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VARIATIONS ON DEPTH-FIRST SEARCH PERFORMANCE IN

RANDOM DIGRAPHS

PHILIPPE JACQUET AND SVANTE JANSON

Abstract. We present an analysis of the depth-first search algorithm in a random di-
graph model with geometric outdegree distribution. This problem posed by Don Knuth

in his next to appear volume of The Art of Computer Programming gives interesting in-

sight in one of the most elegant and efficient algorithm for graph analysis due to Tarjan.

1. Introduction

The motivation of this paper is a new section in Donald Knuth’s The Art of Computer
Programming [1], which is dedicated to Depth-First Search (DFS) in a digraph. We refer
to [1] for the definition of DFS as well as for historical notes. Note that the digraphs in [1]
and here are multi-digraphs, where loops and multiple arcs are allowed. The DFS algorithm
generates a spanning forest (the depth-first forest) in the digraph, with all arcs in the forest
directed away from the roots. Our main purpose is to study the distribution of the depth
of vertices in the depth-first forest, starting with a random digraph G.

Furthermore, the DFS algorithm in [1] classifies the arcs in the digraph into the following
five types, see Figure 1 for examples:

• loops;
• tree arcs, the arcs in the resulting depth-first forest;
• back arcs, the arcs which point to an ancestor of the current vertex in the current
tree;

• forward arcs, the arcs which point to an already discovered descendant of the current
vertex in the current tree;

• cross arcs, all other arcs (these point to an already discovered vertex which is neither
a descendant nor an ancestor of the current vertex, and might be in another tree).

We will discuss the numbers of arcs of different types. (See further the exercises in [1].)
The random digraph model that we consider has n vertices and a given outdegree dis-

tribution P. The outdegrees (number of outgoing arcs) of the n vertices are independent
random numbers with this distribution. The endpoint of each arc is uniformly selected
at random among the n vertices, independently of all other arcs. (Therefore, an arc can
loop back to the starting vertex, and multiple arcs can occur.) We consider asymptotics as
n → ∞ for a fixed outdegree distribution.

We will focus on the case of a geometric outdegree distribution; the lack-of-memory
property in this case leads to interesting features and a simpler analysis. The paper will
study the following outdegree distribution in the following order:

• a geometric distribution;
• a shifted geometric distribution (starting from integer 1 instead of zero);
• a general distribution.
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2 PHILIPPE JACQUET AND SVANTE JANSON

Figure 1. Example of a depth-first forest (jungle) from [1], by courtesy of
Donald Knuth. Tree arcs are solid (e.g. 9○→ 3○). For example, 3○99K 3○
is a loop, 2○99K 3○ is a back arc, 9○99K 7○ is a forward arc, 8○99K 4○ and
0○99K 2○ are cross arcs. fig:forest

1.1. Some notation. As usual, w.h.p. means with high probability, i.e., with probability
1− o(1).

We let OL2(an), where (an) is a sequence of positive numbers, denote a sequence of
random variables Xn such that E

[
|Xn/an|2

]
= O(1). Note that this implies |Xn| ≤ anω(n)

w.h.p. for any sequence ω(n) → ∞.
The mean outdegree, i.e., the expectation of P, is denoted by λ.

2. Depth analysis with geometric outdegree distribution
Sgeo

In this section we assume that the outdegree distribution is geometric Ge(1− p) for some
fixed 0 < p < 1, and thus has mean λ := p/(1− p). Note that in the DFS, when we find a
new vertex v, we do not have to immediately reveal its outdegree. Instead, we only check
whether there is at least one outgoing arc (probability p), and if so, we find its endpoint and
explores this endpoint if it has not already been visited; eventually, we return to v, and then
we check whether there is another outgoing arc (again probability p, by the lack-of-memory
property of the geometric distribution), and so on.

In the following, by a future arc from some vertex, we mean an arc that at the current
time has not yet been seen by the DFS.

2.1. Depth Markov chain. Our aim is to track the evolution of the search depth as a
function of the number of t of discovered vertices. Let vt be the t-th vertex discovered by
the DFS (t = 1, . . . , n), and let d(t) be the depth of vt in the resulting depth-first forest,
i.e., the number of tree edges that connect the root of the current tree to vt. The first found
vertex v1 is a root, and thus d(1) = 0.

The quantity d(t) follows a Markov chain with transitions (1 ≤ t < n):

(i) d(t+ 1) = d(t) + 1.
This happens if, for some k ≥ 1, vt has at least k outgoing arcs, the first k − 1 arcs
lead to vertices already visited, and the kth arc leads to a new vertex (which then
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becomes vt+1). The probability of this is
∞∑
k=1

pk
( t

n

)k−1(
1− t

n

)
=

(1− t/n)p

1− pt/n
. (1) new

(ii) d(t+ 1) = d(t), assuming d(t) > 0.
This holds if all arcs from vt lead to already visited vertices, i.e., (i) does not happen,
and furthermore, the parent of vt has at least one further arc leading to an unvisited
vertex. These two events are independent. Moreover, by the lack-of-memory property,
the number of further arcs from the parent of vt has the same distribution Ge(1− p).
Hence, the probability that one of these further arcs leads to an unvisited vertex equals
the probability in (1). The probability of (ii) is thus(

1− (1− t/n)p

1− pt/n

) (1− t/n)p

1− pt/n
. (2) ii

(iii) d(t+ 1) = d(t)− ℓ, assuming d(t) > ℓ ≥ 1.
This happens if all arcs from vt lead to already visited vertices, and so do all further
arcs from the ℓ closest ancestors of vt, while the (ℓ + 1)th ancestor has at least one
further arc leading to an unvisited vertex. The argument in (ii) generalizes and shows
that this has probability(

1− (1− t/n)p

1− pt/n

)ℓ+1 (1− t/n)p

1− pt/n
. (3) iii

(iv) d(t+ 1) = d(t)− ℓ, assuming d(t) = ℓ ≥ 0.
By the same argument as in (ii) and (iii), except that the (ℓ+ 1)th ancestor does not
exist and we ignore it, we obtain the probability(

1− (1− t/n)p

1− pt/n

)ℓ+1

. (4) iv

Note that (iv) is the case when d(t + 1) = 0 and thus vt+1 is the root of a new tree in the
depth-first forest.

We can summarize (i)–(iv) in the formula

d(t+ 1) =
(
d(t) + 1− ξt

)+
, (5) dt+

where x+ := max{x, 0}, and ξt is a random variable, independent of the history, with the
distribution

P(ξt = k) = (1− πt)
kπt, k ≥ 0, with πt :=

(1− t/n)p

1− pt/n
= 1− 1− p

1− pt/n
. (6) xi

In other words, ξt has the geometric distribution Ge(πt). Define

d̃(t) :=

t−1∑
i=1

(1− ξi), (7) td

and note that (7) is a sum of independent random variables. Then (5) and induction yield

d(t) = d̃(t)− min
1≤j≤t

d̃(j), 1 ≤ t ≤ n. (8) dtd

We can also express these relations using generating functions. Let p(t, z) be the proba-
bility generating function E zξt of ξt, i.e.,

p(t, z) :=
(1− t/n)p

1− pt/n

∑
ℓ≥0

(
1− (1− t/n)p

1− pt/n

)ℓ

zℓ =
(1− t/n)p

1− pt/n− (1− p)z
, (9) ptz

and let f(t, z) := E[zd(t)]. We then have the identity, equivalent to (5),

f(t+ 1, z) = N
[
R(t, z)f(t, z)

]
(10)



4 PHILIPPE JACQUET AND SVANTE JANSON

where R(t, z) := p(t, 1/z)z and N is the operator on power series in z±1:

N g(z) = Π+g(z) + Π−g(1) (11)

where Π+ is the operator which removes the strictly negative powers of z and Π− is the
operator which removes the non-negative powers of z. Thus we have, since f(1, z) = 1,

f(t+ 1, z) = NR(t, z)NR(t− 1, z)N · · ·NR(1, z). (12)

2.2. Main result for depth analysis. Note first that (7) implies that the expectation of

d̃(t) is

E
[
d̃(t)

]
=

t−1∑
i=1

(1− E ξi) =

t−1∑
i=1

(
1− 1− πi

πi

)
=

t−1∑
i=1

(
1− 1− p

p(1− i/n)

)
. (13) Etd1

Let θ := t/n. We fix a θ∗ < 1 and obtain that, uniformly for θ ≤ θ∗,

E
[
d̃(t)

]
=

∫ t

0

(
1− 1− p

p(1− x/n)

)
dx+O(1) = nℓ̃(θ) +O(1), (14) Etd

where

ℓ̃(θ) :=

∫ θ

0

(
1− 1− p

p(1− τ)

)
dτ = θ +

1− p

p
log(1− θ). (15) tl

Note that the derivative ℓ̃′(θ) = 1− (1− p)/(p(1− θ)) is (strictly) decreasing on (0, 1), i.e.,

ℓ̃ is concave. Moreover, if p > 1
2 , which we call the supercritical case, then ℓ̃′(0) > 0, and

(15) shows that ℓ̃(θ) is positive and increasing for θ < θ0 := (2p− 1)/p. After the maximum

at θ0, ℓ̃(θ) decreases and tends to −∞ as θ ↗ 1. Hence, there exists a 0 < θ1 < 1 such that

ℓ̃(θ1) = 0; we then have ℓ̃(θ) > 0 for 0 < θ < θ1 and ℓ̃(θ) < 0 for θ > θ1. We will see that in
this case the depth-first forest w.h.p. contains a giant tree, of order and height both linear
in n, while all other trees are small.

On the other hand, if p ≤ 1
2 (the subcritical and critical cases), then ℓ̃′(0) ≤ 0 and ℓ̃(θ)

is negative and decreasing for all θ ∈ (0, 1). In this case, we define θ0 := θ1 := 0 and note

that the properties just stated for ℓ̃ still hold (rather trivially). We will see that in this case
w.h.p. all trees in the depth-first forest are small.

Note that in all cases, θ1 is the largest solution in [0, 1) to, recalling λ = p/(1− p),

log(1− θ1) = −λθ1. (16) gth1

Rgth1 Remark 2.1. The equation (16) may also be written 1−θ1 = exp(−λθ1), which shows that
θ1 is the survival probability of a Galton–Watson process with Po(λ) offspring distribution.

We define ℓ̃+(θ) := [ℓ̃(θ)]+. Thus, by (15) and the comments above,

ℓ̃+(θ) =

{
θ + 1−p

p log(1− θ), 0 ≤ θ ≤ θ1,

0, θ1 ≤ θ ≤ 1.
(17) tlp

We can now state one of our main results. Proofs are given in the next subsection.

T1 Theorem 2.2. We have

max
1≤t≤n

∣∣d(t)− nℓ+(t/n)
∣∣ = OL2(n1/2). (18) t1

CH Corollary 2.3. The height Υ of the depth-first forest is

Υ := max
1≤t≤n

d(t) = υn+OL2(n1/2), (19) gU

where

υ = υ(p) := ℓ+(θ0) =

{
0, 0 < p ≤ 1/2,
2p−1

p − 1−p
p log p

1−p , 1/2 < p < 1.
(20) gu
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Moreover, we can show that the height Υ is asymptotically normally distributed. Details
will be given in the full paper.

CA Corollary 2.4. The average depth d in the depth-first forest is

d :=
1

n

n∑
t=1

d(t) = αn+OL2(n1/2), (21) ca

where

α = α(p) :=
1

2
θ21 −

1− p

p

(
(1− θ1) log(1− θ1) + θ1

)
=

2p− 1

p
θ1 −

1

2
θ21 (22) ga

2.3. Proofs.

Proof of Theorem 2.2. Since (7) is a sum of independent random variables, d̃(t) − E d̃(t)
(t = 1, . . . , n) is a martingale, and Doob’s inequality yields, for all T ≤ n,

E
[
max
t≤T

|d̃(t)− E d̃(t)|2
]
≤ 4E

[
|d̃(T )− E d̃(T )|2

]
= 4

T−1∑
i=1

Var(ξi). (23) emma

As above, fix θ∗ < 1, and assume, as we may, that θ∗ > θ1. Let T
∗ := ⌊nθ∗⌋, and consider

first t ≤ T ∗. For i < T ∗, we have Var ξi = O(1), and thus, for T = T ∗, the sum in (23) is
O(T ∗) = O(n). Consequently, (23) yields

max
t≤T∗

∣∣d̃(t)− E d̃(t)
∣∣ = OL2(n1/2). (24)

Hence, by (14),

M∗ := max
t≤T∗

∣∣d̃(t)− nℓ̃(t/n)
∣∣ = OL2(n1/2). (25) m*

For t ≤ T ∗, the definition of M∗ in (25) implies∣∣∣ min
1≤j≤t

d̃(j)− n min
1≤j≤t

ℓ̃(j/n)
∣∣∣ ≤ M∗. (26) gal

Moreover, for t/n ≤ θ1, we have min1≤j≤t ℓ̃(j/n) = O(1/n), while for t/n ≥ θ1, we have

min1≤j≤t ℓ̃(j/n) = ℓ̃(t/n). Hence, for all t ≤ T ∗,

min
1≤j≤t

ℓ̃(j/n) = ℓ̃(t/n)− ℓ̃+(t/n) +O(1/n), (27)

and thus, by (26), ∣∣∣ min
1≤j≤t

d̃(j)− nℓ̃(t/n) + nℓ̃+(t/n)
∣∣∣ ≤ M∗ +O(1/n). (28) ew

Finally, by (8), (25) and (28),∣∣d(t)− nℓ̃+(t/n)
∣∣ ≤ 2M∗ +O(1/n). (29) jb

This holds uniformly for t ≤ T ∗, and thus, by (25),

max
1≤t≤T∗

∣∣d(t)− nℓ+(t/n)
∣∣ = OL2(n1/2). (30) jesp

It remains to consider T ∗ < t ≤ n. Then the argument above does not quite work,
because πt ↘ 0 and thus Var ξt ↗ ∞ as t ↗ n. We therefore modify ξt. We define
π̂t := max{πt, πT∗}; thus π̂t = πt for t ≤ T ∗ and π̂t > πt for t > T ∗. We may thus define

independent random variables ξ̂t such that ξ̂t ∼ Ge(π̂t) and ξ̂t ≤ ξt for all t < n. (Thus,

ξ̂t = ξt for t ≤ T ∗.)
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In analogy with (7)–(8), we further define

̂̃
d(t) :=

t−1∑
i=1

(
1− ξ̂i

)
, (31) htd

d̂(t) :=
̂̃
d(t)− min

1≤j≤t

̂̃
d(j) = max

1≤j≤t

t−1∑
i=j

(
1− ξ̂i

)
. (32) hd

Since ξ̂i ≤ ξi, (32) implies that d̂(t) ≥ d(t) for all t.

We have Var
[
ξ̂t
]
= O(1), uniformly for all t < n, and thus the argument above yields

max
1≤t≤n

∣∣d̂(t)− n[̂ℓ̃(t/n)]+
∣∣ = OL2(n1/2), (33) kasp

where ̂̃
ℓ(θ) :=

∫ θ

0

min
{(

1− 1− p

p(1− τ)

)
,
(
1− 1− p

p(1− θ∗)

)}
dτ. (34) htl

We have
̂̃
ℓ(θ) = ℓ̃(θ) for θ ≤ θ∗, and for θ ≥ θ∗,

̂̃
ℓ(θ) is negative and decreasing (since

θ∗ > θ1). Hence, [̂ℓ̃(θ)]+ = ℓ̃+(θ) for all 0 < θ ≤ 1. In particular, [̂ℓ̃(θ)]+ = ℓ̃+(θ) = 0 for all
θ ≥ θ∗, and (33) implies

max
T∗<t≤n

d̂(t) = OL2(n1/2). (35)

Recalling d(t) ≤ d̂(t), we thus have

max
T∗<t≤n

∣∣d(t)− nℓ̃+(t/n)
∣∣ = max

T∗<t≤n
d(t) ≤ max

T∗<t≤n
d̂(t) = OL2(n1/2), (36)

which completes the proof. □

Proof of Corollary 2.3. Immediate from Theorem 2.2 and (15), since we have maxt ℓ̃
+(t/n) =

maxθ ℓ̃
+(θ) +O(1/n) and maxθ ℓ̃

+(θ) = ℓ̃+(θ0) = ℓ̃(θ0). □

Proof of Corollary 2.4. By Theorem 2.2,

1

n

n∑
t=1

d(t) =

n∑
t=1

ℓ̃+(t/n) +OL2

(
n1/2

)
= nα+OL2

(
n1/2

)
, (37) bal1

where

α :=

∫ 1

0

ℓ̃+(τ) dτ =

∫ θ1

0

ℓ̃(τ) dτ =

∫ θ1

0

(
τ +

1− p

p
log(1− τ)

)
dτ

=
1

2
θ21 −

1− p

p

(
(1− θ1) log(1− θ1) + θ1

)
, (38) bal2

which yields (22), using (16). □

2.4. The trees in the forest.

TT Theorem 2.5. Let N be the number of trees in the depth-first forest. Then

N = ρn+OL2(n1/2), (39) tt

where

ρ = ρ(p) := 1− θ1 −
p

2(1− p)
(1− θ1)

2. (40) rho
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Proof. Let It := 1{d(t) = 0}, the indicator that vertex t is a root and thus starts a new
tree. Thus N =

∑n
1 It.

If θ1 > 0 (i.e., p > 1
2 ), then Theorem 2.2 shows that w.h.p. d(t) > 0 in the interval

(1, nθ1), except possibly close to the endpoints. Thus the DFS will find one giant tree of
order ≈ θ1n, possibly preceded by a few small trees, and, as we will see later, followed by
many small trees. To obtain a precise estimate, we note that there exists a constant c > 0

such that ℓ̃(θ) ≥ min{cθ, c(θ1 − θ)} for θ ∈ [0, θ1]. Hence, if t ≤ nθ1 and d(t) = 0, then

d̃(t) ≤ d(t) = 0 by (8) and, recalling (25),

M∗ ≥ nℓ̃(t/n) ≥ cmin{t, nθ1 − t}. (41)

Consequently, d(t) = 0 with t ≤ nθ1 implies t ∈ [1, c−1M∗] ∪ [nθ1 − c−1M∗, nθ1]. The
number of such t is thus O(M∗ + 1) = OL2(n1/2), using (25).

Let T1 := ⌈nθ1⌉. We have just shown that (the case θ1 = 0 is trivial)

T1−1∑
t=1

It = OL2(n1/2). (42) mma

It remains to consider t ≥ T1. Let

µt := E ξt =
1− πt

πt
=

1− p

p(1− t/n)
. (43) mut

For any integer k ≥ 0, the conditional distribution of ξt − k given ξt ≥ k equals the distri-
bution of ξt. Hence,

E
[
(ξt − k)+

]
= E

[
ξt − k | ξt ≥ k

]
P(ξt ≥ k) = µt P(ξt − k ≥ 0). (44) erika

We use again the stochastic recursion (5). Let Ft be the σ-field generated by ξ1, . . . , ξt−1.
Then d(t) is Ft-measurable, while ξt is independent of Ft. Hence, (5) and (44) yield

E
[
d(t+ 1) | Ft

]
= E

[
d(t) + 1− ξt | Ft

]
+ E

[
(ξt − 1− d(t))+ | Ft

]
= d(t) + 1− µt + µt P

[
ξt − 1− d(t) ≥ 0 | Ft

]
= d(t) + 1− µt + µt P

[
d(t+ 1) = 0 | Ft

]
= d(t) + 1− µt + µt E

[
It+1 | Ft

]
. (45) ele

We write ∆d(t) := d(t+ 1)− d(t) and It := 1− It. Then (45) yields

E
[
∆d(t)− 1 + µtIt+1 | Ft

]
= 0. (46) win

Define

Mt :=

t−1∑
i=1

µ−1
i

(
∆d(i)− 1 + µiIi+1

)
=

t−1∑
i=1

(
µ−1
i ∆d(i)− µ−1

i + Ii+1

)
. (47) cM

Then Mt is Ft-measurable, and (46) shows that Mt is a martingale. We have, with ∆Mt :=
Mt+1 −Mt, using (5),

|∆Mt| ≤ µ−1
t

∣∣d(t+ 1)− d(t)− 1
∣∣+ It+1 ≤ µ−1

t ξt + 1, (48) cm1

and thus, since πt ≤ p < 1 for all t by (6),

E|∆Mt|2 ≤ 2µ−2
t E ξ2t + 2 = 2

( πt

1− πt

)2 1− πt + (1− πt)
2

π2
t

+ 2 = O(1). (49) cm2

Hence, uniformly for all T ≤ n,

EM2
T =

T−1∑
t=1

E |∆Mt|2 = O(T ) = O(n). (50) cm3
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The definition (47) yields

Mn −MT1
=

n−1∑
t=T1

µ−1
t ∆d(t)−

n−1∑
t=T1

µ−1
t +

n−1∑
t=T1

It+1. (51) cm4

By a summation by parts, and interpreting µ−1
n := 0,

n−1∑
t=T1

µ−1
t ∆d(t) =

n∑
t=T1+1

(
µ−1
t−1 − µ−1

t

)
d(t)− µ−1

T1
d(T1). (52) cm5

As t increases, µt increases by (43), and thus µ−1
t−1 − µ−1

t > 0. Hence, (52) implies∣∣∣n−1∑
t=T1

µ−1
t ∆d(t)

∣∣∣ ≤ n∑
t=T1+1

(
µ−1
t−1 − µ−1

t

)
sup
i>T1

|d(t)|+ µ−1
T1

|d(T1)| ≤ 2µ−1
T1

sup
i≥T1

|d(t)|

= OL2(n1/2) (53) cm6

by (18), since ℓ̃+(t/n) = 0 for t ≥ T1 ≥ nθ1. Furthermore, (50) shows that Mn,MT1
=

OL2(n1/2). Hence, (51) yields

n∑
t=T1+1

It = n− T1 −
n∑

t=T1+1

It = n− T1 −
n−1∑
t=T1

µ−1
t +OL2(n1/2) = nρ+OL2(n1/2), (54) cm7

where, recalling (43),

ρ := 1− θ1 −
∫ 1

θ1

p(1− τ)

1− p
dτ = 1− θ1 −

p

2(1− p)
(1− θ1)

2. (55) rho=

The result follows by (54) and (42). □

The argument in the proof of Theorem 2.5 shows also the following; we omit the details.

TT2 Theorem 2.6. If p > 1
2 , then the largest tree in the depth-first forest has order θ1n +

OL2(n1/2).

Rslow Remark 2.7. When p > 1
2 , the height is thus linear in n, unlike many other types of

random trees. This might imply a rather slow performance of algorithms that operate on
the depth-first forest.

Conjecture 2.8. If p = 1
2 , then the largest tree has order roughly n2/3. If p < 1

2 , then the
largest tree has order roughly log n.

2.5. Types of arcs. Recall from the introduction the classification of the arcs in the digraph
G. Since we assume that the outdegrees are Ge(1 − p) and independent, the total number
of arcs, M say, has a negative binomial distribution with mean λn, and, by a weak version
of the law of large numbers,

M = λn+OL2(n1/2). (56) sw

In the following theorem, we give the asymptotics of the expected number of arcs of each
type. We conjecture that VarB,VarF,VarC = O(n), so that (59)–(60) can be improved to
asymptotics for the random numbers similar to (58).

Tarcs Theorem 2.9. Let L, T , B, F and C be the numbers of loops, tree arcs, back arcs, forward
arcs, and cross arcs in the random digraph G.

L = OL2(1), (57) tal

T = χn+OL2(n1/2), (58) tat

EF = EB = λE d = βn+O(n1/2), (59) taf

EC = χn+O(n1/2), (60) tac
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where

β := λα =
2p− 1

1− p
θ1 −

λ

2
θ21, (61) gb

χ := 1− ρ = θ1 +
λ

2
(1− θ1)

2. (62) chi

Remark 2.10. Part of the theorem is the exact equality EB = EF for any n and p. Knuth
[1] conjectures, based on exact formulas for small n, that, much more strongly, B and F
have the same distribution for every n.

Moreover, Knuth [1] conjectures that EC = ET for every n. (The theorem above shows
only that this holds asymptotically as n → ∞.)

Proof. L: A simple argument with generating functions shows that the number of loops
at a given vertex v is Ge(1 − p/(n − np + p)); these numbers are independent, and thus
L ∼ NegBin

(
n, 1 − p/(n − np + p)

)
with EL = p/(1 − p) = O(1) and Var(L) = p(1 − p +

p/n)/(1 − p)2 = O(1) [1]. Moreover, it is easily seen that asymptotically, L has a Poisson

distribution, L
d−→ Po(λ)

T : This follows immediately from Theorem 2.5, since T = n−N .

B, F : Let v, w be two distinct vertices. If the DFS finds w as a descendant of v, then there
will later be Ge(1− p) arcs from w, and each has probability 1/n of being a back arc to v.
Similarly, there will be Ge(1−p) future arcs from v, and each has probability 1/n of being a
forward arc to w. Hence, if Ivw is the indicator that w is a descendant of v, and Bvw [Fvw]
is the number of back [forward] arcs vw, then

EBwv = EFvw =
λ

n
E Ivw. (63)

Summing over all pairs of distinct v and w, we obtain

EB = EF =
λ

n
E
∑
w

∑
v ̸=w

Ivw =
λ

n
E
∑
w

d(w), (64)

and (59) follows by Corollary 2.4.

C: We have L+T +B+F +C = M , and thus (60) follows from (56) and (57)–(59), noting
that (61)–(62) imply β + χ = λ/2, and thus λ− (χ+ 2β) = χ. □

3. Depth, trees and arc analysis in the shifted geometric outdegree
distribution

In this section, the outdegree distribution is Ge1(1− p) = 1 + Ge(1− p). Thus its mean
λ = 1/(1 − p). As in Section 2, the depth d(t) is a Markov chain given by (5), but the
distribution of ξt is now different. The probability (1) is replaced by (1 − t/n)/(1 − pt/n),
but the number of future arcs from an ancestor is still Ge(1− p), and, with θ := t/n,

P
(
ξt = k

)
=

{
πt :=

1−θ
1−pθ , k = 0,

(1− πt)(1− πt)
k−1πt, k ≥ 1,

(65) xi1

where πt = pπt is as in (6). The probability generating function of ξt is, instead of (9),

p(t, z) = πt + (1− πt)
πtz

1− (1− πt)z
= (1− θ)

1− (1− p)z

1− pθ − (1− p)z
. (66)

We now have E ξi =
(1−p)θ
p(1−θ) and instead of (14) we have E d̃(t) = nℓ̃(θ) + O(1) where now

ℓ̃(θ) takes the new value

ℓ̃(θ) :=
1

p
θ +

1− p

p
log(1− θ) (67) tl1
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The rest of the analysis does not change but we get different values for the constants.

Note that ℓ̃(θ1) = 0 still gives (16), now with λ = 1/(1 − p), and that λ > 1 for every p.
Differentiating (67) shows that the maximum point θ0 = p > 0.

The results in Theorems 2.2–2.6 thus hold, with, by straightforward calculations,

υ := ℓ̃(p) = 1 +
1− p

p
log(1− p), (68)

α :=
1

p

(
θ21
2

− 1

λ
((1− θ1) log(1− θ1)−

1

λ
θ1

)
= θ1 −

θ21
2p

, (69)

ρ := 1− θ1 −
1

2(1− p)
(1− θ1)

2. (70)

Figure 2 shows ℓ̃(θ) for both geometric distributions.

Figure 2. ℓ̃(θ), the asymptotic search depth, for geometric distribution
(solid) and shifted geometric distribution (dashed) with p = 0.6. fig:depth

Now the expected numbers of back and forward arcs differ since EB = λE d ∼ λαn and
EF = (λ− 1)E d ∼ (λ− 1)αn because the average number of future arcs at a vertex after
a descendant have been created is λ− 1. Thus the equality of the number of backward and
forward arcs in Theorem 2.9 was an artefact of the geometric degree distribution.

The number of tree arcs is still

T = χn+OL2(n1/2) (71)

with χ = 1− ρ = θ1 +
λ
2 (1− θ1)

2. But the number of cross arcs differs. We get

EC = χ′n+O(n1/2) (72)

with

χ′ := λ− χ− λα− (λ− 1)α =
λ

2

(
1− 2θ1 +

1

p
θ21

)
=

λ

2
(1− θ1)

2 +
1

2p
θ21. (73)

Again the (asymptotic) identity of ET and EC was an effect of the geometric distribution.
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4. Stack index analysis and forest size for a general outdegree distribution

In this section, we consider a general outdegree distribution, with mean λ and finite
variance. When the outdegree distribution is general, the depth does not longer follow an
easy Markov chain, since we should keep track of the number of children seen so far at each
level of the branch of the tree toward the current vertex.

We denote m the degree of a random vertex. When the distribution of m is general,
the depth does not longer follow an easy Markov chain, since we should keep track of the
number of children seen so far at each level of the branch of the tree toward the current
vertex. However we can set the following theorem.

Theorem 4.1. In the general outdegree distribution when λ > 1 we have the following
expansion for small values of t:

E[d(t)] = (1− T (1))t+O(t2/n) (74)

with T (z) the p.g.f. of the finite tree of the Galton Watson tree generated by the outdegree
m.

Remark 4.2. It turns out that the theorem also holds for λ < 1, but in this case T (1) > 1.

Proof. The p.g.f. T (z) satisfies T (z) = z E[T (z)m]. For the geometric distribution, when
p > 0.5 we have

T (z) =
1−

√
1− 4(1− p)pz

2p
(75)

and T (1) = 1−p
p is the probability to have a finite tree. For the shifted geometric distribution

we simply have T (z) = 0. If we omit the variation of the fraction of discovered vertices θ,
the tree search experience starts by a sequence of finite trees, before entering into the infinite
tree. Said in other words, the depth reaches the level 1 and will never come back to zero.
But it will hit level 1 a finite time before leaving it for ever. If the degree of the root is m,
the search is limited to m subtrees among them there are one or more infinite trees. The
probability that the first infinite sub-tree is the kth sub-tree is T (1)k−1(1−T (1)), therefore

the cumulated size of the finite trees before the first infinite subtree is 1−T (z)m

1−T (z) (1 − T (1)),

multiplying by z we get the p.g.f. of the duration to reach the ultimate level 2 (i.e. the level
which will never be decremented afterward). Averaging over the distribution of degrees and

normalizing on the fact that there is always an infinite sub-tree we get z−z E[T (z)m]
1−T (z) . Since

z E[T (z)m] = T (z) we get z−T (z)
1−T (z) whose average obtained by the first derivative at z = 1 is

exactly 1
1−T (1) .

The average duration from the ultimate level 2 to the ultimate is also 1
1−T (1) . And so

forth to reach the ultimate level k we need an average duration k
1−T (1) . Therefore we have

E[d(t)] = (1− T (1))t(1 +O(θ)) (76)

the term O(θ) comes from the impact of the variation of θ when t is small which have
neglected in the first place. □

However we don’t know how to go further. If we want to get back to a Markov chain
we must replace the depth by the stack index I(t). The DFS can be regarded as keeping
a stack of unexplored arcs, for which we have seen the start vertex but not the end. The
stack evolves as follows:

stack1 (1) If the stack is empty, pick a new vertex v that has not been seen before (if there is
no such vertex, we have finished). Otherwise, pop the last arc from the stack, and
reveal its endpoint v (which is uniformly random over all vertices). If v already is
seen, repeat.

(2) (v is now a new vertex) Reveal the outdegree m of v and add to the stack m new
arcs, with unspecified endpoints. GOTO 1.
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Let again vt be the tth vertex seen by the DFS, and let I(t) be the size of the stack when
v(t) is found (but before we add the arcs from vt). Also let ηt be the outdegree of vt. Then
I(1) = 0 and, in analogy with (5),

I(t+ 1) =
(
I(t) + ηt − 1− ξt

)+
, 1 ≤ t < n, (77) It

where ξt is the number of arcs leading to already seen vertices before we find a new one; we
have P(ξ = k) = (1− t

n )(
t
n )

k and thus ξt ∼ Ge(1− t/n).
In analogy with (7), we define also

Ĩ(t) :=

t−1∑
i=1

(ηi − 1− ξi) =

t−1∑
i=1

ζi, (78) tIt

where we define ζt := ηt − ξt − 1. Then, as in (8),

I(t) = Ĩ(t)− min
1≤j≤t

Ĩ(j). (79) ItI

Note that

E ζt = E ηt − E ξt − 1 = λ− t/n

1− t/n
− 1 = λ− 1

1− t/n
. (80)

Hence, uniformly in t/n ≤ θ∗ for any fixed θ∗ < 1,

E Ĩ(t) =

t−1∑
i=1

E ζi = (t− 1)λ−
t−1∑
i=1

1

1− t/n
= nι̃(t/n) +O(1), (81)

where

ι̃(θ) :=

∫ θ

0

(
λ− 1

1− τ

)
dτ = λθ + log(1− θ). (82)

Let

ι̃+(θ) := [̃ι(θ)]+ =

{
λθ + log(1− θ), 0 ≤ θ ≤ θ1,

0, θ1 ≤ θ ≤ 1,
(83)

where again θ1 is the largest root in [0, 1) of (16), now with λ = E η1, the mean of P. The
proof of Theorem 2.2 applies with very minor differences, and yields:

TG1 Theorem 4.3. Suppose that the outdegree distribution has finite variance. Then

max
1≤t≤n

∣∣I(t)− nι̃+(t/n)
∣∣ = OL2(n1/2). (84)

Moreover, vt+1 is a root if and only if I(t) + ζt = I(t) + η1 − 1 − ξt < 0, cf. (77). The
arguments in the proof of Theorem 2.5 apply with minor differences, and show:

Theorem 4.4. Theorems 2.5 and 2.6 hold for any outdegree distribution with finite variance,
with ρ := 1− θ1 − λ

2 (1− θ1)
2.

The previous results suggest that the E Ĩ(t) and E d̃(t) asymptotically are just propor-
tional by a fixed factor independent of t; note that both have the same root θ1. We make
the following conjecture.

Conjecture 4.5. If λ > 1, then, for all t ∈ [0, 1], we have E d̃(t) = 1−z1
λ−1 E Ĩ(t)+o(n) where

z1 ∈ [0, 1) satisfies z1 = E[zη1 ].

Remark 4.6. The quantity z1 is the probability that a Galton–Watson tree generated by

the outdegree distribution η is finite. The reason to invoke this probability is that E d̃(t)
should be asymptotically equivalent to θ times the probability of an infinite tree (1 − z1)
when θ → 0. For the geometric distribution the probability is 1−p

p thus with λ = p
1−p the

proportional factor is 1−p
p and we find again our first result. When λ < 1 the fixed point
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z1 > 1 and the proportional factor remains positive. For the shifted geometric distribution
the Galton–Watson tree is always in finite, thus z1 = 0 and the proportional factor is again
1−p
p .
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