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Jean-Yves Tourneret, Senior Member, IEEE

Abstract—In numerous applications, it is required to estimate

the principal subspace of the data, possibly from a very limited

number of samples. Additionally, it often occurs that some rough

knowledge about this subspace is available and could be used to

improve subspace estimation accuracy in this case. This is the

problem we address herein and, in order to solve it, a Bayesian

approach is proposed. The main idea consists of using the CS

decomposition of the semi-orthogonal matrix whose columns

span the subspace of interest. This parametrization is intuitively

appealing and allows for non informative prior distributions of

the matrices involved in the CS decomposition and very mild

assumptions about the angles between the actual subspace and

the prior subspace. The posterior distributions are derived and

a Gibbs sampling scheme is presented to obtain the minimum

mean-square distance estimator of the subspace of interest. Nu-

merical simulations and an application to real hyperspectral data

assess the validity and the performances of the estimator.

Index Terms—Bayesian inference, CS decomposition, minimum

mean-square distance estimation, simulation method, Stiefel man-
ifold, subspace estimation.

I. PROBLEM STATEMENT

T HE ubiquitous linear model [1], [2], where the -dimen-

sional received signal can be written as a linear combi-

nation of basis functions embedded in noise, has received a

huge amount of attention due to its simplicity and relevance in

a large number of applications. These applications include hy-

perspectral imagery which will be further investigated later in

this paper. Under this framework, the observation ma-

trix , where is the dimension of the observation space and

denotes the number of measurements, can be decomposed as

(1)

where is an matrix whose columns span the -di-

mensional subspace of interest, is a matrix whose

columns correspond to the coordinates of the signal in the range

space of , and denotes the additive noise. In this

paper, contrary to plenty of source separation techniques such

as non-negative matrix factorization or independent component

analysis, we are not interested in factorizing into a product

of unknown matrices . Conversely, the problem addressed

in this work consists of estimating the -dimensional subspace

of interest , which is spanned by the columns of . As a

consequence, without loss of generality, we assume in the sequel

that the columns of are orthonormal, i.e., . When

the columns of are independent and Gaussian distributed with

zero mean and covariance matrix , the maximum likeli-

hood (ML) estimate of is obtained from the most sig-

nificant left singular vectors of [1]. Therefore, the singular

value decomposition (SVD) plays a central role in subspace es-

timation (in the frequentist framework) as it naturally reveals

the low-rank structure of the signal. The SVD turns out to pro-

vide very accurate estimates of in most cases [3]–[5].

However, two situations of practical interest may undermine it.

The first situation corresponds to the low sample regime, a case

of most interest to us as will be evidenced in the hyperspec-

tral application of Section IV. When is small the SVD may

not produce reliable estimates: this phenomenon is especially

pronounced in large dimensional problems where might be

much lower than . In this case, the sample covariance ma-

trix is rank-deficient and its principal subspace is poorly esti-

mated. In order to restore a better conditioned and more ac-

curate covariance matrix estimate, numerous techniques have

been proposed including shrinkage [6], dimensionality reduc-

tion using random unitary matrices [7], constrained maximum

likelihood estimation (see, e.g., [8] where the matrix of eigen-

vectors is constrained to be a product of Givens rotations) or

eigenspace estimation using random matrix theory [9]. In the

present paper, we even consider the situation where the number

of snapshots is less than the subspace dimension . In this

case, the SVD by itself is not sufficient as is at most of rank

, and therefore it becomes impossible to recover

without any further information. Another problem arises when

the signal-to-noise ratio (SNR) is low, and hence the separa-

tion between signal singular values and noise singular values is

not clear. This may result in leakage of the signal subspace into

the noise subspace, or even to a subspace swap, which leads to

very inaccurate subspace estimates. This phenomenon has been

evidenced, e.g., in [10] and [11], and theoretical explanations,

based on the theory of large dimensional random matrices [12]



are now available to predict this behavior [13]–[15]. In fact, for

the two cases mentioned previously, additional prior informa-

tion may prove to be helpful, and this prior information is often

available either through models, expertise or data (cf. the hyper-

spectral application studied later in this paper). A natural way

to introduce such knowledge is to adhere to a Bayesian frame-

work. This is the approach we advocate in the present paper

where our main focus is on knowledge-aided subspace estima-

tion in the low sample support or low SNR regime.

More precisely, we assume that is assigned some prior dis-

tribution , and our goal is to estimate from the posterior

distribution . Similarly to [16] and [17], we consider

minimum mean-square distance (MMSD) estimators of , i.e.,

we look for estimates of that minimize the average squared

Frobenius norm of the difference between the projection ma-

trices, viz., . The rationale behind this

approach is that the usual mean-square metric

is not the natural metric on the Stiefel manifold [18], [19] while

the distance between projection matrices is meaningful.1 Using

the latter distance, the MMSD estimator was shown to be given

by [16], [17]

(2)

where stands for the principal eigenvectors of the

matrix between braces. The MMSD estimator thus amounts to

finding the principal subspace of the posterior mean of the pro-

jection matrix on . Note that this approach

is general and independent of the conditional and prior distri-

butions: depending on the latter, it may or may not be an easy

task to obtain the MMSD estimator. In the sequel, we state our

assumptions regarding and derive its corresponding MMSD

estimator. The latter will then be tested on real hyperspectral

data in Section IV.

II. DATA MODEL AND SUBSPACE ESTIMATION

Let us consider the linear model (1) and let us assume that

is Gaussian distributed with independent columns so that the

probability density function of , conditioned on and , is

given by

(3)

1The true (square) distance between the subspaces is given by
, where for stand for the principal angles between

and . The distance we use herein, i.e.,

, is thus different from .
However, the two distances are close for small values of and the distance
between projection matrices is widely accepted. Moreover, using the distance
between projection matrices allows one to obtain a closed-form expression for

the MMSD estimator, see (2). Minimization of would not yield
such closed-form expression since cannot be expressed simply as a

function of and .

where stands for the exponential of the trace of thematrix

between braces and means proportional to. Since the thermal

noise level can usually be estimated with high accuracy, we as-

sume here that is known.2 Since no knowledge about is

generally available, we treat it as a random matrix with uniform

prior distribution, i.e., , so that the distribution of ,

conditioned on only, is obtained as

(4)

where, to obtain the last line, we have used the fact that the

integral in the fourth line of (4) is that of a multivariate Gaussian

distribution with mean and covariance matrix , and

hence is proportional to . Note that depends on

only through the projection matrix .

Let us turn now to the hypotheses regarding . We assume

that we have some a priori knowledge about the subspace

spanned by the columns of : This knowledge can come from

some available models or can be deduced from the data itself,

as in the hyperspectral imagery application. More precisely, we

assume that the range space of is close to the range

space of some semi-orthogonal matrix and, without loss of

generality, we will assume that through the

paper.3

In [17], we tackled the problem by assigning the matrix

either a Bingham— —or

a von Mises–Fisher (vMF) distribution—

. The Bingham and vMF are the most widely used

distributions on the Stiefel manifold and they have proved to

be relevant in a number of applications, including meteorology,

biology, image, or shape analysis [20]. Moreover, there exists

computationally efficient simulation tools to sample from these

distributions, which makes them a sensible choice. However,

they suffer from two drawbacks. First, from a user point of

view, it is not obvious to set a value for the concentration

parameter since the latter is not an intuitively appealing

parameter, in contrast to the angles between and

which are more directly meaningful. Moreover, the Bingham

and vMF distributions hold for the whole matrix : the choice

2The case of unknown can be considered by assigning a prior distribution
(typically a conjugate prior, in our case an inverse gamma distribution) to
and modifying accordingly the posterior distributions to be derived next.

3In the case where is close to an arbitrary semi-orthogonal matrix ,
the measurements in (1) can be pre-multiplied by the unitary matrix such
that . Note that pre-multiplication by the unitary matrix
does not modify the angles between and nor the distribution

in (3).



of a distribution and a value for will consequently induce

a distribution for the angles, but this relation is not revealed

in a straightforward and intelligible manner. In the present

paper, we attempt to remedy these shortcomings with a view

to obtain a parametrization of the statistical model that directly

involves the most meaningful parameters, namely the angles

, between and . Indeed, these

angles are instrumental as the distance between and

is directly connected to them. Furthermore, we look for

a less constrained model which relies on mild assumptions, and

the latter would only concern the angles .

The model proposed herein is based on the CS decomposition

of , which writes [19]

(5)

where and are orthogonal matrices, is an

semi-orthogonal matrix ( ),

and .

The angles correspond to the principal angles between

and while the columns of and are

the associated principal vectors. As requested, this representa-

tion has the nice property that the angles between and

are directly revealed, and do not depend on the matrices

, , and , which can be arbitrary. We now assign prior

distributions to the model variables. First observe that the like-

lihood function in (4) depends on only through the projection

matrix and the latter, under the CS decomposition

(5), is independent of . Therefore, we need to set prior distri-

butions for , , and only. As for

and , we assume that they have uniform prior distributions

on the orthogonal group and the Stiefel manifold ,

i.e., the set of matrices such that .

As for , we assume that are independent and identically

distributed (i.i.d.) random variables, with uniform distribution

on , i.e., . Observe that, as stated

in our objectives, the statistical model involves rather mild as-

sumptions. Moreover, it directly involves the angles , which

makes sense intuitively. Finally, the only parameter the user

has to set is , which seems easier to set than a value for

. Indeed rules the maximum angle between and

: therefore, the smaller , the closer these subspaces

a priori. In contrast, when increases, the two subspaces

can be quite far apart. Consequently, for small , we can

expect the MMSD estimator to strongly rely on , while for

large the data is likely to prevail.

Since the likelihood and the prior distributions have been set,

we now consider the posterior distributions of , , and .

As a preliminary step, note that

(6)

so that, with the partitioning , we have

(7)

Assuming a priori independence between and and , it

follows from (4) that the joint posterior distribution of and

and is given by

(8)

In order to obtain the MMSD estimator, we suggest, as in [17],

to use a Gibbs sampler which enables one to iteratively draw

samples from the posterior distribution of each variable, con-

ditioned on all other variables [21], [22]. In order to obtain the

conditional posterior distribution of only, we start with (8)

and keep only the terms which depend on since the other

terms will appear as constants and can be absorbed in the nor-

malization constant. Doing so, we deduce that

(9)

where is the indicator function defined on

(i.e., if and 0 otherwise).

The distribution in (9) is recognized as a Bingham–von

Mises–Fisher (BMF) distribution with parameter matrices

, and respectively.4 An effi-

cient sampling scheme to generate random matrices drawn

from a distribution on the Stiefel manifold

was proposed in [23]. In our case, and, as men-

tioned in [23], the sampling scheme on the Stiefel manifold

cannot be used directly and needs to be modified. In [24, App.

A], following the lines of [23], we give some details about

the sampling scheme for a matrix BMF distribution on the

orthogonal group . Similarly, we have

(10)

4The matrix is said to have a distribution-
where is an symmetric matrix, is a diagonal matrix and
is an matrix- if .



TABLE I
GIBBS SAMPLER FOR ESTIMATION OF USING THE CS DECOMPOSITION

and hence

(11)

Since , the sampling scheme of Hoff [23] can be

used to draw matrices from the distribution in (11). Let us now

examine the posterior distribution of

(12)

where , , are the th diagonal entries of

, and ,

respectively. The first thing to be noted is that the variables

, conditioned on , and , are independent and

hence one needs to generate independent random variables.

Unfortunately, the distribution in (12) does not belong to any

known class of distributions and, therefore, generating random

variables drawn from appears problematic.

In order to overcome this problem, we propose to resort to

a Metropolis–Hastings (MH) move [21], [22]. The basic

idea is to generate a random variable drawn from a proposal

distribution and to accept it with a certain probability, the latter

being equal to one if the candidate contributes to increase the

target posterior distribution. Of course, the closer the proposal

and target distributions, the higher the acceptance rate and

hence the faster the convergence of the Markov chain. In order

to obtain a proposal distribution in our case, we make the

change of variable in (12), and come up with the

equivalent problem of finding a proposal distribution for the

conditional distribution of , which is given by

(13)

where . Forgetting the exponential term

in (13), this distribution is similar to that of a scaled beta

distribution. Therefore, we choose a scaled beta distribu-

tion as a proposal

distribution in a Metropolis–Hastings scheme. Through

preliminary investigation, we ended up with the choice

and

which

turns out to provide a good approximation to (13) for low

to moderate SNR. The resulting Gibbs sampling scheme is

summarized in Table I.

Once the matrices have been generated, the

MMSD estimator, which theoretically entails computing

, can be approximated by

(14)

Remark 1: Similarly, a maximum a posteriori (MAP) ap-

proach can be advocated where the MAP estimator is obtained

as

(15)

Note that is maximized when is the matrix

of the most significant left singular vectors of and, hence,

the MAP approach is in some way linked to the SVD-based ap-

proach. Observe also that it does not make much sense to con-

sider here aminimummean-square error (MMSE) estimator. In-

deed the latter entails computing , which could

be approximated by the arithmetic mean of the set of matrices



. However, the range space of is given up to right mul-

tiplication by an orthogonal matrix. Therefore, could

be close to without the actual matrices and being

close. It results that the arithmetic mean of the matrices

could result in a poor subspace estimate despite the fact that,

individually, the subspaces spanned by each matrix might

be accurate.

III. SIMULATIONS

In this section, we use Monte Carlo simulations to assess

the performance of the estimator defined previously. The per-

formance measure will be the distance between the subspace

spanned by and the subspace spanned by where stands

for one of the estimates. More precisely, we will display the

mean-square distance (MSD), which is defined as

MSD (16)

where , stand for the principal angles between

and . In all simulations, , , and

. The matrix is generated from a Gaussian

distribution with zero-mean and covariance matrix , and the

SNR is defined as

The angles between and are fixed over all sim-

ulations and set to 15 25 35 45 55 , which

results in MSD 2.1704. The matrices and

are drawn randomly at each Monte Carlo run. The number of

burn-in iterations in the Gibbs sampler is set to and

samples are used to approximate the estimators fol-

lowing (14) and (15). The MMSD estimator(14) is compared

with the usual SVD-based estimator and the sparse matrix trans-

form (SMT) of [8]. In all figures, the solid black line represents

MSD , i.e., when and only the a priori knowl-

edge is used, the data being discarded. In all simulations, the

MSD is evaluated from 500 Monte Carlo trials. Additional sim-

ulation results, including a comparison with the MAP estimator

and evaluation of the average fraction of energy of in ,

can be found in [24].

We now successively investigate the influence of ,

and in Figs. 1–9. The first observation to be made is that

the MMSD estimator is rather insensitive to the choice of :

this is an interesting feature, as it means that need not be

fixed with a high accuracy. Next, it can be observed that the

MMSD estimator outperforms the usual SVD-based estimator

and the SMT estimator, for small and low : Under these

conditions, it makes a sound use of the prior information and

provides more accurate estimates. Note also that it performs

better than the estimate , and hence the prior by itself

is not sufficient. Finally, we observe that SMT is approximately

equivalent to the SVD estimator.

Fig. 1. Mean-square distance between true and estimated subspaces versus
. 20, .

Fig. 2. Mean-square distance between true and estimated subspaces versus .
, , SNR 0 dB and 60 .

Fig. 3. Mean-square distance between true and estimated subspaces versus .
, , 0 dB, and 75 .

IV. APPLICATION TO HYPERSPECTRAL DATA

Hyperspectral imagery has recently emerged as a feasible and

relevant technique for accurate observation of earth surfaces, ei-

ther for agricultural or geographical purposes [25]. The diver-

sity of the frequency response of each component of the illu-

minated scene makes it possible to gain a fine understanding



Fig. 4. Mean-square distance between true and estimated subspaces versus .
, , SNR 3 dB and 60 .

Fig. 5. Mean-square distance between true and estimated subspaces versus .
, , SNR 3 dB, and 75 .

Fig. 6. Mean-square distance between true and estimated subspaces versus
SNR. , , , and 60 .

of the soil characteristics, and thus numerous studies have fo-

cused on information retrieval from multi-band data; see, e.g.,

[26]–[29]. So far, a widely accepted model is that the image

can be linearly decomposed as a combination of a few compo-

nents, referred to as the endmembers [30]. One critical issue is

thus to identify the subspace where the data lies together with

the coordinates in this subspace, which provide the respective

abundances, i.e., the proportion of the soil components. This

Fig. 7. Mean-square distance between true and estimated subspaces versus
SNR. , , , and 75 .

Fig. 8. Mean-square distance between true and estimated subspaces versus
SNR. , , , and 60 .

Fig. 9. Mean-square distance between true and estimated subspaces versus
SNR. , , , and 75 .

can be achieved by well-known and computationally efficient

techniques such as principal component analysis (PCA), a pri-

mordial asset to using the linear (or subspace) model. However,

it may be argued that the linear model does not fully account

for all physical phenomenon that give rise to the image, e.g.,

the possibly non-linear mixing of the components. In order to

obtain a finer image analysis, non-linear models can be investi-

gated [30] but generally at the price of a higher computational



complexity. Furthermore, in most cases non-linear effects are

not that important and an interesting alternative is to continue

to resort to a linear model but at a local level (i.e., within a few

pixels) rather than at the full image level. Doing so, one can

characterize the data locally and track the evolution of the local

subspaces in order to assess the degree of non-linearity. The sub-

space estimation scheme developed above can fulfill this task

and it is now tested against real hyperspectral data, acquired by

the NASA spectro-imager AVIRIS over Moffett Field, CA, in

1997. More precisely, we consider a 50 50 sub-image, which

contains partly a lake (upper part of the sub-image) and partly

a coastal area (lower part of the sub-image) composed of soil

and vegetation, see [31] for a more detailed description. The

data is collected in spectral bands and we have thus

a total of 2500 pixels. Under the linear mixing model and

in the absence of noise, the data matrix ,

where stands for the th pixel, can be written as

where and , de-

notes the set of endmembers, i.e., the spectral signatures which

best describe the soil components. In [31], it was shown that a

value was sufficient to obtain an accurate description

of the data. The columns of the matrix

are the so-called abundances: They satisfy

the positivity constraint and the sum-to-one property,

i.e., where is the -length vector whose ele-

ments are all equal to 1. In other words, the matrix satis-

fies the constraint . The pixels thus belong to

a simplex whose vertices are the endmembers [31]. Let

denote the mean value of the pixels. Then,

the centered data matrix belongs to a -dimen-

sional subspace (with ), which can be estimated by a

number of techniques, including PCA [31].

Usually, PCA is performed on the whole image, which

makes sense if the linear mixing model is in force for all

pixels. Herein, we are interested in assessing the validity of

this model at the pixel level. More precisely, the PCA on the

whole image will provide us with the “average” subspace: the

pixels are then unitarily transformed ( ) such that

, and we are interested in the distance

between and the subspace spanned by a pixel and its few

nearest pixels. If this distance is very small, then it is likely

that the linear model described by is rather accurate. On the

other hand, if the distance is not negligible, it may be that

does not describe accurately the scene around pixel or that

some non-linear mixing effects might occur there. Therefore,

subspace estimation at the pixel level together with distance to

evaluation enables one to gain insight into the understanding

of the mixing process. This is the approach we take here and

our MMSD estimator is used towards this end. To be more

specific, for each pixel we use the latter and its three nearest

neighbors (hence ) to obtain the MMSD estimator of the

local subspace. The mean square distance between and

, MSD is then determined to evaluate how close

are the local subspace and the global subspace. The results are

shown in Fig. 105: For comparison purposes, we display in

5Application to another image and results with a different value of can be
found in [24].

Fig. 10. Moffett image. MSD . , , .

this figure the result obtained with the SVD, the SMT and the

method of [17], which assumes a Bingham prior distribution

for . Fig. 10 shows that a local SVD or SMT would predict

rather large differences between the local subspaces and ,

especially for pixels in the lake area. However, it cannot be

concluded that does not apply for most of the image since,

with , the subspace estimated by the SVD may not

be very accurate. In contrast, the Bayesian CS-based MMSD

estimator shows that is a rather accurate subspace for the

whole image (especially on the lake), except for the pixels

along the transition between lake and coastal area. This seems

logical as non-linear mixing effects are more likely to occur

along the shore, while the linear model is likely to apply well

elsewhere. Therefore, the MMSD estimator is able to reveal

the zones of the image where departure from the linear model

might occur. Finally, we note that it is not intuitive to set of

value for : The values and do not have

a real meaning and lead to different interpretations of the

image. It is much easier to set a value for , a significant

advantage of the CS-based model compared to the method

of [17]. However, the latter is computationally less intensive.

As a final comment, we would like to point out that the

computational complexity of the present MMSD-CS method

could be prohibitive in large dimensional problems ( large),

for which more computationally efficient algorithms, such as

the sparse matrix transform of [8], should be favored.

V. CONCLUSION

In this paper, we considered the problem of subspace estima-

tion from a possibly very limited number of snapshots under

the assumption that some prior knowledge about the subspace



is available. A Bayesian statistical model was formulated to ac-

count for this situation, based on the CS decomposition of the

semi-orthogonal matrix whose columns span the subspace of

interest. This model was shown to rely on rather mild assump-

tions and, moreover, these assumptions involve meaningful and

intuitively appealing quantities, namely the angles between the

prior subspace and the true subspace . Theminimummean-

square distance estimator was implemented through a Gibbs

sampling scheme. It was shown to provide accurate estimates,

in particular in the low SNR or low sample support regimes.

The estimator was also successfully applied to real hyperspec-

tral data, demonstrating its ability to reveal the limits of linear

mixing models.
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