
HAL Id: hal-03537102
https://hal.science/hal-03537102

Submitted on 20 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An in-depth study and improvement of Isolation Forest
Yousra Chabchoub, Maurras Ulbricht Togbe, Aliou Boly, Raja Chiky

To cite this version:
Yousra Chabchoub, Maurras Ulbricht Togbe, Aliou Boly, Raja Chiky. An in-depth study and improve-
ment of Isolation Forest. IEEE Access, 2022, 10, pp.10219 - 10237. �10.1109/ACCESS.2022.3144425�.
�hal-03537102�

https://hal.science/hal-03537102
https://hal.archives-ouvertes.fr

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier

An in-depth study and improvement of
Isolation Forest
YOUSRA CHABCHOUB1, MAURRAS ULBRICHT TOGBE1, ALIOU BOLY2 AND RAJA
CHIKY.1,
1ISEP -Institut Supérieur d’Électronique de Paris. 10 rue de Vanves, Issy les Moulineaux, 92130-France. (e-mail: firstname.lastname@isep.fr)
2Faculté des Sciences et Techniques(FST)/Département Mathématiques et Informatique, Université Cheikh Anta Diop de Dakar, BP5005Dakar-Fann, Sénégal;
(e-mail: aliou.boly@ucad.edu.sn)

Corresponding author: Maurras Ulbricht Togbe (e-mail: maurras.togbe@ext.isep.fr).

ABSTRACT
Historically, anomalies detection was an important issue for industrial applications such as the detection of
a manufacturing failure or defect. It is still a current topic that tries to meet the ever increasing demand in
different fields such as intrusion detection, fraud detection, ecosystem change detection or event detection
in sensor networks. That’s why anomalies detection remains a research topic of great interest for various
research communities. In this paper, we focused on Isolation Forest (IForest), a well known, efficient
anomalies detection algorithm. We provided a deep and complete view on IForest. We evaluated the
impact of its input parameters (number of trees, sample size and decision threshold) on the efficiency of
the detection and on the execution time. We discussed the benefit of including some anomalies into the
training phase. To address the limits of IForest, we performed different experiments on commonly used real
datasets and also on synthetic datasets with non trivial distributions. We designed multidimensional datasets
where anomalies are carried by several dimensions simultaneously. Moreover, we used a varying density
and distance between anomalies and normal data, for a variable similarity between these two data classes.
We compared the performance of IForest against its improved version called Extended IForest. Finally, we
designed and validated a new extension of IForest, based on the different individual trees decisions instead
of a global forest decision that we call Majority Voting IForest (MVIForest). The experiments show that
MVIForest has a shorter execution time than IForest, with almost the same accuracy.

INDEX TERMS anomaly detection, isolation-based, Isolation Forest, outlier, survey

I. INTRODUCTION

ANOMALIES are often defined as elements with dif-
ferent behavior compared to normal data. Anomalies

detection is an interesting issue widely studied by different
research communities: statistics, data mining, machine learn-
ing and more recently deep learning. In fact, it has many
real-world applications such as intrusion detection, astron-
omy, finance or cybersecurity. A fast and efficient anomalies
detection can avoid huge economic losses, natural disasters
and even save human lives.

Many anomalies detection techniques based on different
approaches are proposed in the literature. The most known re-
views of anomalies detection existing techniques are [1], [4],
[5] and [19]. They identify the main following approaches:
statistical approach, clustering and nearest neighbors. These
two latter categories are often either density based (such as
Local Outlier Factory (LOF) [3] and Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) [20]), or
distance based (such as K-means [14] and k-Nearest Neigh-
bors (k-NN) [35]). More recently deep learning approaches
have been applied to detect anomalies in complex or high-
dimensional data ([6], [11], [26], [28], [30]). Each approach
has its strengths and weaknesses. Several criteria can be
considered to compare these approaches and choose the most
appropriate method for the addressed context. In fact, one can
focus as an example on method scalability (ability to handle
large or multivariate data), human involvement (supervised,
unsupervised or semi-supervised methods), response time
(detection speed), resources consumption or the efficiency of
the detection compared to the sensitivity of the application
area (tolerance to false positives or false negatives).

Isolation Forest (IForest) is an anomaly detection method
based on a different concept compared to the approaches
presented above (statistical, clustering, nearest neighbors,

VOLUME 1, 2022 1

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

etc.). It does not compute any distance or density and
therefore significantly reduces execution time and memory
requirement. IForest was designed by Liu et al. in 2008 [22],
[24]. Based on binary trees, it successively splits data and
identifies anomalies as data that get rapidly isolated in the
trees (compared to the majority of data). Isolation Forest
is an unsupervised method that gives excellent results in
terms of accuracy with a linear temporal complexity and a
low constant memory requirement. In [17], authors proposed
a new version of IForest called Extended Isolation Forest
(EIF) that enhances the way to split data for a more accurate
detection.

In order to design and develop later a distributed version
of IForest adapted to streaming context, we first propose in
this paper a complete and deep study of this method. It is a
necessary step to be able to propose adaptations of IForest to
the context of streams for a distributed version.

The objective of this paper is to study, in depth, Isolation
Forest and to evaluate the impact of its different parameters
on its performances and the efficiency of the detection.
We particularly focus on non-trivial anomalies, in multi-
dimensional datasets to explore the limits of Isolation Forest.
We compared Isolation Forest to its extended version (EIF)
that enhances false positives but with a longer execution
time. We also proposed a new version that we called Major-
ity Voting Isolation Forest (MVIForest) providing the same
accuracy as Isolation Forest with a shorter execution time.
To compare these three algorithms, we performed several
experiments on both synthetic and real datasets, commonly
used in the anomaly detection area, and having different
characteristics.

This paper is organized as follows : Section II presents
principles and advantages of Isolation Forest. In Section III,
we provide a survey on anomaly detection based on Isolation.
In Section IV, we focus on EIF method. We present different
datasets and metrics considered to evaluate and compare the
different approaches in Section V. Section VI highlights a
study of performances of IForest method. In Section VII, we
propose and evaluate an improvement of IForest called MVI-
Forest. We discuss the experimental evaluations of presented
methods in Section VIII. Finally, Section IX concludes the
work by providing future research directions.

II. ISOLATION FOREST: PRINCIPLE AND ADVANTAGES
Anomalies are considered as patterns in data that do not con-
form to a well defined model of normal patterns. Isolation is
the process of separating such unusual patterns from the en-
tire dataset. Datasets are often unbalanced, containing much
more normal data than anomalies, the anomaly being the
exception. The isolation technique is based on two following
characteristics of anomalous data:

• Anomalies represent a very small proportion of the
dataset.

• Anomalies are distinct. Anomalies have a different
behaviour or characteristics compared to normal data.

Moreover, they are easy to identify when they are dis-
tinct from each other, which avoids the masking effect.

A direct consequence of these two characteristics is that
anomalous data are easier to isolate than normal data.

The majority of existing anomaly detection approaches
construct a model from existing data, either based on knowl-
edge acquired from unlabeled data for unsupervised meth-
ods, or using labels provided by an administrator (prior
identification of a class) for semi-supervised and supervised
methods. Modeling the behavior of normal (majority) data
enables the identification of the abnormal data as elements
that do not respect the standard behavior. Some approaches
calculate the distance or density of the different elements in
the dataset and identify anomalies as elements with a distance
exceeding a given threshold. These methods provide good
detection results but often suffer from a lack of scalability
depending on the dimension or size of the dataset. Indeed,
in case of a massive dataset, the execution time and memory
requirement of such a method can quickly reach its limits.
In general, nearest neighbor anomaly detection methods like
LOF [3], k-NN [35], etc. have a quadratic complexity O(n2)
[15], as they are based on distance computation between each
pair of data. The response time of these methods is also not
adapted to the real-time processing of data streams produced
today by various systems and sensors with an always increas-
ing arrival rate. The calculation of all the distances needed to
design the model and detect the anomalies can be difficult to
achieve in such conditions.

Isolation Forest is an anomaly detection method based on
an approach different from the others (statistics, clustering,
nearest neighbors, etc.). It does not calculate either distance
or density and therefore significantly reduces execution time
and memory requirement. IForest has a low and small mem-
ory requirement [22] and a linear execution time, propor-
tional to the size of dataset (section VI-C). It has an excellent
scalability that makes this method suitable for large datasets,
as well as for real-time processing.

Anomalies are rare and have a different behavior compared
to normal data. Figure 1 shows an example of anomalous data
(X0) and normal data (Xi). Isolation is performed by succes-
sive splits of the dataset. One can notice that anomalous data
are easier to isolate than normal data.X0 is isolated in 3 steps
whereas it took 11 steps to isolate the normal data (Xi).

IForest ([22], [24]) is the first method that has been pro-
posed in the category of isolation based anomaly detection.
This method uses a set of random and independent trees
(itree) called a random forest. IForest generates a score for
each data using all the trees in the forest. IForest uses two
input parameters to calculate the data score. The parameters
are ψ which is the size of the randomly chosen sample from
the entire dataset and t which is the number of trees in
the forest. Each tree is built independently by sampling the
dataset, thus, the number of trees corresponds to the number
of samples.

IForest has two stages: the training phase which essentially
corresponds to the construction of the forest and the so-called

2 VOLUME 1, 2022

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

FIGURE 1: Anomalies (X0) are isolated faster than normal
data (Xi).

scoring phase where the score is generated for each item in
the dataset.

Let X(n,m) ⊂ Rm be a dataset containing anomalies, n
denotes the number of data in X and m the dimension of the
data.

A. TRAINING PHASE
The main objective of the training phase is to build a forest
of random and independent trees (itree). ψ and t are key
parameters of IForest. IForest randomly selects a subset of
ψ data which constitutes the sample used to build a single
tree. This step is very important, because it is the key idea
behind the performance and the efficiency of IForest. IForest
randomly chooses ψ data from X without replacement. It is
important to note that each sample is only used for one tree.
Since the data are chosen randomly and the anomalous data
are assumed to be very few in comparison with the normal
data, the sample may contain only normal data or a mixture
of mostly normal data.

The isolation tree (itree) is a binary tree. The construction
of the tree is realized as follows: Initially, the root node
contains all of the sample data. When building the tree, every
internal node is split into two subnodes (left and right) until
a complete data isolation or reaching a maximal tree depth :
max_depth = ⌈log2(ψ)⌉. Data is considered isolated when
it is alone in its node, as we can see in the figure 1 where X0

and Xi are respectively isolated after three and eleven splits.
To split a node i, IForest randomly chooses a dimension di
(splitDimension). Then, the split value vi (splitValue) is also
randomly chosen between the minimum value (min(di)) and
the maximum value (max(di)) of the data of the addressed
node, for the dimension di. The elements of the node i are
then divided into two groups (left and right) by comparing
their values to vi. The pseudo-code of the training phase is
given in the algorithm 1. Figure 2 shows an example of an
itree.

To build the t trees of the forest, these two steps (sampling
and building a tree) are repeated t times. Thus, each tree has
its dedicated sample. For each itree, the sample is chosen

FIGURE 2: itree example, ψ = 8.

from the entire X dataset. The complexity of the training
phase is given by O(tψ logψ) because each item of the ψ
data items of the t trees must be isolated or quasi-isolated in
the associated tree. The number of trees t is a key parameter
for the performance of IForest.

B. SCORING PHASE
During the scoring phase, the score for each item of the X
dataset is calculated. This score represents the similarity de-
gree between this item and the other items (mostly composed
of normal data). To calculate this score, the item x, has to
be treated by each tree of the forest. At the end, the item
x will certainly be placed in an external node of each tree,
depending on the split criteria. The number of nodes crossed
by x from the root node to reach its external node is called the
path length of x, denoted h(x). The pseudo-code calculating
the path length of x in a tree is given in the algorithm 2. Once
x is processed by all the trees in the forest, IForest calculates
the average length of the t paths of x denoted by E(h(x)).
Using a well known result on Binary Search Tree (BST), the
authors generate the score s(x, n) of x with the following
formula:

s(x, n) = 2−
E(h(x))
C(n) ;

C(n) = 2H(n − 1) − (2(n − 1)/n) is the average length
of the paths of an unsuccessful search in a binary search tree.
H(i) = ln(i)+0.5772156649 (Euler constant) is a harmonic
value. Note that C(n) is simply used to obtain a normalized
score s(x, n).

With this score formula, the authors classify the data as
follows:

• If E(h(x)) → C(n), s → 0.5. If all instances have a
score of s ≈ 0.5 then the dataset does not contain any
identifiable anomaly;

• If E(h(x)) → 0, s → 1. If an item x has score very
close to 1 then it is an anomaly;

• If E(h(x)) → n− 1, s → 0. If an item x has a score s
much lower than 0.5 then it is normal data.

A relatively short average path length E(h(x)) implies
that the forest of t trees globally classifies x as an anomaly.
The complexity of the scoring phase is given by O(nt logψ)
because each item of the dataset of size n is processed by

VOLUME 1, 2022 3

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

the t trees in the forest to evaluate its path length and thus
generate its average depth then its score. Hence, IForest has
linear complexity, proportional to the size of the dataset (n),
as t and ψ are two input constant parameters.

Algorithm 1: iTree(X, e, l) - Tree construction
Input: X - set of data in the node, e - current depth of

the tree, max_depth - maximal depth of the
tree

Output: iTree
1 if |X| <= 1 || e >= max_depth then
2 return ExternalNode(size = |X |)

3 else
4 Q← list of attributes in X
5 q ← random choice of one attribute in Q (q ∈ Q)
6 p← random choice of one value between the min

and the max of x values for q
7 l← filter(X, q < p)
8 r ← filter(X, q >= p)
9 return InternalNode(left← iTree(l, e+1,

max_depth), right← iTree(r, e+1, max_depth),
splitDimension← q, splitValue← p)

Algorithm 2: PathLength(x, Ti, e)
Input: x - a data, Ti - a itree, e - current path length.
/* e is initialise to 0 for the

first call */
Output: The path length of x in the itree Ti

1 if Ti is an external node then
2 return e+ C(Ti.size) /* C(n) defined in

II-B */

3 q ←− Ti.splitDimension
4 if xq < Ti.splitV alue then
5 return PathLength(x, Ti.left, e + 1)

6 else
/* xq >= Ti.splitV alue */

7 return PathLength(x, Ti.right, e + 1)

Swamping and masking represent a real challenge for
IForest, which handles them up to a certain limit. Swamping
consists of classifying normal data as anomalies because of
similarity between these two types of data. When normal data
are very close to anomalies, the number of partitions required
to separate anomalies increases, making it more difficult
to distinguish anomalies from normal data. Masking is the
existence of a large number of similar anomalies making
it difficult to isolate them individually. When a group of
anomalies is large and dense, the number of partitions needed
to isolate each anomaly increases [22]. These abnormal data
may therefore be considered as normal. The fact that IForest
relies on random samples and not on the entire dataset to
build the forest of random trees helps handling masking and

swamping. In fact, sampling enables to consider data with
a lower density compared to the real dataset, which better
separates anomalies from normal data and also from each
other. Moreover, each tree in the forest is built with its own
sample. Trees do not necessarily isolate the same anomalies
and some samples may not even contain any anomaly. Hence
IForest is robust against swamping and masking effects.

III. EXISTING IMPROVEMENTS OF IFOREST
The isolation technique for anomalies detection has been
addressed in several research studies. Since the first IForest
method ([22], [24]) designed in 2008, many adaptations
and improvements have been proposed. Several researchers
have identified some limits of IForest and have proposed
improvements to overcome these limits. We classified the
proposed methods into two categories according to the type
of considered data.

A. BATCH DATA
In [23], authors proposed the SCiForest method which, like
distance and density based methods, allows to identify clus-
ters in data. SCiForest is therefore an evolution of IForest
for clustering in order to detect local anomalies. SCiForest
randomly chooses a hyperplane in order to split the data in a
node and thus to take into account the anomalies carried by
several attributes at the same time. To separate the different
clusters, SCiForest establishes a split criterion for each node
taking into account the standard deviation of the data for this
node. Even if the processing of SCiForest is adapted to com-
plex data, SCiForest has a high complexity which represents
a major drawback for this method. In the same context about
the manner to split data in the node, authors proposed in [17]
the Extended IForest algorithm (EIF). EIF corrects the bias
introduced in IForest because of the vertical or horizontal
splitting of the nodes which creates an inconsistency in the
scores provided by IForest. This method is further discussed
in section IV. In [31], the authors recently proposed the FIF
(Functional IForest) method to detect anomalies in functional
datasets. Starting from the observation that IForest is not ef-
ficient for any dataset distribution, [25] proposed the Hybrid
IForest (HIF) method. They added a new decision criterion
taking into account the similarity between the data of the
same leaf node in order to consider the risk that abnormal
data are located in a leaf node having a relatively long
path. The main objective of this additional step is to reduce
false negatives. In fact, in the original version of IForest,
some anomalies can be missed because of their similarity:
this is the masking effect previously explained. Combining
supervised and unsupervised techniques, HIF is able to detect
anomalies in various datasets with different distributions.
However, it is not always easy to obtain the labels for a
supervised anomaly detection.

In [8], authors used IForest to compute the path length of
each data in the trees and defined this metric as a new distance
between two points. Compared to other distance methods like
Euclidean distance or Manhattan distance, it is more robust.

4 VOLUME 1, 2022

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

It also offers an adaptation of IForest for categorical and
missing data.

Simulated Annealing IForest (SA-IForest) [34] is an im-
provement of IForest which consists of creating a more stable
and stronger forest in the training phase. To do this, SA-
IForest builds a first forest from IForest. Then they calculate
the similarity between the trees in the forest. The precision
of the trees is also calculated by cross validation. At the end
of the process, only the trees with high precision are retained.
The validation requires the labeling of the training data which
is not always obvious and represents the limit of this semi-
supervised method.

To overcome the problem of inefficiency of IForest when
the number of data dimensions increases, the Entropy IForest
(E-IForest) method has been proposed in [21]. This method
also manages the lack of robustness of IForest in case of
noisy data. According to the authors, the problem lies in the
choice of the attribute of splitting of the data at the level of
each node of the tree. Indeed, they proposed an evolution of
IForest based on entropy. When splitting nodes, E-IForest
chooses an attribute based on its entropy in the random
sample. Different strategies have been explored in this paper
for the choice of the best attribute.

In [36], the authors noticed that although it is claimed that
IForest is not based on any notion of distance or density,
as it performs successive splits along random dimensions, it
implicitly uses the Manhattan distance. IForest, in its original
version, is therefore limited to this distance measure and
cannot handle other distance measures. Authors then pro-
posed the generic framework called LSHIForest (Locality-
Sensitive Hashing IForest [36]) that generalizes IForest to
other measures of distance and data spaces.

Sampling from an unbalanced dataset where normal data
presents the majority is not obvious. There are several ways
to balance the dataset before sampling. These methods can
be classified into two categories: over-sampling (padding the
minority class with synthetic datasets) or under-sampling
(removing datasets from the majority class for a better bal-
ance). Over-sampling can be performed with a method called
SMOTE. In [37], authors used IForest to identify categories
of data and rank them. Then, with SMOTE, they created
new padding data based on neighborhood information. Thus
IForest-SMOTE makes it possible to balance a dataset by
creating new data using a preselection from IForest and
the SMOTE method. In the second category, IOS (Isolation
forest Outlier detection and Subset selection) [7] is a method
designed to create a representative sample. IOS relies on
IForest to detect anomalies. Some normal data are removed
and the sample is thus constructed based on the balanced
dataset.

B. DATA STREAM
Neither IForest nor its different improvements mentioned
above are suitable for the context of data streams, where
data are received continuously and are volatile. Isolation
Forest Algorithm for Streaming Data (IForest ASD) [9],

Half-Space Trees (HSTrees) [32] and PCB-iforest [18] are
adaptations of IForest to the context of data streams. IForest
ASD uses a sliding window technique to retrieve data and
in each window the IForest method is executed to detect
anomalies based on a model previously created with data
from the previous windows. In case of drift, this model is
reinitialized. HSTrees is an evolution of IForest, designed
for streaming. HSTrees splits the nodes using the average
of the node items for the randomly selected attribute. As a
result, unlike IForest ASD, HSTrees manages automatically
the concept drift ([12], [13]) without updating its model by
a reinitialization. Indeed, HSTrees is faster than IForest ASD
and builds its model independently of the considered dataset.
However IForest ASD, is closely related to the dataset. In
fact, to manage the concept drift, IForest ASD maintains an
input value (µ) which is the anomaly rate. When, in a given
window, the anomaly rate exceeds µ, IForest ASD assumes
that a change occurs in the normal behavior of the data (the
drift) and therefore updates the model with the data of the
current window. This update consists of deleting the model
and rebuilding a new model based on the data from the
current window. This approach is not very efficient because
the whole history of the normal behavior is lost with each
concept drift.

Randomized space trees (RS-Forest) [33] is also a method
of detecting anomalies in data flows based on the concept of
isolation. It is based on a density estimator used to decide
if necessary to update the model to manage the concept drift.
RS-Forest is based on the assumption that the anomalous data
have a low density, which joins the hypothesis previously dis-
cussed on the scarcity of the anomalous data, their difference
from each other and also from normal data.

In [2], authors provided a recent global review on tree-
based methods for anomaly detection. In this part, we only
focus on Isolation based anomaly detection methods. A sum-
mary of the previously described isolation-based anomaly
detection methods is given in figure 3.

The isolation-based anomaly detection methods have been
implemented in several frameworks. The most known being
scikit-learn 1 which focuses on static data. It implements
the IForest algorithm. An other implementation of IForest
is provided by the H20 framework 2 which is also very
well known in the machine learning domain. Some versions
suitable for data streams like HSTrees [32] and IForest ASD
[9] have been implemented in the open source framework
scikit-learn multiflow [27] 3 which is the streaming version
of scikit-learn. A cloud-based anomaly detection framework
is proposed in [16]. It uses Spark cluster and some user
interfaces, all managed by Kubernetes.

Since the design of IForest in 2008, different improve-
ments have been proposed. In this section, we presented
all the extensions and adaptations of IForest existing in

1https://scikit-learn.org/stable/
2https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/if.html
3https://scikit-multiflow.readthedocs.io/en/stable/api/api.html

VOLUME 1, 2022 5

https://scikit-learn.org/stable/
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/if.html
https://scikit-multiflow.readthedocs.io/en/stable/api/api.html

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

FIGURE 3: Classification of isolation-based anomaly detec-
tion methods.

the literature. In this paper, we propose an improvement
of IForest to reduce its execution time while maintaining
the same detection efficiency. Unlike other methods, our
proposed method does not need any additional computation.
Moreover it does not depend on data distribution. In the next
sections, we will focus on EIF that we will compare to IForest
through different experiments. We will also present our new
extension of IForest.

IV. EXTENDED ISOLATION FOREST
A. IFOREST LIMITATION ADDRESSED
IForest is a powerful method, but it has some drawbacks.
One of the limitations of IForest which has been addressed
in the literature is its inconsistency in the classification of
data. Indeed, IForest gives a score to each data. According
to the definition of the anomaly, we expect that the more the
data is different from the others, the higher is its score. But
this is not always the case with the scores given by IForest.
Thus, there is some inconsistency in the design of IForest
scores. In order to illustrate this weakness, we considered in
the figure 4 a 2-dimensional datasets uniformly distributed
on a ring. Anomalies are placed in the center of the ring. This
distribution is invariant by rotation. After executing IForest,
we represented the heat map which corresponds to the scores
assigned by IForest. Areas with a high density points have a
low score and are therefore considered as normal data areas.
The homogeneous light color in the center of the heat map
gives the impression that the data is distributed on a disc and
ignores the ring shape with an almost empty center. Far from
dense areas, scores become higher. We can clearly see the
edge effect on the border areas, as well as darker areas which
correspond to empty areas. However, the heat map does not
have the same symmetry as the data. The heat map is not
invariant by rotation. More precisely, the ring has turned into
a square, and we can see the artificial appearance of four dark

corners with very high scores. These areas are considered as
anomalies.

This situation is due to the way IForest splits the nodes
during the training phase. Indeed, IForest splits each node
vertically or horizontally. This creates artificial areas of
concentration as if other data were there. Figure 4 shows
an example of splitting nodes when building a forest tree.
Note that the different splits of the dataset form artificial
rectangular areas of high density outside the ring of the
dataset.

FIGURE 4: Example of nodes splitting by IForest and the
associated Heat map of scores: presence of artificial fictitious
zones. X and Y are the coordinates of the data items.

An evolution of IForest that overcomes this problem is EIF.
The key idea of EIF is to split the data of the node according
to a randomly chosen direction (not necessarily horizontal or
vertical like IForest). This eliminates the fictitious zones cre-
ated by IForest and consequently improves the consistency of
the scores.

B. THE EIF METHOD
As explained in the section II, in case of 2-dimensional data,
IForest splits each node horizontally or vertically (see figure
1). This breakdown creates a bias clearly visible on the heat
map of the scores. The method called Extended Isolation
Forest which aims to correct this inconsistency was proposed
in [17]. The major difference between EIF and IForest is the
way to split the data in a node. EIF contains two stages, just
like IForest: the training phase and the scoring phase. While
the scoring phase remains the same for both methods, the
training phase has changed significantly. Indeed, EIF splits
the nodes according to a point and a direction randomly
chosen by the combination of all the dimensions unlike
IForest.

An example of data splitting using EIF is shown in figure 5
where we can notice the oblique and random splitting of the
nodes. A heat map of the scores obtained for the same dataset
is shown in this same figure. Just like for IForest, in this
experiment, we used all of the data (normal and abnormal) to
construct the tree samples, during the training phase. We can
notice the perfect correspondence between the distribution of
the data and the colors of the heat map. The circular shape
is conserved by the heat map of the scores. The areas of
fictitious concentration, previously visible with IForest, have
disappeared. In addition, the color of the center of the ring
(relatively dark) reflects clearly the ring shape and with data

6 VOLUME 1, 2022

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

items in the center, and provides more precision than IForest.
So, this heat map conforms to the real distribution of the
initial dataset.

In larger dimensions, EIF keeps the same operating prin-
ciple. The nodes are split according to a random hyperplane
defined by a normal vector n⃗ and a point p⃗ called the intercept
point. Node’s data are distributed as follows: for any data x⃗,
if (x⃗− p⃗) . n⃗ ≤ 0 then x⃗ is classified in the child node on the
left otherwise it is assigned to the child node on the right.

FIGURE 5: Example of nodes splitting by EIF and the
associated Heat map of scores: disappearance of artificial
fictitious zones. X and Y are the coordinates of the data items.

Although EIF addresses the inconsistency of IForest for
the score, this method has some limitations that should be
taken into account. EIF significantly reduces the false alert
rate of IForest. However, in terms of anomaly detection it
does not always outperform IForest. A comparison of the two
methods is carried out in the subsection VIII.

V. EXPERIMENTS : DATASETS AND METRICS
We chose to evaluate the performance of IForest by
testing this method on different real and synthetic pub-
lic datasets. The source code of all our experiments,
the synthetic dataset generation, and MVIForest is availl-
able in the public git repository:https://github.com/Elmecio/
IForestStudyAndMVIForest.

A. PUBLIC DATASETS
The real datasets considered are public and often used in
the field of anomaly detection. They consist of labeled data
containing identified anomalies. Since IForest is an unsu-
pervised method, labels are not considered in the execu-
tion phase. They are used only for the evaluation of the
results (specificity, ROC AUC ...). These datasets are taken
from the UCI Machine Learning Archive [10], owned by
the University of California. This archive is a very useful
resource for testing, validating and comparing different Ma-
chine Learning algorithms. We selected four datasets with
different characteristics in terms of size, number of dimen-
sions and anomaly rate as shown in the table 1. HTTP and
SMTP are datasets taken from the large KDD-CUP99 com-
petition dataset. They describe networks intrusions. Shuttle is
a dataset of 9 attributes collected by NASA, containing infor-
mation on radars. This is the dataset that contains the highest
proportion of anomalies. ForestCover is a dataset describing
trees in four different areas of the Roosevelt National Forest

in Colorado. It contains 10 attributes giving information on
tree type, shadow coverage, distance from nearby landmarks
(roads, etc.), soil type as well as local topography. We used
the same dataset as in [9]: The HTTP and the SMTP datasets
have been pre-processed to keep only four relevant attributes
(service, duration, src-bytes, dst-bytes) among the original
41 attributes. For these two datasets, anomalies refer to net-
works attacks. The pre-processed method is described in [9].
The original KDD-CUP99 dataset contains 4,898,431 data,
including 3,925,651 attacks (80.1%). That is too large for
anomaly detection. Authors therefore produced a sub dataset
by picking from the whole dataset, the data whose logged_in
attribute is positive. So, attacks that logged_in attribute is
positive are called intrusions. More details can be found in
the [9]. ForestCover dataset has 10 dimensions and Shuttle
dataset 9 dimensions. Other details about dataset size and
anomalies rate are presented in table 1.

TABLE 1: Public datasets

Size (n) Dimensions Anomalies
HTTP 567 498 3 0.39%
SMTP 95 156 3 0.03%
Shuttle 49 097 9 7.15%
Forest Cover 286 048 10 0.96%

B. SYNTHETIC DATASETS
In order to test the behavior and sensitivity of IForest to
different variations in data characteristics, we used synthetic
datasets. Indeed, real datasets often contain anomalies carried
by a single attribute and do not allow a detailed analysis
of the impact of certain parameters. We thus varied, on the
synthetic datasets, the dimensions of the data, the density of
the normal and abnormal data as well as the distance between
the anomalies and the normal data. These configurations
make it possible to evaluate the limits of IForest and to
adjust the choice of its input parameters. In the case of
multivariate data, we have designed anomalies carried by
all the dimensions at the same time, well enveloped in the
normal data.

The designed synthetic datasets are presented, in two
dimensions, in the form of a ring where the normal data
are uniformly distributed. Abnormal data are located in the
center of the ring, uniformly distributed on a disk of smaller
radius. In three dimensions, the normal data are contained
in the thick envelope of a sphere and anomalies are re-
grouped in the center of the sphere, uniformly distributed
in a smaller sphere. The abnormal data are therefore each
time surrounded by normal data. The anomalies are not trivial
which makes it possible to test the limits of the detection
algorithms. The different used datasets are presented in fig-
ures 6 and 7. Abnormal data are in red and normal data
in blue. All datasets consist of 1500 normal data and 15
(1%) abnormal data. The coordinates of each data item are
randomly chosen in the distribution described above. We
variated the thickness of the ring and the radius of the cen-

VOLUME 1, 2022 7

https://github.com/Elmecio/IForestStudyAndMVIForest
https://github.com/Elmecio/IForestStudyAndMVIForest

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

tral sphere to test different densities and distances between
normal data and anomalies as shown in table 2. The source
code building the synthetic datasets can be found on github
https://github.com/Elmecio/IForestStudyAndMVIForest.

(a) 2D

(b) 3D

FIGURE 6: Synthetic_1 dataset: High density of normal data
(ND++), low density of abnormal data (AD+) and small
distance between normal and abnormal data (dAN+).

The dataset named Synthetic_1 is shown in figure 6. It is
characterized by a high density of normal data and a small
distance between normal data and anomalies. The dataset
named Synthetic_2 is shown in figure 7a. Here, we just
increased the thickness of the ring to evaluate the impact
of decreasing the density of data on the performance of
IForest. The distance between normal and abnormal data
remains quite small. The Synthetic_3 dataset (figure 7b) is
characterized by a high density of normal data and a large dis-
tance between normal and abnormal data. In the Synthetic_4
dataset (figure 7c), we kept the large distance between normal
and abnormal data, this time with a low density of normal
data. The purpose of the Synthetic_5 dataset (figure 7d),
is to test the effect of the previously discussed masking.
We therefore designed anomalies with a high similarity, by
significantly reducing the radius of their disc. Anomalies are
more concentrated in the center of the ring. We summarize
the characteristics of these synthetic datasets in table 2. For
each of these datasets, we also created the corresponding
three-dimensional dataset as explained for Synthetic_1 in
figure 6.

TABLE 2: Characteristics of synthetic datasets. + : Low, ++:
High, ND : Normal Density, AD : Abnormal Density, dAN :
Distance Abnormal-Normal

ND AD dAN
Synthetic_1 ++ + +
Synthetic_2 + + +
Synthetic_3 ++ + ++
Synthetic_4 + + ++
Synthetic_5 + ++ +

C. METRICS
In the field of Machine Learning and more particularly the
detection of anomalies, several metrics can be considered to

evaluate and compare the different approaches. In general,
the execution time and memory requirements are important
criteria to address method’s scalability, especially in the
context of data streams with an always increasing arrival rate.
More specifically to Machine Learning, other criteria such as
recall, specificity, precision, F1 score, area under the ROC
curve are to be taken into account to evaluate the performance
of the method.

Execution time
In the specific context of Machine Learning, algorithms are
composed of a learning phase followed by a test phase. The
execution time of a method corresponds to amount of time
consumed by each of these two phases. The time complexity
of IForest is linear, at worst, equal to O(tψ2) for the training
phase and O(ntψ) for the test phase (see [24]). Note that the
duration of the training phase is constant, independent of the
total size of the data.

Memory requirement
IForest has a low memory requirement equal to O(tψ)
(see [24]). The memory consumed is therefore constant,
independent of the size of the dataset, which represents a
considerable advantage of the method to process large data.

ROC AUC, Recall, Specificity, F1 score, False Alarm Rate
In the case of anomaly detection which is an exercise of
binary classification in imbalanced datasets, there are only
two possible classes: normal or abnormal. In this paper,
we used scikit-learn [29] framework. However, unlike def-
initions implemented in scikit-learn, we consider here the
following well known convention adopted by anomalies de-
tection community: normal class is denoted by Negative and
abnormal class refers to Positive. We used scikit-learn API to
compute recall, ROC AUC and F1 score from the confusion
matrix.

Precision depends on True Positives (TP) and False Pos-
itives (FP). Although precision is useful for assessing the
classification ability of a method, in some cases it is not the
best metric to consider. Particularly in unbalanced dataset
case where normal data are obviously larger than abnormal
data. In fact, in this case, the number of false positives (false
alarms) can be larger than the number of true positives.
Precision = TP

TP+FP
The specificity is useful for anomaly detection, as it helps

to evaluate the performance of the method in detecting nor-
mal data and avoid false alarms.
Specificity = TN

TN+FN , where TN is the number of
True Negatives and FN the number of False Negatives.

The false alarm rate (FAR) is the ratio between the number
of normal data classified as anomalies and the total number
of real normal data. The objective of any anomaly detection
method is to all the anomalies while minimizing the rate of
false alarms. This metric is commonly used to assess the ef-
fectiveness of different anomaly detection methods. There is
always a trade-off between detecting real anomalies and false

8 VOLUME 1, 2022

https://github.com/Elmecio/IForestStudyAndMVIForest

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

(a) ND+, AD+, dAN+ (b) ND++, AD+, dAN++ (c) ND+, AD+, dAN+++ (d) ND+, AD++, dAN+

FIGURE 7: 2 dimensions synthetic datasets. All the synthetics datasets have 1500 normal data and 15 abnormal data.

alarms which are tolerated up to a certain limit depending on
the context. FAR = FP

FP+TN = 1− specificity.
In some application fields, we prefer to focus on the

anomalies, more precisely on the rate of well-classified ab-
normal data. In this case the most adapted metric is the recall.
There is clearly a trade-off between FAR and recall. The
impact of missing an anomaly must be taken into account
in the choice of the best metric.
Recall = TP

TP+FN .
ROC AUC is often used to quantify the effectiveness of

the anomaly detection method. ROC AUC increases with
the efficiency of detection and remains bounded by 1 (see
figure 8). The diagonal represents the plot of a purely random
method. To compare two different methods, we can also use
the F1 Score. It is an interesting metric when classes are
unbalanced. This is the case with anomalies detection context
where anomalies are much less numerous than normal data.
F1score = 2. precision.recallprecision+recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 r

at
e

False Positive rate

ROC

FIGURE 8: ROC Curve.

VI. STUDY AND EVALUATION OF ISOLATION FOREST
IForest is one of the most recent and efficient methods for
detecting anomalies according to several criteria. The perfor-
mance of IForest has been highlighted in several comparative
studies of different anomalies detection methods. However,
like all the existing methods, IForest has limitations which
make it an improvable method. In this section, we will
present the limits of IForest that we have identified and which

have not been addressed in the literature VI-A. Then, we
will evaluate the impact of the parameters of IForest on
its performance VI-C, and we focus on the effect of the
presence or not of abnormal data in the samples VI-D. We
will also present the impact of increasing data dimensions on
IForest VI-E then we will end this section with an analysis
of the choice of the best decision threshold VI-F. Unless
specified, in all the experiments we used the default values
recommended by the authors of IForest, namely t = 100 and
ψ = 256. The decision threshold used is threshold = 0.6.

A. LIMITS OF IFOREST
Certain limits of IForest have been identified and addressed
in the literature, by proposing evolutions and extensions of
IForest (EIF, IForest ASD ...). In this section, we explore
other limitations of IForest whose resolution would improve
the robustness of the method and ameliorate its position in
the ranking of anomaly detection methods.

1) Decision threshold
IForest is based on a score, denoted by s(x), which is
calculated for each data x on the basis of the average length
of its trajectory E(h(x)) in the different trees. In the original
IForest paper [22], the authors recommend 0.5 as the decision
threshold applied to the s score. Indeed,

• if E(h(x)) → 0 then s → 1. When s is very close to 1,
x can be considered as an anomaly;

• if E(h(x)) → n− 1 then s → 0. When s << 0.5, x
can be considered as normal data.

There is clearly a lack of precision of the threshold from
which a given data should be considered as abnormal. This
weakness represents a first limitation of IForest.

2) Choice of parameters of IForest
IForest has two input parameters: sample size and number
of samples. In [22] and [24], the authors recommendation is
to set ψ to 256. According to their experiences, ψ = 256
gives good results with low execution time and low memory
requirement. The authors recommend to set t to 100 trees
for stable results. They demonstrate that with 100 trees,
the result is optimal and that beyond 100 trees, there is no
gain in performance but the execution time and memory
consumption increase logically.

VOLUME 1, 2022 9

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

The experiments show that the performance of IForest at
the detection level (specificity, recall, AUC) depends on these
parameters. The optimal choice of these parameters depends
on the characteristics of the considered dataset. Indeed, the
sample size has a considerable effect on the performance
of IForest. On the one hand, a large sample size (or a high
sampling rate) can engender an over-training. Indeed, we
obtain in this case a great similarity between the trees, which
is in contradiction with the forest of random and independent
trees. On the other hand, a very low sampling rate generates
a risk of under-learning (a sample not enough representative
of the whole dataset and very shallow trees that could isolate
any anomaly). It is therefore important to adjust the sample
size, especially since it represents a key input parameter for
the IForest method. We deal with this limit in the subsection
VI-C.

3) Data dimensions

In [22], the authors assert that IForest provides good results
even on large-dimensional data, since several of these dimen-
sions are insignificant. They also proposed to apply statistical
tests like Kurtosis to select the relevant dimensions and thus
reduce the dimensions. The number of dimensions m is not
taken into account in the choice of the input parameters in
IForest. Anomalies which are carried by several dimensions
at the same time are more difficult to detect. Figure 6 shows
two types of data where the anomalies are respectively car-
ried by both 2 dimensions (a) and 3 dimensions (b).

In both cases, with the default settings of IForest, we obtain
a high false positive rate (of the order of 15%). In addition,
anomalies are only detected if they are enough far away
from the normal data for 2 dimensions. In 3 dimensions, no
anomaly was detected. The performance of IForest decreases
as the number of relevant dimensions increases. Indeed, in
the construction of the trees, at each step, we randomly
choose a dimension among the m dimensions while the
maximum depth of the tree, max_depth given by ⌈log2(ψ)⌉
is independent ofm. For a large value ofm, some dimensions
may not be selected. We deal with this limit in the VI-E
subsection.

4) Decision method

An item x is declared as an anomaly according to a collective
decision produced by forest trees. The t itrees are used
to calculate the average path length of x, E(h(x)). In the
scoring phase, the execution time of IForest depends on the
data size, but also on the number of trees in the forest. This is
because each data item has to be processed by each tree and
build its path before making a decision. This execution time
can be considerably reduced by choosing another approach.
We proposed to apply the majority voting method to declare a
data as an anomaly. This allowed us to reduce the false alarm
rate and the execution time. This method is presented in VII.

TABLE 3: Statistics on 10 executions of IForest on Shuttle
dataset with the same parameters : ψ = 100, t = 256,
threshold = 0.5. µ is the mean value and σ is the standard
deviation.

Metrics CPU Time ROC AUC Specificity Recall
Values [2.25, 2.62] [0.997, 0.998] [0.93, 0.94] [0.98, 0.99]
µ 2.448 0.998 0.939 0.986
σ 0,114 0,001 0,006 0,003

B. RANDOMNESS EFFECT IN IFOREST
IForest is a multi-step random choice method. Indeed, the
choice of the sample is random for each tree in the forest. The
choice of the addressed dimension as well as the split value
is random for each node. It is worth checking the impact of
this randomness on the results of IForest by inspecting the
variance of the results on several runs of IForest. We carried
out this experiment by executing IForest 10 times with the
same decision threshold ie threshold = 0.5 on the shuttle
dataset described in the subsection V-A.

The table 3 shows that the 10 successive executions of
IForest give fairly constant results in terms of ROC AUC,
specificity and recall. The standard deviations of these three
metrics are very close to zero. These results illustrate the
stability of IForest despite its randomness. We can therefore
rely on a single execution of IForest.

C. IMPACT OF PARAMETERS ON IFOREST
The input parameters of IForest: sample size (ψ) and number
of trees (t) are of a high importance for the performance
of IForest. We carried out some experiments to assess the
impact of these parameters on the results. These parameters
must be well chosen by the user to optimize the results. In
particular, when applying IForest to a data stream with a con-
cept drift, the input parameters should ideally automatically
be adapted to the varying characteristics of the stream. We
study here the impact of these parameters on the efficiency of
IForest.

1) Impact of sample size
The execution time of IForest is related to the number of
samples or trees t and the size of each sample ψ. In this part,
we are interested into the impact of ψ. We have therefore set
t to its default value (100 trees) in the experiments.

Figure 9 shows the results of running IForest on the Shuttle
dataset with different values of sample size. Note that when
the sample size increases, the execution time is longer. This
can be explained by the fact that the maximum length of
the trees depends on the size of the sample. Also, each tree
is built from a sample so the training phase of the IForest
method closely depends on the size of the tree. A large tree
size does not necessarily mean a gain in performance. This
is highlighted in the other metrics in the figure. From a given
threshold, the more the sample size increases, the less IForest
is able to detect anomalies (decreasing recall). Normal data,
however, are well classified (as the specificity reaches the

10 VOLUME 1, 2022

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

R
O

C
 A

U
C

Sample Size
 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

S
pe

ci
fic

ity

R
ec

al
l

Sample Size

Specificity
Recall

FIGURE 9: Performance of IForest with different sample sizes (ψ).

value 1 quickly). For a very large sample, IForest tends to
classify all data as normal. One possible reason would be the
poor quality of the built trees: the larger the sample size, the
more the trees in the forest look alike and become redundant,
which affects their collective decision. In summary, with
IForest, the sample size is an important parameter which
has a great influence on the performance of the detection.
A good sample size should therefore be small enough for a
better performance of IForest, while being careful to keep
the sample as representative as possible of the initial data.
The optimal sample size depends therefore on the nature and
variance of the addressed dataset.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
O

C
 A

U
C

Sample Size

SMTP
HTTP

ForestCover
Shuttle

FIGURE 10: Impact of sample size on IForest results. Eval-
uation on 4 real datasets.

In the figure 10, the study was carried out on the 4 datasets
described in V-A, with the aim of finding the ideal size of the
sample in each case. Note that for these different datasets,
the sample size that gives the best results differs. Indeed, for
Shuttle and SMTP, the best ROC AUC was obtained with
ψ = 1024. Whereas for Forest Cover ψ = 2048 was the opti-
mal sample size, and ψ = 4096 for HTTP. Unlike SMTP and
HTTP where ROC AUC remained constant after the optimal

sample size, IForest is less performant for ForestCover and
Shuttle beyond the correct sample size. These results confirm
that the optimal sample size for a good classification of data
(normal and abnormal) depends on the characteristics of the
dataset. The ability of IForest to detect anomalies depends on
the maximum length of trees built in the forest. However, the
length of the tree depends on the size of the sample. Hence,
it is important to provide the adapted sample size as input for
a good performance of IForest.

2) Impact of the number of trees
IForest is based on a random forest of several random and
independent binary trees. Their independence comes from
the fact that each tree is built on the basis of a single random
sample of the same size. All trees participate equally in the
decision-making regarding the classification of a data: nor-
mal or abnormal. The number of trees to be built in the forest
is an input parameter of the method. Memory requirement is
closely related to the number of trees in the forest. In this
subsection, we conducted experiments to assess the impact
of the number of trees on the performance of IForest. For
that, we used different values for this parameter t. We set the
sample size to its default value: ψ = 256.

As expected, when the number of trees increases, the
execution time becomes longer, which corresponds to the fact
that all the trees are created during the learning phase and
also that during the test phase, data item must pass through
each tree in the forest for decision-making. As can be seen in
the figure 11, considering the ROC AUC, the specificity and
the recall, we notice that the number of trees does not have a
great impact on these results. Indeed, from a certain number
of trees, the values converge while the execution time con-
tinues to increase linearly. We can therefore conclude that,
exceeding a given threshold, the number of trees does not
have a great impact on the performance of IForest in terms of
anomaly detection. The authors recommendation to generate
a collective decision based on the collaboration of t = 100
trees seems to be a good compromise between the execution
time and the quality of the decision. We also see in this

VOLUME 1, 2022 11

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 0 100 200 300 400 500 600 700 800 900 1000

R
O

C
 A

U
C

t
 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0 100 200 300 400 500 600 700 800 900 1000
 0.978

 0.98

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

S
pe

ci
fic

ity

re
ca

ll

t

Specificity
Recall

FIGURE 11: Performance of IForest for different values of the number of trees (t).

same figure 11 that the ROC AUC quickly converges towards
its maximum value (almost equal to 1), which confirms the
efficiency of the IForest method.

D. IMPACT OF THE PRESENCE OF ABNORMAL DATA IN
THE SAMPLE
When training the dataset model, since the choice of data
in the sample is random, the samples may not contain any
abnormal data. We evaluate in this section the impact of the
presence of abnormal data in the samples during the learning
phase. Two experiments were carried out for this purpose.
From the Synthetic_3 dataset (7b) we made first a random
choice in the whole dataset (normal and abnormal data) noted
"AllDataset" then applied IForest. Then in the second exper-
iment the random sample is selected only on the normal data
denoted "NormalOnly". The result is recorded in the table 4.
IForest is more efficient when tree construction is performed
on the basis of a mixture of normal and abnormal data. When
we build the forest with only normal data, we obtain a ROC
AUC of 0.95 with 9% of false alarms which reflects the
fact that some normal data were very early isolated in the
tree because they are slightly different from the others. This
number is reduced in case of presence of abnormal data in the
sample. The false alarm percentage is reduced to 8% and the
ROC AUC increases to 0.96. The presence of abnormal data
in the sample therefore increases the performance of IForest
and reduces the rate of false alarms. In more details, this can
be explained by the fact that with the presence of abnormal
data in the sample, the variation interval of a given dimension
at the level of the considered node is generally wider. In this
case, the random choice of the split value is more likely
to approach the values of the abnormal data thus making
it possible to isolate them more quickly. We then chose to
consider another data distribution (presented in Figure 12)
and to evaluate the impact of the presence of abnormal data in
the sample in such configuration. In this case, the anomalies
are well separated from the normal data, as they are outside
the ring. We have kept the same proportion for anomalies
(1% of the total number of data). By building the sample
from all of the data (normal and abnormal), the abnormal data

are sometimes present in the sample and have a significant
impact on the heat map of the scores, shown in this same
figure. We note a deformation to the right of the heat map
with a more important degradation in the colors. This is an
area of uncertainty that can create both false positives and
false negatives for the data. Thus, the presence of abnormal
data in the sample does not seem useful in such configuration.

TABLE 4: Comparison of IForest performance with and
without abnormal data in the learning phase. Dataset Syn-
thetic_3 (7b).

AllDataset NormalOnly
ROC AUC 0.96 0.95
Recall 1 1
Specificity 0.92 0.91
False Alarm Rate (%) 8 9
F1 score 0.20 0.18

E. IMPACT OF THE NUMBER OF DIMENSIONS ON
IFOREST
The data are often multivariate, describing the variation of at
least two observables over the time. In order to evaluate the
performance of IForest according to the number of dimen-
sions in the dataset, we used the two and three dimensional
synthetic datasets presented in section V-B. The particularity
of these datasets is that the anomalies are carried by several
dimensions at the same time. It will therefore be necessary
to consider several dimensions to detect anomalies. When
the anomalies are carried by several dimensions at the same
time (Figure 13), IForest is less efficient. Anomalies are only
detected in these latter cases when the difference in density
and distance between the normal data and the anomalies is
very clear. IForest always makes a lot of false alerts, espe-
cially on the borders of normal data. Several real anomalies
were not detected due to the split process of the nodes in the
learning phase of IForest. Indeed, IForest performs splits by
choosing an attribute randomly. The split is therefore done
with only one attribute at a time. However, considering only
one dimension, the abnormal data seem to be normal because
it is in the same range of values as the normal data. We

12 VOLUME 1, 2022

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

(a) Dataset (b) Classified Abnormal data (c) Heat Map Scores

FIGURE 12: Impact of data distribution on IForest.

also notice that with a high number of dimensions, the false
positive rate increases.

The number of dimensions is therefore a very important
parameter, to be taken into account in order to improve the
scalability of IForest and adapt it to large-dimension data. A
possible evolution of IForest would be to choose the sample
size ψ depending on the size of the data and also on the
number of their dimensions. Indeed, in order to detect an
anomaly carried by m dimensions, it is obvious that a tree of
minimum depth m must be used. However, the depth of the
tree is bounded by depth_max = ⌈log2(ψ)⌉. This formula
should be changed to include m either directly or by linking
m to ψ.

F. CHOICE OF DECISION THRESHOLD
Anomaly detection methods are generally based on a score
generated for each data item and compared to a detection
threshold. Using this score, those methods classify the dif-
ferent items separating abnormal and normal data.

In the original paper, IForest authors suggested to use 0.5
as a threshold for the decision making by computing the score
s(x, n) = 2−

E(h(x))
C(n) , as follows:

• when s (x, n) is very close to 1 then x is an anomaly;
• when s (x, n) is much less than 0.5 then x is normal.
In practice, the anomaly decision is taken when the score

is greater than 0.5. But, this rule can cause false alarms or
false negatives, because the optimal decision threshold is not
always equal to 0.5. In order to illustrate this observation,
we considered the two synthetic datasets Synthetic_2 and
Synthetic_3 and we represented, in the figure 14, the distri-
bution of the scores first for all the data, then for the normal
data only and finally for abnormal data only. To complete
the study, we deduced, from the scores, the lengths of the
paths and we represented their distribution. The aim of this
experiment is to assess whether we can easily find a score
threshold or a depth threshold allowing to separate the normal
data from the abnormal data. The score or depth threshold
is represented by the red vertical line. We notice that a lot
of normal data has a score between 0.5 and 0.6. It is clear
that the threshold score 0.6 is much more suitable than 0.5
for the two datasets. With a score threshold of 0.6, for the

Synthetic_2 dataset, where the normal data density is low,
only some abnormal data were detected. The distributions
show that true abnormal data have a path longer than the
threshold and a score below the score threshold (0.6). On
the other hand, with the Synthetic_3 dataset, all anomalous
data have a score above the decision threshold. Furthermore,
comparing Synthetic_2 and Synthetic_3, we can notice that a
larger distance between normal and abnormal data engenders
a small path length for anomalies. This means that abnormal
data are quickly isolated when they are very different from
normal data. The difference in density between normal and
abnormal data has therefore a considerable impact on the
efficiency of detection for IForest and could be taken into
consideration when choosing the detection threshold.

In this section, we studied IForest from different angles.
The random construction of the forest and the independent
itrees represent a key idea of IForest and enable to make a
robust decision. For the choice of the input parameters, we
found that using a large number of trees does not really im-
prove the ability of IForest to detect the anomalies, however
it increases the execution time. Using about 100 trees seems
to be a good compromise. From a given threshold, the sample
size increases the execution time of IForest and decreases
the anomalies detection performances. Thus, IForest can be
improved by establishing the optimal sample size according
to the dataset characteristics. The performed experiments
show also that the optimal decision threshold is difficult to
fix as it is dependent on the similarity between normal and
abnormal data according to the IForest trees. We propose
in the next section Majority Voting IForest, an extension of
IForest improving its execution time.

VII. MAJORITY VOTING ISOLATION FOREST
A. THE MAJORITY VOTING IFOREST (MVIFOREST)
METHOD
IForest identifies anomalies based on a collective decision
produced by all the trees built during the training phase.
Indeed, each tree i participates in the decision making by
the path hi(x) for each data x. The average path of a data
is used in the calculation of its score as follows: s(x, n) =

2−
∑t

i=1(hi(x))/t

C(n) . This formula implies that it is necessary to

VOLUME 1, 2022 13

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

IForest Synthetic 4 Classified normal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

IForest Synthetic 4 Classified abnormal

(a) 2 dimensions

(b) 3 dimensions

FIGURE 13: IForest results on datasets of dimensions 2 and 3.

calculate for all the trees of the forest, the path of x to
deduce its score. This way of proceeding can be improved
by applying the majority voting. The execution time as well
as the memory requirement may be considerably reduced
with the majority voting without losing efficiency. We pro-
pose a new version of IForest based on majority voting that
we call MVIForest. The principle of MVIForest consists
in considering the decision of the majority of trees and to
stop the execution when this majority is reached, without
generating the average score. Similarly to IForest, MVIForest
is composed of two phases. The forest construction phase is
done exactly as for IForest (II-A). The difference is located
in the scoring phase. Indeed, instead of calculating the length
of the path in all the trees before calculating the final score
of x, MVIForest calculates the score of x for each tree i. It
is denoted by si(x, n) = 2−

hi(x)

C(n) . This score is compared to
the threshold score (common to all trees) and a local decision
will be made for the considered tree. This process is repeated
for x successively in each tree in the forest until a majority
decision is made. The majority corresponds here to t/2 + 1
trees. The scoring process is therefore completed for x and
the final decision is taken.

B. EVALUATION OF MVIFOREST ON REAL DATASETS
To evaluate the MVIForest method, we carried out different
experiments on the four previously described real public
datasets (V-A). We choose to consider the datasets used in
the original IForest paper. The objective of these experiments
is to compare the performances of MVIForest and IForest.
The used metrics for these evaluations are described in V-C.
The table 5 summarizes the selected values of the parameters

used to carry out the experiments. The experiments on this
section were performed on a 64 bits computer with an Intel
Core i5-4570 CPU @ 3.20GHZ * 4. The different results are
presented in the table 6.

TABLE 5: Used parameters for each dataset

Datasets t ψ threshold
Shuttle 100 1024 0.6
KDDCup99 HTTP 100 1024 0.6
KDDCup99 SMTP 100 2048 0.6
Forest Cover 100 4096 0.6

One can notice that MVIForest gives similar results to
IForest in terms of ROC AUC. However, MVIForest is al-
ways faster than IForest with an execution time shortened
by 35% in average. The best result is obtained with HTTP
dataset, the largest considered dataset, where the execution
time of MVIForest represents only 60% of the execution
time of IForest. When anomalies are obvious and easy to
detect with a high distance to normal data and a very different
density, MVIForest can save up to 50% of the execution time
of the test phase. However when most of the data are in the
area of uncertainty between the anomalies and the normal
data, the execution time will be almost the same.

VIII. IFOREST VS EXTENDED IFOREST VS MVIFOREST
ON SYNTHETIC DATASETS
The table 7 and figures 15 and 16 show the results of
running IForest, EIF and MVIForest on the synthetic datasets
described in section V-B. As can be seen from this table,
unlike for real datasets, MVIForest gives better or similar
results than IForest in terms of ROC AUC. On this criterion,

14 VOLUME 1, 2022

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

(a) Synthetic_2 dataset

(b) Synthetic_3 dataset

FIGURE 14: Distribution of IForest scores and path lengths on Synthetic_2 et Synthetic_3 datasets.

TABLE 6: Comparison between MVIForest (MVIF) and IForest (IF) on real datasets.

ForestCover Shuttle SMTP HTTP
Metrics MVIF IF MVIF IF MVIF IF MVIF IF

ROC AUC 0.8 0.86 0.98 0.98 0.84 0.83 0.99 0.99
Recall 0.7 0.87 0.98 0.99 0.75 0.70 1 1
Specificity 0.9 0.84 0.98 0.97 0.92 0.93 0.98 0.98
FAR (%) 9.82 15.54 2.36 3.01 7.81 7.24 2.17 2.43
F1 Score 0.12 0.1 0.86 0.83 0.01 0.01 0.27 0.25
CPU Time (s) 677.69 930.88 88.25 137.75 142.6 227.8 836.92 1393.49

TABLE 7: Comparison between MVIForest (MVIF), IForest (IF) and EIF on two-dimensional synthetic datasets.

Synthetic_1 Synthetic_2 Synthetic_3 Synthetic_4 Synthetic_5
Metrics MVIF IF EIF MVIF IF EIF MVIF IF EIF MVIF IF EIF MVIF IF EIF

ROC AUC 0.97 0.97 0.67 0.86 0.56 0.5 0.97 0.96 1 0.97 0.96 0.7 0.45 0.45 0.5
Recall 1 1 0.33 0.8 0.2 0 1 1 1 1 1 0.4 0 0 0
Specificity 0.94 0.93 1 0.93 0.92 1 0.94 0.92 1 0.94 0.92 1 0.9 0.89 1
FAR (%) 6 6.67 0 6.86 7.6 0 5.73 7.73 0 5.4 7.93 0 9.93 10.06 0
F1 Score 0.25 0.23 0.5 0.18 0.04 - 0.26 0.20 1 0.27 0.20 0.57 - - -
CPU Time (s) 5.68 5.75 16.56 5.28 5.82 19.54 5.3 6.43 19.17 7.07 7.95 15.65 5.18 6.6 19.01
Memory (Mo) 9.29 9.56 11.92 8.92 9.04 11.66 9.43 9.53 12.01 9.33 9.17 12.11 8.73 9.06 11.49

MVIForest also exceeds the performance of EIF in almost all
cases.

The only dataset for which all the three methods were ef-
ficient is Synthetic_3 where there is a high density of normal

VOLUME 1, 2022 15

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

(a) Dataset

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

IForest Synthetic 1 Classified normal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

IForest Synthetic 2 Classified normal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

IForest Synthetic 3 Classified normal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

IForest Synthetic 4 Classified normal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

IForest Synthetic 5 Classified normal

(b) IForest

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

MVIForest Synthetic 1 Classified normal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

MVIForest Synthetic 2 Classified normal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

MVIForest Synthetic 3 Classified normal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

MVIForest Synthetic 4 Classified normal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

MVIForest Synthetic 5 Classified normal

(c) MVIForest

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

EIF Synthetic 1 Classified normal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

EIF Synthetic 2 Classified normal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

EIF Synthetic 3 Classified normal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

EIF Synthetic 4 Classified normal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

EIF Synthetic 5 Classified normal

(d) EIF

FIGURE 15: Data classified as normal by IForest, EIF and MVIForest respectively on Synthetic_1, Synthetic_2, Synthetic_3,
Synthetic_4 and Synthetic_5 datasets.

data, a low density of anomalous data, and a high distance
between normal data and abnormal data. The difference in
density between normal and abnormal data is an important
criterion for anomalies detection. This density must also be
considered after sampling, i.e the density of the data used for
each tree. In fact if the data density of the sample is close to
the density of the anomalies in the test dataset (the sample),
the anomalies can be missed.

According to the table 7, for the Synthetic_5 dataset, all
the anomalies were missed by the three methods. This is
explained by the high density of anomalies (although they
are relatively few) in this dataset. Because of this high density
these anomalies are globally seen as normal data. This is the
effect of masking.

The figure 16 shows the anomalies detected by each
method for each of the 5 datasets. One can notice that for

all these datasets, IForest and MVIForest give quite similar
results in terms of detection. Moreover they generate each
time false alarms by classifying the normal data at the border
as abnormal. As explained above, this is due to the way the
nodes are split: IForest randomly selects an attribute at each
split. This problem has been corrected by EIF by introducing
hyperplanes. As can be noticed, on the same datasets, EIF
did not make any false alarms and performed a maximum
specificity (always equal to 1 in Table 7). EIF classifies
correctly all normal data, however, it misses abnormal data
when there is a small distance separating them from the
normal data. In such a configuration, EIF produces a very
low recall (null for Synthetic_2).

Furthermore, considering all data dimensions at the same
time when splitting nodes makes EIF slower than IForest. As
can be seen in the table 7, the execution of EIF takes about

16 VOLUME 1, 2022

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

(a) Dataset

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

IForest Synthetic 1 Classified abnormal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

IForest Synthetic 2 Classified abnormal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

IForest Synthetic 3 Classified abnormal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

IForest Synthetic 4 Classified abnormal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

IForest Synthetic 5 Classified abnormal

(b) IForest

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

MVIForest Synthetic 1 Classified abnormal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

MVIForest Synthetic 2 Classified abnormal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

MVIForest Synthetic 3 Classified abnormal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

MVIForest Synthetic 4 Classified abnormal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

MVIForest Synthetic 5 Classified abnormal

(c) MVIForest

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

EIF Synthetic 1 Classified abnormal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

EIF Synthetic 2 Classified abnormal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

EIF Synthetic 3 Classified abnormal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

EIF Synthetic 4 Classified abnormal

30 20 10 0 10 20 30
X

20

15

10

5

0

5

10

15

20

Y

EIF Synthetic 5 Classified abnormal

(d) EIF

FIGURE 16: Data classified as abnormal by IForest, EIF and MVIForest respectively on Synthetic_1, Synthetic_2, Synthetic_3,
Synthetic_4 and Synthetic_5 datasets.

3 times longer than IForest. The time is mainly consumed
during the learning phase corresponding to the construction
of the forest. MVIForest remains the fastest of the three
methods, with a more efficient detection than IForest (a
higher or similar ROC AUC).

Memory requirement of the three methods is also reported
on table 7. One can notice that EIF has always the highest
memory requirement. In fact, for each node of the t trees,
EIF stores the parameters of the hyper-plane used to split
this node, which represents additional information compared
to IForest. MVIForest and Iforest have almost the same
memory requirements. MVIForest uses slightly less memory
than IForest because the execution is interrupted as soon as
a majority vote is identified. The score of all the trees are
not stored to compute an average, and the data item will not
pass through all the trees. Since the detection of anomalies

requires speed and efficiency, MVIForest would be a wise
choice. However, depending on the objective, one can choose
EIF. EIF classifies normal data better, but may miss some
anomalies while MVIForest is better at quickly detecting
anomalies, but may generate false alarms. The application
constraints as well as the context has to guide the choice for
the most suitable method.

Figure 17 presents an exploration of the path depth distri-
bution of all data, with IForest and EIF, for the Synthetic_5
dataset. We focused on this dataset because no anomalies
were detected. MVIForest was not considered in this experi-
ment because with MVIForest, each data item does not have a
unique average score, but many scores given by the different
used trees. We recall that an anomaly is characterized by
a high score, resulting from a shallow average path on the
trees in the forest. Starting from the threshold score (0.5),

VOLUME 1, 2022 17

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

(a) IForest

(b) EIF

FIGURE 17: Data path length distribution provided by IForest and EIF on the Synthetic_5 dataset .

we calculated the threshold depth which we represented by
a vertical red line. The distribution of depths allows us to
situate this threshold depth first relatively to all data, then
using only normal data and finally using only abnormal
data. We notice, for both methods, a large overlap in the
path depths of the normal and anomalous data. This overlap
highlights the impossibility of separating the two classes of
data based on their depths in the IForest trees, regardless of
the threshold depth. With IForest, some normal data have a
depth below the threshold depth and are therefore classified
as anomalies, which is not the case with EIF.

The Synthetic_5 dataset described in Figure 7d highlights
the limitations of IForest in terms of dealing with swamping
and masking effects. Considering a single dimension sepa-
rately, abnormal data look like normal data and these two
classes can not be separated. Unlike EIF which, thanks to its
way of constructing the forest was able to avoid swamping,
IForest and MVIForest have misclassified several normal
data because they only consider one dimension at once.
Moreover, because of the high density of abnormal data,
they could not be isolated early enough in the forest. They
obtained depths greater than the threshold (see Figure 17) for
all methods.

We performed the same experiments on the 3-dimensional
datasets described in V-B. None of the methods detect
anomalies at any time. IForest and MVIForest make only
false alarms. This result confirms the intuition that the de-
tection performance of IForest and even MVIForest drops
considerably with the increase of the number of significant
dimensions in the data. A possible solution would be to
explore deeper trees in order to be able to address all the
dimensions successively.

IX. CONCLUSION AND FUTURE WORK

Isolation Forest is one of the best methods for detecting
anomalies. It is fast, accurate and does not require huge
resources compared to other techniques such as clustering
or nearest neighbor. In this paper, we carried out a state of
the art of isolation-based anomaly detection methods. Most
of them are improvements of IForest. Each new method
addresses a limit or an adaptation of IForest to a new con-
text. In this paper, we highlight some weaknesses of IForest
not addressed in these improvements, notably the choice of
input parameters and the impact of the characteristics of the
datasets (number of significant dimensions, density of normal
and abnormal data, etc.). We tested IForest and its extended
version (EIF) on several real and synthetic datasets to il-
lustrate the weaknesses we identified. We then proposed an
improvement of IForest changing the way it makes decisions.
This new version, which we called MVIForest (Majority
Voting IForest), is faster than IForest, since its execution is
interrupted as soon as a majority decision is possible, without
requesting all the trees.

In our future works, we will compare the proposed MVI-
Forest to other existing anomalies detection methods. Despite
the performance of the studied isolation based methods, they
are not adapted to the streaming context. Isolation based
anomalies detection in data streams has not been enough
explored in the literature. In our future work, we will focus
on the version of IForest adapted to the context of data
streams: IForestASD. We will propose a distributed version
of IForestASD for a better performance and a higher scala-
bility.

18 VOLUME 1, 2022

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

ACRONYMS AND ABBREVIATIONS
IForest : Isolation Forest
MVIForest : Majority Voting IForest
LOF : Local Outlier Factory
k-NN : k-Nearest Neighbors
EIF : Extended Isolation Forest
ψ : The size of the randomly chosen sample to construct an
itree
t : the number of trees in the forest
itree : Isolation tree
ROC AUC : Area Under the ROC Curve
FIF : Functional IForest
SA-IForest : Simulated Annealing IForest
E-IForest : Entropy IForest
IForest ASD : Isolation Forest Algorithm for Streaming Data
HSTrees : Half-Space Trees
RS-Forest : Randomized Space trees
LSHIForest : Locality-Sensitive Hashing IForest
IOS : Isolation forest Outlier detection and Subset selection
DBSCAN : Density-Based Spatial Clustering of Applica-
tions with Noise

REFERENCES
[1] Charu C. Aggarwal. Outlier Analysis. Springer International Publishing

AG 2017, second edition edition, 2017.
[2] Tommaso Barbariol, Filippo Dalla Chiara, Davide Marcato, and Gian

Antonio Susto. A review of tree-based approaches for anomaly detection.
Control Charts and Machine Learning for Anomaly Detection in Manufac-
turing, pages 149–185, 2022.

[3] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander.
Lof: identifying density-based local outliers. In ACM sigmod record,
volume 29, pages 93–104. ACM, 2000.

[4] Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly
detection: A survey, 2019.

[5] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[6] Jinghui Chen, Saket Sathe, Charu Aggarwal, and Deepak Turaga. Outlier
detection with autoencoder ensembles. In Proceedings of the 2017 SIAM
international conference on data mining, pages 90–98. SIAM, 2017.

[7] Wo-Ruo Chen, Yong-Huan Yun, Ming Wen, Hong-Mei Lu, Zhi-Min
Zhang, and Yi-Zeng Liang. Representative subset selection and outlier
detection via isolation forest. Analytical methods, 8(39):7225–7231, 2016.

[8] David Cortes. Distance approximation using isolation forests. arXiv
preprint arXiv:1910.12362, 2019.

[9] Zhiguo Ding and Minrui Fei. An anomaly detection approach based on
isolation forest algorithm for streaming data using sliding window. IFAC
Proceedings Volumes, 46(20):12–17, 2013.

[10] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.
[11] Sarah M Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and

Christopher Leckie. High-dimensional and large-scale anomaly detection
using a linear one-class svm with deep learning. Pattern Recognition,
58:121–134, 2016.

[12] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning
with drift detection. In Brazilian symposium on artificial intelligence,
pages 286–295. Springer, 2004.

[13] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdel-
hamid Bouchachia. A survey on concept drift adaptation. ACM computing
surveys (CSUR), 46(4):1–37, 2014.

[14] Taher M Ghazal, Muhammad Zahid Hussain, Raed A Said, Afrozah
Nadeem, Mohammad Kamrul Hasan, Munir Ahmad, Muhammad Adnan
Khan, and Muhammad Tahir Naseem. Performances of k-means clustering
algorithm with different distance metrics. 2021.

[15] Markus Goldstein and Seiichi Uchida. A comparative evaluation of un-
supervised anomaly detection algorithms for multivariate data. PloS one,
11(4):e0152173, 2016.

[16] Sahand Hariri and Matias Carrasco Kind. Batch and online anomaly detec-
tion for scientific applications in a kubernetes environment. In Proceedings
of the 9th Workshop on Scientific Cloud Computing, pages 1–7, 2018.

[17] Sahand Hariri, Matias Carrasco Kind, and Robert J Brunner. Extended
isolation forest. arXiv preprint arXiv:1811.02141, 2018.

[18] Michael Heigl, Kumar Ashutosh Anand, Andreas Urmann, Dalibor Fiala,
Martin Schramm, and Robert Hable. On the improvement of the isolation
forest algorithm for outlier detection with streaming data. Electronics,
10(13):1534, 2021.

[19] Victoria Hodge and Jim Austin. A survey of outlier detection methodolo-
gies. Artificial intelligence review, 22(2):85–126, 2004.

[20] Shan-Shan Li. An improved dbscan algorithm based on the neighbor
similarity and fast nearest neighbor query. Ieee Access, 8:47468–47476,
2020.

[21] Liefa Liao and Bin Luo. Entropy isolation forest based on dimension
entropy for anomaly detection. In International Symposium on Intelligence
Computation and Applications, pages 365–376. Springer, 2018.

[22] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008
Eighth IEEE International Conference on Data Mining, pages 413–422.
IEEE, 2008.

[23] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. On detecting clus-
tered anomalies using sciforest. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pages 274–290.
Springer, 2010.

[24] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based
anomaly detection. ACM Transactions on Knowledge Discovery from
Data (TKDD), 6(1):3, 2012.

[25] Pierre-François Marteau, Saeid Soheily-Khah, and Nicolas Béchet. Hy-
brid isolation forest-application to intrusion detection. arXiv preprint
arXiv:1705.03800, 2017.

[26] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kit-
sune: an ensemble of autoencoders for online network intrusion detection.
arXiv preprint arXiv:1802.09089, 2018.

[27] Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem. Scikitmul-
tiflow: A multi-output streaming framework. Journal of Machine Learning
Research, 19(72):1–5, 2018.

[28] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den
Hengel. Deep learning for anomaly detection: A review. ACM Computing
Surveys (CSUR), 54(2):1–38, 2021.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikitlearn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[30] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib
Ahmed Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft.
Deep one-class classification. In International conference on machine
learning, pages 4393–4402. PMLR, 2018.

[31] Guillaume Staerman, Pavlo Mozharovskyi, Stephan Clémençon, and
Florence d’Alché Buc. Functional isolation forest. arXiv preprint
arXiv:1904.04573, 2019.

[32] Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. Fast anomaly detec-
tion for streaming data. In Twenty-Second International Joint Conference
on Artificial Intelligence, 2011.

[33] Ke Wu, Kun Zhang, Wei Fan, Andrea Edwards, and S Yu Philip. Rs-forest:
A rapid density estimator for streaming anomaly detection. In 2014 IEEE
International Conference on Data Mining, pages 600–609. IEEE, 2014.

[34] Dong Xu, Yanjun Wang, Yulong Meng, and Ziying Zhang. An improved
data anomaly detection method based on isolation forest. In 2017 10th
International Symposium on Computational Intelligence and Design (IS-
CID), volume 2, pages 287–291. IEEE, 2017.

[35] Shi Ying, Bingming Wang, Lu Wang, Qingshan Li, Yishi Zhao, Jianga
Shang, Hao Huang, Guoli Cheng, Zhe Yang, and Jiangyi Geng. An
improved knn-based efficient log anomaly detection method with automat-
ically labeled samples. ACM Transactions on Knowledge Discovery from
Data (TKDD), 15(3):1–22, 2021.

[36] Xuyun Zhang, Wanchun Dou, Qiang He, Rui Zhou, Christopher Leckie,
Ramamohanarao Kotagiri, and Zoran Salcic. Lshiforest: a generic frame-
work for fast tree isolation based ensemble anomaly analysis. In 2017
IEEE 33rd International Conference on Data Engineering (ICDE), pages
983–994. IEEE, 2017.

[37] Yifeng Zheng, Guohe Li, and Teng Zhang. An improved over-sampling
algorithm based on iforest and smote. In Proceedings of the 2019 8th

VOLUME 1, 2022 19

Y. Chabchoub et al.: An in-depth study and improvement of Isolation Forest

International Conference on Software and Computer Applications, pages
75–80, 2019.

YOUSRA CHABCHOUB is an associate profes-
sor at ISEP since September 2010. She is head
of the Networks and Telecom teaching domain.
Her research interests include data mining, ma-
chine learning, data streams analysis and real-time
anomalies detection. She completed her Ph.D.
in INRIA, in a close collaboration with Orange
Labs on the analysis and modelling of IP traffic.
Then she joined the BILAB (Business Intelligence
LABoratory) in Télécom-ParisTech.

She received her engineering degree from Télécom SudParis, with a
specialization in Network’s Services Architectures and her Master’s degree
in Networks from Pierre et Marie Curie University.

MAURRAS U. TOGBE received the master’s
degree in business intelligence from the University
Cheikh Anta Diop of Dakar, Senegal, in 2017.
He is currently a Ph.D. Student Researcher with
the Superior Institute of Electronics of Paris, Sor-
bonne University in Paris, France. His research
interests include anomalies detection, machine
learning, distributed machine learning and data
stream management.

ALIOU BOLY is currently Associate Professor
at the University Cheikh Anta Diop of Dakar
(UCAD), Senegal where he is responsible for the
Master in business intelligence. He holds a Ph.D.
in Computer Science from Telecom ParisTech ob-
tained after a Master degree in computer science
at the University of Paris Dauphine. His research
interests include data warehousing, databases, data
mining and data stream management.

RAJA CHIKY is full professor in Computer Sci-
ence and Data Science, head of Innovation in ISEP.
She was before a research director, head of the
LISITE Lab at ISEP, in charge of research teams
(+/-50 researchers).She hold a Ph.D. in Computer
Science from Telecom ParisTech obtained after a
Master degree in data mining and an engineering
degree in Computer Science. She gives lectures on
statistics, databases and Big data in many univer-
sities in France and abroad. She is reviewer for

many journals and conferences and has deeply published in the fields of
datamining and databases. She took part to many European and National
projects in collaboration with universities, research lab and companies.

20 VOLUME 1, 2022

	Introduction
	Isolation Forest: principle and advantages
	Training phase
	Scoring phase

	Existing improvements of IForest
	Batch data
	Data stream

	Extended Isolation Forest
	IForest limitation addressed
	The EIF method

	Experiments : datasets and metrics
	Public datasets
	Synthetic datasets
	Metrics

	Study and evaluation of Isolation Forest
	Limits of IForest
	Decision threshold
	Choice of parameters of IForest
	Data dimensions
	Decision method

	Randomness Effect in IForest
	Impact of parameters on IForest
	Impact of sample size
	Impact of the number of trees

	Impact of the presence of abnormal data in the sample
	Impact of the number of dimensions on IForest
	Choice of decision threshold

	Majority Voting Isolation Forest
	The Majority Voting IForest (MVIForest) method
	Evaluation of MVIForest on real datasets

	IForest VS Extended IForest VS MVIForest on synthetic datasets
	Conclusion and future work
	REFERENCES
	Yousra Chabchoub
	Maurras U. Togbe
	Aliou Boly
	Raja Chiky

