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Abstract

The concept of median/consensus has been
widely investigated in order to provide a sta-
tistical summary of ranking data, i.e. re-
alizations of a random permutation Σ of a
finite set, {1, . . . , n} with n ≥ 1 say. As it
sheds light onto only one aspect of Σ’s dis-
tribution P , it may neglect other informative
features. It is the purpose of this paper to
define analogues of quantiles, ranks and sta-
tistical procedures based on such quantities
for the analysis of ranking data by means of a
metric-based notion of depth function on the
symmetric group. Overcoming the absence
of vector space structure on Sn, the latter
defines a center-outward ordering of the per-
mutations in the support of P and extends
the classic metric-based formulation of con-
sensus ranking (medians corresponding then
to the deepest permutations). The axiomatic
properties that ranking depths should ideally
possess are listed, while computational and
generalization issues are studied at length.
Beyond the theoretical analysis carried out,
the relevance of the novel concepts and meth-
ods introduced for a wide variety of statistical
tasks are also supported by numerous numer-
ical experiments.

1 Introduction

The statistical analysis of ranking data as recently
received much attention (e.g. [1] and references
therein), fed by the increasing number of modern
applications involving preferences data (search engines,
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recommender systems, etc.). Such data usually consist
of N ≥ 1 permutations σ1, . . . , σN on an ensemble of
n ≥ 1 items, indexed by i ∈ {1, . . . , n}. The major
scientific challenge arises from the absence of any
vector space structure on the set of all permutations,
the symmetric group Sn. Given the impossibility of
’averaging’ the σj ’s in a straightforward manner, the
issue of summarizing a ranking dataset by a single
permutation, referred to as Consensus Ranking or
Ranking Aggregation, has concentrated much interest
(seminal works of [17, 13] in social choice theory,
[53] in bioinformatics, [18] in meta-search engines,
[15] in competition ranking, etc.). Two approaches
to Consensus Ranking have been studied. The first
one, initiated by Condorcet in the 18th century, is
based on probabilistic modelling. The second one is
a metric-based: equipped with a (pseudo-) distance
on Sn, a barycentric permutation, referred to as a
ranking median, is found. However, central measures
such as medians shed light on only one aspect of a
multivariate distribution and ignore other interesting
characteristics. Thus, the informative nature of
ranking medians about the distribution P of a random
permutation Σ, i.e. a r.v. takings its values in Sn,
is limited and must be complemented by additional
quantities, providing information analogous to that
illuminated by quantiles for a univariate distribution.

This article is devoted to defining such quantities for
ranking data. We extend the statistical depth concept,
originally introduced so as to define quantiles for prob-
ability distributions on Rd with d ≥ 2 (see e.g. [51]), to
ranking distributions. Some basics in statistical depth
theory are briefly recalled in section 2, while section 3
introduced an extension of the notion of depth function
tailored to ranking data. Desirable properties for rank-
ing depths are listed therein, and shown to hold under
mild conditions, e.g. stochastic transitivity. Based
on a pseudo-metric on Sn, the depth of a ranking σ
relative to P measures its expected closeness to the
random permutation Σ. Hence, ranking medians corre-
spond to the deepest rankings. In section 4, statistical
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guarantees are provided for the ranking depth and its
by-products, in the form of non-asymptotic bounds for
the deviations between the ranking depth function and
its statistical counterpart in particular. A trimming
algorithm, based on the ranking depth concept, to re-
cover automatically a stochastically transitive version
of the empirical ranking distribution is also proposed
therein. Beyond the theoretical/algorithmic concepts
introduced and analyzed here, the relevance of the no-
tion of ranking depth is motivated by a wide variety of
statistical applications, illustrated by several numerical
experiments in section 5.

The main contributions of the paper are summarized
below:

• Statistical depth and related axiomatic properties
are extended to ranking data, in order to emulate
quantiles/ranks for r.v.’s valued in Sn.

• A finite-sample analysis ensures the usability of the
notion of ranking depth introduced.

• An algorithm of great simplicity that uses ranking
depth to build stochastically transitive empirical
ranking distributions (based on which, crucial sta-
tistical tasks such as consensus ranking are straight-
forward) is proposed.

• The ranking depth and the related quantile regions in
Sn it defines can be used for the statistical analysis
of rankings: 1) fast and robust recovery of medi-
ans in consensus ranking, 2) informative graphical
representations of ranking data, 3) anomaly/novelty
detection, 4) homogeneity testing.

2 Background and Preliminaries

We start with recalling some basics in statistical depth
theory, together with key notions of the statistical
analysis of ranking data involved in the subsequent
analysis. Throughout the paper the indicator function
of any event E is denoted by I{E}, the Dirac mass at
any point a by δa, the floor function by u ∈ R 7→ buc,
the convolution product of two real valued functions f
and g defined on the real line, when well-defined, by
f ∗ g, the cardinality of any finite set E by #E and the
set of permutations of {1, . . . , n} by Sn for n ≥ 1.

2.1 Depth Functions for Multivariate Data

In absence of any ’natural order’ on Rd with d ≥ 2,
the concept of statistical depth permits to define a
center-outward ordering of points in the support of
a probability distribution P on Rd, so as to extend
the notions of order and (signed) rank statistics to
multivariate data, see e.g. [51]. A depth function
DP : Rd → R+ relative to P should ideally assign the
highest values DP (x) to points x ∈ Rd near the ”center”

of the distribution. Originally introduced in the seminal
contribution [60], the half-space depth of x in Rd relative
to P is the minimum of the mass P (H) taken over all
closed half-spaces H ⊂ Rd such that x ∈ H. Many
alternatives have been proposed since then, see e.g.
[40, 44, 36, 9, 52, 61, 10, 64]. To compare the merits
and drawbacks of different notions of depth function,
an axiomatic nomenclature has been introduced in [64],
listing four properties that statistical depths should
ideally satisfied, see [23, 51] for a different formulation
of a statistically equivalent set of properties.

(i) (Affine invariance) Denoting by PX the dis-
tribution of any r.v. X taking its values in Rd, it
holds: DPAX+b

(Ax + b) = DP (x) for all x ∈ Rd,
any r.v. X valued in Rd, any d × d nonsingular
matrix A with real entries and any vector b in Rd.

(ii) (Maximality at center) For any probability
distribution P on Rd that possesses a symmetry
center xP (for different notions of center), the
depth function DP takes its maximum value at it,
i.e. DP (xP ) = supx∈Rd DP (x).

(iii) (Monotonicity relative to deepest point)
For any probability distribution P on Rd with
deepest point xP , the depth at any point x in Rd

decreases as one moves away from xP along any
ray passing through it, i.e. DP (x) ≤ DP (xP +
α(x− xP )) for any α in [0, 1].

(iv) (Vanishing at infinity) For any probability dis-
tribution P on Rd, the depth function DP vanishes
at infinity, i.e. DP (x)→ 0 as ||x|| tends to infinity.

As the distribution P of interest is generally unknown
in practice, its analysis relies on the observation of
N ≥ 1 independent realizations X1, . . . , XN of P . A
statistical version of DP (x) can be built by replacing P

with its empirical counterpart P̂N = (1/N)
∑N
i=1 δXi ,

yielding the empirical depth function DP̂N
(x). Its con-

sistency and asymptotic normality have been studied
for various notions of depth, refer to e.g. [21, 65], and
concentration results for empirical depth and contours
have been recently proved in the half-space depth case,
see [5, 4].

2.2 Consensus Ranking

Given a certain metric d(., .) on Sn and a r.v. Σ
defined on a probability space (Ω, F , P) and drawn
from an unknown probability distribution P on Sn

(i.e. P (σ) = P{Σ = σ} for any σ ∈ Sn), the metric
approach to consensus ranking consists in finding a
ranking σ∗ ∈ Sn whose expected distance to Σ is
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minimum, i.e. such that

LP (σ∗) = min
σ∈Sn

LP (σ), (1)

where LP (σ) = EP [d(Σ, σ)] is referred to as the rank-
ing risk of any median candidate σ in Sn w.r.t. d and
Σ. The ranking median σ∗ (not necessarily unique) is
viewed as an informative summary of P and LP (σ∗)
as a dispersion measure. The choice of the (pseudo)
distance d(., .) is crucial, regarding the theoretical
properties of the corresponding medians and the com-
putational feasibility, see section 3. Various distances
have been considered in the literature, see e.g. [19], the
most popular choices being listed below: ∀(σ, σ′) ∈ S2

n,

dτ (σ, σ′) =
∑
i<j

I {(σ(i)− σ(j))(σ′(i)− σ′(j)) < 0} ,

d2(σ, σ′) =

(
n∑
i=1

(σ(i)− σ′(i))2

)1/2

,

d1(σ, σ′) =

n∑
i=1

|σ(i)− σ′(i)| ,

dH(σ, σ′) =

n∑
i=1

I {σ(i) 6= σ′(i)} ,

known respectively as the Kendall τ , the Spearman
ρ, the Spearman footrule and the Hamming distances.
The literature has essentially focused on solving a sta-
tistical version of the minimization problem (1), see
e.g. [30], [20] or [2]. Assuming that N ≥ 1 inde-
pendent copies Σ1, . . . , ΣN of the generic r.v. Σ
are observed, a natural empirical estimate of LP (σ)

is L̂N (σ) = (1/N)
∑N
s=1 d(Σs, σ) = LP̂N (σ), where

P̂N = (1/N)
∑N
i=1 δΣi is the empirical measure. The

set Sn being of finite cardinality, an empirical ranking
risk minimizer always exists, just like a solution to (1),
not necessarily unique however. Generalization guar-
antees and fast rate conditions for empirical consensus
ranking have been investigated in [11].

3 Depth Functions for Ranking Data

In order to define relevant extensions of the concept of
statistical depth to ranking data, we define axiomatic
properties that candidate functions on Sn should sat-
isfy. We next show that the metric-based ranking
depths we propose to analyze ranking distributions
satisfy these properties under mild conditions.

3.1 Ranking Depths - Axioms

Just like in the multivariate setup (see subsection 2.1),
a list of key properties the ranking depth function DP

should ideally satisfy can be made. These properties
are essential to emulate the information provided by
quantiles (resp. quantile regions) of univariate distri-
butions (resp. multivariate distributions) in a relevant
manner. Let P be a ranking distribution, d a distance
on Sn, the properties desirable for any ranking depth
DP : Sn → R+ are listed below.

Property 1. (Invariance) For any π ∈ Sn, consider
the ranking distribution πP defined by: (πP )(σ) =
P (σπ−1) for all σ ∈ Sn. It holds that: DP (σ) =
DπP (σπ) for all (σ, π) ∈ S2

n.

Property 2. (Maximality at center) For any
probability distribution P on Sn that possesses a sym-
metry center σP (in a certain sense, e.g. w.r.t. to a
given metric d on Sn), the depth function DP takes its
maximum value at it, i.e. DP (σP ) = maxσ∈Sn DP (σ).

Property 3. (Local monotonicity relative to
deepest ranking) Assume that the deepest ranking
σ∗ is unique. The quantity DP (σ) decreases as d(σ∗, σ)
locally increases, i.e. for any π such that d(σ∗, σπ) =
d(σ∗, σ) + 1, then we have DP (σ) > DP (σπ).

Note that, insofar as Sn is of finite cardinality, there is
no relevant analogue of the ’vanishing at infinity’ prop-
erty for multivariate depth. A stronger monotonicity
property can also be formulated.

Property 4. (Global monotonicity) Assume that
the deepest ranking σ∗ is unique. The quantity DP (σ)
decreases as d(σ∗, σ) globally increases, i.e. d(σ∗, σ′) >
d(σ∗, σ)⇒ DP (σ′) < DP (σ).

3.2 Metric-based Ranking Depth Functions

Seeking to define a ranking depth that satisfies the
properties listed above and such that the medians σ∗P
of P have maximal depth, the metric approach provides
natural candidates, just like for consensus ranking.

Definition 1. (Metric-based ranking depth) Let
d be a distance and P a distribution on Sn. The
ranking depth based on d is defined as: D

(d)
P : ∀σ ∈ Sn,

D
(d)
P (σ) = EP [||d||∞ − d(σ,Σ)] = ||d||∞ − LP (σ), with
||d||∞ = max(σ,σ′)∈S2

n
d(σ, σ′).

The shift induced by ||d||∞ ≥ L? = maxσ∈Sn LP (σ)
simply guarantees non-negativity, in accordance with
Definition 2.1 in [64], while defining the same center-
outward ordering of the permutations σ in Sn as −LP .
Notice that metric-based ranking depths can be viewed
as extensions of multivariate depth functions of type A
in the nomenclature proposed in [64]. For simplicity,
we omit the superscript (d) and rather write DP when
no confusion is possible about the distance considered.

A ranking σ in Sn is said to be deeper than an-
other one σ′ relative to the ranking distribution P
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iff DP (σ′) ≤ DP (σ) and we write σ′ �DP σ. The
ranking depth ordering �DP is the preorder related to
the depth function DP . Equipped with this notion of
depth on SN , medians σ∗ of P w.r.t. the metric d
correspond to the deepest rankings. If P is a Dirac
mass δσ0

, the ranking depth then simply reduces to the
measure of closeness defined by the distance d chosen:
DP (σ) = ||d||∞ − d(σ0, σ). In contrast, if P is the
uniform distribution, the ranking depth relative to a
classic distance on Sn is constant over Sn. The depth
function also permits to partition the space Sn into
subsets of rankings with equal depth.

Definition 2. (Depth regions/contours) For
any u ∈ R, the region of depth u is the superlevel set
RP (u) = {σ ∈ Sn : DP (σ) ≥ u} of DP , while the
ranking contour of depth u is the set ∂RP (u) = {σ ∈
Sn : DP (σ) = u}.

Equipped with this notation, ∂RP (−L∗P ) is the set of
medians of P w.r.t. the metric d.

Definition 3. (Depth survivor function) The
ranking depth survivor function is SP : u ∈ R 7→
SP (u) = P{DP (Σ) ≥ u}.

Based on the metric-based ranking depth, the quantile
regions are defined as follows.

Definition 4. (Quantile regions in Sn) Let α ∈
(0, 1). The depth region with probability content α is
the region of depth S−1

P (α) = inf{u ∈ R : SP (u) ≤
1 − α}: RP (α) = RP (S−1

P (α)). The mapping α ∈
(0, 1) 7→ S−1

P (α) is called the ranking quantile function.

3.3 The Metric Approach - Main Properties

We now state results showing that, under mild condi-
tions and for popular choices of d, the metric-based
ranking depth introduced in Definition 1 satisfies the
key properties listed in subsection 3.1. Technical proofs
are postponed to the Supplementary Material.

Proposition 1. (Invariance) Suppose that d is right-
invariant, i.e. d(νπ, σπ) = d(ν, σ) for all (ν, π, σ) ∈
S3
n, the ranking depth D

(d)
P satisfies the Property 1.

We point out that Spearman ρ, Spearman footrule,
Kendall τ , Hamming, Ulam and Cayley distances are
all right-invariant. Hence, the invariance property is
satisfied for any ranking distribution in many situations.
Checking the other properties is more challenging. We
recall the following notion.

Definition 5. (Stochastic transitivity) A prob-
ability distribution P on Sn is said to be stochastically
transitive (ST) iff, for all (i, j, k) ∈ [[n]]3, we have:
pi,j ≥ 1/2 and pj,k ≥ 1/2 ⇒ pi,k ≥ 1/2. If, in addi-
tion, pi,j 6= 1/2 for all i < j, one says that P is strictly
stochastically transitive (SST).

The stochastic transitivity property [26, 16] is fulfilled
by some widely used ranking distributions (e.g. Mal-
lows) and shown to facilitate various statistical tasks,
see e.g. [57, 58]. In particular, if P is SST, Kemeny’s
median (i.e. the median σ∗ w.r.t. Kendall τ distance)
is unique, see e.g. [11].

Proposition 2. (Maximality at the center): The
Spearman’s footrule ranking depth satisfies Property 2
for any distribution P with a symmetry center. If P is
SST in addition, then Kendall τ ranking depth satisfies
Property 2 as well.

Proposition 3. (Local monotonicity) If the dis-
tribution P is SST, then the Kendall τ ranking depth
satisfies Property 3.

Proposition 4. (Global monotonicity) If the dis-
tribution P is SST and ||dτ ||∞ =

(
n
2

)
< h/s with

h = mini,j |pi,j−1/2| and s = max(i,j)6=(k,l) |pi,j−pk,l|,
then the Kendall τ ranking depth satisfies Property 4.

In the Kendall τ case, additional useful results can
be stated. In particular, the ranking depth is then
entirely determined by the pairwise probabilities pi,j =
P{Σ(i) < Σ(j)}, 1 ≤ i 6= j ≤ n.

Proposition 5. We have: ∀ σ ∈ Sn, DP (σ) =
(
n
2

)
−∑

i<j pi,jI{σ(i) > σ(j)}−
∑
i<j(1−pi,j)I{σ(i) < σ(j)}.

This case is computationally attractive, the complexity
being of order O(n2). In addition, note that the com-
putation of DP involves pairwise comparisons solely,
which means an alternative statistical framework can
be considered, where observation take the form of bi-
nary variables {Σ(i) < Σ(j)}, (i, j) being a random
pair in {(i, j) : 1 ≤ i < j ≤ n}, independent from Σ.

Proposition 6. Suppose that the ranking distribution
P is stochastichally transitive. The following assertions
hold true.

(i) The largest ranking depth value is D∗P =∑
i<j

{
1
2 +

∣∣pi,j − 1
2

∣∣}. The deepest rankings rel-
ative to P and dτ are the permutations σ ∈ Sn

such that: ∀i < j s.t. pi,j 6= 1/2, (σ(j) − σ(i)) ·
(pi,j − 1/2) > 0.

(ii) The smallest ranking depth value is DP =∑
i<j

{
1
2 −

∣∣pi,j − 1
2

∣∣}. The least deep rankings
relative to P and dτ are the permutations σ ∈ Sn

such that: ∀i < j s.t. pi,j 6= 1/2, (σ(j) − σ(i)) ·
(pi,j − 1/2) < 0.

(iii) If, in addition, P is SST, then we have
∂RP (D∗P ) = {σ∗} and ∂RP (DP ) = {σ}, where
σ∗(i) = 1 +

∑
j 6=i I{pi,j < 1/2} = n − σ(i) for

i ∈ {1, . . . , n}. We also have D∗P − DP (σ) =
2
∑
i<j |pi,j − 1/2|+DP (σ)−DP = 2

∑
i<j |pi,j −

1/2| · I{(σ(j)− σ(i))(pi,j − 1/2) < 0}.
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4 Statistical Issues

The ranking depth DP is generally unknown, just like
the ranking distribution P , and must be replaced by an
empirical estimate based on supposedly available rank-
ing data in practice. Here we establish nonasymptotic
statistical guarantees for the empirical counterpart of
the ranking depth and other related quantities. We
also propose an algorithm, based on the ranking depth,
that permits to build, from any ranking dataset, an em-
pirical ranking distribution fulfilling the crucial (strict)
stochastic transitivity property, see subsection 3.3.

4.1 Generalization - Learning Rate Bounds

Based on the observation of an i.i.d. sample
Σ1, . . . , ΣN drawn from P with N ≥ 1, statistical
versions of the quantities introduced in subsection 3.2
can be built by replacing P with the empirical distri-
bution P̂N . The empirical ranking depth is thus given
by: ∀σ ∈ Sn, D̂N (σ) = DP̂N

(σ) = ||d||∞ − L̂N (σ).
Similarly, the empirical ranking depth regions are
R̂N (u) = {σ ∈ Sn : D̂N (σ) ≥ u} for u ≥ 0. In order
to build an estimator of the ranking depth survivor
function SP (u) with a tractable dependence structure,
a 2-split trick can be used, yielding the statistic

ŜN (u) =
1

N − bN/2c

N∑
i=1+bN/2c

I{D̂bN/2c(Σi) ≥ u}.

As the r.v. DP (Σ) is discrete, the use of smooth-
ing/interpolation procedures is required to ensure good
statistical properties for the survivor function esti-
mator and for the empirical quantiles it defines, see
[59, 48]. For instance, a kernel smoothed version of
SP can be computed by means of a non-negative dif-
ferentiable Parzen-Rosenblatt kernel K : R → R+ s.t.
||K ′||∞ = supu∈R |K ′(u)| < ∞ and

∫
R K(u)du = +1

and a smoothing bandwidth h > 0, namely: S̃P (u) =

Kh ∗SP , which can be estimated by S̃N (u) = Kh ∗ ŜN ,
where Kh(u) = K(u/h)/h for u ∈ R. One may
then define a smooth estimate of the ranking depth
region with probability content α ∈ [0, 1] as well:

R̂N (α) = R̂N (S̃−1
N (α)). The result below provides

bounds of order OP(1/
√
N) for the maximal deviations

between DP (resp. S̃P ) and its empirical version.

Proposition 7. The following assertions hold true.

(i) For any δ ∈ (0, 1), we have with probability at least
1− δ: ∀N ≥ 1,

sup
σ∈Sn

|D̂N (σ)−DP (σ)| ≤ ||d||∞

√
log(2 n!/δ)

2N
.

(ii) For any δ ∈ (0, 1) and h > 0, we have with probabil-
ity at least 1− δ: ∀N ≥ 1,

sup
u≥0
|S̃N (u)−S̃P (u)| ≤

√
log(4/δ)

2N
+||d||∞

√
log(4n!/δ)

2N
.

For the technical proof, refer to the Supplementary
Material, where the asymptotic rate for the empirical
ranking quantile function is also given.

4.2 Depth Trimming for Consensus Ranking

As discussed in subsection 3.3, (strict) stochastic tran-
sitivity greatly facilitates the computation of Kemeny
medians (see Proposition 6) as well as the verification of
the maximality or monotonicity properties, cf Proposi-
tions 2, 3 and 4. However, although this occurs with a
controlled probability (see Proposition 14 in [11]), the

empirical counterpart P̂N of a (strictly) stochastically
transitive ranking distribution P can be of course non
(S)ST. We propose below a trimming strategy based on
the empirical ranking depth to recover a close (S)ST
empirical ranking distribution and overcome this issue.

Algorithm 1: Ranking Depth Trimming

Input : Ranking dataset DN = {Σ1, ...ΣN}
and distribution
P̂N = (1/N)

∑N
i=1 δΣi .

Output : Dataset D ⊂ DN of size ND ≤ N
and (S)ST ranking distribution

P̂D = (1/ND)
∑
σ∈D δσ

- Initialize: D = DN ;

while P̂D is not (S)ST do
- Determine the least deep rankings in D:
OD := arg minσ∈DDP̂N

(σ);
- Update the ranking dataset D \ OD → D

Based on the ranking dataset D output by Algorithm
1, a (S)ST empirical distribution P̂D can be computed,
whose Kemeny medians are obtained in a straightfor-
ward manner, cf Proposition 6, avoiding the search
of solutions of a NP-hard minimization problem of
type (1), see [30]. As empirically supported by the
experiments displayed in the next section, this proce-
dure allows for a fast, accurate and robust recovery of
consensus rankings.

5 Applications - Experiments

In order to illustrate the relevance of ranking depth
notion, we now show that it can be used to perform
a wide variety of tasks in the statistical analysis of
ranking data, including those listed below:

• Fast and robust consensus ranking
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• Ranking data visualization
• Detection of outlying rankings
• The two-sample (homogeneity) problem in Sn.

Further experimental results on real ranking data are
provided and discussed in the Supplementary Material.

5.1 Fast/Robust Consensus Ranking

The trimming strategy proposed in sec 4.2 shows that
we can recover smooth SST distributions from any
empirical data, and perform ranking aggregation by
simply identifying the deepest ranking: this procedure
is fast, straightforward, and robust, in the sense that
we can recover accurate medians even in contaminated
settings. We support this claim by both experiments
and a theoretical proposition below.

(a) (b)

(c) (d)

Figure 1: Depth plots before (a) and after (b) trimming
with adversarial (red) and clean (blue) points; evolu-
tion of candidate median (deepest ranking) distance to
real median and number of cycles through trimming
(c); evolution of median depth and sample dispersion
through trimming (d).

We consider a dataset drawn from a ”clean” distri-
bution P (10000 points drawn from a Mallows distri-
bution with n = 12 items, center σ0 and φ = 0.90)
that has been contaminated by rankings from another
distribution (2000 points drawn from a Mallows distri-
bution with opposite center and φ = 0.40). We use the
trimming strategy described in algorithm 1 to remove
rankings until the empirical distribution becomes SST
and thus considered clean once again. We show in
Figure 1 the depth of clean (blue) and adversarial (red)
rankings before trimming (a) and after trimming (b),
the performance of the median computed at each step
of the trimming procedure evaluated as its Kendall τ
distance to the real center of the clean Mallows dis-
tribution (c), and the depth of the median during the
trimming procedure (d). The depth function is able to

identify mainly adversarial rankings and remove them
during the trimming procedure, which conducts to a
cleaner dataset after the procedure and a far more
accurate median σ∗.

Mechanical Turk Dots dataset. We show the ro-
bustness of depth-based medians on a real dataset
where participants ranked point clouds according to
their size [50]. A ground truth ranking exists, and we
contaminated 1/4 of the dataset by swapping random
rankings before trimming: figure 2 (b) shows that we
indeed recovered the ground truth ranking after the
trimming strategy even if contaminated rankings were
not obviously different from clean one (fig. 2 (a)).

(a) (b)

Figure 2: Depth plots before trimming with swapped
(red) and clean (blue) points; evolution of candidate
median (deepest ranking) distance to real median and
number of cycles through trimming (b)

Theoretical robustness result. We derive specific
robustness results when using depth-based trimming
by emulating the classical notion of breakdown point
(see [21]). Let us consider the classical Borda esti-
mator (which orders the items based on the score
B(i) =

∑
σ∈SN σ(i), see [22, 27, 8, 12]) and a depth-

trimmed Borda estimator based on the scores Bµ(i) =∑
σ∈SN w(σ)σ(i), where w(σ) = I(DN (σ) > µ) (only

the rankings with depth higher than µ are kept). Let
σB
S (resp. σDT-B

S ) be the Borda (resp. depth-trimmed
Borda) estimator of a sample S. The Borda estimator is
said to be δ-broken for sample size N and for a distribu-
tion P if for any sample SN ∼ P of size N , there exists
an adversarial sample A such that dτ (σB

SN
, σB
SN∪A) ≥ δ.

The smallest cardinality of the adversarial sample A
such that the estimator is δ-broken for size N →∞ is
called here the δ-breakdown points of the estimator on
distribution P , and we write εBδ (P ) (resp. εDT-B

δ (P ))
such statistic for the Borda (resp. depth-trimmed
Borda) estimator. Breakdown points measure the ro-
bustness of an estimator on a given distribution: we
state that the classical Borda estimator is less robust
than the depth-trimmed one on generic distributions.

Proposition 8. Let µ be the trimming threshold and
P a distribution such that EP [DP (Σ)] > µ. Let σ∗ =
arg maxσ∈Sn DP (σ) be the deepest ranking and π =
arg maxσ|dτ (σ∗,σ)=δD(σ) the ranking with highest depth
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among those at distance δ from the deepest ranking
σ∗. Then, the breakdown points for Borda and depth-
trimmed-Borda on P are related as follows,

εBδ (P )

εDT-B
δ (P )

<
DP (π)

µ
< 1. (2)

The proof, as well as more results on the robustness of
Borda estimators, are provided in section B.4 of the
supplementary.

5.2 Graphical Methods and Visual Inference

The analysis of rankings suffers from the lack of graph-
ical displays and diagrams, such as probability plots or
histograms, for gaining insight into the structure of the
data. Ranking depths can be readily used to design
a visual diagnostic tool for ranking data, extending
the Depth vs. Depth plot (DD-plot in abbreviated
form) originally introduced [43] for multivariate data.
For two samples of rankings Σ1 = {σ1

1 , . . . , σ
1
N1
}

and Σ2 = {σ2
1 , . . . , σ

2
N2
}, with corresponding empiri-

cal measures P̂ 1
N1 and P̂ 2

N2 , the ranking DD-plot is
obtained by plotting in the Euclidean plane the points:{(

D
P̂ 1

N1

(σ), D
P̂ 2

N2

(σ
)

: σ ∈ Σ1 ∪Σ2
}
. (3)

Position dτ (σ∗1 , σ
∗
2) φ1 φ2 N1 N2

(a) 15 e−1 e−1 250 250
(b) 0 e−0.5 e−2 250 250
(c) 15 e−0.5 e−2 250 250
(d) 15 e−0.5 e−2 400 100

Table 1: Parameters for pairs of samples drawn from
Mallows-Kendall distribution used for Figure 3.

Depending on the distance d chosen, such a plot al-
lows to reflect location and scatter of two distributions
on Sn, and their mutual position. To illustrate its
diagnostic capacity, we plot in Figure 3 the ranking
DD-plots relative to the Kendall τ distance and four
pairs of samples stemming from Mallows distribution
with parameters defined in Table 1. (In this and subse-
quent figures the depth is re-scaled to [0, 1] by diving
by ‖d‖∞.) A few remarks can be made: For distri-
butions differing in: 1) location only (a), the ranking
DD-plot is symmetric w.r.t. the diagonal, 2) scatter
only (b), observations from one distribution will be
attributed systematically higher depth values, 3) both
location and scatter (c), they can be distinguished and
4) number of the observations, it does not influence the
general picture (d).

(a) (b)

(c) (d)

Figure 3: Ranking DD-plot corresponding to Mallows
distributions with parameters described in Table 1.

(a) (b)

(c) (d)

Figure 4: Depth plots (a,c) and DD-plots (b,d) for a
mixture of Mallows-Kendall distributions. (a)-(b): dis-
tant centers and different size for the two components
of the mixture. (c)-(d): closer centers and same size.

5.3 Outlier Detection in Ranking Data

We now place ourselves in the situation where a single
sample of rankings is observed. For simplicity, we con-
sider the case where the underlying ranking distribution
is an unbalanced mixture of two Mallows distributions
(for n = 10), strongly differing in size (N1 = 35 and
N2 = 215), with distant centers (dτ (σ∗1 , σ

∗
2) = 15) and

parameters φ1 = e−0.5 and φ2 = e−2.5. Figure 4 (a)
shows the ranking depth (relative to Kendall τ) of
each observation computed w.r.t. to the entire sam-
ple. We observe, that despite the unavailability of
labels, the ranking depth clearly distinguishes the two
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different components. It thus permits to perform a typ-
ical anomaly detection task in the context of ranking
data, where the differing minority of permutations are
viewed as abnormal rankings. The diagnostic ranking
DD-plot (b) based on the identified information about
the components confirms the differences.

Consider next the case of a mixture with closer centers
(dτ (σ∗1 , σ

∗
2) = 11) and equal sizes (N1 = N2 = 125),

with parameters φ1 = e−0.25 and φ2 = e−2.5. The
depth plot (c) w.r.t. to the entire sample reflects how
easily we can cluster the ranking dataset into two com-
ponents (we deliberately shuffle the indices and keep
colors for illustrative purposes), and we suggests a sep-
arating threshold (on the level of depth = 0.71), which
in this particular case allows for two mistaking assign-
ments. For the diagnostic ranking DD-plot (d), we
honestly include this mistake, and change the colors to
underline this impurity.

5.4 Rankings - Homogeneity Testing

Depth can further be used to provide a formal inference,
which we exemplify as a nonparametric test of homo-
geneity between two Plackett-Luce distributions [14]
with n = 10. The first one (red in Figure 5) is generated
using the parameters w1 = (e9, ..., e0), the second one
represents its changed version w2 = (eγ9, ..., eγ0). We
gradually increase γ from 0.5 (substantial difference)
to 1 (equal in distribution), and provide the p-values
of the Wilcoxon rank-sum test averaged over 100 rep-
etitions in Figure 5. The test is performed using the
reference sample (of size 500) from the first distribu-
tion, with tested sample sizes being equal (= 50) for
both distributions (see [37] for details on the testing
procedure and [44] for more details). Figure 5 shows
how the p-values detect very well the difference be-
tween the two distributions when it is the case, giving
a formal inference to the ranking DD-plot visualiza-
tion, whereas, remarkably, the (parametric) nature of
the underlying ranking models is not used at all by
the procedure. We also underline that, in a similar
fashion, ranking depth-based goodness-of-fit statistics
could be computed, in order to evaluate how well a
specific ranking model fits a ranking dataset.

Student dataset. We now explore our homogene-
ity testing machinery on a real dataset (available
at https://github.com/ekhiru/students-dataset)
composed of rankings from students (with a ground
truth answer) before (red) and after (blue) taking the
related course. The diagnostic DD-plot of the two
cohorts together with p-values over 1000 random repe-
titions and the asymptotic density under H0 are indi-
cated in Figure 6: they illustrate the improvement of
the students’ knowledge after the class.

γ = 0.5 γ = 0.75

γ = 1 p-values

Figure 5: DD-plots of a pair of P-L distributions with
gradually decreasing difference between them based on
parameter γ and the corresponding average p-values
for the test of homogeneity.

Figure 6: Left: DD-plot for ’before class’ (red) and
’after class’ (blue) students. Right: p-values of the
homogeneity test.

Conclusion

In this paper, we have extended the concept of statisti-
cal depth to ranking data, in order to apply the notions
of quantiles, order statistics and ranks to the latter,
overcoming hence the lack of natural order and vector
space structure on Sn. We have listed the desirable
properties a ranking depth should satisfy to emulate
these notions appropriately and shown that the same
metric approach as that, widely used, to deal with
ranking aggregation, permits to build depth functions
on Sn that fulfill them in many situations. Theoretical
results proving that ranking depths and related quan-
tities can be accurately estimated by their empirical
versions with guarantees have been established. We
have also shown that the methodology promoted can
be successfully applied to a wide variety of problems,
ranging from fast and robust consensus ranking to the
design of ranking data visualization techniques through
the detection of outlying rankings. Both the theoretical
and empirical results are very encouraging and paves
the way to a more systematic use of the ranking depth
concept for the statistical analysis of ranking data.

https://github.com/ekhiru/students-dataset
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Morgane Goibert, Stéphan Clémençon, Ekhine Irurozki, Pavlo Mozharovskyi

[53] T. Patel, D. Telesca, R. Rallo, S. George, T. Xia,
and A. E. Nel. Hierarchical rank aggregation with
applications to nnanotoxicology. Journal of Agri-
cultural, Biological, and Environmental Statistics,
18(2):159–177, 2013.

[54] R. L. Plackett. The analysis of permutations. Ap-
plied Statistics, 2(24):193–202, 1975.

[55] O. Pokotylo, P. Mozharovskyi, and R. Dycker-
hoff. Depth and depth-based classification with
R-package ddalpha. Journal of Statistical Software,
Articles, 91(5):1–46, 2019.

[56] R. Serfling. Depth functions in nonparametric
multivariate inference. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science,
72, 2006.

[57] N. B. Shah, S. Balakrishnan, A. Guntuboy-
ina, and M. J. Wainright. Stochastically tran-
sitive models for pairwise comparisons: statistical
and computational issues, 2015. arXiv preprint
arXiv:1510.05610.

[58] N. B. Shah and M. J. Wainwright. Simple, robust
and optimal ranking from pairwise comparisons,
2015.

[59] S. J. Sheather and J. S. Marron. Kernel quantile
estimators. Journal of the American Statistical
Association, 85(410):410–416, 1990.

[60] J. W. Tukey. Mathematics and the picturing of
data. In R. D. James, editor, Proceedings of the In-
ternational Congress of Mathematicians, volume 2,
pages 523–531. Canadian Mathematical Congress,
1975.

[61] Y. Vardi and C.-H. Zhang. The multivariate l1-
median and associated data depth. Proceedings
of the National Academy of Sciences, 97(4):1423–
1426, 2000.

[62] Valeria Vitelli, Øystein Sørensen, Marta Crispino,
Arnoldo Frigessi, and Elja Arjas. Probabilistic
preference learning with the Mallows rank model.
Journal of Machine Learning Research, 18(1),
2018.

[63] Zhibing Zhao and Lirong Xia. Learning Mixtures
of Plackett-Luce Models from Structured Partial
Orders. In Advances in Neural Information Pro-
cessing Systems, pages 10143–10153, 2019.

[64] Y. Zuo and R. Serfling. General notions of sta-
tistical depth function. The Annals of Statistics,
28(2):461–482, 2000.

[65] Y. Zuo and R. Serfling. Structural properties and
convergence results for contours of sample statis-
tical depth functions. The Annals of Statistics,
28(2):483–499, 2000.



Running heading title breaks the line

Supplementary Material

Contents

A Ranking Distributions - Popular Examples 12

B Technical Proofs 14

B.1 Conditions for satisfying the desirable properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.1.1 Proof of Proposition 1 (invariance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.1.2 Proof of Proposition 2 (maximality at the center) . . . . . . . . . . . . . . . . . . . . . . . 14

B.1.3 Proofs of Propositions 3 and 4 (monotonicity) . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.2 Proof Proposition 7 (learning rate bounds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

B.3 Proofs of Propositions 5, 6 and 15 (results for Kendall τ - Mallows model) . . . . . . . . . . . . . 21

B.4 Proof of Proposition 8 (Borda estimators’ robustness) . . . . . . . . . . . . . . . . . . . . . . . . 22

C Further results 24

C.1 Ranking quantile function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

C.2 Pairwise comparisons as an alternative statistical framework . . . . . . . . . . . . . . . . . . . . . 25

D Additional experiments 25

D.1 Trimming strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D.2 Visual analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

D.3 Application to real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

D.3.1 Student dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

D.3.2 Sushi dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

D.3.3 Mechanical Turk Dots dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

D.3.4 Netflix Prize dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A Ranking Distributions - Popular Examples

Below we recall some popular ranking models. They will be next used to illustrate some of the properties involved
in the theoretical analysis carried out.

Proposition 9. The symmetry center property for rankings has two versions, a weak and a strong one, see [14].

1. Strong unimodality: ranking model P is said to be strongly unimodal iff there exists a modal ranking σ∗

such that for every pair i, j such that σ∗(i) < σ(j) and any permutations σ such that σ(i) = σ(j)− 1 then
P (σ) ≥ P (στij), where στij(i) = σ(j), στij(j) = σ(i) and στij(k) = σ(k) for k 6= i, j.

2. Complete consensus: ranking model P is said to have complete consensus iff there exists a modal ranking
σ∗ such that for every pair i, j such that σ∗(i) < σ(j) and any permutations σ such that σ(i) < σ(j) then
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P (σ) ≥ P (στij), where στij(i) = σ(j), στij(j) = σ(i) and στij(k) = σ(k) for k 6= i, j. Complete consensus
implies strong unimodality.

Example 1. (Mallows distribution) Taking d = dτ , the Mallows model introduced in [49] is the unimodal
distribution Pθ on Sn parametrized by θ = (σ0, φ0) ∈ Sn × (0, 1]: ∀σ ∈ Sn,

Pθ(σ) = (1/Z0) exp(dτ (σ0, σ) log φ0), (4)

where Z0 =
∑
σ∈Sn exp(dτ (σ0, σ) log φ0) is a normalization constant. One may easily show that Z0 is independent

from σ0 and that Z0 =
∏n−1
i=1

∑i
j=0 φ

j
0. When φ0 < 1, the permutation σ0 of reference is the mode of distribution

Pθ0 , as well as its unique median relative to dτ . Observe in addition that the smallest the parameter φ0, the
spikiest the distribution Pθ0 . In contrast, Pθ0 is the uniform distribution on Sn when φ0 = 1. As explained in
section 3, ranking depth functions relative to the Kendall τ distance can be expressed as a function of the pairwise
probabilities pi,j = P{Σ(i) < Σ(j)}, 1 ≤ i 6= j ≤ n. Notice also that ||dτ ||∞ =

(
n
2

)
. Consider again the Mallows

model Pθ recalled in Example 1. In this case, a closed-from expression of the pi,j ’s is available, see e.g. Theorem
2 in [6]. Setting h(k, φ0) = k/(1−φk0) for k ≥ 1, one can then show that the ranking depth function relative to Pθ
and dτ is: ∀σ ∈ Sn, DPθ(σ) =

(
n
2

)
−
∑
σ(i)>σ(j)H(σ0(j)− σ0(i), φ0), where H(k, φ0) = h(k + 1, φ0)− h(k, φ0)

and H(−k, φ0) = 1−H(k, φ0) for k ≥ 1. Mallows is adapted naturally to work with extensions of rankings, such
as from pairwise preferences [46], and partial rankings [62]

Mallows satisfies the complete consensus property, see Property 9, when θ < 1.

The most popular extensions in the literature are Generalized Mallows models [28], [32] and Mallows Block
models [7]. They define different dispersion parameters for different ranking positions to model distributions in
which there is high certainty in the top-ranked items and uncertainty at the bottom. These models still satisfy
the complete consensus property, see Property 9, when θ < 1.

We also point out that model (4) can be extended in a straightforward manner, by considering alternative
distances d, including those described in Section 2.2 and other right invariant distances such as Cayley and Ulam,
all of which satisfy the complete consensus property, see Property 9, when θ < 1.

The maximality at center is broken in more general ranking distributions with the form of mixtures of Mallows
models. Mixtures have been studied in practical and theoretical settings, see e.g. [39, 41, 12].

Example 2. (Plackett-Luce (PL) distribution) PL assumes that rankings are generated in a stage wise
manner: the most preferred item is chosen first, then the second preferred one, . . . There is independence among
stages, that is, the probability of an item being chosen at a particular stage is only proportional to the remaining
items at this stage and independent of the order of the items that have already been chosen. Thus, PL is
parametrized by v ∈ Rn, where v(i) is proportional to the probability of choosing item i as the preferred item at
any stage (among the remaining ones). The probability of each ranking is given as

Pv(σ) =

n∏
i=1

σ−1(i)∑n
j=i σ

−1(j)
. (5)

The median ranking is the permutation that orders the weights decreasingly. The pairwise probabilities of items i
and j have a closed-form expression involving only the weights of bot items, pi,j = vi

vi+vj
. PL’s stage wise ranking

process implies that adaptation to top-k and rankings is natural [42].

The PL models satisfy the complete consensus property, see Property 9 for every distribution other than the
uniform. Clearly, the maximality at center does not hold for mixtures of PL in general. Note that there is a body
of research on PL mixtures [42, 63].

Example 3. (Mallows-Bradley-Terry distribution) Mallows-Bradley-Terry is a ranking model induced
by paired comparisons in which the pairwise probability of items i and j have the form

pi,j =
vi

vi + vj
,

where vi is the parameter associated to item i for v ∈ Rn. The probability of ranking σ is then

p(σ) = Z(v)

n−1∏
i=1

(vσ−1(i))
n−i,
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where Z is a normalization constant. See [29] for generalizations.

Example 4. (Pairwise distributions) All the above models can be written as a n × n matrix of pairwise
probabilities pi,j (describing the probability of item i being preferred to item j) with restricted forms of its entries.
Each of the models imposes different restrictions in the entries of the pairwise probabilities pi,j but one could
consider arbitrary values. We next lines characterize the properties of models with arbitrary entries pi,j .

• P is strongly unimodal if and only if its entries are weakly stochastically transitive for some reordering of
the rows an columns, as defined in Proposition 5.

• P has complete consensus if and only if its entries are strongly stochastically transitive for some reordering
of the rows an columns. A probability distribution P on Sn is said to be strongly stochastically transitive
iff, for all (i, j, k) ∈ [[n]]3, we have: pi,j ≥ 1/2 and pj,k ≥ 1/2 ⇒ pi,k ≥ max{pi,j , pj,k} and pi,j 6= 1/2 for all
i < j.

B Technical Proofs

B.1 Conditions for satisfying the desirable properties

B.1.1 Proof of Proposition 1 (invariance)

We elaborate now on the invariance property 1. Recall that a distance is right invariant iff for every triplet of
permutations (σ, π, ν) ∈ Snd(σ, ν) = d(σπ, νπ). Finally, the inverse of permutation σ is denoted by σ−1.

Let us first recall the invariance property for distributions and for depths 1 and our proposition 1:

Property 1. (Invariance) For any π ∈ Sn, consider the ranking distribution πP defined by: (πP )(σ) = P (σπ−1)
for all σ ∈ Sn. It holds that: DP (σ) = DπP (σπ) for all (σ, π) ∈ S2

n.

Proposition 1. (Invariance) Suppose that d is right-invariant, i.e. d(νπ, σπ) = d(ν, σ) for all (ν, π, σ) ∈ S3
n,

the ranking depth D
(d)
P satisfies the Property 1.

Proof.

DπP (σπ) =EπP [||d||∞ − d(σπ,Σ)] = ||d||∞ −
∑
ν∈Sn

(πP )(ν)d(σπ, ν)

=||d||∞ −
∑
ν∈Sn

P (νπ−1)d(σπ, ν) = ||d||∞ −
∑
ν′∈Sn

P (ν′ππ−1)d(σπ, ν′π)

=||d||∞ −
∑
ν′∈Sn

P (ν′)d(σ, ν′) = DP (σ).

(6)

B.1.2 Proof of Proposition 2 (maximality at the center)

First, we study the relation between the depth and the probability of permutations which will be key for the
results on the following sections.

Proposition 10. Let P be a SST distribution whose Kemeny’s median is σ∗, and σ∗(a) < σ∗(b). Let σ be a
ranking such that σ(a) + 1 = σ(b) and let tab be a transposition, i.e., tab(a) = b, tab(b) = a and tab(k) = k for all
k 6= a, b. Then,

D(σ) > D(σt).

Proof. First, note that the composition σtab exchanges the ranks of items a and b, so d(σ, σ∗) = d(σt, σ∗)− 1.
We can rewrite D(σ) in the following way,
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D(σ) =

(
n

2

)
−
∑
i<j

pi,jI{σ(i) > σ(j)} −
∑
i<j

pj,iI{σ(i) < σ(j)}

=

(
n

2

)
−

∑
i<j∧i,j 6=a,b

pi,jI{σ(i) > σ(j)} −
∑

i<j∧i,j 6=a,b

pj,iI{σ(i) < σ(j)}−

− pa,bI{σ(a) > σ(b)} − pbaI{σ(a) < σ(b)}

=

(
n

2

)
−

∑
i<j∧i,j 6=a,b

pi,jI{σ(i) > σ(j)} −
∑

i<j∧i,j 6=a,b

pj,iI{σ(i) < σ(j)} − pb,a.

(7)

Where the first equality is the given by proposition 5. In the second we split the sum for positions i = a and j = b
in the latter term and the rest of the pairs in the previous terms. In the third one, we recall that by assumption
σ(a) = σ(b)− 1 and therefore I{σ(a) < σ(b)} = 1 and I{σ(a) > σ(b)} = 0. We rewrite in a similar way D(σtab).
For this part, recall that σtab(a) = σ(b), σtab(b) = σ(a) and σtab(k) = k for all k 6= a, b.

D(σtab) =

(
n

2

)
−
∑
i<j

pi,jI{σtab(i) > σtab(j)} −
∑
i<j

pj,iI{σtab(i) < σtab(j)}

=

(
n

2

)
−

∑
i<j∧i,j 6=a,b

pi,jI{σtab(i) > σtab(j)} −
∑

i<j∧i,j 6=a,b

pj,iI{σtab(i) < σtab(j)}

− pa,bI{σtab(a) > σtab(b)} − pb,aI{σtab(a) < σtab(b)}

=

(
n

2

)
−

∑
i<j∧i,j 6=a,b

pi,jI{σ(i) > σ(j)} −
∑

i<j∧i,j 6=a,b

pj,iI{σ(i) < σ(j)}−

− pa,bI{σ(a) < σ(b)} − pbaI{σ(a) > σ(b)}

=

(
n

2

)
−

∑
i<j∧i,j 6=a,b

pi,jI{σ(i) > σ(j)} −
∑

i<j∧i,j 6=a,b

pj,iI{σ(i) < σ(j)} − pa,b

(8)

Therefore, for any two rankings σ and σtab such that D(σ) > D(σtab), the following holds,

D(σ) > D(σtab)

⇔
(
n

2

)
−

∑
i<j∧i,j 6=a,b

pi,jI{σ(i) > σ(j)} −
∑

i<j∧i,j 6=a,b

pj,iI{σ(i) < σ(j)} − pb,a

>

(
n

2

)
−

∑
i<j∧i,j 6=a,b

pi,jI{σ(i) > σ(j)} −
∑

i<j∧i,j 6=a,b

pj,iI{σ(i) < σ(j)} − pa,b

⇔pb,a < pa,b.

(9)

For any SST model P with whose median is σ∗, and where σ∗(a) < σ∗(b), it holds (by definition) that pb,a < pa,b,
which concludes the proof.

Let us first recall Property 2 (maximality) and Proposition 2.

Property 2. (Maximality at center) For any probability distribution P on Sn that possesses a symmetry
center σP (in a certain sense, e.g. w.r.t. to a given metric d on Sn), the depth function DP takes its maximum
value at it, i.e. DP (σP ) = maxσ∈Sn DP (σ).

Proposition 2. (Maximality at the center): The Spearman’s footrule ranking depth satisfies Property 2
for any distribution P with a symmetry center. If P is SST in addition, then Kendall τ ranking depth satisfies
Property 2 as well.

We now discuss what is precisely meant by center in the ranking context. We derive two main definitions for a
center:
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• Following [60, 64], we emulate the notion of half-space symmetry (which is a very generic notion of symmetry)
and define a notion of H-center, from which our proposition in the main paper stems from. Appart from our
maximality proposition, we further provide results for distributions P having a H-center.

• We define a simpler notion of center based on a natural metric approach. We also provide maximality results
based on this different notion of center, called a M -center.

H-center and maximality at center.

The following results (1) define a symmetry center inspired in the classical formulation of half-space symmetry [60,
64] and (2) shows that the Kendall’s-τ and Spearman’s footrule distances satisfy the maximality at center for the
defined center.

Proposition 11. Let us call ”hyperplane” the sets Hi,j = {σ : σ(i) < σ(j)}, we define the H-center σ as
σ = ∩Hi,j for all {(i, j) : σ0(i) < σ0(j)}. For any P such that pi,j > pj,i for all {(i, j) : σ0(i) < σ0(j)} the
H-center is σ0.

Proof. Firstly, we show that P (Σ ∈ Hi,j) > P (Σ ∈ Hj,i). This can be done by construction: For any ranking
σ ∈ Hi,j (for which σ(i) = σ(j)) we can construct σ′ ∈ Hj,i that swaps positions i and j. This construction
defines a bijection between the rankings in both sets. The following relation holds: p(σ′) = p(σ)pj,i/pi,j < p(σ).
Therefore, P (Σ ∈ ∩Hi,j) > P (Σ ∈ ∩Hj,i).

Secondly, it is clear that there is one and only one permutation in ∩Hi,j and this is σ0. We remark that its
possible an H-center is defined (for this choice of P ) by a smaller number of subsets, i.e., those Hi,j for which
σ(i) = σ(j)− 1.

Proposition 12. Let P be distribution for which there is an H-center both Kendall’s-τ and Spearman’s footrule
based depths satisfy the maximality at center property for the H-center in Definition 11.

Proof. As shown in Proposition 11, the H-center is σ0 It remains to recall that Equation(9) in Proposition 10
states that for SST models and the Kendall’s-τ distance D(σ) > D(σti,j)⇔ pj,i < pi,j .

For the Spearman’s distance, let us show that DP (σ0) ≥ DP (σ1)⇔ EP (d(Σ, σ0)) ≤ EP (d(Σ, σ1)), and the proof
of our proposition will follow from direct application of this result.

Let σ be any permutation.

d(σ, σ1) =

N∑
k=1

|σ(k)− σ1(k)|

=
∑
k 6=i,j

|σ(k)− σ0(k)|+ |σ(i)− σ0(i)− 1|+ |σ(j)− σ0(j) + 1|

=


d(σ, σ0) if σ(i) < σ(j) ≤ σ0(i) < σ0(j) or σ0(i) < σ0(j) ≤ σ(i) < σ(j)

or σ(j) < σ(i) ≤ σ0(i) < σ0(j) or σ0(i) < σ0(j) ≤ σ(j) < σ(i)

d(σ, σ0) + 2 if σ(i) < σ0(i) < σ0(j) < σ(j)

d(σ, σ0)− 2 if σ(j) ≤ σ0(i) < σ0(j) ≤ σ(i)

Notice the use of color: in blue are cases where i and j are ranked by σ the same way as does σ0, and in orange
are the opposite cases. Then

EP (d(σ, σ0)) ≤ EP (d(σ, σ1))

⇔
∑
σ

[I(blue cases)− I(orange cases)] P(Σ = σ) ≥ 0

⇔pi,j − (1− pi,j) ≥ 0

⇔pi,j ≥ 1/2

This concludes the proof.
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M-center definition.

Let us focus on a more natural, metric-based center definition.

Definition 6. σ0 is M -center for distance d and distribution P if: ∀(σ1, σ2, σ3) such that d(σ0, σ1) = d(σ0, σ2) <
d(σ0, σ3), we have: P(Σ = σ1) = P(Σ = σ2) ≥ P(Σ = σ3).

We have the following proposition:

Proposition 13. If d is a symmetric distance, and if distribution P has a M-center for d, the maximality
property is satisfied for distance d.

Most distances (as the one studied in this paper) are symmetric. In addition, the proposition applies to Mallows
models as they do exhibit a S-center.

Proof. Let σ0 be a M -center for P and distance d, with (i, j) such that σ0(i) < σ0(j) = σ0(i) + 1. Let σ1 be the
same ranking as σ0 except it swaps the ranks of i and j.

We show that DP (σ0) > DP (σ0) i.e. EP (d(Σ, σ0)) < EP (d(Σ, σ1)) i.e.
∑
σ P(Σ = σ) [d(σ1, σ)− d(σ0, σ)] > 0.

Let σ be any ranking such that d(σ0, σ) = d. We have:

• (1) d(σ0, σ) < d(σ1, σ) = d+ ci,j iff (i, j) is ranked the same way in σ0 and σ

• (2) d(σ0, σ) > d(σ1, σ) = d− ci,j else,

where ci,j > 0 is a constant depending only on (i, j). For example, if d is Kendall’s tau, ci,j = 1, if d is Spearman’s
footrule, ci,j = 2, if d is Spearman’s rho, ci,j = 2|σ(j)− σ(i)|.

In addition, let us write #d the number of rankings at distance d from σ0, which we can divide into the two groups
(1) and (2). Let us then write #d(1) (resp. #d(2)) the number of rankings σ at distance d from σ0 that rank i
and j the same way (resp. differently) as σ0. We suppose the following: if d ≤ ||d||∞/2, then #d(1) ≥ #d(2) (and
if d > ||d||∞/2, then #d(1) ≤ #d(2)), and more precisely, |#d(1)−#d(2)| = k(d) = k(||d||∞ − d) ∀ d ≤ ||d||∞/2,
meaning that this cardinality difference depends only on the distance to half of the maximal distance.

Let us also write Pd = P(Σ = σ) for any σ at distance d from σ0.

∑
σ

P(Σ = σ) [d(σ1, σ)− d(σ0, σ)] =

||d||∞∑
d=0

Pd ×#d× |ci,j |

=

||d||∞∑
d=0

Pd × (#d(1)−#d(2))× ci,j

=

||d||∞/2∑
d=0

Pd × k(d)× ci,j −
||d||∞∑

d′=||d||∞/2+1

Pd′︸︷︷︸
<P||d||∞−d′

×k(d′)× ci,j

>

||d||∞/2∑
d=0

Pd × ci,j × (k(d)− k(||d||∞ − d))

> 0

B.1.3 Proofs of Propositions 3 and 4 (monotonicity)

The Monotonicity properties 3 and 3 do not hold in general. As an illustration, fig. 7 shows the distance to the
median as a function of depth for every rankings in sample generated by Mallows or Placket-Luce distributions.
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(a) (b) (c) (d)

Figure 7: Each permutation in S6 is a point displaying its depth (X-axis) and distance to the median (Y-axis). The
ranking models are (a) Mallows model with φ = e−0.375, (b) Mallows model with φ = e−0.625, (c) Plackett-Luce
with w2 = (en, ..., e1), (b) Plackett-Luce with w2 = (n, ..., 1).

However, we derive two conditions making these monotonicity properties to hold, restricting ourselves to the
case where the distance d used is Kendall τ , and also to distributions P that are strictly stochastically transitive
(SST) to ensure uniqueness of the central ranking σ∗ (see [11]).

First, let us recall the local monotonicity property and our local monotonicity proposition:

Property 3. (Local monotonicity relative to deepest ranking) Assume that the deepest ranking σ∗ is
unique. The quantity DP (σ) decreases as d(σ∗, σ) locally increases, i.e. for any π such that d(σ∗, σπ) = d(σ∗, σ)+1,
then we have DP (σ) > DP (σπ).

Proposition 3. (Local monotonicity) If the distribution P is SST, then the Kendall τ ranking depth satisfies
Property 3.

The first part of this proposition follows immediately form Proposition 10: as we move further from the median
(as measured by the Kendall τ distance) swapping adjacent ranks, the depth is strictly decreasing.

Now, we derive a second, stronger local monotonicity property. The following propostion explicit the conditions
under which it is satisfied.

Proposition 14. For a generic SST distribution P , if two rankings σ and σ′ with d = d(σ∗, σ) and d′ = d(σ∗, σ′)
satisfies the following:

2

 ∑
(i,j)|pi,j<1/2, σ correct, σ′ incorrect

pi,j −
∑

(i,j)|pi,j<1/2, σ incorrect, σ′ correct

pi,j

− (d′ − d) ≤ 0

Then the following property holds:

d = d(σ∗, σ) < d′ = d(σ∗, σ
′
) =⇒ DP (σ) ≥ DP (σ

′
), (10)

where d is Kendall τ , σ∗ is Kemeny’s median and ”σ correct on (i, j)” means that σ and σ∗ order the pair (i, j)
the same way.

The proof of this proposition can be directly derived from the proof of Proposition 4 (eq. 11)

Second, we recall the global monotonicity property and our proposition:

Property 4. (Global monotonicity) Assume that the deepest ranking σ∗ is unique. The quantity DP (σ)
decreases as d(σ∗, σ) globally increases, i.e. d(σ∗, σ′) > d(σ∗, σ)⇒ DP (σ′) < DP (σ).

Proposition 4. (Global monotonicity) If the distribution P is SST and ||dτ ||∞ =
(
n
2

)
< h/s with h =

mini,j |pi,j − 1/2| and s = max(i,j)6=(k,l) |pi,j − pk,l|, then the Kendall τ ranking depth satisfies Property 4.

Proof. P is SST so ∀ (i, j, l), pi,j > 1/2 and pj,l > 1/2 =⇒ pi,l > 1/2. WLOG, let us suppose that ∀i < j, pi,j < 1/2.
As σ∗ is the unique Kemeny’s median, we have σ∗(n) < σ∗(n− 1) < ... < σ∗(1) (i.e n � n− 1 � ... � 1).

Let (σ, σ
′
) be two rankings such that d = d(σ∗, σ) < d(σ∗, σ

′
) = d′. Let us write k :=

#{(i, j)|I ((σ∗(i)− σ∗(j))(σ(i)− σ(j))) > 0 × I ((σ∗(i)− σ∗(j))(σ′(i)− σ′(j))) < 0}, which means that there
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are k pairs (i, j) on which σ agrees with σ∗ (i.e. σ is ”correct” on (i, j)) but σ′ disagrees with σ∗ (i.e. σ′ is
”incorrect” on (i, j)). We define k′ similarly by interchanging the roles of σ and σ′.

Our goal is then to find a condition on the distribution of rankings P such that:

max
σ,σ′

LP (σ)− LP (σ′) < 0, with k > k′

First, let us study the range of possible values for k. Let us divide the n(n− 1)/2 pairs i < j following:

1) σ agrees with σ∗ and σ′ disagrees with σ∗ → k pairs

2) σ agrees with σ∗ and σ′ agrees with σ∗ → a pairs

3) σ disagrees with σ∗ and σ′ agrees with σ∗ → k′ pairs

4) σ disagrees with σ∗ and σ′ disagrees with σ∗ → b pairs

We then have 
k′ + b = d

k + b = d′

k + a+ k′ + b = n(n− 1)/2

so


k′ = k + d− d′

b = d′ − k
a = n(n− 1)/2− k − d

Finally, since we have 0 ≤ k, k′, a, b ≤ n(n− 1)/2, we end up having the following relevant conditions on k:

d′ − d ≤ k ≤ d′

Now, let us write p(m) the m-th hightest element of the vector (pi,j)i<j of size n(n− 1)/2, so that 1/2 > p(1) >
p(2) > ... > p(n(n−1)/2). Then, we have

max
σ,σ′

LP (σ)− LP (σ
′
) = max

σ,σ′

∑
i<j

pi,j

[
I{σ(i)− σ(j) > 0} − I{σ

′
(i)− σ

′
(j) > 0}

]
+

(1− pi,j)
[
I{σ(i)− σ(j) < 0} − I{σ

′
(i)− σ

′
(j) < 0}

]
= max

σ,σ′

∑
i<j

(2pi,j − 1)
[
I{σ(i)− σ(j) > 0}+ I{σ

′
(i)− σ

′
(j) < 0} − 1

]
= max

σ,σ′

∑
i<j;σcorr.,σ′ incorr.

(2pi,j − 1)−
∑

i<j;σ incorr.,σ′ corr.

(2pi,j − 1)

≤ max
σ,σ′

2

 ∑
i<j;σ corr.,σ′ incorr.

pi,j −
∑

i<j;σ incorr.,σ′ corr.

pi,j

− (k − k′)

with k′ = k − (d′ − d) (11)

≤ 2

p(1) + ...+ p(k)︸ ︷︷ ︸
k elements

− p(n(n−1)/2−k′−1) − ...− p(n(n−1)/2)︸ ︷︷ ︸
k′=k−(d′−d) elements

− (d′ − d)

≤ 2
[
(p(1) − p(n(n−1)/2−k′−1)) + ...+ (p(k′) − p(n(n−1)/2))+

p(k′+1) + ...+ p(k)
]
− (d′ − d)

≤ 2 [(k′ × s+ (1/2− h)(d′ − d)]− (d′ − d)

≤ 2(d× s− h)

≤ 0

Note also that if P is non-SST, then the global monotonicity property never holds, which can be easily proven by
taking a counter-example and following the same proof structure.
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B.2 Proof Proposition 7 (learning rate bounds)

Here we prove the finite sample results stated in the proposition below.

Proposition 7. The following assertions hold true.

(i) For any δ ∈ (0, 1), we have with probability at least 1− δ: ∀N ≥ 1,

sup
σ∈Sn

|D̂N (σ)−DP (σ)| ≤ ||d||∞

√
log(2 n!/δ)

2N
.

(ii) For any δ ∈ (0, 1) and h > 0, we have with probability at least 1− δ: ∀N ≥ 1,

sup
u≥0
|S̃N (u)− S̃P (u)| ≤

√
log(4/δ)

2N
+ ||d||∞

√
log(4n!/δ)

2N
.

Proof. Hoeffding inequality combined with the union bound yields: ∀t > 0,

P

{
sup
σ∈Sn

∣∣∣D̂N (σ)−DP (σ)
∣∣∣ > t

}
≤

∑
σ∈Sn

P

{
1

N

∣∣∣∣∣
N∑
i=1

{d(Σi, σ)− EP [d(Σ, σ)]}

∣∣∣∣∣ > t

}
≤ 2n! exp

(
− N2t2

||d||2∞

)
,

which establishes assertion (i).

Turning to the proof of assertion (ii), we introduce

S̄P (u) = PΣ{D̂bN/2c(Σ) ≥ u}, u ≥ 0.

By triangular inequality, we have with probability one:

sup
u≥0

∣∣∣(Kh ∗ ŜN )(u)− (Kh ∗ SP )(u)
∣∣∣ ≤ sup

u≥0

∣∣∣(Kh ∗ ŜN )(u)− (Kh ∗ S̄P )(u)
∣∣∣+

sup
u≥0

∣∣(Kh ∗ SP )(u)− (Kh ∗ S̄P )(u)
∣∣ . (12)

Observe that we almost-surely have:

sup
u≥0

∣∣∣(Kh ∗ ŜN )(u)− (Kh ∗ S̄P )(u)
∣∣∣ ≤ sup

u≥0

∣∣∣ŜN (u)− S̄P (u)
∣∣∣ .

By virtue of Dvoretsky-Kiefer-Wolfovitz inequality, we have, for all t ≥ 0,

P

{
sup
u≥0

∣∣∣ŜN (u)− S̄P (u)
∣∣∣ ≥ t} = E

[
P

{
sup
u≥0

∣∣∣ŜN (u)− S̄P (u)
∣∣∣ ≥ t | Σ1, . . . , ΣbN/2c

}]
≤ 2 exp(−2nt2). (13)

Let s > 0, we introduce the event, independent from Σ,

EN,s =

{
sup
σ∈Sn

∣∣∣D̂bN/2c(σ)−DP (σ)
∣∣∣ ≤ s} .

We almost-surely have: ∀u ≥ 0,

S̄P (u) = PΣ{DP (Σ) ≥ u+DP (Σ)− D̂bN/2c(Σ)}.

Consequently, on the event EN,s, it holds that: ∀u ≥ 0,

(Kh ∗ SP )(u + s) − (Kh ∗ SP )(u) ≤ (Kh ∗ S̄P )(u) − (Kh ∗ ŜN )(u) ≤ (Kh ∗ SP )(u) − (Kh ∗ SP )(u − s),

as well as
sup
u≥0

∣∣(Kh ∗ SP )(u)− (Kh ∗ S̄P )(u)
∣∣ ≤ ||K ′||∞(s/h), (14)
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since the mapping Kh ∗ SP being differentiable, with derivative bounded by ||K ′||∞/h in absolute value. Hence,
using the union bound, combining (12) with assertion (i) and (13)-(14), we get that for all δ ∈ (0, 1), with
probability larger than 1− δ:

sup
u≥0

∣∣∣(Kh ∗ ŜN )(u)− (Kh ∗ SP )(u)
∣∣∣ ≤ (√log(4/δ) + ||d||∞

√
log(4n!/δ)

)
/
√

2N.

This proves assertion (ii).

B.3 Proofs of Propositions 5, 6 and 15 (results for Kendall τ - Mallows model)

Proposition 5. We have: ∀ σ ∈ Sn, DP (σ) =
(
n
2

)
−
∑
i<j pi,jI{σ(i) > σ(j)} −

∑
i<j(1− pi,j)I{σ(i) < σ(j)}.

Proof. The proof is a simple computation, recalling that ∀i 6= j, pi,j = P(Σ(i) < Σ(j)). Then, DP (σ) =
||d||∞−EP (dτ (Σ, σ)) =

(
n
2

)
−
∑
i<j P ((Σ(i)− Σ(j))(σ(i)− σ(j)) < 0) =

(
n
2

)
−
∑
i<j pi,jI(σ(i) > σ(j))−

∑
i<j(1−

pi,j)I(σ(i) < σ(j)) by simple conditioning.

Proposition 6. Suppose that the ranking distribution P is stochastichally transitive. The following assertions
hold true.

(i) The largest ranking depth value is D∗P =
∑
i<j

{
1
2 +

∣∣pi,j − 1
2

∣∣}. The deepest rankings relative to P and dτ
are the permutations σ ∈ Sn such that: ∀i < j s.t. pi,j 6= 1/2, (σ(j)− σ(i)) · (pi,j − 1/2) > 0.

(ii) The smallest ranking depth value is DP =
∑
i<j

{
1
2 −

∣∣pi,j − 1
2

∣∣}. The least deep rankings relative to P and
dτ are the permutations σ ∈ Sn such that: ∀i < j s.t. pi,j 6= 1/2, (σ(j)− σ(i)) · (pi,j − 1/2) < 0.

(iii) If, in addition, P is SST, then we have ∂RP (D∗P ) = {σ∗} and ∂RP (DP ) = {σ}, where σ∗(i) = 1 +∑
j 6=i I{pi,j < 1/2} = n−σ(i) for i ∈ {1, . . . , n}. We also have D∗P −DP (σ) = 2

∑
i<j |pi,j−1/2|+DP (σ)−

DP = 2
∑
i<j |pi,j − 1/2| · I{(σ(j)− σ(i))(pi,j − 1/2) < 0}.

Proof. Observing that n(n − 1)/2 = LP (σ) + LP (n − σ) for all σ ∈ Sn in the Kendall τ case, the result is
essentially a reformulation of Theorem 5 in [11] in terms of ranking depth, insofar as DP = n(n− 1)/2− LP .

Let us recall some classical results about the Mallows distribution. Taking d = dτ , the Mallows model introduced
in [49] is the unimodal distribution Pθ on Sn parametrized by θ = (σ0, φ0) ∈ Sn × (0, 1]: ∀σ ∈ Sn, Pθ(σ) =
(1/Z0) exp(dτ (σ0, σ) log φ0), where Z0 =

∑
σ∈Sn exp(dτ (σ0, σ) log φ0) is a normalization constant.

One may easily show that Z0 is independent from σ0 and that Z0 =
∏n−1
i=1

∑i
j=0 φ

j
0. When φ0 < 1, the permutation

σ0 of reference is the mode of distribution Pθ0 , as well as its unique median relative to dτ . Observe in addition
that the smallest the parameter φ0, the spikiest the distribution Pθ0 . In contrast, Pθ0 is the uniform distribution
on Sn when φ0 = 1.

A closed-from expression of the pairwise probabilities pi,j is available (see e.g. Theorem 2 in [6]). Setting
h(k, φ0) = k/(1− φk0) for k ≥ 1, one can then show the following: that the ranking depth function relative to Pθ
and dτ is given by:

Proposition 15. If P = Pθ the Mallows distribution and d = dτ the Kendall τ distance, then ∀σ ∈ Sn, DPθ (σ) =(
n
2

)
−
∑
σ(i)>σ(j)H(σ0(j)− σ0(i), φ0), where H(k, φ0) = h(k + 1, φ0)− h(k, φ0) and H(−k, φ0) = 1−H(k, φ0)

for k ≥ 1.

where h(k, φ0) = k/(1− φk0) for k ≥ 1

Proof. Theorem 2 in [6] states that, for the Mallows model and using our notations, ∀i 6= j, pi,j = H(σ0(j) −
σ0(i), φ0). The results follows from direct application of proposition 5

.
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B.4 Proof of Proposition 8 (Borda estimators’ robustness)

Proposition 8 refers to the robustness of the depth-trimmed-Borda compared to the classical Borda.

Proposition 8. Let µ be the trimming threshold and P a distribution such that EP [DP (Σ)] > µ. Let σ∗ =
arg maxσ∈Sn DP (σ) be the deepest ranking and π = arg maxσ|dτ (σ∗,σ)=δD(σ) the ranking with highest depth among
those at distance δ from the deepest ranking σ∗. Then, the breakdown points for Borda and depth-trimmed-Borda
on P are related as follows,

εBδ (P )

εDT-B
δ (P )

<
DP (π)

µ
< 1. (2)

In this subsection, we will in fact proves some auxiliary results as well as a generalization of this proposition.

Let us first recall some definitions and results about the Borda estimators. Borda is an approximation to the
barycentric ranking median (which is NP-hard for n > 4 [22]) for a sample of complete rankings drawn from
a MM [27]. Moreover, Borda is quasi-linear in time and outputs the correct median w.h.p. with a polynomial
number of samples [8]. A robust aggregation procedure for top-k rankings in very noisy settings is proposed
in [12].

The Borda median estimator for sample X orders the items increasingly by their Borda score, defined as
B(i) =

∑
σ∈X σ(i).

We define the depth-weighted-Borda as a generalization of the classic and depth-trimmed-Borda in which there
exists a weight associated with each ranking. It generalizes Borda in the following way: For each item i, the
Borda score is computed as B(i) =

∑
σ∈X w(σ)σ(i). The final estimator for the median is the ranking that orders

the items by their Borda score. The depth-weighted-Borda is equivalent to replicating the rankings proportionally
to their weight. This analysis generalizes to any weights are increasing function of the depths. In particular, the
depth-trimmed-Borda is the case of depth-weighted-Borda in which w(σ) = I{D(σ) > µ}.

We settle here the notation for the following lines. We denote by SN ∼ P a sample of rankings (of size N) and A
an adversarial sample.

Definition 7. Let P be a distribution, let us write SN ∼ P a sample drawn from P of size N and σTSN the
median based on the estimator method T on sample SN .

The estimator T is said to be δ-broken (for Kendall’s τ) for sample size N and distribution P if for any SN ∼ P
of size N , there exists an adversarial sample A such that dτ (σTSN , σ

T
SN∪A) ≥ δ.

The next result characterizes the carnality of a sample that breaks the Borda estimator of a sample SN distributed
according to P . This is an auxiliary result for Proposition 8.

Proposition 16. Let SN ∼ P . Let A− be the adversarial sample that δ-breaks the Borda estimator (for
sample size N and distribution P ) such that A− is of minimal cardinality. Let r̄N (i) = N−1

∑
σ∈SN σ(i) and

r̄(i) = (#A−)−1
∑
σ∈A− σ(i) be the average ranking of item i in SN and A− respectively. Finally, let R̄ be the

ordered vector composed of r̄N (j)−r̄N (i)
r̄(i)−r̄(j) for all (i, j) such as both the numerator and denominator are positive.

Then

#A− = dN
[
R̄
]
(δ)
e

where [x](δ) denotes the δ-th quantile of a vector x.
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Proof. By definition, A− δ-breaks Borda iff the following holds.

d(σBSN , σ
B
SN∪A−) = δ

⇔ δ = #{(i < j) :
∑
σ∈SN

σ(i) +
∑
σ∈A−

σ(i) ≥
∑
σ∈SN

σ(j) +
∑
σ∈A−

σ(j)}

⇔ δ = #{(i < j) :
∑
σ∈SN

σ(i)− σ(j) ≥
∑
σ∈A−

σ(j)− σ(i)}

⇔ δ = #{(i < j) :
∑
σ∈SN

σ(j)− σ(i) ≤
∑
σ∈A−

σ(i)− σ(j)}

⇔ δ = #{(i, j) : 0 <
∑
σ∈SN

σ(j)− σ(i) ≤
∑
σ∈A−

σ(i)− σ(j)}

(15)

From a statistical perspective, we can bound the cardinality of A− as follows: let (i, j) be a pair of index belonging
to the set define just above. ∑

σ∈SN

σ(j)− σ(i) ≤
∑
σ∈A−

σ(i)− σ(j)

⇔ N (r̄N (j)− r̄N (i)) ≤ #A−(r̄(i)− r̄(j))

⇒ #A− ≥ N (r̄N (j)− r̄N (i))

r̄(i)− r̄(j)
,

(16)

which holds for exactly δ pairs of items (i, j). We conclude the proof by recalling that A− is of minimal
cardinality.

The next auxiliary result shows that provided certain conditions, if a sample breaks the depth-weighted-Borda
then it breaks Borda.

Proposition 17. Let SN ∼ P . Let A− (resp. A−w) be the adversarial sample that δ-breaks the Borda (resp.
depth-weighted Borda) estimator (for sample size N and distribution P ) such that A− (resp. A−w) is of minimal
cardinality. Let r̄N (i) = N−1

∑
σ∈SN σ(i) and r̄w(i) = (#A−w)−1

∑
σ∈A−w σ(i) be the average ranking of item i in

SN and A−w respectively.

Let πw = arg maxσ∈A−w w(σ) and µ = w(πw) the threshold of maximum depth for adversarial rankings.

Finally, suppose that P̂N and w satisfy: EP̂N (w(Σ)) > w(πw) = µ and ∀ (i, j) s.t. EP̂N (Σ(j) − Σ(i)) > 0,
EP̂N (w(Σ)(Σ(j) − Σ(i)) ≥ EP̂N (w(Σ))EP̂N (Σ(j) − Σ(i)) (these two assumptions enforce the use of a weight

function that is in accordance with P̂N )

Then, the cardinality of A− and A−w are related as follows:

#A−w ≥
N−1

∑
σ∈SN w(σ)

µ
#A−.

Proof. Since A−w δ-breaks the depth-weighted-Borda, we can follow the same proof outline as for proposition 16
and bound the cardinality #A−1

w as follows,∑
σ∈SN

w(σ)(σ(j)− σ(i)) ≤
∑
σ∈A−w

w(σ)(σ(i)− σ(j))

⇒ N × N−1
∑
σ∈SN

w(σ)(σ(j)− σ(i)) ≤ #A−ww(π)(r̄w(i)− r̄w(j))

⇒ #A−w ≥
N (r̄n(j)− r̄N (i))

r̄w(i)− r̄w(j)

N−1
∑
σ∈SN w(σ)

µ

(17)



Running heading title breaks the line

Since
N−1 ∑

σ∈SN
w(σ)

µ is independent of i, j and A−w also δ-breaks the Borda estimator, we can conclude:

#A−w ≥ #A−
N−1

∑
σ∈SN w(σ)

µ
. (18)

We are finally ready to prove a generalization of our proposition 8 stated in the main paper. Let us first define
our notion of δ-breakdown point, which extends the classical concept.

Definition 8. Let P be a distribution. The δ-breakdown point for an estimator T with respect to distribution
P is defined as the smallest cardinality of an adversarial sample that δ-breaks T in the limit when N →∞ for
distribution P .

More specifically, εTδ (P ) = min #A s.t. limN→∞ dτ (σTSN , σ
T
SN∪A) = δ

In the following proposition, we write εBδ (P ) (resp. εDW−Bδ (P )) the δ-breakdown point for the Borda (resp.
depth-weighted Borda) estimator with respect to distribution P .

Proposition 18 (breakdown points ratio). Let P be a distribution such that EP [w(Σ)] > w(π), where π =
arg maxσ | dτ (σ∗,σ)=δ w(σ) and σ∗ = arg maxσ∈Sn DP (σ). Let P and w satisfy: ∀(i, j) s.t. EP (Σ(j)− Σ(i)) > 0,
EP (w(Σ)(Σ(j)− Σ(i))) ≥ E(w(Σ))E(Σ(j)− Σ(i)). Then,

lim
N→∞

εBδ (P )

εDW−Bδ (P )
<

w(π)

EP [w(Σ)]
< 1. (19)

Proof. We start by noting that for SN to be δ-broken then the adversarial sample has to be at least at distance δ re-
gardless the distribution for the weights. Then, we denote z = EP [w(Σ)]/w(π) = limN→∞N−1

∑
σ∈SN w(σ)/w(π)

(by the law of large numbers) and take Proposition 17 to write the limiting ratio of the breakdown points when
the number of samples tends to infinity as follows.

lim
N→∞

εBδ (P )

εDW−Bδ (P )
= lim
N→∞

#A−

#A−+N

#A−w
#A−w+N

< lim
N→∞

#A−

#A−+N

#A−·z
#A−·z + N

<
1

z
=

w(π)

EP [w(Σ)]
< 1 (20)

This is the main result related to the robustness of the Borda median estimator. It shows that the breakdown
point of Borda is smaller than the breakdown point for the depth-trimmed-Borda provided certain conditions.
We denote by µ the threshold of the depth-trimmed-Borda.

Then, our proposition 8 is straightforward when we choose the weight function w so that w(σ) = I(DP (σ) ≥ µ)
in Proposition 18.

C Further results

C.1 Ranking quantile function

In Proposition 7, rate bounds for the deviation between empirical and theoretical versions of the depth function
(respectively, of the smoothed depth survivor function) have been stated. We here give some indications for
obtaining similar results for the ranking quantile function.

As the considered distribution is discrete, finite and real-valued (because depth is real-valued), the results of [48]
can be directly applied. Using their notations, we have:



Morgane Goibert, Stéphan Clémençon, Ekhine Irurozki, Pavlo Mozharovskyi

Σ is a random variable of distribution P on Sn that takes distinct values σ1, . . . , σm with respective propabilities
ρ1, . . . , ρm. Each element σi ∈ {σ1, ..., σm} has a depth δi, which leads us to write DP (Σ) the random variable
associated to the depth.

Now, let us reorder the indices and write the distinct depth values δ1 < ... < δd with respective probabilities
of occurrence p1, . . . , pd, where ∀ i ∈ [[1, d]], pi =

∑
1≤j≤m ρj1(δj = δi). Let us define the mid-function

Fmid(x) = P(DP (Σ) ≤ x)− 1/2P(DP (Σ) = x) and the ranking quantile function based on mid-functions:

Q(α) = F−1
mid(α) =


δ1 if α ≤ p1/2

λδk + (1− λ)δk+1 if α = λπk + (1− λ)πk+1

for any λ ∈ [0, 1] and 1 ≤ k ≤ d− 1

δd if α ≥ πd

, (21)

where ∀k ∈ [[2, d]], πk =
∑k−1
i=1 pi + pk/2 = Fmid(δk).

Then, the following results hold:

1) Q̂N (α)
P−→ δ1 if α < p1/2

2) Q̂N (α)
P−→ δd if α > πd

3)
√
N(Q̂N (α)− (λδk+1 + (1− λ)δk+2))

P−→ N (0, sd(α, λ, pk+1, pk+2))

if α = λπk+1 + (1− λ)πk+2 for 0 < λ < 1 and 0 ≤ k ≤ d− 2

4)
√
N(Q̂N (α)− δk+1)f(Q̂N (α), δk+1)

P−→ N (0, α(1− α)− pk+1/4)

if α = πk+1 for 0 ≤ k ≤ d− 1,

where sd(α, λ, pk+1, pk+2) = α(1− α)− (1− (λ− 1)2)pk+1/4− (1− λ2)pk+2/4 and f(Q̂N (α), δk+1) = 1/2(pk+1 +
pk+2)/(δk+2 − δk+1) if Q̂N (α) > δk+1 and 1/2(pk+1 + pk)/(δk+1 − δk) else.

These results provide us with asymptotic guarantees about the ranking quantile function based on mid-functions,
as defined in eq. 21. However, non-asymptotic bounds as well as similar results for the depth regions should be
investigated further and are left for future work, like the discrepancy between empirical and theoretical ranking
depth regions, which can be measured by e.g. the cardinality of their symmetric difference.

C.2 Pairwise comparisons as an alternative statistical framework

Since the computation of Kendall τ distance involves pairwise comparisons only, one could compute empirical
versions of the risk functional L in a statistical framework stipulating that the observations are less complete
than {Σ1, . . . , ΣN} and formed by i.i.d. pairs:

(ek, εk), k = 1, . . . , N,

where the ek = (ık, k)’s are independent from the Σk’s and drawn from an unknown distribution ν on the set En
such that ν(e) > 0 for all e ∈ En and εk = sgn(Σk(k)− Σk(ık)) with ek = (ık, k) for 1 ≤ k ≤ N . Based on these
observations, an estimate of the risk of any median candidate σ ∈ Sn is given by:

L̃N (σ) =
∑
i<j

1

Ni,j

N∑
k=1

I{ek = (i, j), εk(σ(j)− σ(i)) < 0}, (22)

where Ni,j =
∑N
k=1 I{ek = (i, j)}.

D Additional experiments

Here we display additional numerical results, completing those presented in the main text. First, in Section ??,
we analyze the sensitivity of the proposed depth notion to a difference between distributions and its subsequent
ability to provide formal inference. Second, in Section ??, we detail a further application to real data. Please
note, that, as this is the case in the main text, in all visualizations the data depth is re-scaled to [0, 1] interval by
division by maximal possible distance for given n.
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D.1 Trimming strategy

Now we have characterized under which conditions the different properties of Property ?? hold, we explore how
to use them in practice. For example, using Kendall τ distance and samples drawn from a Mallows distribution
easily make the invariance and maximality at the center properties hold, but not necessarily the monotonicity
property.

First, even though a Mallows model is SST, its empirical distribution counterpart may not be. Second, the
adjacent condition for local monotonicity indicates that under such a model,the monotonicity property hold for
the median and any of its adjacent ranking. Moreover, the second local condition is more likely to be satisfied for
rankings close to (in terms of Kendall τ distance) the median.

These two observations and the fact that the depth of a ranking σ represents its centrality within the dataset make
a trimming strategy highly relevant for consensus ranking experiments. The intuition behind this strategy is that
least deep points corresponds to outliers for the dataset: removing them step by step should make the dataset less
noisy, so that the depth of the remaining points get more and more accurate. To the extreme, when successively
trimming rankings in the dataset until there is only one ranking left should leave us with an accurate median for
the dataset. However, since the depth function satisfies useful properties when the underlying distribution is
SST, a sufficient trimming strategy would stop there. The algorithm corresponding to this strategy is defined in
Algorithm 1 of the main paper, recalled here.

Algorithm 2: Ranking Depth Trimming

Input : Ranking dataset DN = {Σ1, ...ΣN} and distribution P̂N = (1/N)
∑N
i=1 δΣi .

Output : Dataset D ⊂ DN of size ND ≤ N and (S)ST ranking distribution P̂D = (1/ND)
∑
σ∈D δσ

- Initialize: D = DN ;

while P̂D is not (S)ST do
- Determine the least deep rankings in D: OD := arg minσ∈DDP̂N

(σ);
- Update the ranking dataset D \ OD → D

(a) (b)

Figure 8: Trimming strategy: evolution of candidate median (deepest ranking) normalized distance to real median
and number of cycles through trimming (a); evolution of median depth and sample dispersion through trimming
(b).

Fig. 8 illustrates the trimming strategy for a Mallows model generated with n = 8 items, φ0 = 0.985, and
N = 1000 samples. We can see that trimming indeed remove cycles from the empirical dataset and thus make
the empirical distribution SST, and that during trimming, the deepest rankings (saved as the candidate medians)
get closer (in Kendall τ distance) to the real median used for generating the samples.

The depth function thus provide an alternative and relevant way to compute the median of a dataset: by trimming
until getting a SST distribution first, we ensure that the depth function has desirable properties and thus that
the median we obtain in practice gets very close to the true median.
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D.2 Visual analysis

With data depth being a nonparametric tool not exploiting a priori information about the distribution, we focus
on easy-to-manipulate Mallows model using Kendall τ distance; we refer to the main text for the formal definition
and parameters’ notation, see Example 1.
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Figure 9: DD-plots for pairs of distributions stemming from different instances of the location-shift model. The
two distributions contain 50 observations each, drawn from two Mallows models using Kendall τ distance with
parameter φ1 = φ2 = e−1. Difference between locations is indicated in each individual plot.
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Mallows location difference testing

Figure 10: p-values (averaged over 100 random repetitions) for the test of homogeneity for a pair of Mallows
distributions stemming from the location-shift model with location difference dτ (σ∗1 , σ

∗
2) ∈ {0, ..., 17}.

First, we consider a location-shift model : a sequence of pairs of distributions with parameter pairs (σ∗1 , φ1) and
(σ∗2 , φ2). Setting φ1 = φ2 = e−1, we vary σ∗2 so that dτ (σ∗1 , σ

∗
2) ∈ {0, 1, 3, 5, 7, 9, 11, 15, 17}. Figure 9, which

contains visualization for each pair of parameters for 50 observations from each distribution, illustrates gradual
capturing by the suggested visualization of the increasing location shift between the two laws.

Bearing in mind the same idea, using the same distributional settings, we now provide a formal statistical inference
by homogeneity testing. More precisely, for each pair of distributions, taking one of them for a reference, we
perform the testing procedure 100 times and indicate average p-values in Figure 10 (where we stick to the same
test setting as in the main text, drawing 500 observations for the reference distribution and using the Wilcoxon
rank-sum statistic). As expected, when there is no parameter difference, the null hypothesis of the distribution’s
equality cannot be surely rejected. When the difference in the location increases, it is captured very quickly by
the testing procedure rejecting on the level ≤ 0.05 when dτ (σ∗1 , σ

∗
2) = 3 only, and with even higher reliability for

larger differences.

While being already challenging when having no (parametric) assumptions on the distribution, traditional
rank-based homogeneity testing procedures usually assume location difference. Thus, we consider an even more
disadvantageous setting, the scale-difference model : the location of the both distributions is the same, and those
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Figure 11: DD-plots for pairs of distributions stemming from different instances of the scale-difference
model. The two distributions contain 50 observations each, drawn from two Mallows models (using
Kendall τ distance) with the same center and with parameters φ1 = e−1 and φ2 = eψ where ψ ∈
{−1,−1.1,−1.2,−1.3,−1.4,−1.5,−1.6,−1.7,−1.8,−1.9}. Difference between scales’ logarithms is indicated
in each individual plot.
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Figure 12: p-values (averaged over 100 random repetitions) for the test of homogeneity for a pair of Mallows
distributions stemming from the scale-difference model, i.e. with the same center and difference in scales
log φ1 − log φ2 ∈ {0, ..., 1}.

differ in dispersion only. As above, the DD-plots for 10 scale difference values (on the equidistant grid with
step 0.1 on the logarithmic scale) are presented in Figure 11. With increasing scale difference, visual patterns
dis-associate (less than in the previous setting though) which intrigues the formal inference.

Finally, we repeat the previously used testing procedure and indicate the average p-values in Figure 12. One
observes that for difference in scale (measured on the logarithmic scale) equal to 0.3 or higher, the homogeneity
testing procedure distinguishes the distributions with level ≤ 0.05 or less.

D.3 Application to real data

Let us now explore the applicability of our depth function to different tasks on real data.

D.3.1 Student dataset

Next, we consider a real data set which consists of students’ rankings before (N1 = 169 students) and after
(N2 = 179 students) the class, with known ground truth (correct answer = (0, 1, 2, 3)) where n = 4 (refer to
https://github.com/ekhiru/students-dataset for details about the dataset). Simple computation indicates
that dτ from the average ranking to the true one is 2 before the class and 1 after, thus suggesting that the
students improved after studying. We employ the same homogeneity testing methodology as above to derive

https://github.com/ekhiru/students-dataset
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formal statistical inference. By taking 100 randomly chosen observations from the ’before class’ cohort as the
reference, we use 69 observations from the ’before class’ cohort and 79 (also randomly chosen) from the ’after
class’ group. The diagnostic DD-plot of the two cohorts together with p-values over 1000 random repetitions
and the asymptotic density under H0 are indicated in Figure 13, and illustrate improvement of the students’
knowledge after the class.
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Figure 13: Left: DD-plot for the two cohorts of students, ’before class’ (red) and ’after class’ (blue), respectively.
Right: p-values of the homogeneity test over 1000 random repetitions together with asymptotic density under H0.

D.3.2 Sushi dataset
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Figure 14: Exploratory statistics of the Sushi data set by [35] (https://www.kamishima.net/sushi/). Left:
The depth of each observation in the set, in increasing depth order. Right: The comparative DD-plot for Eastern
(red) and Western (blue) Japan.

As a last application, we analyze the Sushi data set, which contains 5 000 rankings of 10 sushi items. We refer
the reader to [35] (https://www.kamishima.net/sushi/) for the detailed description of the data set. By means
of the introduced depth notion, we explore this data set from two angles. First, we provide depth based ranking
of the entire data set, which can be seen as the ranking equivalent of the cumulative distribution function. The
depth of each of the 5 000 observations (ordered increasingly) is indicated in Figure 14 (left). Second, in view of
the ten considered items, we check the know difference between food preferences in Eastern and Western Japan.
The DD-plot of these two groups (containing 3 448 and 1 552 observations each, respectively) is presented in
Figure 14 (right). Since the two clouds of points substantially intersect, this rather drives to conclusion that the
mentioned above difference is not connected with the choice of the sushi items used in the data set.

D.3.3 Mechanical Turk Dots dataset

The Mechanical Turk Dots dataset contains 800 full rankings of 4 items. Each item corresponds to random dots
presented to a user on Mechanical Turk, who is asked to rank them from those containing the least dots (first) to

https://www.kamishima.net/sushi/
https://www.kamishima.net/sushi/
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those containing the most dots (last). Thus, there is a ground truth ranking for this dataset. 40 sets of puzzles
were placed on Mechanical Turk and were ranked by 20 users, leading to 800 rankings.

This dataset is SST and the deepest ranking corresponds to the ground truth. We thus contaminate the dataset
by swapping a random proportion of 1/4 of the rankings, i.e. by taking the opposite ranking. Figure 15 (a)
shows that there is no obvious difference between the swapped and clean rankings, but in figure 15 (b), we see we
recovered the ground truth ranking after the trimming strategy.

(a) (b)

Figure 15: Depth plots before trimming with swapped (red) and clean (blue) points; evolution of candidate
median (deepest ranking) distance to real median and number of cycles through trimming (c)

D.3.4 Netflix Prize dataset

We selected one of the Netflix Prize dataset contains 1814 full rankings of 4 movies (Dirty Dancing, Maid in
Manhattan, Shrek and Father of the Bride). This dataset is SST and the deepest ranking corresponds to Shrek �
Father of the Bride � Maid in Manhattan � Dirty Dancing, considered as the real center of the dataset. We
contaminated the dataset by swapping a random proportion of 11% of the rankings, i.e. by taking the opposite
ranking. Figure 16 (a) shows that there is no obvious difference between the swapped and clean rankings, but in
figure 16 (b), we the median computed after trimming is closer to the real center than before.

(a) (b)

Figure 16: Depth plots before trimming with swapped (red) and clean (blue) points; evolution of candidate
median (deepest ranking) distance to real median and number of cycles through trimming (c)
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