the referred work only addition/deletion of axioms is considered, i.e., changes in the logical language or contraction of consequences of the theory not explicitly stated in the original set of axioms are not taken into account. This means that even the formal setting given in (Amir 2000b) is not enough to evaluate the complexity of theory change in a broad sense. Hence the community still needs formal criteria that allow for the comparison between more complex changes carried out by frameworks like ours, for example.

Of course, how elaboration tolerant a given update/revision method is strongly depends on its underlying formalism for reasoning about actions, i.e., its logical background, the solution to the frame problem it implements, the hypothesis it relies on, etc. In what follows we discuss how the dependence-based approach here used behaves when expansion is considered. Most of the comments concerning consequences of expansion can also be stated for contraction. We do that with respect to some of the qualitative criteria given in [START_REF] Mccarthy | Elaboration tolerance[END_REF]. In all that follows we suppose that the resulting theory is consistent.

Adding effect laws In the dependence-based framework, adding the new effect law 4 V a j6 to the theory de- mands a change in the dependence module © . In that case, the maximum number of statements added to © is D ¡ l 9 l 1 litf NewCons$ f 6 5h h ¢ D (dependences for all indirect effects have to be stated, too). This is due to the explanation closure nature of the reasoning behind dependence (for more details, see [START_REF] Castilho | Formalizing action and change in modal logic I: the frame problem[END_REF]). Because of this, according to Shanahan [START_REF] Shanahan | Solving the frame problem: a mathematical investigation of the common sense law of inertia[END_REF], explanation closure approaches are not elaboration tolerant when dealing with the ramification problem. In order to achieve that, the framework should have a mechanism behaving like circumscription that automatically deals with ramifications. This raises the question: "if we had an automatic (or even semi-automatic) procedure to do the job of generating the indirect dependences, could we say the framework is elaboration tolerant?". We think we can answer positively to such a question, and, supported by Reiter [START_REF] Reiter | Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems[END_REF], we are working on a semi-automatic procedure for generating the dependence relation from a set of effect laws.

Adding executability laws Such a task demands only a change in the set ¡ of executabilities, possibly introducing implicit static laws as a side effect.

Adding static laws Besides expanding the set i , adding new (indirect) dependences may be required (see above).

Adding frame axioms

If the frame axiom 0 l V a 0 l has to be valid in the resulting theory, expunging the dependence a © l should do the job.

Adding a new action name Without loss of generality we can assume the action in question was already in the language. In that case, we expect just to add effect or executability laws for it. For the former, at most D & ¢' j¦ iD depen- dences will be added to © . (We point out nevertheless that the requirement made in [START_REF] Mccarthy | Elaboration tolerance[END_REF]) that the addition of an action irrelevant for a given plan in the old theory should not preclude it in the resulting theory is too strong. Indeed, it is not difficult to imagine a new action forcing an implicit static law from which an inexecutability for some action in the plan can be derived. The same holds for the item below.)

Adding a new fluent name In the same way, we can suppose the fluent was already in the language. Such a task amounts thus to one or more of the above expansions. There will be at most 2 CD £ ¥¤ ¦ D new elements added to © .

Related work

Following [START_REF] Kaufmann | What is believed is what is explained[END_REF][START_REF] Liberatore | A framework for belief update[END_REF], [START_REF] Eiter | Updating action domain descriptions[END_REF] have investigated update of action domain descriptions. They define a version of action theory update in an action language and give complexity results showing how hard such a task can be.

Update of action descriptions in their sense is always relative to some conditions (interpreted as knowledge possibly obtained from earlier observations and that should be kept). This characterizes a constraint-based update. In the example they give, change must be carried out preserving the assumption that pushing the button of the remote control is always executable. Actually, the method is more subtle, as new effect laws are added constrained by the addition of viz. an executability law for the new action under concern. In the example, the constraint (executability of push) was not in the original action description and must figure in the updated theory.

They describe domains of actions in a fragment of the action language ¡ (Gelfond & Lifschitz 1998). However they do not specify which fragment, so it is not clear whether the claimed advantages ¡ has over ¢ really transfer to their framework. At one hand, their approach deals with indirect effects, but they do not talk about updating a theory by a law with a nondeterministic action. Anyway, except for concurrency, their account can be translated into ours, as shown in [START_REF] Castilho | Formalizing action and change in modal logic I: the frame problem[END_REF].

Eiter et al. consider an action theory § as comprising two main components: § ¤£ , the part of the theory that must re- main unchanged, and § ¤¥ , the part concerning the statements that are allowed to change. The crucial information to the associated solution to the frame problem is always in § ¦£ .

Given an action theory § ¨ § £ § §¥ , f f § £ § §¥ h i § ©¨h is the problem of updating § by § i k warranting the result satisfies all constraints in ¨ i ¡ . Even though they do not explicitly state postulates for their kind of theory update, they establish conditions for the update operator to be successful. Basically, they claim for consistency of the resulting theory; maintenance of the new knowledge and the invariable part of the description; satisfaction of the constraints in ¨; and minimal change.

In some examples that they develop, the illustrated "partial solution" does not satisfy ¨due to the existence of implicit laws (cf. Example 1, where there is an implicit inexecutability law). To achieve a solution, while keeping ¨, some other laws must be dropped (in the example, the agent gives up a static law). 5Just to see the link between update by subsumed laws and addition of implicit static laws, we note that Proposition 1 in the referred work is the same as Theorem 14 in (Herzig & Varzinczak 2005b): every implicit static law in Herzig and Varzinczak's sense is trivially a subsumed law in Eiter et al.'s sense.

With their method we can also contract by a static and an effect law. Contraction of executabilities are not explicitly addressed, and weakening (replacing a law by a weaker one) is left as future work.

A main difference between the approach in [START_REF] Eiter | Updating action domain descriptions[END_REF] and ours is that we do not need to add new fluents at every elaboration stage: we still work on the same set of fluents, refining their behavior w.r.t. an action a. In Eiter et al.'s proposal an update forces changing all the variable rules appearing in the action theory by adding to each one a new update fluent. This is a constraint when elaborating action theories.

Concluding remarks

In this work we have presented a general method for changing a domain description (alias action theory) given any formula we want to contract.

We have defined a semantics for theory contraction and also presented its syntactical counterpart through contraction operators. Soundness and completeness of such operators with respect to the semantics have been established (Corollary 1).

We have also shown that modularity is a necessary condition for a contraction to be successful (Theorem 3). This gives further evidence that our modularity notion is fruitful. We have analysed an example of contraction of a nonmodular theory by an implicit static law that is unintended.

Because of forcing formulas to be explicitly stated in their respective modules (and thus possibly making them inferable in independently different ways), intuitively modularity could be seen to diminish elaboration tolerance. For instance, when contracting a classical formula 4 from a non- modular theory, it seems reasonable to expect not to change the set of static laws i , while the theory being modular surely forces changing such a module. However it is not difficult to conceive non-modular theories in which contraction of a formula 4 may demand a change in i as well. To witness, suppose i ¨¡ 4 V 4 ¢ in an action theory from whose dynamic part we (implicitly) infer 0 I4 . In this case, a contraction of 0 I4 keeping 0 I4 I would necessarily ask for a change in i . We point out nevertheless that in both cases (modular and non-modular) the extra work in changing other modules stays in the mechanical level, i.e., in the machinery that carries out the modification, and does not augment in a significant way the amount of work the knowledge engineer is expected to do.

What is the status of the AGM-postulates for contraction in our framework? First, contraction of static laws satisfies all the postulates, as soon as the underlying classical contraction operation ¢ satisfies all of them.

In the general case, however, our constructions do not satisfy the central postulate of preservation i © k u ¡ © £ i © k u ¡ © if i © k u ¡ § D ¨ s . Indeed, suppose we have a language with only one atom p, and a model with two worlds ¨¡ p¢ and ¥ ¨¡ 0 p¢ such that R a 8 , 8 R a , and 8 R a 8 . Then D p V a 0 p and § D a 0 p, i.e., is a model of the effect law p V a 0 p, but not of a 0 p. Now the contraction £ a ¡ p yields the model ` such that R a ¨W W. Then § D $ p V a 0 p, i.e., the effect law p V a 0 p is not preserved. Our contraction operation thus behaves rather like an update operation. Now let us focus on the other postulates. Since our operator has a behavior which is close to the update postulate, we focus on the following basic erasure postulates introduced in [START_REF] Katsuno | Propositional knowledge base revision and minimal change[END_REF]. Let Cnf § h be the set of all logical consequences of a theory § . Here we have presented the case for contraction, but our definitions can be extended to revision, too. Our results can also be generalized to the case where learning new actions or fluents is involved. This means in general that more than one simple formula should be added to the belief base and must fit together with the rest of the theory with as little sideeffects as possible. We are currently defining algorithms based on our operators to achieve that.

KM1

  p a# '& .

  alive tease walking¢ D tease alive, second D 0 alive V tease 0 alive (from the independence

			tease walking loaded V shoot 0 alive
	¡ ¨¡ shoot p0 loaded i tease pF " shoot p0 walking $ With this domain description we have i © 7k u ¢ shoot pF © ¨ shoot 0 alive i tease walking ¡ first,	D alive:
	law of	i © 7k u	¡ © .
	Modular theories have several advantages (Herzig & Varzinczak 2004b; ). For example, consistency of a modular action theory can be checked by just checking consistency of

¡ walking V tease § © alive), and then i r k D ¨ 0 alive V tease G . As long as i © 7k 8 ¡ D ¨ tease pF , we must have i © 7k 8 ¡ D ¨ alive. As i § D ¨alive, the formula alive is an implicit static

  © ¤£ h Cnf i © k u ¡ © h Postulate KM1 does not always hold because it is possible to make the formula 4 hV a G valid in the resulting theory by removing elements of R a (cf. Definition 10). © and i 7k ¡ © are modular and the propositional contraction operator ¢ satisfies Postulate KM3, then Postulate KM3 is satisfied for every

	Cnf	i © 7k u
	KM2 Under the condition that s 1 Cnf i © 7k 8 ¡ © £ h i r k u ¡ © is modular, Postu-late KM2 is satisfied (cf. Theorem 3). KM3 If Cnf i k ¡ © h ¨Cnf i 7k ¡ © h and D ¨ s Y s , then Cnf i ¢ 7k ¡ © £ £¢ h Cnf i 7k ¡ © £ ¦ h .
	Theorem 4 If	i ¢ H k
	s s 1 a cb ed .

¡ ¡

We are indebted to the anonymous referees for pointing this out to us.

The other possibility of weakening the law, i.e., replacing it by ) up 0 21 toggle3 '4 light 5 ) light6 looks silly. We were not able to find examples where changing the consequent could give a more intuitive result. In this sense, we prefer to always weaken a given law by strengthening its antecedent.

In all the examples in which we have found implicit static laws that are intuitive they are so evident that the only explanation for not having them explicitly stated is that they have been forgotten by the theory's designer.

Here the change operation is a revision-based operation rather than an update-based operation since we mainly "fix" the theory.

This does not mean however that the updated theory will necessarily contain no implicit law.

Acknowledgments

We are grateful to the anonymous referees for many useful comments on an earlier version of this paper.