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Since the achievement of quantum degeneracy in gases of chromium atoms in 2004, the experi-
mental investigation of ultracold gases made of highly magnetic atoms has blossomed. The field has
yielded the observation of many unprecedented phenomena, in particular those in which long-range
and anisotropic dipole-dipole interactions play a crucial role. In this review, we aim to present
the aspects of the magnetic quantum-gas platform that make it unique for exploring ultracold and
quantum physics as well as to give a thorough overview of experimental achievements.

Highly magnetic atoms distinguish themselves by the fact that their electronic ground-state con-
figuration possesses a large spin (as well as a large g factor). This results in a large magnetic
moment and a rich electronic transition spectrum. Such transitions are useful for cooling, trapping,
and manipulating these atoms. The complex atomic structure and large dipolar moments of these
atoms also lead to a dense spectrum of resonances in their two-body scattering behaviour. These
resonances can be used to control the interatomic interactions and, in particular, the relative im-
portance of contact over dipolar interactions. These features provide exquisite control knobs for
exploring the few- and many-body physics of dipolar quantum gases.

The study of dipolar effects in magnetic quantum gases has covered various few-body phenomena
that are based on elastic and inelastic anisotropic scattering. Various many-body effects have also
been demonstrated. These affect both the shape, stability, dynamics, and excitations of fully po-
larised repulsive Bose or Fermi gases. Beyond the mean-field instability, strong dipolar interactions
competing with slightly weaker contact interactions between magnetic bosons yield new quantum-
stabilised states, among which are self-bound droplets, droplet assemblies, and supersolids. Dipolar
interactions also deeply affect the physics of atomic gases with an internal degree of freedom as
these interactions intrinsically couple spin and atomic motion. Finally, long-range dipolar inter-
actions can stabilise strongly correlated excited states of 1D gases and also impact the physics of
lattice-confined systems, both at the spin-polarised level (Hubbard models with off-site interactions)
and at the spinful level (XYZ models). In the present manuscript, we aim to provide an extensive
overview of the various related experimental achievements up to the present.
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I. Introduction to dipolar physics

Ultracold gases have drawn considerable interest since
the realisation of quantum degenerate Bose [1–3] and
Fermi [4–6] gases in the mid-to-late 1990’s. This interest
stems from many quarters within the physics commu-
nity, but especially from those interested in using ultra-
cold gases as test-bed systems for theoretical models, for
exploring their properties as new—highly controllable—
examples of strongly correlated matter, and for engineer-
ing them for quantum information processing [7–9].

Interparticle interactions fundamentally determine the
properties of a quantum gas. Even in the weakly inter-
acting limit, they dictate its shape, density, and the way
it becomes excited. In the strongly interacting limit, even
more drastic modifications of the system’s properties can
arise, such as the appearance of exotic phases or exci-
tation modes not describable by effective single-particle
models. On the other hand, interactions can lead to in-
elastic processes that cause population loss from a trap
and limit the accessible range of, e.g., temperature and
density.

Quantum gases are typically dilute (compared to liq-
uids and solids) and this allows their short-range interac-
tion at low temperature to be accounted for in a sim-
ple fashion by a two-body (isotropic) contact pseudo-
potential [10, 11]. To go beyond the case of isotropic and
short-range interactions—say using an ultracold system
possessing strong dipolar interactions— gives access to a
wide variety of new physical phenomena [11–18]. This
review focuses on the experimental achievements of the
last fifteen years to study such physics using one particu-
lar example of a dipolar system, viz., ultracold quantum

gases made of atoms possessing a large magnetic dipole
moment.

A. Quantum gases with dipolar interactions

Several platforms exist with which to study the effect
of dipole-dipole interactions (DDIs) in the ultracold gas
context. For example, electric dipole moments may be
induced using heteronuclear molecules [19–21] or Ryd-
berg atoms [22–25] in an electric field or through the use
of light-induced dipoles [17]. We note that long-range
interactions, beyond the dipolar 1/r3 scaling, can also
be achieved in ultracold gas systems in other ways. For
example, one method uses optical cavity or waveguide-
mediated interactions, which are fixed to be either global
in range [26, 27] or may be tuned between long and short
range [28–30]. Phonon-mediated interactions in trapped
ion systems are another example of tunable-range inter-
actions [31]. These systems often exhibit dipole strengths
orders of magnitude larger than what is achievable with
magnetic dipoles. However, other limitations can arise in
these systems, e.g., short lifetimes, density limitations,
and/or rapid dissipation. We briefly discuss the case
of electric dipolar systems before exclusively focusing on
magnetic systems.

1. Electric dipoles

There is no permanent electric dipole in an atom or in
a molecule in its non-degenerate rotational ground state
due to their rotational symmetry. Yet when an external
electric field E couples to the electric dipole moment op-
erator, it mixes eigenstates of opposite parity. As the ro-
tational symmetry is broken, an electric dipole moment
is induced. The field to induce the electric dipole mo-
ment is lowest when the two states of opposite parity are
closest in energy.

Some systems possess degenerate states of opposite
parity, which allows the induced electric moment to arise
at vanishingly small electric field [32]. Rydberg states in
a hydrogen atom are an example of such a system: they
possess electronically excited states of opposite parity
that can be arbitrarily close. The electric dipole moment
scales as n2, with n the principal quantum number.
Associating a Rydberg atom with a ground-state atom
allows to form a Rydberg molecule with a permanent
electric dipole moment [33]. Despite short lifetimes due
to spontaneous emission, black-body radiation [34], and
collisions, Rydberg gases have, over the last 10 years,
been the centre of much experimental and theoretical
activity. In particular, experiments are ongoing that
investigate strongly correlated dipolar gases, lattice
spin models, and Rydberg molecules [22, 23, 25, 35–39].
They are even the basis for a competitive quantum
computing platform, which has been pushed forward by
several newly founded companies (https://pasqal.io/,
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https://coldquanta.com/, https://www.quera.com/,
https://www.atom-computing.com/).

A second, very productive field of research is the ma-
nipulation of heteronuclear molecules. In these, an elec-
tric field mixes two rotational states (for example N = 0
and N = 1) within the electronic molecular ground
state. Ultracold molecular systems with a large elec-
tric dipole moment include: KRb [40–43], NaK [44–
46], RbCs [47, 48], NaRb [49], KCs [50], LiCs [51],
NaLi [52, 53], SrF [54, 55], H2CO [56], CaF [57, 58],
BaF [59]and YO [60, 61], HO [62, 63]. Due to their intrin-
sic complexity, cooling molecules has been an extremely
challenging task. Recently, after many years of dedi-
cated efforts [41, 44], the first quantum degenerate gas
of polar molecules has been achieved with KRb [42, 43].
Many of the molecular systems have been shown to ex-
perience strong and rapid losses, which unfortunately
presents an additional challenge for creating dense and
ultracold samples. For the case of KRb, it is believed
that the exo-energetic reaction KRb + KRb −→ K2+
Rb2 drives the decay [64]. For other molecular sys-
tems such as NaK and NaRb, for which the equivalent
reactions are endo-energetic, the lifetime also appears
rather short at large densities for reasons that are yet
to be fully understood [65]. The impact of losses could
be reduced thanks to an ingenious control of their spa-
tial dependence: Confining molecules in a quasi-two di-
mensional geometry enables one to take control off the
stereodynamics of molecular reactions [66]. Producing
molecules in three-dimensional optical lattices [41, 67] or
optical tweezers [68, 69] prevents molecules from inelasti-
cally colliding due to their physical separation. Ultracold
molecules now constitute a fast-expanding and promising
field, especially for quantum simulation [20, 21].

2. Magnetic dipoles

In contrast to the situation with electric dipoles, ele-
mentary particles can have permanent magnetic dipoles
even at zero field [70]. As a consequence, the effect of
magnetic DDIs on quantum gases can be studied under
full rotational symmetry at arbitrarily small magnetic
fields. The magnetic dipole moment in atoms is primar-
ily associated with the spin (Ŝ) and orbital (L̂) angu-
lar momentum of the electrons. The nucleus may also
have a magnetic dipole moment, although it is three or-
ders of magnitude smaller than the electron’s. Neverthe-
less, the nuclear spin (Î) couples to the electronic spin
within the atom, giving rise to the hyperfine structure
(F̂ = L̂ + Ŝ + Î). Therefore, the sensitivity of a given
Zeeman sublevel to magnetic fields indirectly depends on
the nuclear spin. Only the fully stretched atomic state
(i.e., maximal F = L+ S + I and |mF | = F ) reaches the
full magnetic moment provided by the electrons. Here,
and all along this review, X and mX are the quantum
numbers associated with the norm of the angular mo-
mentum operator X̂ and its projection along the quanti-

zation axis, respectively. Additionally, we use the dimen-
sionless version of the vectors and operators of angular
momenta and spins such that the eigenvalues associated
to the norm and projection of X̂ are simply

√
X(X − 1)

and mX . In the above, X = {F,L, S, I}. Throughout
the remainder of this review, we will usually denote by
Ŝ the total angular momentum of a magnetic particle.

It is possible to study dipolar physics with alkali
atoms [71]. However, the energy scale associated with
DDIs is rather small, typically in the Hz range. There-
fore, significant focus has been on so-called highly mag-
netic atoms, such as chromium (Cr; with a dipole mo-
ment of 6 Bohr magnetons, µB), erbium (Er; 7µB)
and dysprosium (Dy; 10µB). In principle, other highly
magnetic atoms can be studied, such as holmium (Ho;
9µB), thulium (Tm; 4µB) or europium (Eu; 9µB) [72–
75]. Moreover, it was demonstrated that one can use
a Feshbach resonance to combine two Er atoms into a
loosely bound molecule [76], which may possess up to
twice the magnetic moment of the original atoms. Like-
wise, a nearly 20µB-large magnetic moment is accessible
with Dy2 molecules [77]. These systems are described in
detail in Sec. II.

B. The dipole-dipole interaction

Generally speaking, the DDI between two dipoles, 1
and 2, separated by r yields the following potential:

Vdd(r) =
γd

4πr3

[
d1 · d2 − 3

(d1 · r) (d2 · r)
r2

]
, (1)

where di is the dipole moment of particles i = [1, 2] and
γd is the dipolar coupling constant and depends on the
electric or magnetic nature of the dipoles. This expres-
sion is valid at long distances, where electron orbitals do
not overlap.

• Magnetic dipoles: Classically, the dipolar inter-
action between two magnetic particles corresponds
to the interaction of the spin S1 of the particle 1
with the magnetic field created by the spin S2 of
the particle 2, and vice-versa. Here, Ŝ is a generic
angular momentum which in general is given by
the total angular momentum F̂ , see I A 2. For a
magnetic particle of spin Ŝi, the dipole moment is

given by d̂i = gSµBŜi, where gS is the g-factor
of the spin S and the dipolar coupling constant
γd = µ0 is the vacuum magnetic permeability. We

denote d2 = µ0(gSµB)2

4π and Cdd = S2d2 so that

Vdd(r) ∝ S2d2

r3 = Cdd

r3 , see, e.g., Sec. I C 3. These
constants set the DDI strength.

• Electric dipoles: For electric dipoles, γd = 1/ǫ0,
with ǫ0 the vacuum electric permittivity.

We now compare the magnetic and electric DDI
strengths. Electric dipoles relate to charge displacement
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within a particle. Typical electric dipoles of molecules
are of magnitude ea0, given by the displacement of an
elementary electric charge e over the typical size of an
atom, set by the Bohr radius a0. In Rydberg atoms,
the characteristic displacement of the electric charge is
set by the Rydberg orbital radius, which scales as n2,
the square of the Rydberg principal quantum number n;
typically n is of order a few tens. The dipole moment
of a Rydberg atom is thus typically n2 times than that
of an atom in the ground state. The atomic magnetic
dipole scale is given by µB. The typical ratio between the
DDI strength of magnetic atoms and of polar molecules

is therefore
µ0µ

2
B

(ea0)2/ǫ0
= α2/4, where α ≈ 1/137 is the

fine structure constant. The ratio is further reduced by a
factor n4 when comparing to Rydberg atoms. Thus, the
typical magnetic DDI strength is orders of magnitude
smaller than the typical electric DDI.

C. Main characteristics of dipolar interactions

In the absence of DDIs, ground state atoms interact
through van der Waals interactions. These interactions
are short ranged, 1/r6, and are typically isotropic be-
cause the electronic cloud of most atoms is spherically
symmetric in the ground state [78]. In contrast, the DDI
introduced in Eq. (1) has a long-range 1/r3 character. It
is also anisotropic and can be either attractive or repul-
sive depending on the relative orientation of the dipoles;
in particular, its elastic part varies as 1−3 cos2 θ, where θ
is the angle between the relative position of the particles
and their direction of polarisation.

1. Definition of ‘long-range’

Whether an interaction, in particular the DDI, is long
range depends on the exact system under study, its di-
mensionality, and on the exact physical question ad-
dressed. We discuss below a number of physical questions
that lead to slightly different definitions of the long-range
character of the interaction at hand, with particular focus
on power law potentials U(r) ∝ 1/rn.

• Collisional point of view (in 3D). Physically,
for short-range interactions, particles need to ap-
proach at small distances to interact. By decom-
posing the relative motion of the particles into
the relative orbital angular momentum eigenstates
(so-called partial waves), denoted by the quantum
numbers (l,m) for the momentum’s norm and pro-
jection eigenvalues, one finds that at low collision

energy, the centrifugal barrier 2l(l+1)~2

mr2 prevents
particles from approaching in higher partial waves
l > 0. That is, the contributions from high partial
waves vanish. For a 1/rn interacting potential, the
scattering phase shift δl(k) at low collision momen-
tum k scales as k2l+1 if l < (n− 3)/2 and as kn−2

otherwise [79, 80]. Therefore, for n ≥ 4, the in-
teraction is purely s-wave at low energy and short
ranged. In contrast, for n = 3, δl(k) ∝ k for all par-
tial waves. Therefore, all partial waves contribute
to the scattering process even at low collision en-
ergy. The interaction is then long range and can be
felt beyond the centrifugal barrier. The long-range
character of the DDI is spectacularly manifest in
the fact that polarised fermionic dipolar gases ther-
malize despite the absence of s-wave interactions
(due to the Pauli exclusion principle). This is in
contrast to nondipolar polarised Fermi gases; see
Sec. III.

Note: A thorough treatment of the above should
account for the fact that the DDI is not a pure cen-
tral potential U(r) ∝ 1/r3 due to its anisotropic
character. This is of particular consequence for in-
elastic dipolar collisions, which necessarily involve
the anisotropic character of the interaction—see
Sec. I C 2—and are actually short-range processes
at large magnetic field despite the same 1/r3 scal-
ing as their elastic counterparts. See Sec. III C 3.

We also remark that the scattering picture can
be modified in the presence of strong confine-
ment, in particular in reduced dimensions; see, e.g.,
Sec. VII A.

• Thermodynamic point of view. Short-range in-
teractions lead to an energy that is thermodynam-
ically extensive. This is true when

∫∞
0 U(r)dDr

converges, which only happens when n > D, where
D is the spatial dimension. Thus, from this point
of view, 1/r3 interactions are long range in 3D, but
short range in 2D and 1D. Long-range-interacting
systems possess peculiar thermodynamic proper-
ties, such as the non-equivalence of thermody-
namic ensembles, the possibility for negative spe-
cific heat, and the spontaneous formation of struc-
tures. These arise because the hypothesis that the
energy is additive in the thermodynamic limit—
i.e., given the energy of two subsystems A and B,
E(A ∪B) = E(A) +E(B)—breaks down when the
interaction between the subsystems cannot be ne-
glected [81]. The status of DDIs in 3D is there-
fore marginal since while there are distant cou-
plings between sub-systems A and B, the inte-
gral

∫∞
U(r)d3r does converge due to the peculiar

d−wave shape of DDIs.

• Many-body physics perspective. In the con-
text of many-body physics, DDIs may lead to qual-
itatively new behaviour, even when D < 3. For ex-
ample, the Mermin-Wagner theorem precludes the
possibility of spontaneous breaking of a continu-
ous symmetry and of long-range order in (homo-
geneous) low-D systems. However, in 2D, this ap-
plies only for short-range interacting systems with
n > 4 [18, 82]. Therefore, in this context, DDIs can
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be seen as long-ranged even in 2D. Indeed, it has
been predicted that ferromagnetic ordering should
be stable in 2D for DDIs [83]. The meaning of
long range in 1D for the DDI will be addressed in
Sec. VII A.

• Mathematical physics perspective. Let us for
completeness also briefly mention the mathematical
physics point of view of the meaning of "long-range
interaction." For an interaction potential ∼1/rn,
the scattering wave is only described by an asymp-
totic outgoing spherical wave weighted by an angle-
dependent scattering amplitude for n > 1. For
n ≤ 1, e.g., the Coulomb potential, there are loga-
rithmic corrections to the general form of the out-
going spherical wave, which defines another border
between long and short-range potentials.

2. Consequences of anisotropy

The anisotropic character of the DDI greatly impacts
the properties of dipolar gases. It introduces profound
differences from the point of view of two-body physics
and scattering properties—see Sec. III—and also on the
collective many-body properties of quantum degenerate
dipolar gases. In particular, the stability diagram of
dipolar condensates is affected by an interplay between
the anisotropy of the trap and the anisotropy of the
interactions; this will be described in Secs. IV and V.
We now briefly describe a few basic consequences of this
anisotropy.

The DDI is attractive in one direction and repulsive
in the other two directions. The shape of the interac-
tion follows a d-wave form mathematically described by
the j components of the spherical harmonics Y j

2 , in par-
ticular with j = 0 in a fully polarized situation. This
means that when integrated over all space in 3D, the
DDI between polarised dipoles converges to zero for a 3D
homogeneous gas. Consequently, the mean-field physics
of dipolar gases is dominated by border and boundary
effects: the average interaction between particles will
strongly depend on the shape of the cloud. In partic-
ular, an elongated trap along the axis of the dipoles will
favour the collapse of the gas due to the predominately
attractive interaction. The stability of dipolar conden-
sates as a function of geometry is described in Sec. IV.

Another consequence of anisotropy is the existence of
a special angle between the dipoles and the interatomic
axis, θm = arccos

√
1/3 ≈ 54.74◦, at which DDIs vanish.

More generally, controlling this angle can be used to tune
the strength of DDIs, especially when performing experi-
ments in reduced dimensions, as described in Sec. VII A.
In a scheme inspired from NMR techniques, it has been
suggested [84] and demonstrated [85] that by using time-
varying magnetic fields, it is possible to time-average the
DDI to reduce its amplitude or reverse its sign.

Finally, the anisotropy of the interaction has funda-

mental consequences from the point of view of collisions.
The interaction potential is not central, and therefore the
orbital angular momentum does not need to be conserved
during a collision. The expansion in spherical harmonics
yields the selection rule for angular momentum transi-
tions ∆l = (0,±2). Moreover, partial waves of differing
l that contribute to the scattering become coupled. Fi-
nally, the angular momentum of the atoms’ internal state
may also change during the collisions, opening the possi-
bility for inelastic processes.

3. Physical processes associated with dipolar interactions

In view of describing the physical processes at play
when two dipolar particles collide, it is useful to rewrite
the dipolar potential between atoms 1 and 2 in terms of
quantum operators [86]:

Vdd(r) =
d2

r3

[
(Sz

1 .S
z
2 +

1

2

(
S+
1 .S

−
2 + S−

1 .S
+
2

)

−3

4

(
2zSz

1 + r−S+
1 + r+S−

1

)
×

(
2zSz

2 + r−S+
2 + r+S−

2

) ]
, (2)

where (x, y, z) is the normalised unit vector connecting
both atoms, r+ = (x + iy), r− = (x − iy), S+ = (Sx +
iSy), and S− = (Sx − iSy). Note that both here and
throughout this review, we use the dimensionless version
of the vectors and operators of angular momenta and
spins.

We describe three physical processes that arise from
this expression:

i. Elastic dipole-dipole interactions, where the
spin of each atom is conserved in time:

V el
dd(r) =

d2

r3
Sz
1 .S

z
2

(
1− 3z2

)
. (3)

The experimental manifestation of this anisotropic
Ising term on quantum degenerate dipolar gases has
been extensively studied. It is the main process
at play for most of the results presented in this
review article: see Sec. III on scattering physics,
Secs. IV and V on the collective properties of dipo-
lar gases, the stability diagram, the instability dy-
namics and the stabilisation of so-called dipolar
droplets, Sec. VII A on integrability breaking in
1D gases, and Sec. VII B on the extended Bose-
Hubbard model.

ii. Exchange interactions, where two atoms ex-
change one unit of spin (Zeeman) excitation, while
the total magnetisation and energy is conserved (in
the absence of quadratic Zeeman effects):

V ex
dd (r) = −1

4

d2

r3
(
S+
1 .S

−
2 + S−

1 .S
+
2

) (
1− 3z2

)
. (4)
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This exchange term can drive spin dynamics at con-
stant magnetisation as described in Sec. VI B 3 and
dictates the physics of spinor dipolar gases in deep
lattices, which is the topic of Sec. VII C. We note
that the elastic and the exchange terms result in
an anisotropic Heisenberg-like term (the so-called
XXZ model).

iii. Relaxation terms describe the modification of
the longitudinal magnetisation of the pair of atoms
during the collision. There are two possible pro-
cesses:

V rel1
dd (r) = −3

4

d2

r3
(r+)2S−

1 .S
−
2 ,

V rel2
dd (r) = −3

2

d2

r3
zr+(Sz

1 .S
−
2 + Sz

2 .S
−
1 ), (5)

plus the conjugate processes. Spin momentum
and angular orbital momentum exchange while the
magnetic energy is transferred into kinetic energy.
The second process describes single spin flips, while
the first describes double spin flips (i.e., both atoms
flipping their spin). These terms underlie most of
the results presented in Secs. III C and VI, the lat-
ter describing spinor physics with free magnetisa-
tion.

4. Two-body dipolar scattering

The cross section classically describes the area, trans-
verse to the relative motion, within which two particles
must meet to scatter. In other words, the scattering cross
section is related to the typical distance at which the
wavefunction of the relative motion is distorted by the
interaction. Employing the Heisenberg uncertainty prin-
ciple, this distance rd for the DDI is typically set by
an interplay between the DDI strength S2d2/r3d and the
energy cost to bend the wave function by an amount rd.
Setting S2d2/r3d = ~

2/mr2d defines the dipolar length [87]:

add ≡ rd
3

=
S2d2m

3~2
=
Cddm

3~2
, (6)

where m is the atomic mass. The order of magnitude of
the scattering cross section is

σ ≈ r2d =
S4d4m2

~4
. (7)

Likewise, one defines the range of the van der Waals po-
tential VVdW = −C6/r

6 as rvdW = (mC6/~
2)1/4, which

sets the typical scattering cross section due to short-range
interactions. The lengths rV dW and add are typically in
the nm range; i.e., much larger than both the Bohr radius
a0 and the typical impact parameter at room tempera-
ture.

In Sec. III, we will describe the scattering theory for

both dipolar and van der Waals interactions. The DDI
cross sections are presented based on a first-order Born
approximation, and the role of exchange statistics in
these expressions is discussed.

In contrast to the van der Waals case, the dipolar cross
section depends on only the mass of the atoms and their
dipole moment. Because it is independent of the details
of the molecular potentials, dipolar scattering assumes a
universal character. One remarkable aspect is that the
dipolar cross section follows the same universal scaling
of Eq. (7) (up to numerical factors) regardless of particle
exchange statistics. In particular, identical fermions have
a finite dipolar cross section even at vanishingly small
collision energy. This is a direct consequence of the long-
range character of DDI, as discussed above. This topic
will be discussed in Sec. III B. Inelastic dipolar scattering
will be discussed in Sec. III C.

Finally, by integrating over all directions of the colli-
sion, the scattering theory outlined above obscures one of
the central features of dipolar scattering, the anisotropic
dependence on the colliding angle, which has been ob-
served in both Er and Dy. This is the topic of Sec. III D.

5. Momentum-space DDI expression

The form of the Fourier transform of the interaction
potential often provides insight regarding the physics of
interacting particles. For example, it facilitates the de-
scription of two-body scattering physics because scatter-
ing theory tends to formulate the wavefunction in terms
of momentum states. It also proves convenient in dis-
cussing elementary excitations of a quantum gas, which,
in a uniform system, are characterised by a well-defined
momentum.

The Fourier transform of the elastic part of the DDI,
Eq. (3), is

Ṽdd(k) =

∫
eikrV el

dd(r)d
3r =

Cdd

3

[
3 cos(θk)

2 − 1
]
,(8)

where θk is the angle between k and the polarisation of
the dipoles. This form of the interaction is remarkable
when compared to the contact interaction. While neither
the Fourier transforms of the contact interaction nor the
DDI depend on k, the Fourier transform of the DDI re-
tains a nontrivial angular dependence. Such a feature
can give rise to an anisotropic dispersion relation of ex-
citations, as described in Sec. IV.

That Ṽdd(k) does not depend on the modulus
of k can be understood from dimensional analysis:∫
dDr exp(ikr) 1

r3 is independent of k for D = 3. On
the other hand, in a 2D system (D = 2), we expect a dif-
ferent behaviour with a linear dependence on k for small
k. Quite generally, the fact that the Fourier transform
of Vdd has a k dependence is an important feature for
D 6= 3 systems, in that the DDI introduces a tendency in
these systems to develop structured excitations (rotons,
solitons) and exotic phases (supersolid, crystals of quan-
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tum droplets, etc.). These excitations are described in
Sec. IV. The quantum droplets occur when the gas spon-
taneously forms stable spatial arrangements of liquid-like
droplets in dipolar Bose–Einstein condensates (dBECs)
driven to the instability point of mechanical collapse.
This is related to the emergence of new phases stabilised
by beyond-mean-field effects and is described in Sec. V;
see also Sec. I D 1.

D. Many-body dipolar physics

The two-body processes outlined in the previous para-
graphs are the elementary phenomena behind the very
rich phenomenology associated with many-body physics
in dipolar quantum gases. We introduce the various phys-
ical effects that will be further discussed in the Secs. IV–
VII.

1. Dipolar Bose quantum gases

a. Spin-polarised dipolar Bose quantum gases in the
mean-field regime

Many-body physics is often intractable. However,
most of the first experiments on ultracold gases of mag-
netic atoms have been performed with weakly interacting
Bose–Einstein condensates (BECs), and the associated
theory is tractable because interatomic correlations are
small and so mean-field theories apply.

Due to Bose stimulation, in which the population of
bosonic atoms at low energy favours the occupation of
a unique single-particle orbital, it is natural to propose
a variational ansatz where the many-body wavefunction
is assumed to be φ(r1, ...rN ; t) =

∏
i=1,...,N ψ(ri, t). The

single-particle wave-function ψ(r, t) is taken as a varia-
tional parameter to minimise the system’s total energy.
This approach leads to the well-known Gross–Pitaevskii
equation (GPE), which has been found to describe most
of the properties of dilute BECs [11, 88–90].

When all atoms are polarised (and the polarisation axis
set to z), the GPE of a dBEC is

i~
∂

∂t
ψ =

[−~
2∇2

2m
+ Vtr(r) + g |ψ|2 +Φdd(r, t)

]
ψ, (9)

where Vtr(r) is the trap potential, g = 4π~2

m a is the cou-
pling constant describing contact interactions of s-wave
scattering length a; see also Secs. II D and III [9, 91]. The
mean field associated with the DDI is Φdd(r, t) [92, 93]:

Φdd(r, t) =

∫
dr′ |ψ(r′, t)|2 Udd(r − r′), (10)

Udd(r) = Cdd
1− 3 cos2(θ)

|r|3
, (11)

where θ is the angle between r and the polarisation axis

z. Only the elastic part of the DDI, Eq. (3), contributes
due to polarisation in a fully stretched Zeeman substate.
This term is non-linear and nonlocal. To quantify the
strength of the DDI with respect to the contact interac-
tions within a BEC, it is useful to introduce the dimen-
sionless parameter

εdd =
Cddm

3~2a
=
add
a
. (12)

We note that writing the GPE of a dipolar BEC in
the form of Eq. (9) is in fact non-trivial. Its validity,
which relies on describing the total inter-particle interac-
tions via an effective pseudo-potential that is the simple
sum of the contact pseudo-potential and the DDI poten-
tial, has been long debated. The efforts to prove the
validity of this treatment as well as identify its limita-
tion will be reviewed in Sec. IVA1. The applicability
of the nonlocal GPE Eq. (9) for the case of weakly in-
teracting trapped BECs of magnetic atoms in the stable
regime, e.g., εdd < 1 in a 3D isotropic trap, has been
supported by numerous theory and experimental works.
In this regime, the anisotropic and nonlocal character of
Eq. (10) substantially modifies the static and dynamical
properties of the BEC compared to contact-only BECs.
This will be extensively discussed in Sec. IV.

b. Spinor dipolar Bose quantum gases

In the presence of spin degrees of freedom, the exact
form of the GPE depends on the spin of the atoms and
can be found in Ref. [94]. Taking, for example, the case
of a spin-1 atom – i.e. the simplest example pertaining
to bosonic physics – the GPE takes the form

i~
dψm

dt
=

[−~
2∇2

2m
+ Vtr(r)− pm+ qm2

]
ψm

+c0nψm + c1

1∑

m′=−1

S.sm,m′ψm′

+Cdd

1∑

m′=−1

b.sm,m′ψm′ , (13)

where ψm denotes the macroscopic wave function associ-
ated with the spin state of projection quantum number
m. The terms in p and q describe the linear and quadratic
Zeeman energy shifts of the spin states, respectively. The
trap is assumed to be spin-independent. The terms pro-
portional to c0 and c1 are spin-independent and spin-
dependent contact interactions, respectively. The spin
density vector is S, and s = {sx, sy, sz} are the spin ma-
trices. The DDIs are described by the term proportional
to Cdd, where the effective dipole field b is defined by

bν =

∫
dr′
∑

ν′

Qν,ν′(r − r′)Sν′

(r′), (14)
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with

Qν,ν′(r) =
δν,ν′ − 3rνrν′

r3
, (15)

and ν, ν′ = {x, y, z}.
Equation (13) is central to the description of spinor

dipolar physics, which is the subject of Sec. VI. In gen-
eral, the DDIs cannot be neglected when Cdd is com-
parable to either c0 or c1. If c1 ≪ c0, then the DDIs
can be significant even when εdd ≪ 1 [95]. Further-
more, magnetisation-changing processes effected by the
term in Eq. (14) have no analogue in systems with only
spherically-symmetric contact interactions. Such pro-
cesses start to play a role when Cddn ≃ {p, q}.

Finally, it is useful to stress that in the mean-field
regime, DDIs described by Eqs. (10) and (14) correspond
to the average magnetic field produced by all atoms
within the condensate. This is due to the fact that
correlations between atoms have been neglected, which
is the essence of the mean-field approximation. In the
case of spinor gases, the effect of quantum fluctuations
and correlations can, however, be significant, even in the
weakly interacting regime. This is due to entanglement
or squeezing naturally arising in the spin degrees of free-
dom. The consequences of DDIs on the properties and
behaviours of gases with spin degrees of freedom will be
detailed in Sec. VI.

c. Elementary excitations of a spin-polarised dipolar
Bose quantum gas

The elementary excitations of a BEC are usually well
described within a Bogoliubov treatment, which matches
a linearisation of the GPE around the ground-state wave-
function [11, 88]. The theory yields a simple dispersion
relation for a uniform 3D gas (Vtr = 0):

ǫ(k) =

√
~2k2

2m

(
~2k2

2m
+ 2nṼint(k)

)
. (16)

This describes the energy of the elementary excitation of

momentum k in a BEC of density n. Here, Ṽint(k) is
the Fourier transform of the total interaction potential.

In contact-interacting gases, Ṽint(k) = g. For a dBEC,

Ṽint(k) = g+Ṽdd(k). From the form of Ṽdd(k) (see Eq. 8),
one can infer that the energy of a collective excitation
of a dipolar fluid depends not only on the magnitude
of its wavevector but also on its propagation direction.
The dispersion relation of elementary excitations of an
isotropic, homogeneous dipolar fluid is anisotropic. For
a dBEC, the dispersion retains the initial linear phonon
character, but with an anisotropic speed of sound c; the
dispersion relation remains monotonic.

This picture is modified in a constrained geometry,
where one externally lifts the spatial symmetry along at
least one dimension by, e.g., imposing anisotropic trap-
ping confinement [96]. The trap along the constrained
dimension yields a new length scale. Because of the

anisotropy and long-range character of the DDI, this
length scale also becomes relevant to the description of
the physics of the otherwise translationally invariant di-
rections. In particular, it affects their elementary ex-
citations.That is, a BEC that is more tightly trapped
along the dipoles’ direction than transversely possesses
a favoured wavelength in its dispersion relation at which
the energy of the transverse excitations reaches a mini-
mum [96–100]. This is referred to as a roton minimum
in analogy to a similar minimum found in the dispersion
relation of liquid helium [101–103]. These properties of
dBECs are the topic of Sec. IVA3.

d. Mean-field instability and collapse

At the mean-field level, the mechanical stability of flu-
ids may be understood from analysing the dispersion re-
lation of their excitations [11]. An instability occurs when
the energy of an elementary excitation becomes zero,
since then there is no cost for populating such a mode. In
the 3D homogeneous case, the lowest energy modes are
the long-wavelength phonons. Furthermore, due to the
DDI anisotropy, phonons propagating in the plane per-
pendicular to the dipoles cost the least amount of energy.
The speed of sound c reaches 0 at εdd = 1 in this direc-
tion, which identifies the threshold for mechanical col-
lapse of a 3D homogeneous dipolar BEC. This is remark-
able, because the instability, arising from the attractive
part of the DDI, occurs in a gas with a finite (and pos-
itive) value of the short-range contact interaction. Con-
sequently, interactions are still present, even if cancelling
at the mean field, and their beyond-mean-field contribu-
tion plays a crucial role in such a system; see Secs. IVA4
and VA. This collapse, corresponding to a phonon insta-
bility, is called “global collapse,” [11, 93, 97, 104–107].
Generally speaking, in an ultracold quantum Bose gas,
crossing the instability threshold leads to an implosion of
the gas under the concomitant effects of two-body attrac-
tion and three-body inelastic collisions; these so-called
Bose-Novas are well described by mean-field coherent dy-
namics [104, 105, 108–112]. In a dipolar quantum Bose
gas, at the mean-field level, the anisotropy of the DDI is
expected to impact the geometry of the collapse and its
dynamics.

Furthermore, anisotropic external trapping modifies
the dispersion relation, yielding additional modifications
of the stability criterion as well as of the subsequent col-
lapse. In particular, the long-range character of the DDI
brings the length scales of the trap into play. The in-
stability may be induced by the softening of excitation
modes of a nonphononic nature (e.g., modes of small
wavelengths or with angular structures). In these cases,
the instability threshold is expected to be shifted com-
pared to the εdd = 1 uniform value. In the collapse dy-
namics, structures at the corresponding length scale are
then expected to be preferentially formed. The resultant
“local collapse” corresponds to a “modulational instabil-
ity” [96, 113–115]. The collapse dynamics may reveal the
properties of the underlying mode driving the instabil-
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ity. The different regimes of global and local instability,
and the related collapse or collapsing dynamics of dipo-
lar Cr, Er, and Dy dBECs, are described in Secs. IVA4
and VA.

e. Quantum states stabilized by fluctuations: droplets
and supersolids

Even if often well described by mean-field theory,
dBECs are not classical fluids. As quantum fluids, they
are liable to quantum fluctuations. Even at zero tem-
perature, the vacuum population of its elementary ex-
citations, yields interaction-induced modifications of the
fluid’s energy and ground state. The Bogoliubov treat-
ment allows one to perturbatively take into account these
effects [11, 88, 116, 117]. The energy corrections are,
in principle, negligible for weakly interacting gases; i.e.,
when na3 ≪ 1 and na3dd ≪ 1). However, the mean-
field instability threshold described above occurs when
the mean-field interactions are small, changing from re-
pulsive to attractive on average. Importantly, while the
overall interaction becomes negligible, the atoms still in-
teract in a non-negligible way thanks to the competition
of contact and dipolar interactions. In sufficiently dipo-
lar gases, instead of a collapse, a remarkable phenomenon
occurs at the instability threshold. Here, beyond mean-
field effects provide sufficient repulsive interaction energy
to stabilise the system. This leads to exotic phases on
the attractive side of the mean-field instability thresh-
old, including liquid-like droplet states (a quantum state
that is stabilised by the opposite effects of mean-field and
beyond-mean-field interactions, and even in absence of
trapping potential), droplet assemblies (a state formed of
several independent quantum droplets, self-organised in
a crystalline structure), and supersolids (a self-organised
crystalline states with global superfluid properties. In
a simplified picture, it can be viewed as a ground state
consisting of an overlapping assembly of droplets where
the droplets are allowed to maintain a common phase via
particle exchange). These recently discovered states are
discussed in Sec. VC and VD.

2. Dipolar Fermi quantum gases

Fermionic dipolar atoms are also of great interest for
exploring new physics. A remarkable property of dipolar
Fermi gases lies in the fact that polarised samples remain
interacting even in the ultracold regime. This is unlike
nondipolar Fermi gases; see Sec. I C 1. Yet, the mean-
field theory developed above does not appropriately de-
scribe fermionic ensembles because the ansatz used to
write the many-body wavefunction is incompatible with
the Pauli exclusion principle: it must be antisymmetrized
due to fermionic exchange statistics. Therefore, it is gen-
erally not possible to neglect correlations in a Fermi gas
at low temperature, even for small interactions. This
makes a theoretical treatment of fermionic gases chal-
lenging. The simplest treatment of mean-field theory

that includes the antisymmetrization of the wavefunc-
tion replaces the product ansatz used in Sec. I D 1 for
ψ(r1, r2, r3, ..., rN ) by a Slater determinant. This pro-
cedure is known to be sufficient for a pure state without
interactions. With interactions, it may still be sufficient,
but with the single-particle wave-functions modified com-
pared to the noninteracting case. This approach consti-
tutes the Hartree-Fock theory [118, 119].

The mean DDI energy for an ensemble of N atoms in
a state ψ(r1, r2, r3, ..., rN ) is generally written as

Edd =

∫
dr1...drNψ

∗(r1, r2, r3, ..., rN ) (17)

∑

i,j

Vdd(ri − rj)ψ(r1, r2, r3, ..., rN )

=
N(N − 1)

2

∫
drdr′

∫
dr3...drN

ψ∗(r, r′, r3, ..., rN )Vdd(r − r′)ψ(r, r′, r3, ..., rN ).

Because of antisymmetrization, the integral N(N − 1)×∫
dr3...drNψ

∗(r, r′, r3, ..., rN ) × ψ(r, r′, r3, ..., rN ) does
not reduce to n(r)n(r′) as in the bosonic case. Though
by using the Slater determinant ansatz, it can be simpli-
fied to ρ1(r, r)ρ1(r

′, r′)− ρ1(r, r
′)ρ1(r′, r), where

ρ1(r, r
′) = N(N − 1)×

∫
dr2dr3...drN (18)

ψ∗(r, r2, r3, ..., rN )× ψ(r′, r2, r3, ..., rN )

is the one-body density matrix. Therefore, the DDI
mean-field energy for the fermionic gas consists of two
parts: the usual term, also called the direct or Hartree
term

Edir
dd =

1

2

∫
drdr′Vdd(r − r′)n(r)n(r′), (19)

and an unusual term, called the Fock or exchange term,
resulting from the requirement for an antisymmetric
wavefunction upon particle exchange:

Eexc
dd = −1

2

∫
drdr′Vdd(r − r′)ρ1(r

′, r)ρ1(r, r
′). (20)

This exchange term is zero in the case of a BEC. Based
on Eqs. (19-20), and by performing the variational min-
imisation of the total energy with respect to ψ, one can
derive semiclassical (Hartree-Fock) equations for the de-
generate Fermi gas (DFG). To describe a trapped Fermi
gas, one can use a local-density approximation, which as-
sumes that the atoms feel a local DDI [119–124]. This
particular exchange interaction term, arising from the in-
terplay of fermionic statistics and the nonlocal DDI, has
several physical consequences—these will be the topic of
Sec. IVB.
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3. Dipolar gases in confined geometries

As previously discussed in Sec. I D 1, beyond-mean-
field effects are typically weak for BECs in the weakly
interacting regime (far from any instability). This is
because the interaction energy is too small to create
short-wavelength correlations in the gas. One way to
reach strong correlations is to load the atoms into tight
anisotropic traps or standing waves of light (so called op-
tical lattice). Confined trapping geometries effectively
reduce the atoms’ kinetic energy by restricting motion.
By doing so, they allow the interaction and kinetic ener-
gies to play competing roles in the determination of how
the system organises [7, 8, 82, 125–129]. In this review,
we will discuss the experimental progress based on mag-
netic atoms in confined geometries; see Sec. VII. We note
that important advances have been made with systems
of polar molecules [20, 21, 41, 130] as well as of Ryd-
berg atoms [22, 24, 25, 131–133]. Focusing on magnetic
atoms, we discuss three main areas: (i) the physics in
low-dimensional spaces and in particular 1D, where the
motion of the particles arise only in some directions of
space and is frozen transversely; (ii) the physics of spin-
less particles whose motion occurs, this time, along the
specially confined directions in space, and in particular,
along directions of a periodic external potential formed
by an optical lattice. This realises extended Hubbard
models for spinless dipolar particles; (iii) the case of spin-
ful dipolar particles in such periodic external potentials,
leading to quantum magnetism and XYZ models.

a. Dipolar gases in lower dimensions

We now discuss a special case of lattice-confined ge-
ometries wherein atoms remain free to move in one or two
directions of space while being tightly trapped (frozen)
in the other(s). Such gases effectively realise lower-
dimensional systems. Quantum physics in lower dimen-
sions is fundamentally different from that in our usual 3D
world. For instance, in both 1D and 2D, quantum fluctu-
ations preclude long-range order, and, in 1D, bosons can
act like fermions and vice-versa [7, 82, 125–127, 134, 135].
Exotic strongly correlated states may arise and interac-
tions play a crucial role.

In 1D, many aspects of quantum physics for particles
interacting via short-range potentials are understandable
at an analytic level. In particular, solvable models, such
as the Lieb-Liniger model, can often be evoked to de-
scribe such systems [127, 136]. When such models break
down, e.g. by introduction long-range interactions, these
systems can serve as testbeds for exotic strongly corre-
lated many-body physics [137–139]. In the particular
case of 1D dipolar gases, the DDI lifts integrability [140],
thereby introducing chaotic dynamics that allows the
gas to thermalize. Furthermore, control of the dipole
orientation provides a knob with which to control the
integrability-breaking mechanism and the induced ther-
malisation rates; see [141] and Sec. VII A.

Excited states of 1D Bose gases can possess corre-

lations stronger than ideal Fermi gases [142]. These
so-called super-Tonks-Girardeau states have been ob-
served in a narrow range of attractive contact interac-
tion strengths in nondipolar gases [143]. Repulsive dipo-
lar interactions have been shown to completely stabilise
these highly excited states regardless of contact interac-
tion strength [144]. Dipolar stabilisation has provided
access to a quantum holonomy of the underlying Hamil-
tonian that allows the gas to be topologically pumped
to higher energy states. These prethermal states re-
alise a form of quantum many-body scar state wherein
a strongly correlated excited state evades thermalisation
in an otherwise chaotic system [144, 145]. This physics
will be discussed in Sec. VII A. Though initially explored
in Refs. [141, 146], future work could aim to provide a
more general understanding of 1D collisional physics in
the presence of both the van der Waals interaction and
the DDI, especially near a Feshbach resonance.

b. Extended Hubbard model

Another regime of interest arises when the motion of
the particles takes place in a periodic external poten-
tial. This case, easily achieved by confining atoms in
light standing waves, has been considered for a long time,
in the ultracold community, and raised wide interest due
to its similarity to the physics of electrons gases in crys-
tals, and the possibility to realise very clean Hubbard
models. The introduction of DDI within such lattice sys-
tems, yield novel physics even for spinless particles, by
bringing new terms into the standard Hubbard Hamil-
tonian which standardly comprises a contact on-site in-
teraction and tunnelling. Due to the DDI’s character,
the new terms are anisotropic on-site and off-site interac-
tion terms. The new interaction terms in dipolar lattices
introduce competition between numerous energy scales.
This yields exotic dynamical behaviours, excitations, as
well as novel phases [14, 147]. In experiments, the rele-
vance of the extended Hubbard model for dipolar bosons
has been demonstrated, and the additional interactions
terms quantified. The most exotic phases predicted based
on the extended Hamiltonian have for now remained elu-
sive. Current achievement and prospects are discussed in
Sec. VII B.

c. Spin physics in optical lattices

Finally, we will discuss lattice systems with spin de-
grees of freedom. By bringing into play dipolar exchange
and relaxations terms—see Sec. I C 3—such systems re-
alise models with a rich range of exotic dynamics and
phases [7, 14, 147]. In particular, the off-site term in-
duced by dipolar spin-exchange processes yield generic
XYZ Heisenberg models. Of particular interest, a growth
of quantum correlations is expected in such systems un-
der the effect of inter-site spin-exchange interactions.
Lattice spin models realised with magnetic atoms are dis-
cussed in Sec. VII C.
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4. Light-induced coupling of spins in magnetic atoms

The engineering of synthetic coupling involving the
particle’s spin, such as spin-spin or spin-orbit coupling,
opens the door to the realisation of exotic states such
as, on the many-body level, topological superfluids [148–
155] as well as highly nonclassical or topological spin
states [156–159], that can even be produced at the single-
atom level for large-spin atoms. Spin-dependent light
shifts or optical Raman dressing of internal spin states
may be used to effect such coupling for the introduc-
tion of abelian (magnetic field-like) or non-abelian (spin-
orbit coupling-like) gauge fields [160, 161]. Unfortu-
nately, however, light fields also heat the atoms due to
spontaneous emission, limiting the lifetime of systems.
This may be circumvented by exploiting the level struc-
ture of magnetic atoms such as Dy and Er, while allowing
dipolar interactions to play a role in the physics. Dipolar
relaxation then sets new limits on the lifetime of these
gases. Fortunately, there exist platforms in which the
rate of dipolar relaxation is significantly reduced. One
method uses a tightly confining potential in one or more
spatial dimensions to suppress relaxation via phase-space
restriction; see Refs. [162–164] and Sec. III C 5. Another
method employs fermions in a large magnetic field so that
dipolar relaxation may be suppressed due to Fermi statis-
tics; see Refs. [162, 165] and Sec. III C 4. Exploiting such
possibilities has yielded the realisation of long-lived SOC
Fermi gases [166]. Related achievements and prospects
are discussed in Sec. VI D1.

II. The magnetic atoms

The experimental research on dipolar quantum gases
in the degenerate regime began in Stuttgart with the
first production of a Bose-Einstein condensate made of
chromium atoms in 2004 [167]. This achievement has
since then attracted great interest, both from theorists
and experimentalists. A second Cr BEC machine soon
became available at Villetaneuse [168]. The interest in
dipolar quantum degenerate gases was further sparked
when it was shown that atoms with even larger mag-
netic moments than Cr, such as erbium [169] and dyspro-
sium [170], could be efficiently laser cooled. Soon after,
Bose and Fermi degenerate gases of both these lanthanide
(Ln) atoms were produced, first at Urbana-Champaign
(the group moved to Stanford in 2011) [171, 172], then at
Innsbruck [173, 174]. Degenerate Fermi gases of Cr have
also been produced in Villetaneuse [175]. These achieve-
ments, and the subsequent experiments, have stimulated
much theoretical interest and activity in these systems.
In response to these achievements, the field of dipolar
gases made of magnetic atoms is now rapidly expand-
ing. Experiments worldwide are being constructed to
explore the fascinating properties of Ln atomic gases and
many additional groups have realised gases in the ultra-
cold [72–74, 176–184] and quantum degenerate [75, 185–

192] regimes.
In this section, we discuss the properties and the spe-

cial features of the highly magnetic atomic species cur-
rently available in the quantum-degenerate regime, and
in particular, their electronic structure and energy spec-
trum in comparison to the alkali atoms. We first recall
a few features of Cr (Sec. II A; see also Ref. [17]) before
presenting the magnetic Ln atoms (Secs. II B). We de-
scribe the basic method for cooling and trapping such
species. Ultracold gases are typically created and con-
fined in vacuum chambers using the techniques of Zee-
man atomic beam slowers (ZSs), magneto-optical traps
(MOTs), magnetic traps (MTs) and/or optical dipole
traps (ODTs) [193]. In the case of magnetic atoms, pure
MTs are of limited efficacy due to dipolar-relaxation-
induced atom loss [86, 194, 195]; see also Sec. III C.
The ZS, MOT and ODT techniques are more effective
for magnetic atoms. The application of these slowing,
cooling and trapping methods must take into account
the special electronic structure of these magnetic atoms,
which we will discuss.

In addition, we discuss the interactions of light with
these atoms, specifically in regard to their large total
orbital momentum; see Sec. II C. In Sec. II D, we dis-
cuss short-range scattering properties of the magnetic
atoms including their scattering length a and Feshbach
resonances (FRs). Feshbach resonances enable the wide
tunability, in both sign and amplitude, of a. This al-
lows one to control the dipolar character of magnetic
gases too, since such properties often depend on the rel-
ative strength of the DDI to the contact interaction,
εdd = add/a; see Sec. I D 1. Moreover, FRs enable the
production of more magnetic particles via the association
of two atoms into a molecule. We discuss the related pos-
sibilities in both Cr and Ln atoms. We finally compare
the overall tunability of the collisional properties of Cr
and Ln in Sec. II E.

A. Chromium

When the first ultracold-gas experiment with Cr atoms
was started by the Stuttgart group, which began in Kon-
stanz, prior to their move to Stuttgart, the aim was in
fact to create a new instance of degenerate Fermi gas
(due to the large abundance of its fermionic isotope).
They realised only later, during a visit of K. Rzazewski
in 1998, that it would be a great candidate for dipolar
physics [12]. Focusing on the latter physics, using bosons,
they achieved the first BECs of 52Cr [167]. Chromium-
52 atoms have a purely electronic spin of S = 3 and a
g-factor of gS = 2 in the ground state (denoted 7S3 us-
ing the standard notation 2S+1LJ ). The DDIs between
these atoms are 36 times stronger than in the most mag-
netic case of alkalis because its magnetic dipole moment
is 6µB, whereas alkalis’ moments are at most 1µB. The
most abundant isotope of Cr is 52Cr; see table I. The
atom has two other bosonic isotopes, 50Cr and 54Cr,
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which have never been Bose-condensed. The fermionic
isotope 53Cr was cooled to degeneracy via a sympathetic
cooling technique in 2014 [175]. Besides their dipolar
character, ground state Cr atoms realise large spin sys-
tems (see Sec. VI A1) whose magnetic properties are
driven by both the DDI and their relatively strong, spin-
dependent, isotropic contact interactions. The relevant
scattering lengths are aS=6=102.5 a0 [162], aS=4=56 a0,
aS=2 =-7 a0 [196], aS=0 = 13.5 a0 [197]; see Sec. II D for
details.

Laser cooling of Cr was pioneered by J. McClelland
for the purpose of creating collimated atomic beams for
atom lithography [198]. A motivation for this work was
based on the fact that the Cr ion is a colour centre in
various host materials; e.g., it gives the red colour to a
ruby crystal. This, controlling and positioning individual
single colour centres could be possible through the three-
dimensional laser cooling of Cr. Additionally, Cr sticks
to most surfaces, and as such, Cr serves as an excellent
material for etch masks: Using transversely cooled Cr
atomic beams, one and two-dimensional structures at a
resolution of a few tens of nanometers, as well as three-
dimensional structured doping, were demonstrated [199].

In the relatively high-density regime relevant for laser
cooling, a large light-assisted inelastic cross-section was
observed [200, 201] close to the Langevin limit [202].
This loss mechanism creates an intrinsic limitation to
the density and number of atoms that can be efficiently
captured in a Cr MOT. However, as the cooling transi-
tion 7S3 →7P4 is not perfectly closed, metastable states
(5D3,4) are populated during the cooling process and
are trapped in the quadrupole field of the MOT due to
their large magnetic dipole moment. This provides con-
tinuous loading into a dark, but trappable, state that
is immune to light-assisted collisions. Typically a few
108 atoms accumulate in this trap, with their number
limited in density by inelastic collisions between these
metastable atoms [203]. Using a repumper on the in-
tercombination line 5D3,4 →7P3,4 produces a magnet-
ically trapped sample in the 7S3 ground state [204].
The sample is sufficiently dense that evaporative cool-
ing may proceed. However, such cooling is then limited
by dipolar relaxation collisions, flipping spins into un-
trapped states and inducing heating from the released
Zeeman energy [86, 162]. This may be avoided by load-
ing into a crossed ODT an evaporatively precooled and
spin-polarised sample, i.e., one in the strong-field seek-
ing, lowest-energy Zeeman state. The gas could then
be evaporatively cooled all the way to degeneracy [167].
Subsequent production schemes of Cr degenerate gases
start by accumulating atoms in the metastable 5D3,4 and
5S2 states directly from the MOT into an ODT. The
atoms were then repumped to the ground state where
all-optical evaporative cooling in the ODT produced the
BEC [168]. Additional details regarding the key tech-
niques and strategies to produce Cr BECs are described
in an earlier review [17].

In contrast to the Lns, the ground state in Cr is an

“S-state," which means that the mutual van der Waals
interactions are isotropic. However, there are still suffi-
cient Zeeman substates to provide a rich structure in the
asymptotic molecular states. The DDI additionally pro-
vides a coupling between these states. Therefore, even
without hyperfine structure, as it is the case for bosonic
Cr (I = 0), a number of narrow FRs exist, as were first
found and characterised in Ref. [196]. See section II D
for details.

B. Lanthanides

Atoms with multiple valence electrons and non-S elec-
tronic ground state, such as the magnetic Lns, are of
increasing interest to the study of strongly dipolar phe-
nomena in atomic quantum gases. Among the magnetic
Lns, Dy [171, 172] was the first to be brought to quan-
tum degeneracy, shortly followed by Er [173, 174]; see
Sec. II B 2 b. We note that Yb has been the first Ln to be
Bose-condensed [205], but because of its closed-shell char-
acter, Yb has zero magnetic moment and is more similar
to the alkaline earth atoms—it will not be discussed here.
In addition, BECs of Tm were recently achieved [75]. We
will now mostly focus on Dy and Er because they are the
most widely employed for the quantum gas research re-
viewed here.

As summarised in Table I, Er and Dy have a number
of special features that make them particularly appealing
for quantum-gas experiments. Both Er and Dy possess
many naturally abundant isotopes with a wide variabil-
ity of properties, including several bosonic and fermionic
isotopes. Besides different quantum statistics (bosonic or
fermionic), the isotope variety also offers a useful diver-
sity and tunability of scattering properties: Each isotope
has a different background value of a and a distinct Fesh-
bach spectrum, the latter of which can be used to further
tune a; see Sec. II D. Besides binary collisions, the rates
of multibody collisional processes are also expected to
change from one isotope to the other. This includes, in
particular, the three-body inelastic collisions, which typ-
ically induce detrimental losses and heating in cold gases.
The wide variability in collisional properties offer more
opportunities for finding isotopes that can be efficiently
cooled to quantum degeneracy. We note that this iso-
tope variety is special to Er and Dy among the magnetic
Lns: Eu, Tm and Ho all have only one stable (bosonic)
isotope. This was one of the reasons for first focusing on
Er and Dy within the Ln series.

Magnetic Lns have a large magnetic dipole moment in
the electronic ground state (e. g. , 7µB for Er and 10µB

for both Dy and Tb), and, because their mass appears
in the DDI strength, the corresponding dipolar lengths
are several times larger than Cr’s (add = 15 a0), with
add = 65.5 a0 and add = 131 a0 in Er and Dy, respec-
tively. In dipolar BECs (dBECs), the strength of the
dipolar character of a quantum gas is proportional to the
ratio εdd = add/a; see Sec. I D 1. Magnetic Lns are suf-
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ficiently dipolar that their εdd are typically of the order
of 1 at background level (i.e., away from FRs).

In addition to their strong dipolar character, magnetic
Lns feature a large orbital momentum quantum number,
L, in their ground state (L = 5 for Er and L = 6 for Dy).
This is a major difference from Cr, where the large an-
gular momentum arises purely from the electronic spin
S while L = 0. The large L value in the Ln case in-
duces an orbital anisotropy, which causes the van der
Waals interactions to be anisotropic, in addition to the
DDI [206–208]. As we will discuss in Sec. II D, this orbital
anisotropy has important consequences for the scattering
properties of Lns [195, 206, 207, 209, 210], in particular
for interspin interactions, as well as for their atomic po-
larizability [177, 211–216]; see Secs. II C, II D, and VI A3.

In addition, and similar to Cr, magnetic Lns realise
large-spin systems; see Sec. VI A1. Finally, the large
masses leads to low recoil energies, which is beneficial for
optical trapping and laser cooling.

1. Atomic energy spectrum of magnetic Lns

The electronic configuration of magnetic Lns is
[Xe]4fm6s2. It is characterised by a xenon-like core,
an inner open 4f shell with m valence electrons, and an
outer closed 6s shell. Due to the electron vacancies in the
inner shell, magnetic Ln are often called submerged-shell
atoms. The unfilled 4f shell plays a particularly impor-
tant role in their high magnetism and orbital anisotropy.

Figure 1 shows the atomic energy spectra for the cases
of Er and Dy, up to a wavenumber of 25,000 cm−1. Both
species have an even-parity ground state with a large J
and many excited states of odd and even parity of various
quantum numbers. A comprehensive set of spectroscopic
data of all Ln elements can be found in Refs. [217–219].
Note that theory results that are based on the Cowan
suite of codes [220, 221] and used to estimate the polar-
izability of Lns predict atomic transitions that have not
yet been observed [213, 214]; see also Sec. II C. This re-
veals the still incomplete knowledge of Ln atomic spectra
and their properties.

Unusually for those accustomed to alkali atoms, many
of the energy levels in the electronic spectrum of Ln
atoms do not conform to the usual LS-coupling scheme.
In the LS scheme, the total electron spin S and angular
orbital momentum L couple to form J = L+S, but the
large spin-orbit coupling of the electrons in Lns renders
this scheme sub-optimal for some of the electronic levels.
In this case, a J1J2-coupling scheme is more appropri-
ate [222]. In this J1J2 scheme, the electrons in each shell
couple independently in a LS-coupling scheme, and then
the total angular momentum quantum numbers from the
different shells sum together. For instance, 4f electrons
give rise to J1 and the 6s ones to J2, and J = J1 + J2

with quantum number J , which is denoted as (J1, J2)J .
For Lns, the LS scheme remains relevant for the ground
state while the excited states (where spin-orbit coupling

is stronger) typically follow a J1J2-coupling scheme. Fi-
nally, the bosonic isotopes of Dy and Er have nuclei with
an even number of protons and neutrons. This results
in a zero nuclear spin I and no hyperfine structure. In
contrast, the fermionic isotopes have an even number of
protons and an odd number of neutrons, resulting in a
nuclear spin I = 5/2 and I = 7/2 for Dy and Er, respec-
tively. We note that other magnetic Lns, such as Tm,
Eu or Ho, have only bosonic isotopes and those isotopes
have a hyperfine structure.

Lanthanides’ atomic spectra offer a rich collection of
J −→ J + 1 optical lines, including broad-, narrow- and
ultra-narrow-linewidth transitions. Many of such transi-
tions can be used for optical manipulation and laser cool-
ing, and they are readily accessible with common lasers.
As a rule of thumb, the linewidth of the transitions is
larger for short-wavelength (i. e. high energy) transi-
tions. The strongest line in Er (Dy) at 401 (421) nm,
the intercombination line at 583 (626) nm, and the nar-
row line at 841 (741) nm are used in experiments for laser
cooling, as discussed in the next section. The narrower
resonances have also been used for spin manipulation or
coupling, see Sec. VI. Furthermore, the spectra of the
J −→ J and J −→ J − 1 transitions are equally rich and
relevant for optical manipulation schemes [223]. Among
the rich spectra of Lns, an interest is also growing for
the ultranarrow resonances of Hz-level linewidth, see e.g.
refs [224–227]. Finally, the orbital anisotropy of Lns also
yields a dependence of the matter-light interaction on the
atomic spin. This presents both challenges (how to ob-
tain equal trapping of all spin states?) and advantages
(realisation of spin-dependent potentials, spin-orbit cou-
pling, etc.) for ultracold gas experiments; see also latter
discussions.

2. Optical cooling, trapping, and evaporative cooling of
open-shell Ln

Trapping and cooling of open-shell Ln atoms have been
achieved using ZSs, MOTs, and ODTs, but without the
use of magnetic trapping. The overall efficiency is similar
to that of alkali-metals [193], though there are some key
differences that we now describe.

a. Optical cooling and MOTs
The broadest laser cooling cycling transitions of Lns are
open, meaning that there are a multitude of metastable
states to which the excited state can decay through spon-
taneous emission. Repumping the population back to the
cooling transition is not practically feasible. Fortunately,
two solutions exist: a repumperless MOT on these broad
transitions and a MOT using a closed transition with
small or intermediate linewidth. We detail below the
working principle of these two schemes.
•Broad-line MOTs
In 2006, McClelland et al. presented a repumperless

Er MOT [169, 218]. Despite the open nature of the ∼30-
MHz linewidth, 401-nm transition, neither the MOT nor
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FIG. 1: Energy spectrum of Er and Dy. The levels shown in red (black) have an even (odd) parity. Electric dipole
transitions couple the ground state, which has an even parity, to energy levels of odd parity and with a total angular
momentum within the interval J = [5, 7] for Er and J = [7, 9] for Dy. Both species feature broad transitions in
the blue (401nm for Er and 421nm for Dy), intercombination lines at 583nm for Er and 626nm, and narrow cooling
transitions at 631nm and 841nm for Er and 741nm for Dy. These transitions have been used in experiments to laser
cool the atomic samples.

the ZS required a repumper, and 106 atoms were con-
fined. Subsequently, transverse cooling [170, 228, 229]
and a MOT [170, 230] containing several 108 atoms were
reported for Dy, both using a similarly wide transition at
421 nm. Likewise, MOTs of Ho [73], Tm [72, 231, 232]
and Eu [74] have been formed. The surprising success
of the repumperless MOT derives from two key proper-
ties of magnetic Lns atoms: i) They possess a surprisingly
small branching ratio (<10−5) of decay to the metastable
states; and ii) the lifetime of these metastable states in
the quadruple MT of the MOT is long. The former prop-
erty allows a sufficient number of atoms to go through
the ZS without decaying to metastable states. The lat-
ter property means that atoms in metastable states are
not lost, but remain trapped in the MT of the MOT (due
to the atoms’ large magnetic moment) until they eventu-
ally decay to the ground state and undergo cooling cycles
again.

An unusual, anisotropic sub-Doppler cooling effect was
observed inside these Er, Dy, and Tm MOTs [170, 230,
233–235]. The effect is a consequence of the fact that
the Landé g factors of the ground and excited states
are nearly the same, yielding nearly zero differential Zee-
man shift on the cooling transition. This allows σ+σ−

polarization-gradient cooling [193, 236] to exist even in
a large magnetic field. The atoms are therefore exposed
to both Doppler and sub-Doppler cooling mechanisms in-
side the MOT. The larger-population Dy blue-line MOTs
exhibit a small core of sub-Doppler cooled atoms, as in
the Er MOT, but this core is surrounded by a larger-
population shell of hotter, Doppler-cooled atoms. Atoms
beyond a certain distance from the MOT’s quadrupole
MT center feel a large-enough magnetic field to dis-

rupt the sub-Doppler cooling mechanism beyond this ra-
dius. The temperature of this core of colder, sub-Doppler
cooled atoms is highly anisotropic, with the temperature
of atoms along the quadrupole MT axis hotter than those
in the quadrupole plane of symmetry, or vise-versa de-
pending on the ratio of cooling laser intensity along these
directions [234]. This unusual anisotropic sub-Doppler
cooling effect is likely due to the countervailing tendency
of atomic polarisation to lock its orientation to a direction
favoured by the laser optical pumping versus its tendency,
due to the large magnetic dipole moment of Dy, to align
according to the local magnetic field of the MT [234].
•Multi-stage MOTs
While ZSs and MOTs on broad transitions can per-

form the initial stages of laser cooling and trapping of
open-shell Lns, they cannot cool the atoms low enough
to load ODTs. Further cooling may be provided by using
so-called intercombination-line MOTs. These are formed
using laser cooling lines on electric dipole semi-allowed
(intercombination) transitions. Fortunately, all of these
narrow transitions are closed, obviating the need for re-
pumping lasers.

In one of the realised schemes, the atoms are cooled us-
ing, first, a broad-line MOT, and then, in a second stage,
a colocated MOT on a very narrow transition <10 kHz.
A similar scheme was also used for cooling strontium
atoms [237]. The first narrow-line open-shell Ln MOT
was demonstrated in Ref. [238] with Er, using such a
scheme on the 8-kHz wide, 841-nm transition. This very
narrow line, however, leads to an unusual requirement
for stable MOT operation: The cooling lasers must be
tuned to the blue (i.e., positive frequency detuning) side
of the transition, rather than the red. This is because
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Er’s large magnetic moment causes the magnetic Zee-
man force to dominate the optical radiation forces, even
in the small magnetic fields encountered near the MT
centre. Blue detuning also optically pumps the atoms
to the magnetically trappable weak-field-seeking states.
Under conditions of blue detuning, the MOT forms be-
low the quadrupole MT where gravitational, radiation,
and magnetic Zeeman forces mutually balance. The 8-
kHz-wide, 841-nm Er MOT provided ∼2 µK gases [238].
A similar blue-detuned MOT for Dy on its 1.8-kHz-wide,
741-nm transition was able to cool 107 Dy atoms loaded
from the broad MOT to ∼2 µK [171, 239] and works
for all high-abundance isotopes of Dy. More recently, a
841-nm Er MOT operating with red-detuning have been
demonstrated [192]. This was made possible by its load-
ing from an intermediate-linewidth MOT operating from
the 583-nm transition, as in Ref. [240]; see below. This
additional cooling stage enabled temperatures as low as
400 nK to be reached and phase-space densities as high
as 0.05.

•Single-stage intermediate-linewidth MOTs

An alternative approach replaces the double-MOT
scheme with a single MOT whose transition linewidth is
intermediate, i.e., in the 100’s of kHz range. This is simi-
lar to the scheme employed for ytterbium atoms [241].
The narrow linewidth provides Doppler-limited cool-
ing below 10’s of µK, sufficiently low to directly load
an ODT, yet is broad enough to allow the capture
of atoms from a Zeeman-slowed atomic beam. This
intermediate-linewidth scheme was first developed for
an open-shell Ln MOT in Ref. [240] using Er. This
scheme has then become the most widely employed,
and MOTs of all high-abundance Er [178, 183, 240] and
Dy [176, 178, 184, 187, 189, 192, 242, 243] isotopes,
both fermionic and bosonic, have been created in var-
ious labs. Double-species MOTs of Er and Dy have
also been achieved using this scheme [178]. It has re-
cently been employed in Tm [179, 180]. Typically, MOTs
containing several 107 to 109 atoms with final tempera-
tures of ∼6–13 µK are achieved. These low tempera-
tures allow direct loading of the atoms into relatively low-
power ODTs. The intermediate-line MOT can also load
narrow-line MOTs operated with red detuning, which en-
ables rapid cooling to lower temperatures before load-
ing an ODT [192]. While intermediate-line MOTs have
been successfully loaded directly from Zeeman-slowed
atomic beams [176, 178, 187, 189, 192, 240, 242, 243], re-
cent schemes have enhanced the capture efficiency of the
narrow-line MOT by using angled Zeeman slower beams
on the broad 421-nm transition in between the output
of the ZS and the position of the MOT [183, 184]. This
provides a factor 20 gain in population in the final MOT.

The intercombination lines in Er, Dy and Tm are
at wavelengths of 583 nm, 626 nm and 530.7 nm with
linewidths of 190 kHz, 136 kHz, and 320 kHz, respec-
tively. These MOTs are operated at very large red de-
tunings, intensities, and magnetic gradients [176, 178,
186, 189, 240, 242]. In this configuration, the atoms feel

a radiative force only over a portion of the trap vol-
ume. The force is negligible at the centre, while the
magnetic gradient brings the atoms back into resonance
on an ellipsoidal shell whose radius is set by the compe-
tition of light detuning and Zeeman energy shift [244].
This yields a MOT capture volume that increases with
the light detuning. Similar to the MOTs achieved on
extremely narrow transition described above, the atoms
are displaced below the trap centre and are in an uncon-
ventional bowl-shape due to gravitational effects. This
enabled a single-beam narrow-line MOT in Er [238] due
to magnetic trapping. A more practical scheme using
only five MOT beams was demonstrated [178, 192], where
the sixth beam coming from the top was unnecessary
due to the MOT located below the zero of the magnetic
field. Conveniently, in the intermediate-line MOTs, the
atoms are spin-polarised into the lowest Zeeman sub-
level, rather than the highest, as is the case for the
blue-detuned narrow-line MOTs [171, 238]. The latter
require an RF adiabatic rapid fast passage step to trans-
fer atoms from the weakest to the strongest field-seeking
states. References. [176, 179] additionally demonstrate
that light-assisted collisions are the limiting factor to the
performance of the intermediate-line MOT scheme for
the bosonic isotopes. Such losses are minimised at large
detuning. In all schemes, the fermionic MOTs have the
lowest trap populations relative to natural abundance.
This is thought to arise from complications due to in-
efficient optical pumping and loss channels arising from
the existence of hyperfine structure in the fermionic iso-
topes [170, 230, 242, 245].

b. Optical dipole trapping and cooling to quantum de-
generacy

Despite the complex electronic structure of open-shell
Lns, optical dipole trapping is in practice very similar
to that of alkali-metal atoms; see Ref. [246]. Long-lived
optically trapped quantum gases of Lns have been made
at a variety of wavelengths. These in include: 1560 nm,
1070 nm, 1064 nm, 741 nm, and 532 nm for Dy [171,
172, 215, 247, 248]; 1570 nm, 1070 nm, 1064 nm, and
532 nm for Er [173, 174, 216]; and 532 nm for Tm [75, 180,
232]. A quasielectrostatic optical dipole trap of Er near
10.6 µm has also been reported [186]. We will review the
special features of optical trapping with Ln in Sec.II C.
In the remainder of the present section, we will describe
how the resulting conservative traps have been used to
achieve quantum degenerate gases of both Dy and Er via
standard evaporative cooling.

•BECs

Forced evaporative cooling in a crossed ODT—
overlapping ODTs that create a “dimple” trap at their
intersection—is quite efficient for open-shell Ln due to
the contributions to the elastic cross-section provided
by dipolar collisions; see Sec. III B. However, compared
to the ODT evaporation of weakly dipolar species, care
must be taken to ensure that the dipolar gas does not
become mechanically unstable and collapse during the
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evaporation process; see Sec. V.

The first degenerate gas of an open-shell Ln was cre-
ated in 2011 [171]: Nearly pure BECs of 164Dy were
observed with a population of ∼104 atoms at a den-
sity of 1014 cm−3. Soon thereafter, BECs of 168Er were
made, with 2× 105 atoms [173, 245]. BECs of other iso-
topes of Dy, specifically 162Dy with 105 atoms and 160Dy
with 103 atoms [249] and 166Er with 105 atoms [250]
were produced; see Sec. II E and table I for a summary.
More recently, various quantum degenerate mixtures of
Er and Dy with typically few 104 atoms in each compo-
nent [188] were also achieved using the isotopes 166Er,
168Er and 170Er (which was previously uncondensed),
and 162Dy and 164Dy. In 2020, the first BEC of Tm
was achieved [75].

The evaporation efficiency of Lns greatly depend on
the choice of bias magnetic field applied B. This is due
to the complex scattering behaviour of the Lns tuned
by the extremely dense spectra of FRs; see Secs. II D 2
and II E. Both two-body (elastic) and three-body (in-
elastic) scattering rates strongly depend on B. We note
that, up to now, efficient evaporative cooling has been
reported only at relatively low B, from a few hundreds
of mG to a few tens of G. Moreover, the orientation of
the bias field can also play a role in determining the ef-
ficiency of evaporative cooling, in particular because it
impacts the stability of the interacting system. To re-
duce the contribution of the attractive DDI, ODTs are
typically cigar- or pancake-shaped during evaporation;
see also Sec. IVA4. We note that a particularly efficient
evaporation scheme consists in changing the trap geome-
try toward more pancake shapes in the final stage of the
scheme [188, 245, 250, 251].

•DFGs

The first degenerate dipolar Fermi gas was created us-
ing a sympathetic cooling scheme. Fermionic 161Dy was
co-trapped with bosonic 164Dy to provide sympathetic
cooling using this dipolar mixture [172]. The resulting
deeply degenerate 161Dy quantum gas had a population
of 104 atoms at T/TF = 0.2 [172]. As Sec. III B de-
scribes in more detail, the direct evaporative cooling of
a spin-polarised gas of magnetic fermions is also possi-
ble thanks to long-range universal elastic dipolar scat-
tering. In Ref. [172], such a direct evaporative cooling
was also performed, yielding an assembly of a few thou-
sand 161Dy atoms cooled down to T/TF = 0.7. The
first deeply degenerate DFG of Er used this direct ap-
proach to reach degeneracy with a spin-polarised gas of
167Er of ∼7 × 104 atoms at T/TF . 0.2 and densities
exceeding 4× 1014 cm−3 [174]. This work confirmed the
efficacy of this cooling mechanism arising from universal
elastic dipolar scattering. Similarly large dipolar DFGs
of 161Dy were created through the optimisation of the
crossed ODT shape—i.e., a tighter trap should be used
to evaporatively cool fermions—and evaporation proce-
dure [252]. This direct-evaporation scheme is very at-
tractive, as it involves a far simpler experimental proce-
dure than sympathetic cooling. Moreover, the evapora-

tive cooling efficiency was found to be as high as that
of bosonic isotopes. More recently, quantum degener-
ate mixtures of the fermionic 161Dy isotope with bosonic
168Er [188] as well as with fermionic 40K [189] were pro-
duced, combining direct evaporative cooling and sym-
pathetic cooling. Note that 167Er DFGs could not be
achieved in a 1064-nm ODT and a distinct setup must
be implemented that uses a 1570-nm crossed-ODT. The
167Er is rapidly lost from 1064-nm ODTs perhaps be-
cause of light-induced collisions related to the isotope’s
hyperfine structure adding complexity to its electronic
spectrum [174]. Finally, we highlight that the B value
plays a similarly important role in setting the evaporative
cooling efficacy fermionic open-shell Lns as well. Indeed,
for such polarised fermions, a large number of FRs also
exist, with a far greater density than even for bosons due
to the fermions’ hyperfine structure; see also Sec. II D 2.

C. Atom-light interactions in magnetic atoms

Atom-light interactions are at the heart of cold-atom
experiments. They provide exquisite control and diag-
nostic tools, and all the observations discussed in this re-
view rely on them. Indeed, these interactions enable, e.g.,
atomic cooling (see e.g., Sec. II B 2 a), imaging of density
distributions, trapping with conservative potentials (see
e.g. Sec. II B 2 b), controlling internal atomic degrees–of–
freedom (i.e., their spin) (see e.g. Secs.VI,VII C), and
coupling of this spin to their external motion (see e.g.
Sec.VI D1). The interaction between atoms and light is
generally described by the Hamiltonian term [253]

V̂AL = D̂.Ê. (21)

The electric-dipole approximation has been applied in
deriving this expression and is justified by the fact that
the light wavelength is much larger than the size of the
atom. Here, D̂ is the atomic electric dipole operator,
whose origin arises from the displacement operators of
the electrons times the electric charge −e, and Ê is the
electric field operator that accounts for all possible pho-
ton modes with wavevector k and polarisation s. The
operator D̂ of an atom is determined by its electronic
ground state and electronic excited state spectrum. Mag-
netic atoms, whose electronic structure has been shown
to be remarkable, are expected to present unusual light-
matter interaction properties compared to alkali atoms.
In this section, we will partly review these particularities,
focusing on the aspects most relevant for the manipula-
tion of quantum gases, i.e., under the typical condition
of a coherent laser field sufficiently far detuned from elec-
tronic excited states.
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1. Atomic polarisability tensor

In presence of a (monochromatic) laser field, a semi-

classical approximation may be used for Ê: Ê =
E(r̂, t) = E0(r̂) (ε̂ exp(−iω0t+ φ0(r̂)) + c.c.) with E0, ω0,
φ0 and ε̂ the amplitude, frequency, phase and polarisation
unit vector of the laser field. Within the semi-classical
approximation, the atomic dipole operator is non-zero
thanks to the charges’ displacement induced by the elec-
tric field. This results in the simplified form

D̂(r, t) = α (ω0)E(r̂, t). (22)

Here, α is the complex dynamical atomic polarisability at
frequency ω0. It is a sum of all electronic transition con-
tributions, which typically scale linearly with the transi-
tion linewidth (setting the electronic transition strength)
and vary inversely to the detuning of ω0 to the transi-
tion frequency [246, 253]. The real part of α relates to
the (reactive) dipole force while its imaginary part re-
lates to the (dissipative) radiation pressure force and to
the photon-scattering rate. Practically, the former de-
termines the AC Stark shifts induced by the light on the
atomic levels’ energies and, thus, to the induced dipole
trap depth. The latter limits the trap lifetime.

Because of the internal structure of the atoms, the
atom-light coupling depends on the total angular mo-
mentum of the electronic state F and on the light po-
larisation ǫ. This yields a (rank-2) tensor structure for
the polarisability α. It is again a sum over all electronic
transitions, but now accounting for the various electric
dipole transition elements between the ground and ex-
cited states’ sublevels as well as their possible spatial
anisotropy. The polarisability tensor α can be decom-
posed into a scalar αs, vector αv, and tensor αt contri-
bution such that [221, 254, 255]

α(ω0) = αs(ω0)¯̄1+ αv(ω0)
(ǫ∗ × ǫ).F

2F
+

αt(ω0)

[
3(ǫ.F )(ǫ∗.F ) + 3(ǫ∗.F )(ǫ.F )− 2F 2

2F (2F − 1)

]
. (23)

The scalar part is independent of the angular momentum
operator, while the higher-rank contributions yield spin-
dependent terms. In this respect, vector and tensor po-
larisabilities set the strength of Raman coupling between
atomic Zeeman sublevels. They also provide tools for
optical spin manipulation and spin-dependent trapping.
Their contribution’s dependence on the light polarisation
additionally induces an anisotropy of the atom-light cou-
pling, varying with the relative angle between the quanti-
sation axis (set by the magnetic field) and the light-beam
polarisation vector.

2. Tensor polarisability in magnetic atoms

A major difference in the atom-light interactions in-
volving magnetic atoms versus, e.g., alkali atoms, lies in
their large vectorial and tensorial polarisabilities. This
arises from the large electronic spin of the magnetic
atoms, which yields strong spin-orbit coupling in elec-
tronic states with L 6= 0, both in ground and excited
states. This strong spin-orbit coupling results in differ-
ences between the electric dipole matrix elements cou-
pling between the different fine-structure levels of the
ground and the electronically excited states, which ul-
timately leads to spin-dependent and anisotropic be-
haviour of the atom-light coupling. In the Cr case, the
anisotropy comes from spin-orbit coupling in the excited
states [256–258], while in the Ln case, it arises from the
combined effect of spin-orbit coupling in both the ground
and excited states [177, 212–216, 248, 259]. The existence
of fine structure in both the excited and the ground state
electronic configurations of Lns—and the large energy
splitting within these fine structure manifolds—results in
a different scaling of the vector and tensor polarisabilities
versus that of the alkalies [158, 260]. That is, both the
vector and tensor polarisabilities scale as ∝ ∆−1

a , while
in alkali metals the scaling is ∝ ∆−2

a for all detunings
∆a greater than the hyperfine splitting, where ∆a is the
(average) detuning of the light from the excited states.

The large vector and tensor polarisabilities of magnetic
atoms have been investigated via different means. In Cr,
spin-dependent optical trapping was indirectly revealed
in the study of many-body spinor dynamics, both in
bulk [258] and in lattices [261]. Spin-dependent quadratic
light shifts, resulting from the tensor polarizability close
to the 427.6 nm-transition (laser at 427.85 nm), were also
used to produce controllable spin mixtures [257].

A detailed experimental investigation of the charac-
teristics of atom-light coupling in Lns using the newly
available ultracold samples was crucial for a proper un-
derstanding of these systems. Indeed, up to now, the-
oretical predictions for Ln atom-light interactions have
been difficult and remain incomplete. This is due to
the complexity of the many-body electronic structure of
the atoms and the limited knowledge available. Much
progress has recently been made in developing sophis-
ticated numerical tools to analyse the electronic level
structure of Dy [212, 214], Er [213], Ho [259], and
Tm [262], see also Sec. II B 1. Recent measurements of
Er, Dy, and Tm dynamic (total, scalar) polarisabilities
based on trap frequencies measurements have resulted
in close agreement between this theory and the experi-
ments [177, 216, 262, 263]. In addition, thanks to a direct
comparison with an alkali atom with a precisely known
polarizability (potassium), unprecedented accuracy and
precision on the Dy polarizability have been obtained in
experiment, allowing theory test [177].

The unusually large vector and tensor polarisabilities
of Lns (as compared to alkali atoms like Rb) have also
been experimentally investigated. The large vector and
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tensor polarisability of Dy was first studied using a laser
field close to the 741-nm transition [215]. Near this tran-
sition, a so-called “tune-out” wavelength was found, at
which the total light shift vanishes. Kao et al. ob-
served a strong dependence of the tune-out wavelength
on the light polarisation angle, which is a consequence
of the large tensor polarisability of Dy. This introduces
a novel experimental knob with which to tune the wave-
length where the AC polarisability vanishes. Becher et
al. [216] probed the large tensor part of the polaris-
ability of Er grund-state, by testing the dependence of
the optical trap’s frequencies (thus its depth) on the
light’s polarisation axis. A sizeable anisotropy effect
(few percent) was observed at conventional wavelengths
(1570 nm, 1064 nm, and 532 nm) far away from atomic
transitions. The spin-dependent light shifts were later
used to rapidly control the spin dynamics in an assembly
of lattice-confined fermionic Er [264], see also Sec. VII B.
A similar scheme employing the ellipticity of light polari-
sation was applied to gases of Tm atoms and enabled the
measurement of both the tensor and vector parts of its
ground-state polarisability at 532 nm [263].

The locations of other special wavelengths at which the
ground and excited state polarizibilities match have been
predicted in Dy [212]. These so-called “magic" wave-
lengths are of great utility to research involving atomic
clocks and optical lattices for quantum simulation [265].
By making use of Dy’s large tensor polarisability at the
conventional trapping wavelength of 1070 nm, the au-
thors Ref. [248] developed an analogous “magic polarisa-
tion” scheme wherein the AC Stark shifts of the ground
and excited states of a transition (here at 626 nm) are
tuned to be identical. The authors then apply their find-
ings to develop a Doppler cooling scheme on a trapped
sample with improved efficiency. Large tensor light shifts
close to the 626 nm transition of Dy were also used to
generate effective spin-coupling terms [181, 182]; see also
Sec. VI D2. Other important consequences of these large
vector and tensor polarisabilities in Lns relate to increas-
ing the strength of Raman coupling schemes and to the
possibility of efficient spin-orbit coupling; see Sec. VI D1.

The unconventional features of atom-light coupling in
these magnetic atoms come into play in various ways in
this review; see in particular Secs. VI and VII B. Exper-
iments have only begun to explore the possibilities that
are offered by the magnetic atoms’ electronic structure
for the purpose of manipulating the properties of dipolar
quantum gases.

D. Feshbach resonances in magnetic atoms

Collisions in ultracold dilute gases are known to be well
described within two-body scattering theory [10, 79, 266].
When the interparticle interaction potential is short
ranged, as is the case for the van der Waals force, the
scattering at ultralow temperatures is characterised by
a single parameter, the scattering length a [267]. In

brief, a describes the phase shift δ0 between the incoming
and outgoing waves describing the relative motion of two
atoms colliding under the influence of the total interpar-
ticle interaction V (r) at vanishing energy, where r is the
atomic separation; see Sec. III A for details. This simple
picture is modified when accounting for the internal spin
degree of freedom of colliding atoms. This can cause a to
be spin-dependant. Moreover, magnetic fields can shift
the relative energy of different spin collisional channels.
In the presence of coupling between different channels,
this induces resonant collisions at particular field values.
These are called Fano-Feshbach resonances—Feshbach
resonances (FRs) for short—and we now review their key
properties and primary applications. We will then pro-
vide details particular to the case of magnetic atoms. See
Refs [7, 10, 268, 269] for more information.

A collisional channel is defined by a set of bare inter-
nal states of the two free atoms associated with a given
partial wave component of their relative motion. These
partial waves are represented as spherical harmonics with
quantum numbers ℓ and mℓ for the norm orbital angular
momentum and its projection, respectively; see Sec. III A
for details. Each collisional channel corresponds, by pro-
jection of V (r), to a distinct molecular (scattering) po-
tential Vch(r). In the context of FRs, the different chan-
nels can be coupled by off-diagonal terms of the poten-
tial at finite r. In addition, the asymptotic values of
Vch(r → ∞), so-called dissociation thresholds, may be
tuned relative to one another, e.g., via the Zeeman ef-
fect if the two channels have different magnetic moments.
Note that for bosons (fermions) in the same spin states,
only channels with even (odd) values of ℓ are allowed.

Two atoms collide in the entrance channel, defined by
the internal states in which they are prepared, and typ-
ically ℓ = 0 [270]. The initial state of the pair, also
called scattering state, lies in the continuum of the asso-
ciated scattering potential, with a small (kinetic) energy
E above the dissociation threshold Eo. The entrance
channel is thus an open channel for the collision, as the
atoms can be infinitely far away in this channel. A FR in
the collision of the two atoms occurs when a bound state
of a different (closed) channel couples to the entrance
channel. The closed channel has an energy Ecl that can
be tuned around E [271, 272]. This second channel is
closed because its dissociation threshold is higher than
E and the atoms can not reemerge from the collision in
this channel; i.e., |r| → ∞. The coupling term between
the two channels induces a mixing of the scattering and
bound states, and the atoms, during their approach, can
be temporarily captured in a quasi-bound state. This
behaviour resonantly alters the scattering properties of
the pair, resulting in a change in a.

The FRs are a particularly convenient tool in ultracold
atomic systems for changing the scattering length thanks
to the ease with which one may tune the relative energy
of the channels Ecl − Eo, in particular using magnetic
fields. These magnetic FR allow a to effectively vary
with the magnetic field B around the resonance centre
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B0 as

a(B) = abg

(
1− ∆

B −B0

)
, (24)

where abg is the background value away from any reso-
nance. That is, abg is the scattering length of the single
open channel. ∆ is the resonance width and relates to
strength of the coupling between the bound and scatter-
ing states [273].

We note that, besides magnetic FRs, optically induced
FRs are also possible. These utilise an open channel
involving the electronically excited state. Optical con-
trol of FRs open new prospects beyond magnetic tun-
ing, as it allows for ultrafast and local control of the
interparticle interactions. This idea has been theoreti-
cally proposed [274, 275] and experimentally realised in
alkali [276–278], alkali-earth [279, 280] and non-magnetic
Ln atoms [281, 282]. It has not yet been applied to mag-
netic atoms. Yet, the rich atomic spectra of magnetic Lns
(see e.g. Sec. II C) make optical FRs promising candidates
for controlling a while minimising heating and atom loss
associated with photo-association and light-induced in-
elastic collisions; see e.g. [283]. Finally, we note that
magnetic FRs could also be controlled optically, using
state-dependent light shifts. Such a tuning was demon-
strated with alkali atoms [284–289]. This technique may
also bear fruit in magnetic atomic systems thanks to the
large spin-dependence of their light coupling.

In addition to a tuning, the FR provides access to a
weakly-bound dimer (i.e., molecule) state. This is the
closed-channel bound state dressed by the open-channel
scattering state. Close to the resonance, the dimer be-
comes extremely weakly bound and its binding energy
and size conform to universal scaling laws, which are
solely dictated by a and are insensitive to short-range
details. It is called a halo dimer because of its large
spatial extent. This weakly-bound dimer state can be
populated through a dynamical tuning of Ecl − Eo via,
e.g., a ramp of the B-field. This leads to the formation
of so-called Feshbach molecules [269, 290–292]. We note
that such molecules can be further transferred to a more
deeply bound state via coherent optical adiabatic trans-
fer schemes [293].

In the case of alkali-metal atoms in their absolute
ground state, the coupling between the channels involved
in magnetic FRs is of hyperfine origin. In magnetic
atoms, the coupling can be of a distinct origin due to
the anisotropy of the interparticle interaction potential.
This anisotropy couples channels of different ℓ and mℓ

and thus may yield FRs; see also Secs. I C 2, I C 3. We
note that the bosonic isotopes of Cr, Er, and Dy do not
possess hyperfine structure, unlike alkali atoms. Thus, in
these atoms, the hyperfine FR mechanism is absent, and
FRs arise from only interaction anisotropy. In contrast,
their fermionic isotopes possess hyperfine structure, and
thus both coupling mechanisms are present. Further-
more, we highlight that magnetic atoms have large to-

tal F in their ground state. This means that there are
many more collision channels that can be coupled than in
alkali-metal atoms. Finally, we note that the long-range
character of the DDI also enables entrance channels of
ℓ 6= 0, even for ultracold temperature, increasing once
more the number of channels that must be accounted for
in the collision problem. Next, we review the collisional
properties of Cr and Ln atoms, respectively.

1. Feshbach resonances in Chromium
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FIG. 2: Temperature variations of two FR line-shapes
(a) around B = 8.3G in 52Cr, adapted from Ref. [294]
and (b) around B = 1.5G in 168Er, adapted from
Ref. [295] (Temperature values given in legend.) In (a),
the line shape has been reinterpreted in terms of loss pa-
rameter, and the solid line results from an analytical mod-
elling of the loss process with a d-wave entrance channel.
In (b), the solid lines result from coupled-channel calcu-
lations on the three-body process in such a channel.

The bosonic isotopes of Cr have a spherical orbital
wave function in its ground state (7S3) and no nuclear
spin. Thus, the short-range van der Waals scattering of
two ground-state bosonic Cr atoms is isotropic and no
interaction of hyperfine origin between collision channels
arises. Consequently, a single anisotropic DDI poten-
tial explains the emergence of FRs in this case. The
DDI couples channels with orbital angular momentum
∆ℓ = 0, 2, and the total spin can vary by ∆S = 0, 2; see
also Secs. I C 2, I C 3. Thanks to its relative simplicity, the
scattering features in this case are very well accounted for
by multichannel scattering calculations.

The first observation of FRs between spin-polarised
52Cr atoms in their absolute ground state (leading to
a total spin of the entrance channel S = 6, mS =
−6) revealed the existence of 14 FRs between 0 and
600 G [196, 296]. Coupled-channel calculations show that
the relevant closed channels are those with ℓ = 2, 4 and
with S = 2, 4 and 6. This means that second and fourth-
order mixing are relevant. In addition, it was shown
that essentially a single closed-channel bound state con-
tributes to each FR. In this way, all except one of the
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FRs could be assigned. The DDI provides the neces-
sary coupling terms, but only slightly affects the FR
positions through the molecular potential Vch(r) them-
selves. Finally, the background scattering length can
also be theoretically estimated from the comprehensive
coupled-channel calculations, giving abg = 112(14)a0.

Remarkably, two FRs, the ones with smallest B0, are
explained by a d-wave entrance channel resonant with
a s-wave closed channel [196]. Such a d-wave entrance
channel is intrinsic to the DDI coupling mechanism.
One of these two FRs was later experimentally char-
acterised [294]. The corresponding atom loss feature is
asymmetric in B and shows an unconventional depen-
dence with decreasing temperature, shifting to lower B
and with decreasing width and amplitude; see Fig. 2a.
The atom losses are shown to occur via three-body re-
combination, but with a recombination coefficient de-
pending linearly on the density n, in contrast to the usual
n2 dependence of three-body processes. This unusual
behaviour is attributed to the slow tunnelling through
the centrifugal barrier in the collision channel, and the
adiabatic elimination of the fast collision with a third
colliding atom. A precise analysis of this resonance
yields a more accurate estimate of the scattering length:
abg = 102.5(4)a0 [294].

Besides the scattering between atoms in their lowest
spin states, the analysis of Feshbach spectra and their
comparison to coupled-channel calculations also provides
information about the strengths of the spin-dependent
scattering. Generally speaking, scattering strengths de-
pend on the total spin of the pair of atoms colliding,
which is preserved during the collision in absence of the
DDI. The total spin S of the pair defines a spin channel,
corresponding to a given molecular potential and thus to
a distinct scattering length aS . The spin-polarised case
of Cr corresponds to S = 6 and the background scatter-
ing length mentioned above is actually that of aS=6. In
Ref. [196], additional spin channels were characterised,
with aS=4 = 56 a0, aS=2 = −7 a0 [196]. Additional anal-
ysis of bulk spin relaxation dynamics resulted in a de-
termination of aS=0 = 13.5 a0 [197]; see also Sec. III.
The large differences between these values provide evi-
dence for the importance of spin-dependent scattering in
Cr. Knowing this is important for investigating spinor
physics with Cr; see Secs. VI–VII.

2. Feshbach resonances in magnetic Lns

The case of magnetic Ln atoms is more intricate than
that of Cr because of their electronic structure is not
spherically symmetric. This results in an anisotropy of
the van der Waals interaction, which changes the short-
range physics [206, 207, 210]. Because both short- and
long-range interaction potentials are anisotropic in Lns,
they both induce coupling between molecular channels,
which leads to FRs. Both anisotropic potentials were
predicted to substantially contribute to the character,

distribution, and prevalence of FRs in collisions among
bosonic atoms [206]. A large number of scattering chan-
nels contribute to each resonance, making it hard for
coupled-channel calculations based on partial-wave de-
composition to converge. Indeed, in Ref. [206], ℓ up to
10 were considered, and later, this was extended up to
20 [297]. An analytical model estimates that ℓ’s up to
& 40 must be considered to reproduce experimental ob-
servations [297]. Needless to say, no perturbative treat-
ment can be safely applied.

First experimental observations of FRs in magnetic
Lns were performed on 168Er and revealed an unusu-
ally large number of FRs within a narrow magnetic field
range [173]. Soon after, theory work of Ref. [206] pre-
dicted that the high Feshbach spectral density is a gen-
eral feature of magnetic Ln atoms. Systematic high-
resolution trap-loss spectroscopy later extended the ob-
servations of dense FRs in two bosonic Er isotopes from
0 to 70 G [297]; see Fig. 3a. A statistical analysis of
the Feshbach spectra revealed correlations between the
resonance locations, with very similar characteristics for
the two bosonic isotopes. Based on the formalism of ran-
dom matrix theory, these correlations were quantified and
found to be consistent with chaotic behaviour in the scat-
tering of these atoms; see Fig. 3b. The fermionic case
was also studied and shows a ten-fold larger density of
FRs, increasing from 2.7 resonances per Gauss for the
bosons to 25.7 resonances per Gauss for the fermions.
This was attributed to the additional role of the hyperfine
structure. A similarly high density of FRs was concur-
rently reported for four Dy isotopes, three bosonic and
one fermionic, up to 6 G [298]. These measurements also
revealed a much higher density for the fermionic isotopes
as well as an intriguing temperature dependence of the
Feshbach spectrum.

The chaotic behaviour of both Er and Dy was thor-
oughly analysed and compared in the collaborative work
of Ref. [295]. Interestingly, even though Dy shows a
higher density of FRs (4.3 resonances per Gauss), the de-
gree of correlation in the resonance locations is similar for
the two species, and in fact, slightly larger for Er. This
work also introduced a new scheme for coupled-channel
calculations, employing a basis comprised of B = 0G
Hamiltonian eigenstates. Such a basis is more amenable
to non-central scattering potentials, allowing more rapid
computational convergence. This theoretical analysis es-
tablished the leading role played by the van der Waals
anisotropy in the chaotic scattering behaviour: the DDI
alone cannot account for the correlations. The slightly
larger degree of correlation observed in Er FRs may be
attributed to a larger short-range anisotropy.

The temperature dependence was further analysed in
Ref. [295]. At a statistical level, spectra at higher tem-
perature exhibit a larger density of resonances with the
degree of correlation that is nearly unchanged. The tem-
perature dependence of individual resonances reveals be-
haviour compatible with d-wave entrance channel pre-
dictions, similar to the case in Cr [294]; see Fig. 2b. The
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b

FIG. 3: (a) Trap loss spectroscopy measurements performed on a cold (T = 330 nK) gas of 168Er polarised in its
absolute ground state, measured after holding 400-ms at B. (b) Nearest-neighbour spacing distribution from spectrum
(a) (dots). s is the spacing in B, renormalised by the mean spacing (inverse of the resonance density). It is compared
to the uncorrelated Poisson distribution (dashed line) and to the fully-correlated Wigner Dyson distribution (dashed
dotted line) via a fit to the Brody distribution (solid line), measuring the degree of correlation. The short dashed line
shows results from coupled channel calculation with ℓ up to 20. Figure adapted from Figs. 1a and 4a from Ref. [297]

weakening and disappearance of higher partial-wave en-
trance channels in the ultracold regime were proposed
as an explanation for the variation of the FR density
with temperature. A subsequent work using Ho atoms
also revealed a dense FR spectrum as well as a similar
temperature dependence [299]. In contrast to the Er
system [295], the chaotic character of the Ho FR spec-
trum was observed to increase with T , ranging from in-
termediate at T 2µK to almost fully chaotic at T 12µK.
In the high-temperature regime, the shifts of Ho d-
wave resonances deviate from a linear dependence on T ,
which is expected at low temperatures, as observed in
Er [295].The authors speculate that this behaviour is re-
sponsible for the observed change in FR statistics.

Because of the complexity and non-perturbative char-
acter of the coupling between channels, the FRs cannot
in general be assigned to a particular bound state. A few
assignments were, however, assigned in the low magnetic
field region of Er [76]. This was accomplished by compar-
ing measurements of the molecular state binding energy
with coupled channel calculations.

Broader FR resonance can be observed on top of the
forest of narrow FR features in the Ln atoms. Such fea-
tures were already observable in the early FR scans of
Ref. [297], where, e.g., a 3.5 G-wide FR is found at 57 G
for 168Er; see Fig. 3a. A detailed study of such features
was performed in 164Dy [77] up to 600 G and revealed
several more broad features. Two of these broad fea-
tures were extensively characterised via spectroscopy of
the molecular state binding energy. Universal proper-
ties were found that are characteristic of open-channel-
dominated s-wave FRs. Particularly noticeable is the
decoupling of the broad FR from the chaotic background
of the narrow FRs, allowing one to observe the universal
behaviour of the halo dimer binding energies over several
Gauss to the low-B side of the FRs; see Fig. 4. A similar
study was later reported in 162Dy [187]: two broad FRs
with s-wave character are found at magnetic fields in the

20–30 G range. Broad FRs are also observed in Ho [299].

a. Scattering length measurements As is the case for
other multi-electron atoms [10], ab initio calculations fail
to predict the scattering lengths of Ln atoms. Instead,
these must be experimentally measured. A common tech-
nique involves the observation of cross-rethermalisation:
one observes the rethermalisation dynamics of a ther-
mal sample after exciting it along one of its the three
spatial directions [300]; the thermalization rate is pro-
portional to the elastic cross section, which in turn is
proportional to the square of the scattering length. The
proportionality relies on a theory prediction for the aver-
age number of collisions necessary for thermalisation and
depends on the particular partial waves and interaction
involved in the collision [301]. Bohn et al.[302] calculated
this for the anisotropic DDI, which was verified experi-
mentally in Ref. [303] using spin-polarised fermionic Er.
This theory allowed Tang et al. [304, 305] to extract scat-
tering lengths from cross-rethermalisation measurements
of two Dy isotopes [304, 305]. The theory-experiment
comparison resulted in a = 122(10) a0 for 162Dy and
a = 92(8) a0 for 164Dy at B = 1.58G. This field is at
least 0.1G away from any FR in either species. These a-
values, as well as their B-dependence, were also measured
in Ref. [306] using a different method involving a detailed
analysis of the anisotropic expansion of thermal gases af-
ter release from their confining potentials., The analysis
relied on the competition of the DDI and the contact
interaction; see Sec. IVA2 for details. The results are
consistent with the cross-rethermalisation experiments:
a = 154(22) a0 for 162Dy and a = 96(22) a0 for 164Dy,
but with larger error. A similar measurement near a 5 G
FR in 162Dy yielded a background scattering length of
a = 157(24) a0, which is consistent with the lower-field
measurement, but larger than that obtained with cross-
rethermalization [304, 305]. A third scheme relies on the
universal scaling of the molecular binding energy close to
broad FRs to extract scattering lengths in Dy. Such an
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analysis used a relatively high-field resonance in 164Dy to
obtain abg = 91(16) a0 [77], which is in good agreement
with the low-B values of Refs. [304, 306]. A similar study
in 162Dy yielded abg = 220(50) a0 [187]. This is consis-
tent with the a = 154(22) a0 measurement in Ref.[306],
but larger than both the 5-G measurement in Ref.[306]
and the a = 122(10) a0 measurement of Ref. [304].

For Er, preliminary cross-rethermalisation measure-
ments were first reported in Ref. [245] for the four bosonic
isotopes in the low-field regime. A simpler analysis of the
rethermalisation rates than used in Ref. [304] yielded
abg = 81(10) a0 for 164Er, abg = 72(13) a0 for 166Er,
abg = 200(23) a0 for 168Er, and abg = 221(22) a0 for
170Er. In 170Er, the background scattering length was
first thought to be negative, but more recent measure-
ments have questioned this [188]. These Er abg measure-
ments were taken by averaging data obtained at differ-
ent B-values between 0.2 G and 1 G, away from FRs. A
more precise estimate was later developed to extract a
and its B dependence by loading a quantum gas into a
deep 3D lattice and performing lattice-modulation spec-
troscopy [307]. This probes the Mott-insulator excitation
gap, which is related to the scattering length through the
on-site interaction energy; see also Sec. VII B. This tech-
nique yielded a = 137(1)a0 at 0.4 G for 168Er [307], and
for 166Er, it was used to make a sequence of measure-
ments of a versus B from 0-to-2.5 G [250]. In this range,
the data are well-described by overlapping FRs with
a B-dependent background scattering length abg(B) =
62(4) + kB, with k = 5.8(1.2) a0/G.

In the case of Ho, recent experiments reported scat-
tering length values using cross-rethermalisation. The
first such measurement yielded a background value of
abg = 144(38) a0 [299], while a subsequent experiment
reported abg = 90(11) a0 via a more extensive set of mea-
surements [75].

We note that a debate regarding the exact values of the
scattering lengths in bosonic Er and Dy in the quantum
degenerate regime has arisen in light of measurements of
these parameters extracted from the many-body physics
of the droplet and supersolid states; see also Sec. V.
These differ from the two-body collision-based methods
described above. Central to the debate is the appropri-
ateness of the description of the many-body physics based
on perturbative mean-field and local-density approxima-
tions, on the one hand, and on the other, regarding the
relevance, in the regime of interest, of corrections be-
yond the Born approximation and the role of the momen-
tum dependence in the two-body scattering description.
That is, the many-body theory used to extract scattering
lengths in such finite-size quantum systems could be as
problematic as the use of ultracold thermal gases in the
former collision-based measurements. Those questions
are beyond the scope of the current section, but addi-
tional discussions may be found in Secs. VB and VC 4.

Concerning the scattering length itself, the most ex-
tended discussions focus on the 164Dy case. Studies of
single quantum droplets provide estimates of the back-

ground scattering length via a theory-experiment com-
parison of different many-body properties, namely the
critical atom number for the existence of a self-bound
droplet state and the frequencies of droplet’s elemen-
tary excitations [247, 308, 309]. These investigations
yield values of abg = 62.5 a0 and abg = 69(4) a0 at
B ≈ 6.6G and B = 0.8G, respectively. While they are
mutually compatible, they are consistently lower than
the measurement results in Refs. [77, 304, 306] obtained
with thermal gases. Ferrier-Barbut et al. [308] specu-
late that the discrepancy could come from the different
temperatures of the samples used in those two sets of
experiments and related momentum dependence of the
scattering [310]. Reference [309] extends the measure-
ments of the critical atom number of a self-bound quan-
tum droplet (see Sec. VC 5) and was able to extract the
ratio between the background scattering lengths of the
two dysprosium isotopes to be abg,162/abg,164 = 2.03(6).
Using abg = 69(4)a0 for 164Dy [308] yields a value of
abg = 140(7)a0 for the background scattering length of
162Dy. This agrees with most of the values obtained from
thermal samples within their uncertainty [187, 304, 306].
In the Er case, we note that sensitive probes based on
collective excitations of single macro-droplets [250], su-
persolids [311], and roton excitations of dBECs [312, 313]
show a good agreement between experiment and theory
using the lattice-calibrated scattering lengths values.

Finally, we note that little information is available on
Ln spin-dependent scattering, as opposed to the well-
characterised Cr system. One exception is the case of
the two lowest energy weak-field seeking spin states of
fermionic 167Er, whose scattering have been experimen-
tally investigated in Ref. [314]; see also Sec. VI. Exten-
sive loss spectroscopy measurements were performed in a
limited B-field range (up to 2G) and for varying mix-
ture compositions. This enabled the identification of
both intra-spin FRs and inter-spin FRs; spin-polarised
loss spectra have also been observed in 161Dy for its low-
est energy weak-field seeking spin states [252]. Lattice
modulation spectroscopy also characterised the B-to-a
conversion close to a relatively broad inter-spin FR. The
background scattering for the interaction of the two low-
est spin-states is abg = 91(8) a0. Theoretical investiga-
tions have also investigated spin-dependant resonances
[208].

An important difference between Lns and Cr lies in
the origin of spin-dependent scattering. In contrast to
Cr, the dominant effect in Lns arises from their orbital
anisotropy (i.e., L 6= 0; see also Sec. II B). This induces an
interaction term that couples the angular momentum of
each individual atom to the orbital momentum of the pair
and results in sets of molecular potentials with very dif-
ferent character versus Cr atoms. More systematic stud-
ies, especially experimental, are needed to fully elucidate
the spin-dependent collisional physics. A relevant open
question relates to the density of the Feshbach spectra in
Ln spin mixtures and in fermionic Ln isotopes. Regard-
ing the latter, the density of FR spectra at high field in
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fermionic Dy seem to be spin-dependant [252]. Ericson
fluctuations, known from resonances in nuclear physics,
may provide an appropriate framework for explicating
the field dependence of the overlapping loss spectra [315]
observed in Ref. [252]. Interspecies scattering involving
Ln atoms is also of recent interest [188, 189, 316, 317].

3. Feshbach molecules of magnetic atoms

Besides tuning of a, FRs provide the ability to as-
sociate a pairs of free atoms into a loosely bound
molecule [21, 269, 290–292]. A FR couples two states,
the state of the two free particles scattering in the en-
trance channel and the bound state of the closed channel.
The relative energy of the two states is tunable via the
B-field thanks to their different magnetic moments. The
coupling of the two states yields an avoided crossing at
B = B0 where their bare energies coincide. By ramping
B across the resonance (from B > B0 to B < B0), one
can then drive the population of the molecular state by
(adiabatically) following the low-energy state [290, 318–
322]. Alternative approaches use small-amplitude modu-
lation of B at a frequency resonant with the bound-state
energy for B . B0 [323, 324], or even further away from
the FR via radiofrequency coupling [325, 326]. Such pro-
tocols are commonly used in alkali metal experiments,
with typical conversion efficiency of few tens–of–percents
in the bosonic case and close to unity in the fermionic
case. Note that these molecules are not in their inter-
nal ground-state, but in a highly excited (rovibrationnal)
state. Close to the FR, the properties of the weakly-
bound molecule, referred to as a halo-dimer, follow a
universal behaviour.

By producing Feshbach molecules of magnetic atoms,
one creates ultracold gases of dipolar particles with even
larger permanent dipole moments. Indeed, compared to
the bare atoms, the mass m of the molecule is doubled
while the magnetic moment µ is also nearly doubled, re-
sulting in a dipolar length add ∝ mµ2 eight times longer.

An experiment using Er has demonstrated and stud-
ied the production of an ultracold sample of Er2 Fesh-
bach molecules using B-field ramps [76]. Pure molecular
samples were produced by the resonant removal of the re-
maining free atoms. The gas contained about 2×104 Er2
at 300 nK with typical densities of ∼ 8 × 1011 cm−3 and
lifetimes of ∼ 10ms. Ultracold samples of molecules in
four different molecular states, associated with four dif-
ferent low-field FRs of 168Er, were produced. The prop-
erties of the Feshbach molecules have been further mea-
sured, in particular the magnetic moment, which were
found to be µ/µB > 11 for three of the four states.
By contrast, the bare atomic value is µ/µB ≈ 7. The
impact of the confinement geometry and relative dipole
orientation on the scattering properties of the Feshbach
molecules has also been investigated. In particular, a re-
duction of the relaxation rate in quasi-two dimensional
geometry with out-of-plane dipole orientation was ob-

served.
In the Cr case, the study of Feshbach molecules has

focused on a single peculiar resonance with an d-wave
entrance channel [294, 327]. However, no ultracold sam-
ple has yet been produced. In this case, the molecular
state is very short lived and studies have focused on the
remarkable atom-loss behaviour associated with the spe-
cial character of the resonance.
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FIG. 4: Atom-loss spectrum (top) and measured molec-
ular binding energy (bottom) of 164Dy near a broad FR.
The atom loss spectrum exhibits a very high density of
narrow resonances and one broad feature. The binding
energy of the weakly bound dimer displays a universal
quadratic behaviour (dashed line). The very weak varia-
tion of the binding energy as a function of magnetic field
shows that the dimer has a magnetic moment very close
to that of two free atoms µ ≈ 20µB. Data originally
published in [77].

In the Dy case, studies have focused on the proper-
ties of the halo dimers close to the broad FRs found at
relatively large B in two bosonic isotopes [77, 187], see
also Sec. II D 2. The corresponding magnetic moments
range from µ ≈ 18µB to µ ≈ 20µB; see Fig. 4. A strik-
ing observation is that these halo dimers decouple from
the many bound states coming from the overlaid forest of
narrow FRs. This makes the broad FRs very promising
for the production of ultracold gases of highly magnetic
molecules. They have not yet been investigated, but this
constitutes an interesting prospect for future work.

E. Comparison between the different systems

Table I summarises the electronic, isotopic, scattering-
related properties as well as the characteristics of all the
available degenerate quantum gases for all isotopes, both
bosonic and fermionic, of the highly magnetic elements,
Cr, Er and Dy. The background εdd varies among the
elements and isotopes; e.g., it is εdd ∼ 0.16 for Cr, varies
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TABLE I: Summary of the main atomic properties, scattering properties, and available quantum gases of highly
magnetic atoms made of Cr, Er or Dy. The electronic ground state is denoted “g.s." The exchange statistic—fermionic
(f) or bosonic (b)—is listed under “stat." The natural abundance is under “abound. denotes.: I is the nuclear spin
quantum number. εdd is the background value add/abg. “Degenerate gas" lists the properties of the most populous
gas of that isotope produced, as reported in journal articles. For all these, the BEC’s are almost pure; i.e., the thermal
fraction is small.

atom g.s. µm(µB) stat.:isotope abund. I add(a0) abg(a0) εdd degenerate gas
Cr 7S3 6 b:52Cr 83.79% 0 15.3 102.5(4) [162] 0.150(6)BEC, 5× 104 [167, 168]

f:53Cr 9.5% 3/2 15.6 – – DFG, 103, T
TF

∼ 0.6 [175]

b:50Cr 4.35% 0 14.7 40(15) [328] 0.37(14)none
b:54Cr 2.36% 0 15.9 unknown none

Er 3H6 7 b:168Er 26.8% 0 66.3 137(1) [307] 0.484(3)BEC, 1.5× 105 [173, 192, 245]
b:166Er 33.6% 0 65.5 68(5) at

B=1G [250]
0.96(7) BEC, 105 [250]

f:167Er 23% 7/2 65.9 – – DFG: 4× 104, T
TF

= 0.1 [174, 192, 245]

b:170Er 15% 0 67 preliminary
estimate
221(22) [245]

0.30(3) BEC, 104 [188]

b:164Er 1.6% 0 64.7 preliminary
estimate
81(10) [245]

0.8(1) none

b:162Er 0.14% 0 63.9 unknown none
Dy 5I8 10 b:164Dy 28.3% 0 130.7 disagreeing

estimates:
69(4) [308, 309]
or 92(8) [77,
304, 306]

1.9(1)
or
1.4(1)

BEC, 1.5 × 104 [171, 185, 251], 3.5 ×
104 [329], with typically sizeable ther-
mal fraction remaining.

b:162Dy 25.5% 0 129.2 most precise
estimates are
122(10) [304]–
157(4) [306]

0.92(5)-
1.06(9)

BEC, 105 [249],5× 104[190, 330]

f:163Dy 24.9% 5/2 130 – – none
f:161Dy 18.9% 5/2 128.4 – – DFG: 4 × 104, T

TF
= 0.1 [252], 8 × 104,

T
TF

= 0.085(10)[189]

b:160Dy 2.3% 0 127.6 unknown BEC, 103 [249]

between 0.9 . εdd . 1.9 for Dy isotopes, and is be-
tween 0.3 . εdd . 1 for Er isotopes. All isotopes ex-
hibit FRs, which provide opportunities for tuning εdd;
see Secs. II D, IV, and V.

With respect to degenerate gases, all three species offer
relatively large BECs of roughly similar sizes. The maxi-
mum population of the BEC depends on the isotope, not
only because of its natural abundance, but also because
of its scattering properties. In particular, isotopes with
a background value of εdd & 1, or εdd < 0 (i.e., with a
negative scattering length), are more challenging to con-
dense. They typically require a tuning of a during the
evaporation process by setting B close to a FR to sta-
bilise the quantum gas at the mean-field level. This is in
particular the case for the most abundant isotope of Dy,
164Dy, for which the BEC numbers are otherwise smaller
than for the 162Dy isotope and Er’s most populous BEC.
In fact, we point out that, due to the extreme density of
FRs in the spectra of open-shell Lns, the choice of the

B value at which the evaporative cooling scheme is per-
formed is a crucial parameter to adjust for all isotopes of
Er and Dy, and even more so for their fermionic isotopes.
The population of the achieved quantum gases greatly
depend on it. Large and cold degenerate Fermi gases of
Dy and Er are also possible due to the ability to perform
direct evaporative cooling. The quantum degeneracy of
fermionic Cr has been achieved, but so far, is smaller and
not as cold with respect to the Fermi temperature.

III. Ultracold dipolar scattering

The notion of scattering in the ultracold regime has
been briefly introduced in Secs. I and II. We will now
extend our overview on ultracold collisional physics be-
fore describing the special features of the scattering in-
duced by the DDI. Topics include the universal proper-
ties of elastic dipolar scattering (i.e., coming from spin-
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conserving collisions; see Sec. III B); the special features
of inelastic dipolar scattering (i.e., dipolar relaxation),
including its local character and suppression via exploit-
ing quantum statistics and confinement (Sec. III C); and
finally the anisotropic character of (elastic) dipolar scat-
tering (Sec. III D).

A. Relevant aspects of scattering theory

Collisions among atoms in dilute ultracold gases are
described within quantum scattering theory, which ac-
counts for the long-distance behaviour of the wavefunc-
tion encompassing the relative motion of two colliding
atoms, the so-called collisional wavefunction [10, 79, 266].
In brief, any incident wave is decomposed in plane waves
of momentum k, whose scattering yields outgoing spher-
ical waves of amplitude f(k,n) in the direction n = r/r.
The scattering amplitude f directly relates to the inter-
action potential V (r) and, within the first-order ’Born’
approximation, f simply reduces to the Fourier transform
of V (r). The scattering cross section σ then corresponds
to the spherical integration of the square norm of f over
the scattering direction σ(k) =

∫
|f(k,n)|2d2n.

1. Partial wave expansion

In the case of an isotropic potential V (r) = V (r),
expanding the collisional wavefunction in spherical har-
monics is a very powerful tool as each of the resulting
radial waves are decoupled from one another. These are
indexed by l (and ml), corresponding to the quantum
numbers for the orbital angular momentum norm (and
projection). For an isotropic potential, only spherical
harmonics with projection ml = 0 contribute, while in
the case of anisotropic interactions, ml 6= 0 harmonics
may also play a role. Each spherical harmonic component
of the expansion is an independent solution of the 1D
Schrödinger equation, where the potential V (r) is aug-
mented by a centrifugal term Uc,l(r) = ~

2l(l + 1)/mr2.
For the isotropic case, asymptotically, the outgoing wave
differs by only a phase shift δl from the incoming wave.
Therefore, the general scattering amplitude f decom-
poses into

f(k, θ) =
1

2ik

∞∑

l=0

(2l + 1)(e2iδl(k) − 1)Pl(cos θ)

=

∞∑

l=0

fl(k, θ), (25)

where θ describes the angle between k and r and varies
between 0 and π. Here, Pl denote the ordinary Legendre

polynomials. The scattering cross section then reads

σ(k) =

∞∑

l=0

σl(k), (26)

σl(k) =
4π

k2
(2l+ 1) sin2[δl(k)]. (27)

2. Ultracold limit and short-range interactions

For an interaction of short range b, we can define the
temperature below which the system is in the ultracold
collisional regime as kBT ≪ ~

2/mb2. In this regime, the
centrifugal barrier at r = b is much larger than the typical
kinetic energy of the colliding particles such that they do
not feel the interaction potential in l > 0 harmonics (they
are reflected at r > b). Therefore, only l = 0 contributes
to the scattering.

a. Scattering length: In the ultracold limit, the scat-
tering amplitude and the cross section tend to finite val-
ues given by the k → 0 limit of their l = 0 contributions:
f ≈ f0 → −as, and σ ≈ σ0 → 4πa2s . This is for the case
of distinguishable particles given by the sum over all l in
Eq. (26); see Sec. III A 3 for the role of quantum statis-
tics in scattering. The s-wave scattering length a is then
the only (non-universal) parameter describing the ultra-
cold scattering physics and it relates to the s-wave phase
shift via a = limk→0 δ0(k)/k. Hence, in the ultracold
regime, the details of the short-range interaction are all
represented by the value of a single parameter. Moreover,
potentials yielding the same value of a are interchange-
able. It is therefore useful to employ a particularly sim-
ple form of the potential, the contact pseudo-potential

Us(r) = gδ(r), with g = 4π~2a
m [9, 10, 79, 91, 331] [332].

b. Power-law potentials and the case of van der Waals
interactions: The scaling of δl(k) can be deduced from
the scattering potential form by solving the associated
1D Schrödinger equation. As introduced in Sec. I, in
the case of a power-law interacting potential V (r) =
Vn(r) = −Cn/r

n, one finds that δl(k) scales as k2l+1

if l < (n − 3)/2 and as kn−2 otherwise [79, 80]. There-
fore, the ultracold regime described above only holds for
potentials decreasing sufficiently fast, as n > 3.

Typically, this condition is satisfied by the dominant
interaction between two atoms in a dilute gas, the van
der Waals interaction, which is an n = 6 power law.
This scaling arises from the virtual exchange of photons
between two fluctuating electric dipoles: while on average
the electric dipole of each atom is zero (in the absence of
an electric field), a dipolar fluctuation of the electronic
distribution of one atom can distort the other’s, leading
to the product r−3·r−3 for the interaction dependence.
The ultracold limit is defined (in the absence of a direct
DDI) by kBT ∼ ~

2/mb2. Associating b with the van
der Waals length rvdW = (mC6/~

2)1/4, we find that the
ultracold limit is typically reached for temperatures of
hundreds of µK.
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In the ultracold limit, the scattering cross section for
partial waves l = 0, 1 at low collision energy E = ~

2k2/m
follows the so-called Wigner threshold law [333]:

σl(E) ∝ k4l ∝ E2l, (28)

while for l > 2, σl(E) ∝ k6 ∝ E3. Only the l = 0 cross
section does not vanish in the E → 0 limit. This is in
contrast to the case of interacting polarised dipoles in
which n = 3. In this case, the above scaling laws—based
on the assumption of a short-range potential—are not
valid, and we will see (Sec. III B) that all partial waves
contribute.

3. Role of quantum statistics

Quantum statistics plays a prominent role in the ul-
tracold regime, as the wavefunction should be appropri-
ately symmetrised for collisions among identical parti-
cles, i.e., atoms of the same isotope in the same spin
state. Indeed, the total collisional wavefunction of any
pair of atoms—which is comprised of the tensor product
of wavefunctions describing both their spin and orbital
degrees of freedom—must be symmetric (antisymmetric)
under particle exchange for bosons (fermions). For ex-
ample, if their spin state is identical, then their motional
state must be symmetric (antisymmetric), and thus only
even (odd) l partial waves contribute to the partial wave
decomposition of Eqs. (25) and (26). These expressions
may be rewritten as:

f(k, θ) =
1

ik

∞∑

l=0

ǫ(l)(2l + 1)(e2iδl(k) − 1)Pl(cos θ), (29)

where θ now varies between 0 and π/2 and ǫ(l) depends
on the statistics of the particles. For bosons (fermions),
ǫ(l) = 0 for l odd (even) and 1 in the diametric case l
even (odd). Similarly:

σ(k) =

∞∑

l=0

σl(k), (30)

σl(k) =
8π

k2
ǫ(l)(2l + 1) sin2[δl(k)]. (31)

For van der Waals interactions, the Wigner threshold
law, Eq. (28), implies that the cross section for the lowest
partial wave accessible to fermions, l = 1, vanishes as
E2, while for bosons it tends toward a constant 8πa2.
One key consequence lies in the fact that while ultracold
bosonic gases can be evaporatively cooled to degeneracy
via short-range elastic thermalizing collisions, identical
fermions cannot.

B. Universal elastic dipolar scattering

The above cross sections for van der Waals interactions
may be said to be non-universal, in that they depend on a
parameter a that cannot be calculated from fundamental
constants and fixed parameters of the system alone (like
mass or quantum numbers). Indeed, a is calculable ab
initio within state-of-the-art methods only for light sys-
tems consisting of few electrons, such as hydrogen and
helium [334, 335]. Accurately predicting the scattering
length for more complex systems is very challenging. In
contrast, we will see that it is possible to derive the dipo-
lar cross section from first principles. This is due to the
long-range nature of Vdd, which often allows one to ne-
glect the short-range part of the interaction potential.
The longer-range character of the DDI (n = 3) also leads
to a different Wigner threshold law; namely, one that ex-
hibits a constant, non-zero cross section even for identical
fermions.

In contrast to the form of the δl(k) scaling presented
above, for n = 3, δl(k) ∼ k for all partial waves such
that they all contribute to the scattering cross section
even in the low-energy limit. Specifically, one can write
δl(k) ≈ Ak2l+1 + Bk, where A is the strength of the
short-range part of the potential and B is the strength
of the long-range dipolar portion beyond the centrifugal
barrier. A and B may be calculated under the first-order
Born approximation [336] [302, 337–340]. This yields the
total cross sections σl even (σl odd) for collision in even
(odd) partial waves:

σl even = 4πa2 +
16π

45
D2, (32)

σl odd =
16π

15
D2, (33)

withD = S2d2m/~2 = 3add and add as defined in Eq. (6).
For indistinguishable bosons (fermions) σ = 2 · σl even

(σ = 2σl odd), while for distinguishable particles σ =
σl even + σl odd.

Regardless of the exchange statistics of the atoms or
the value of a, the cross sections of dipolar atoms are
finite and energy independent as k → 0. Since D con-
tains only fundamental constants and known quantum
numbers, we may consider its contribution to the cross
section universal—i.e., not depending on the details of
short-range physics [340]. However, this statement ig-
nores the effects of molecular potentials at certain values
of magnetic field, as pointed out in Refs. [162, 337] and
later discussed in Sec. III C 1. In addition, as the dipole
strength is increased, corrections beyond the first-order
Born approximation can cause D to differ from its uni-
versal value [341].

An important consequence of the dipolar Wigner
threshold law is the fact that identical dipolar fermions
can evaporatively cool themselves even at low temper-
atures. This effect was used to cool spin-polarised
fermionic polar molecules of KRb, using forced evapo-
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ration in an optical dipole trap, to T ≈ 2TF [342]—
most recently T ≈ 0.6TF was achieved in a similar sys-
tem [43]. Subsequently, a Fermi gas of identical, spin-
polarised 161Dy atoms was evaporated to T/TF ∼ 0.7
with ∼3×103 atoms remaining [172]. The deeply degen-
erate regime was then reached with identical fermions of
167Er [174], achieving T/TF ≈ 0.1 with several times 104

atoms remaining. Similar temperatures and trap popu-
lations have also been reached with 161Dy [252].

In Ref. [174], the spin purity of the sample was demon-
strated and the elastic cross section was measured via
cross-dimensional rethermalisation measurements [300];
see also Sec. III D 1. The extracted elastic cross-section
at small T/TF was in good agreement with the universal
value of Eq. (33) without adjustable parameters. More-
over, this study showed that the evaporation efficiency is
among the highest achieved in an ultracold gas experi-
ment. This stems from the Pauli suppression of inelastic
processes for single-spin fermionic assemblies. Together,
these studies demonstrated the efficacy of universal elas-
tic dipolar scattering for degenerate Fermi gas produc-
tion. This is a far simpler technique than sympathetic
cooling with spin or species mixtures [343].

C. Universal inelastic dipolar scattering: Dipolar

relaxation

A large dipole moment enhances not only elastic
dipolar scattering but also the inelastic rate; see also
Sec. I C 3. While rapid elastic scattering is useful for ef-
ficient evaporative cooling, inelastic scattering—dipolar
relaxation in this case—usually leads to gas heating and
population loss. Inelastic dipolar scattering arises from
the anisotropy of the interaction and causes atoms to
change their spin state. In the presence of a finite exter-
nal magnetic field, the degeneracy between the sublevels
of the ground state hyperfine manifold is lifted via the
Zeeman effect. In magnetic fields inducing Zeeman split-
tings larger than kBT , atoms in metastable spin states
relax to lower-energy, stronger-field-seeking Zeeman sub-
states. The Zeeman energy is released into the orbital
motion of the collision pair, conserving total orbital mo-
mentum by increasing the atoms’ kinetic energy. Atoms
in magnetic traps whose spins have flipped to strong-
field seeking states are lost. Lost too are atoms con-
fined in traps—magnetic or otherwise—that are shal-
lower than the released Zeeman energy. Otherwise, the
relaxed atoms may remain confined but the change in
their motional state leads to an overall heating after
rethermalisation via elastic collisions. We note that for
Zeeman splittings similar to or smaller than kBT , the re-
verse process called dipolar promotion is allowed. This
was used for demagnetisation cooling of a chromium gas;
see Sec. VI C 3 a for details. For Zeeman splittings similar
to the harmonic trap excitation energy ~ω, the change in
the motional state of the colliding atoms is spectroscopi-
cally resolvable. This constitutes an atomic equivalent of

the Einstein-de-Haas effect; see Sec. VI C for details and
Ref. [17].

Only atoms in their lowest-energy spin state—i.e.,
the maximally stretched strong-field-seeking state—are
immune to inelastic dipolar scattering (and spin ex-
change) [10]. In this section, we will show that dipolar
relaxation can be seen as a short-range process for a large-
enough magnetic field. As a direct consequence, we will
describe how confinement can be used to control dipolar
relaxation. We will also see that exchange statistics plays
a role in these inelastic scattering processes. In partic-
ular, in Fermi gases, dipolar relaxation is suppressed for
certain spin configurations.

1. Inelastic cross sections

The DDI in Eq. (2) admits non-zero matrix elements
between pairs of atoms with differing spin and orbital
angular momentum. The relevant selection rules are
∆mi

F = 0,±1 for each of the two atoms i = 1, 2 and
∆l = 0,±2 for their orbital motion. To conserve total
angular momentum, ∆ml +

∑
i=1,2 ∆m

i
F = 0 must be

satisfied. The cross sections may be calculated in a first-
order Born approximation treatment [86, 162][344]. The
appropriate expression, neglecting all other interatomic
potentials [162], but including direct and exchange terms,
is

σ =
( m

4π~2

)2 1

kikf

[∫
|Ṽdd(ki − k′)|2δ(|k′| − kf)dk

′

+ ǫ̃

∫
Ṽdd(ki − k′)Ṽdd

∗
(−ki − k′)δ(|k′| − kf)dk

′

]
,(34)

where Ṽdd(k) is the Fourier-transformed matrix elements
of Eq. (2) and ǫ̃ = [1, 0,−1] for identical bosons, dis-
tinguishable particles, and identical fermions, respec-
tively [17, 86]. The ki and kf are the initial and final
relative wavevectors, respectively.

The cross sections for a collision channel starting with
a two-body stretched spin-state |F,mF = +F ;F,mF =
+F 〉 and ending in either the same state (∆ml = 0) or a
single (∆ml = 1) or double (∆ml = 2) spin-flipped state
form a hierarchy in powers of the spin F [86, 162]:

σ0 =
16π

45
F 4

(
µ0(gFµB)

2m

4π~2

)2

[1 + ǫ̃h (1)], (35)

σ1 =
8π

15
F 3

(
µ0(gFµB)

2m

4π~2

)2

[1 + ǫ̃h

(
kf
ki

)
]
kf
ki
, (36)

σ2 =
8π

15
F 2

(
µ0(gFµB)

2m

4π~2

)2

[1 + ǫ̃h

(
kf
ki

)
]
kf
ki
. (37)

In these expressions, σ0 is the elastic cross section dis-
cussed in the previous section; σ1 and σ2 are the cross
sections for single spin-flip and double spin-flip dipolar
relaxation processes, respectively. The kinematic terms
kf

ki
=
√
1 +

m∆E∆ml

~2k2
i

are dictated by the energy conser-
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vation condition and depend on the number ∆ml of spin
flips involved in the collision. This is because ∆E∆ml

depends on the change in kinetic energy of the atomic
pair. Typically ∆E∆ml

= ∆ml∆E, where the Zeeman
energy splitting ∆E ∝ B. The value of h (x), defined
on (1,∞), monotonically increases from h (1) = −1/2 to
h(x→ ∞) = 1− 4/x2 [86, 162, 340].

The inelastic cross sections in Eqs. 36 and 37 contain
only fundamental constants, atomic quantum numbers,
and kinematic variables. Therefore, just like the elas-
tic dipolar collisions, one may consider inelastic dipolar
scattering a universal process in the first-order Born ap-
proximation limit. We note that Ref. [162] extended the
cross section calculation to consider the effect of molecu-
lar potentials, and in particular, that of the short-range
van der Waals interaction. The authors demonstrate the-
oretically and experimentally the effect of a finite scatter-
ing length on the dipolar relaxation cross section. While
Eqs. (36-37) are good approximations at low magnetic
field for which kfa ≪ 1, the effect of the molecular po-
tential becomes important when B is such that kfa & 1.
This leads to deviations from universal behaviour (see
below).

2. Inelastic cross section measurements

Experiments typically do not give direct access to
the cross section, but rather to collisional rates. In a
gas at thermal equilibrium, the dipolar relaxation colli-
sional rate is deduced from the above cross section via
βdr = 2〈(σ1 + σ2)vrel〉th, where vrel = 2~ki/m describes
the initial relative velocity between a pair of particle and
〈.〉th defines a thermal average over the gas. This col-
lisional rate has two contributions, one from collisions
involving single spin-flips and one from double spin-flips

respectively. The latter is β
(1,2)
dr = 2〈σ1,2vrel〉th.

Following earlier studies of weakly magnetic
atoms [345–347], dipolar relaxation was quantita-
tively studied in bosonic Cr [86, 348]. In these studies,
52Cr was magnetically trapped in the highest energy
(i.e., low-field-seeking) Zeeman sublevel |S,ms〉 = |3, 3〉.
Dipolar relaxation in Cr takes the atoms initially in
the state |S,ms;S,ms〉 = |3, 3; 3, 3〉 to |3, 3; 3, 2〉S
(|3, 2; 3, 2〉) via a single (double) spin flip, where S
denotes the symmetrised total wave function. The
spin-flipped atoms may be lost from the trap or, if not,
heat the gas due to their increased kinetic energy. The
single and double spin-flip processes were characterised
by studying both the rate of population loss from
|S,ms〉 = |3, 3〉 and the rate of temperature increase
in the gas. The overall dipolar relaxation rate was
found to be four orders–of–magnitude larger than in
weakly magnetic alkali-metal atoms [86]. Moreover, the
data were in reasonable agreement with cross section
predictions based on the first-order Born approximation
given above, i.e., Eqs.(36) and (37).

Dipolar relaxation processes limit the temperature

and density achievable in magnetically trapped gases of
highly magnetic atoms. In contrast, optical traps enable
the trapping of all Zeeman sublevels, and in particular
of the lowest of these states, thus providing immunity to
dipolar relaxation and opening the way to reaching higher
gas phase-space densities. Additional dipolar relaxation
data for Cr [162] and Dy [165] at lower temperatures
(100’s of nK) were performed using optical trapping [349].
In optical traps, because of limited trap depth, the parti-
cles involved in dipolar relaxation are typically lost (ex-
cept at very low magnetic field, see Sec. VI for details)
and loss spectroscopy enables the characterisation of the
collision rate. These additional experimental results also
agreed well with predictions using the first-order Born ap-
proximation. Because the first-order Born approximation
is valid for only weakly interacting systems (stronger in-
teractions cause higher-order terms to be non-negligible),
these findings imply that the atoms’ DDI are not so
strong as to invalidate this convenient approximation. To
conclude, the first-order Born approximation should hold
for dipolar collisions among any element (Dy being the
most magnetic stable element of the periodic table) as
long as the atomic density remains on a similar scale as
investigated in these works. Such densities are typical of
repulsive three-dimensional gases.

We note that the magnitude of σ1 for Dy at B = 0
can be up to 100×-larger than that of the alkali metal
caesium. In addition, Ref. [165] pointed out that, while
the ratio of σ1/σ2 = F−1 ≪ 1 for the stretched states
of large-spin atoms, i.e., those with |mF | ≈ F , these
same atoms exhibit large ratios of σ2/σ1 for states near
mF = 0. Indeed, σ2 for these states can be larger than
σ1 for the stretched states: One cannot avoid dipolar
relaxation simply by employing spin states near mF = 0.

3. Interaction range for dipolar relaxation

While the elastic dipolar interaction is long-ranged,
Ref. [162] shows that the dipolar relaxation processes are
intrinsically short-ranged, despite the same 1/r3 scaling.
This effect stems from the reduced overlap between the
incoming and outgoing waves due to the increase in ki-
netic energy. Specifically, while the integral overlap of
Eq. (34) for σ0 involves incoming and outgoing waves
oscillating at the same frequency (ki), for inelastic colli-
sions, the incoming and outgoing wavefunctions oscillate
at different frequencies and become spatially mismatched
at long distance, averaging to zero. Assuming a vanish-
ingly small collision energy (low T ), the range for this
effective cancellation of the overlap, Rdr, scales as 1/kf
. This is set by the release of Zeeman energy in the
spin relaxation. Hence, the range of dipolar relaxation
decreases with B following:

Rdr(B) ≈ ~√
mgFµBB

. (38)
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In terms of partial-wave decomposition, dipolar re-
laxation occurs at the interparticle distance Rdr that
matches the distance at which the energy released in
dipolar relaxation ∆E = gFµBB is compensated for by
the centrifugal energy of the output channel. This sim-
ple statement assumes that the input channel is l = 0,
which is usually the case at low T . (To satisfy the δl = 2
selection rule, the output channel is l = 2.)

The localised character of dipolar relaxation has been
revealed in the interplay between dipolar relaxation pro-
cess and other interatomic (molecular) potentials in
Ref. [162]. This results in variations of the relaxation rate
with B that deviate from that expected from the first-
order Born approximation when neglecting the effect of
molecular potentials; specifically, the rate can dip far be-
low this expectation at finite B. This strong reduction
of dipolar relaxation is shown to arise from a node in the
initial wavefunction, preventing the presence of pairs of
atoms at an inter-particle distance corresponding to the
distance Rdr at which dipolar relaxation occurs. This
provides a factor of twenty reduction in the relaxation
rate versus the rate predicted by the first-order Born ap-
proximation. This reduction relies on a non-universal
molecular potential configuration of 52Cr and it cannot
be directly extended to the other highly magnetic atoms
due in particular to the complexity of their Feshbach res-
onance spectrum.

4. Quantum statistics and dipolar relaxation: Bose
enhancement and Fermi suppression.

Now that we have discussed the short-range nature
of dipolar relaxation, we pivot to a discussion of how
this fact combines with quantum statistics to affect re-
laxation rates. As with the short-ranged van der Waals
interaction (see Sec. III A 3), one might expect a suppres-
sion of collisions between identical fermions due to quan-
tum statistics. Indeed, this is the case, because iden-
tical fermions cannot surmount the centrifugal barrier
of the lowest quantum statistically allowed partial wave
l = 1: since identical fermions cannot closely approach,
the short-ranged inelastic DDI does not lead to dipolar
relaxation of their spin. Conversely, we will show below
that the relaxation rate is enhanced for identical bosons,
since they can collide on the barrierless l = 0 partial
wave.

The dependence of the relaxation rate on quantum
statistics is manifest in the form of the terms contain-
ing the ratios of incoming and outgoing momenta in
Eqs. (36) and (37). At high B and low T , the kine-

matic terms diverge as 〈kf

ki
〉th ∝

√
B/T , where the th

denotes a thermal average. In this limit, σ1 vanishes
as 4

√
T/B for indistinguishable fermions (ǫ̃ = −1),

while it increases as 2
√
B/T for indistinguishable bosons

(ǫ̃ = +1) and is
√
B/T for distinguishable particles

(ǫ̃ = 0). The relative suppression ratio in this limit be-
comes σfermions

1 /σbosons
1 ∝ 2T/B. This scaling exhibits

FIG. 5: Dipolar relaxation for bosonic 162Dy (mF = +8)
and fermionic 161Dy (mF = +21/2). Two-body colli-
sional loss rates for 162Dy (squares) and 161Dy (trian-
gles). Curves are calculated collisional loss rates us-
ing Eq. (36) at T ≈ 400 nK with no free parameters.
Adapted from Ref. [165].

two important facts: i) Dipolar relaxation rates grow
worse for identical bosons versus B, e.g., σ1 for bosonic
Dy is 103 times larger than Cs’s at only a 1-G field; ii) σ1,2
can be suppressed for identical fermions, e.g., dipolar re-
laxation in fermionic Dy is only 10×-worse than Cs’s at a
few G, as experimentally demonstrated in Ref. [165]. It is
remarkable, and counterintuitive, that the more exother-
mic the fermionic dipolar relaxation would be, the less
likely they are to occur. This constitutes another striking
example of the role quantum statistics plays in ultracold
collisions.

Figure 5 shows measured dipolar relaxation rates for
spin polarised bosonic and fermionic Dy. Reference [165]
also shows the fermionic suppression of dipolar relaxation
of spin mixtures for processes in which the output state
of the fermions consists of identical spins [162]. This
corresponds to the time-reversed, state-changing process
of indistinguishable fermions colliding. Importantly, the
stability of a spin mixture in the lowest-two Zeeman
states opens interesting prospects for the study of many-
body spin physics. In particular, one could explore how
the DDI impacts the BEC–to–BCS crossover (see also
Sec. IVB) [14]. The stability of these states was also
exploited for the long-lived implementation of artificial
spin-orbit coupling in Dy gases; see Sec. VI D1.

5. Control of dipolar relaxation via confinement

Confinement of atoms in lower dimensions can also
suppress dipolar relaxation rates through the phase-space
reduction of outgoing scattering channels. That is, the
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relaxation rate can be lowered via the interplay between
the range of the dipolar relaxation process and the length
scales of the confinement potential. Following Eq. (38),
when the magnetic field B is small, dipolar relaxation
takes place at large inter-particle distances. Dipolar re-
laxation thus strongly depends on the trapping geome-
try, provided the size of the cloud is comparable to RDR.
This phenomenon was demonstrated in [162–164] for the
case of 1D, 2D, and 3D optical lattices. In Ref. [162],
a 1D optical lattice was shown to reduce dipolar relax-
ation in Cr by a factor of seven compared to a 3D trap
when ∆E was smaller than the gap to first transverse
excited state. The dipolar relaxation rate was further
suppressed—by three orders–of–magnitude—in a 2D op-
tical lattice of 52Cr [163]. This was achieved below the
threshold B-field determined by this gap condition for
∆E. Interband transitions mediated by dipolar relax-
ation were observed above this threshold, as illustrated
in Fig. 6. In the specific case of a deep 3D optical lat-
tice [164], it was observed that dipolar relaxation be-
comes a resonant process as a function of B due to the
quantisation of kinetic energy in the 3D-band structure.
We see that by adjusting confinement and the magnetic
field, dipolar relaxation can be either eliminated (e.g.,
to study spinor physics at constant magnetisation), or
be used to couple different lattice bands. This then re-
alises an intrinsic nonlinear spin-orbit coupling in the lat-
tice [164, 350].

Modifications to dipolar relaxation rates were also
demonstrated in Ref. [162] using RF fields. While only an
increase in relaxation rates was experimentally demon-
strated, the work showed that RF-dressing might serve
as a valuable tool to control dipolar relaxation.

6. Dipolar relaxation and spinor physics

Section VI will describe in more detail why the large
spin of the highly magnetic atoms presents attractive
prospects for the construction of exotic spinor states and
many-body phases. Dipolar relaxation can play a pos-
itive role in this regard: magnetisation-changing colli-
sions open the door to the exploration of spinor physics
under conditions of free magnetisation. For example,
controlling the field at the mG level makes the Zee-
man energy ∆E comparable to thermal excitations of
∼ kB100 nK. This induces spontaneous, incoherent de-
magnetisation from the absolute ground state. Further
control of the field down to the 100-µG level allows ∆E
to be of the order of spin-dependent interactions. This
would enable the observation of spinor phases driven by
contact interactions under free magnetisation. This de-
gree of control has already been achieved in current ultra-
cold atoms experiments [351]. With even better control,
possible experimentally, one can enter the regime where
dipolar relaxation is relevant from the many-body point
of view. For example, if Rdr > d̄, where d̄ = n−1/3

is the average particle distance, then many-body effects

(a)

(b)

(c)

FIG. 6: Control of dipolar relaxation in reduced di-
mensions. The false colour absorption image is a band
mapping of the atom population trapped in a 2D optical
lattice. (a) Integrated population profile along z yields
populations in the different Brillouin zones (BZ). Below
the threshold magnetic field for dipolar relaxation, only
the first BZ is populated (grey profile with the sharper
peak). Above the threshold, the first transverse excited
band (second BZ) is populated (red profile with the wider
peak). (b) Integrated population profile along y shows
the (1D) velocity distribution in the sites of the 2D lat-
tice. Above threshold, vibrational de-excitation of atoms
from excited bands create a non-Gaussian distribution.
(c) Fraction of atoms detected in the first excited band as
a function of the Larmor frequency after a 25-ms duration
allowed for dipolar relaxation. The lattice depth is 25Er

which sets a threshold Larmor frequency of 120 kHz. Be-
low threshold, dipolar relaxation is reduced by three or-
ders of magnitude. Adapted from [163].

may arise. Interesting vortex structures may appear due
to the Einstein-de-Haas effect since the orbital angular
momentum is increased from spin relaxation [352–354].
Strongly rotating and interacting Fermi gases approach-
ing a Laughlin state may appear [355].

In general, however, dipolar relaxation has unfortunate
consequences for the study of many-body spinor physics
in fields larger than those considered above or outside of
2D or 3D lattices where it can be strongly suppressed.
High densities are needed to enhance the interaction en-
ergy, but fast dipolar relaxation can render systems with
metastable spin states too fragile to observe in (near-
)equilibrium situations. Indeed, dipolar relaxation for
all metastable spin states in bosons is particularly se-
vere, and only a few metastable spin configurations for
fermions are sufficiently long-lived [165]. For example,
long-lived mixtures of |F,−(F −1);F,−F 〉 were achieved
in fermionic Dy and Er [165, 314] (see Sec. VI B 4) and
the same set of states was used to generate spin-orbit cou-
pling in fermionic Dy [252]; see Sec. VI D1. The study
of out-of-equilibrium dynamics is also possible for time-
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FIG. 7: a) Total dipolar cross section σ =∫
dσ
dΩ(k,k

′)dΩk′ in units of the dipolar length ad = add/3
versus the angle η between the incident scattering direc-

tion k̂ and the polarisation direction ǫ̂. The curves are for
distinguishable particles (solid black), identical fermions
(dashed blue), and identical bosons (dotted red). b) 3D

plots of σ as a function of k̂ with ǫ̂ set to the vertical
axis. Reproduced from Ref. [302].

scales up to the dipolar relaxation time scale [258, 356];
see Sec. VI B 3.

D. Anisotropic scattering

We now return to the discussion of elastic dipolar scat-
tering and explore manifestations of the anisotropic na-
ture of the DDI on scattering into different directions in
space. This 3D scattering is characterised by the dipolar
differential cross section dσ

dΩ . From the scattering the-
ory reviewed in Sec. III A, we see that the differential
cross section directly relates to the scattering amplitude
dσ
dΩ(k,n) = |f(k,n)|2. The expressions

dσB/F

dΩ , includ-
ing both the contact interaction and DDI, for identical
bosons and fermions in the first-order Born approxima-
tion are, respectively:

dσB
dΩ

(k,k′) =
D2

8

[
4

3
− 2a

3add

−2(k̂.ε̂)2 + 2(k̂
′
.ε̂)2 − 4(k̂.ε̂)(k̂

′
.ε̂)(k̂.k̂

′
)

1− (k̂.k̂
′
)2

]2
, (39)

dσF
dΩ

(k,k′) =

D2

8



4(k̂.ε̂)(k̂

′
.ε̂)− 2

[
(k̂.ε̂)2 + (k̂

′
.ε̂)2

]
(k̂.k̂

′
)

1− (k̂.k̂
′
)2
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,(40)

where k and k
′ denote the relative momenta before

and after the collision, with directions k̂ = k
|k| and

k̂
′
= k′

|k′| [302, 357]. The dipole moments are aligned

along the B-field direction ε̂. These are nontrivial func-
tions of the relative orientations of the three directions
in the problem, the incident and scattered wavevectors
and the polarisation direction of the dipoles. The total
dipolar cross sections are found by integrating these ex-

pressions over dΩ
k̂
′ and are shown in Fig. 7. For a general

angle η between k̂ and ǫ̂, these are

σB(p̂rel) = D2π

9
[72a2 − 24a(1− 3 cos2 η)

+11− 30 cos2 η + 27 cos4 η] (41)

σF (p̂rel) = D2π

3

[
3 + 18 cos2 η − 13 cos4 η

]
. (42)

Note that the results of Eqs. 32 and 33 correspond to
angle-averaged versions of the above expressions.

1. Anisotropy of rethermalisation

The anisotropy of the differential cross section may
reveal itself in the thermalisation dynamics, and in par-
ticular, via the thermalisation rate as a function of the
angle λ between ε̂ and the axis along which energy is im-
parted. This can be studied in cross-dimensional rether-
malisation experiments. Cross-dimensional rethermali-
sation (relaxation) is a method for measuring the to-
tal elastic cross section wherein the gas is brought out
of thermal equilibrium by heating it along one or two
of three directions [300]. One then observes the time
for the temperature in the third direction to equilibrate.
The time constant τ for this typically exponential re-
laxation process may be related to the cross section via
τ = α/nvσ, where n is the average number density, v is
the mean relative speed, and σ is the elastic cross sec-
tion. The anisotropy of the differential cross section ap-
pears through the parameter α, which is the number of
collisions, on average, for rethermalisation. For s-wave
(p-wave) collisions, α = 2.5 (25/6 ≈ 4.17) [301]. How-
ever, for dipolar particles, α becomes angle dependent
due to the anisotropic differential cross section [302]. Its
value is plotted in Fig. 8(a,b) versus the angle λ between
the axis along which energy is imparted and ε̂. We see
that α can change by more than a factor two versus angle
for fermions, while sightly less than two for bosons. The
control of λ is therefore an important tool for optimis-
ing, e.g., evaporative cooling efficiency: rethermalisation
of fermions (bosons) is far more efficient at 45◦ (90◦) than
at 0◦ or 90◦ (0◦).

The large anisotropy in the rethermalisation of dipo-
lar gases was experimentally demonstrated in ultracold
gases of fermionic 167Er [303]. For fermionic atoms, σ is
simply given by the universal formula Eq. (33) so that a
measurement of τ directly provides α. Figure 8(c) shows
measurements of α in agreement with the dependence
predicted in Ref. [302]. The authors also reported the re-
duction in rethermalisation rate due to Pauli-suppression
of scattering once T was sufficiently lower than TF (see
Sec. III B and Eqs.32 and 33). Unlike α, the suppression
factor was observed to be independent of λ, implying
that the occupation of the final density of states leading
to Pauli-blocking is mostly unaffected by the anisotropy
of the DDI.

Cross-dimensional rethermalisation experiments in ul-
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FIG. 8: (a,b) Upper panels: Number of collisions per
rethermalisation, α, versus the angle between the quan-
tization axis ǫ̂ and the trap axis along which rethermal-
isation occurs, λ. Lower panels: 3D plots of dσ/dΩ as a

function of the scattering direction k̂
′
, for different values

of η. η is the angle between k̂, set to the vertical z axis,
and the polarisation direction ǫ in the xz-plane. Plots
are for a) identical bosons and b) identical fermions. Re-
produced from Ref. [302]. c) Comparison between theory
and measurement of α for ultracold dipolar fermions of
167Er. Reproduced from Ref. [303].

tracold gases where also performed in bosonic isotopes
of 164Dy, 162Dy [304] and of 164Er, 166Er, 168Er and
170Er [76]. These studies measured the unknown values
of the scattering lengths a of these atoms by using either
the theoretically predicted α or by using more extensive
dynamics simulations to convert the measured τ into val-
ues of a; see Eq. (32) and Sec. II D 2 a for more details. In
Ref. [304], the authors used a thorough theoretical anal-

ysis informed by data from different values of the angle
λ to extract a. This study confirmed the anisotropic be-
haviour as well as provided evidence of hydrodynamical
effects in the rethermalisation dynamics [357].

These hydrodynamic effects were manifest as modifi-
cations of the mechanical oscillations of the gas after the
gas was kicked out of thermal equilibrium. It was ob-
served that the large magnetic dipole moment of Dy pro-
vides a sufficiently large elastic collision cross section for
the gas to lie near the hydrodynamic collisional regime.
These effects were predicted in Ref. [357], where it was
shown that the relaxation no longer follows a simple ex-
ponential in the hydrodynamic regime when the colli-
sional rate is similar to the trapping frequencies, as ob-
served in Ref. [304]. Nevertheless, cross sections were
able to be extracted from the data through close com-
parison to Monte Carlo simulations. Section II D 2 a de-
scribes the scattering length measurements obtained as
a result. Hydrodynamic behaviour arising from the DDI
has also been observed in the expansion aspect ratio of
Dy thermal gases [306]; see also Sec. IVA2 b.

2. Anisotropic scattering halos

The anisotropy of the differential cross sections may
be directly visualised by observing the shape of scatter-
ing “halos” of atoms from two gases that have under-
gone a head-on collision. Reference [166] describes such
an experiment: One creates two dipolar BECs of 162Dy
counter-propagating at momentum ±2~kR using Bragg
diffraction. This energy is much larger than the inter-
nal momentum distribution width of the individual BEC.
When the BECs propagate through one another, atoms
scatter away from the forward and backward directions
of the BECs’ motion. A halo rapidly expands from the
centre-of-mass position, as shown in the data of Fig. 9.
The BECs are sufficiently dilute that atoms scatter at
most one time. The shape of the halo therefore reveals
information about the two-body differential cross section.

The data visually reveal a novel regime of quantum
scattering. Rather than exhibiting halos with shapes
dominated by a single partial wave—e.g., the spherically
symmetric halos from the s-wave scattering of ultracold
identical bosons [358–361]—anisotropic shapes are mani-
fest. This is a consequence of the superposition of a large
number of partial waves due to high-order angular mo-
mentum coupling through the elastic DDI. Moreover, the
particular halo shape strongly depends on η, as expected
from Eq. (39). The shapes of the halos in the data agree
with Monte Carlo simulations based on Eq. (39) and de-
scribed in Ref. [357].

IV. Fully polarised repulsive bulk dipolar gases

In this chapter, we will consider dipolar quantum gases
of atoms fully polarised in the lowest Zeeman state. We
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FIG. 9: 2D images of the scattering halos from the colli-
sion of two BECs of 162Dy that are counter-propagating
along the horizontal direction of the images. Left column
are simulations, while the right column are experimental
data. Dipoles are aligned using a B-field oriented: a)
along the vertical direction, b) out of the page, and c)
along the horizontal direction, as indicated by the ar-
rows. Adapted from Ref. [166].

will cover only harmonically trapped gases in the absence
of a three dimensional lattice; see Sec. VII for dipolar
lattice systems. Most of the experimental activity has
been focused on dipolar bosonic gases and in particular
dBECs (Sec. IVA). Nevertheless, we will also include the
relevant results on dipolar DFGs (Sec. IVB) as well as
results on dipolar gases in lower dimensions, in particular
in 1D (Sec. VII A).

A. Weakly interacting three-dimensional dipolar

Bose gases

A majority of the phenomena arising from the DDI
that have been observed in bulk BECs, in particular in
the regime where the overall interactions are effectively
repulsive, are well accounted for by a mean-field (MF)
description of the interactions. After a short description
of the MF theory of dipolar Bose gases in Sec. IVA1,

this section will focus on experimental observations of re-
lated phenomena. These observations can be understood
as hydrodynamic measurements, as they concern the lin-
ear response from the equilibrium state of the quantum
fluid; e.g., its time evolution in a trap or in free space
as well as its elementary collective excitations. These as-
pects will be reviewed in Secs. IVA2 and IVA3. Beside
modifying the speed of sound and giving it a directional
dependence, the DDI profoundly affects the structure of
the elementary excitation spectra of trapped BECs by
the interplay of long-range anisotropic interactions with
the trap geometry. In particular, a dispersion relation
showing a local minimum in energy, i.e., a roton mode,
was predicted and observed, as discussed in Sec. IVA3.
Furthermore, the DDI influences the stability of BECs
in traps. Due to the anisotropy of the DDI, the effective
sign of the MF interaction depends on the density distri-
bution, which, in turn, is not only determined by the trap
geometry but also by the DDI. This interplay results in a
non-trivial stability diagram as a function of a and of the
anisotropy of the trapping potential, as well as instability
behaviours which also connects to the underlying modifi-
cations of the excitations spectrum of the BEC mentioned
above. This will be reviewed in Sec. IVA4. The stabil-
ity analysis and related stabilised states of dipolar Bose
gases beyond a MF treatment is the subject of Sec. V.

1. The mean-field description

a. Interaction potential in dilute gases
As introduced in Sec. I D 1, polarised dipolar bosons in

an ultracold dilute ensemble can be considered to be in-
teracting via a potential of the form:

Vint(r) =
4π~2 a

m
δ(r) +

3~2 add
m

1− 3 cos2 θ

r3
. (43)

Again, a is the s-wave scattering, while add =
µ0mµ

2/12π~2 is the dipolar scattering length. The in-
terparticle separation vector is r, with norm r and angle
θ with respect to the dipole orientation. In the follow-
ing, we will assume a polarising magnetic field aligned
along the z-axis, and a harmonic trap with frequencies
ωx,y,z. Unless otherwise specified, we also consider that
the trap has a cylindrical symmetry along z such that
ωx = ωy = ωρ, and

Vtr =
m

2

(
ω2
ρ ρ

2 + ω2
z z

2
)
. (44)

The trap aspect ratio is

λ = ωz/ωρ. (45)

The validity of Eq. 43 as an effective pseudo-potential
written as a simple sum of a contact pseudo-potential
gδ(r) (or its more rigorous, regularised version [91]) and
the DDI potential Eq. (11) has long been debated [9, 17].
This expression for the potential results from the first-
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order Born approximation applied to a molecular po-
tential of the dipole-dipole type dominating at long dis-
tance plus a van der Waals potential dominating at short
range [92, 93, 340, 362–364]. While it is a good approx-
imation for weak dipoles and away from scattering reso-
nances, modifications may be necessary for systems with
large εdd. In particular, the s-wave scattering length may
depend on d [92, 93, 365], requiring a renormalisation of
the dipolar length in Eq. 43 [341, 366]. In the case of
the most magnetic of the atoms, Dy, with εdd ∼ 0.5− 2,
corrections to add were predicted to be of 10% at tem-
perature of 100 nK and only 2% at 10 nK [367].

b. Mean-field approximation

The MF approximation, which underlies common ap-
proaches to describe the properties of bulk BECs, con-
sists of replacing the field operator by its mean value,
ψ(r, t). The approximation assumes that the BEC mode
is macroscopically occupied [11, 88–90]. This effectively
ignores fluctuations of the bosonic field around its mean
value. In the absence of the DDI, the corrections to this
approximation scale as

√
na3. In the presence of the DDI,

one naively expects the MF approximation to be valid
when

√
na3,

√
nadd 3 ≪ 1. A proper treatment of fluc-

tuations around MF values, outlined in Sec. V, leads to
a more restrictive condition:

√
na3 ≪ 1, εdd . 1. Note

that the length add is defined such that a = add (εdd = 1)
marks the limit of the mechanical stability of a homoge-
neous isotropic dBEC, and other authors sometimes call
3add the dipolar length (which arises from a considera-
tion of the two-body problem [340]); see Sec.I C 4.

Considering a gas of N atoms interacting via Eq. (43),
the MF approximation results (at zero temperature) in
a nonlocal Gross-Pitaevskii equation (GPE) given in
Eq. (9) and reprinted here:

i~
∂ψ

∂t
(r, t) =

[
− ~

2

2m
∇2 + Vtr(r) + g|ψ|2 +Φdd(r)

]
ψ,(46)

with g = 4π~2a/m and Φdd(r) =
∫
dr′Udd(r

′ −
r)|ψ(r′)|2; see also Eq. (10). The corresponding energy
functional is

E[ψ] =

∫ [
− ~

2

2m
|∇ψ|2 + Vtr(r)|ψ|2

+
g

2
|ψ|4 + 1

2
|ψ|2Φdd(r)

]
dr, (47)

which can be minimised to obtain the equilibrium ground
state of the BEC [14, 15, 17, 368]. In these equations,
the DDI yields a nonlocal contribution Φdd(r), whose
sign depends on the shape of the density distribution.
We note that various analyses demonstrated the applica-
bility of the nonlocal GPE in accurately describing the
properties of trapped dipolar gases [366, 369].

2. Magnetostriction

a. Magnetostriction of dBECs

When placed in a cylindrical harmonic trap, a nondipo-
lar gas (εdd = 0) assumes the geometry of the trap. A
dipolar system behaves differently because of the pres-
ence of Φdd in Eq. (9). Specifically, the dipole term
Φdd(r) has a saddle-shape, tending to elongate the distri-
bution along the magnetic field. That is, to minimise its
energy, the dBEC elongates along the dipolar axis due
to the attractive part of the DDI. This effect is called
magnetostriction and is of course not unique to quantum
gases as it has been known since Joule discovered the
effect in iron [370]. Note that the magneto- or electro-
strictive effects deform a system solely due to the pres-
ence of a homogeneous field which breaks rotational sym-
metry. The forces responsible are due only to the inter-
actions between the particles because the external field
has no gradient.

• Application of the Thomas-Fermi approxima-
tion:

Rather than numerically solving Eq. (9), magnetostric-
tion can be analysed by the use of the Thomas-Fermi
(TF) approximation, valid for high atom numbers and
sufficiently large total interaction strength [11]. This al-
lows one to neglect the kinetic energy term in Eq. (9).
For εdd = 0 (i.e., a nondipolar BEC), one can easily show
that the density of a BEC acquires an inverted parabolic
shape with a so-called TF radius that scales asRi ∝ 1/ωi,
i = x, y, z [9]. In the dipolar case, Refs. [371, 372] showed
that a dBEC retains the parabolic shape in this (TF)
limit. However, its aspect ratio

κ = Rρ/Rz, (48)

defined by the ratio of the TF radii perpendicular (Rρ)
to the radius along (Rz) the dipole direction, no longer
reflects the aspect ratio of the trap. This is due to the
contribution of Φdd to the mean energy in Eq. (47), which
one can calculate analytically:

Edd = −4

7
εdd g

n0N

2
fdip(κ), (49)

where n0 is the density at the trap centre. The function
fdip(κ) encompasses the anisotropy of the interaction en-
ergy, it is a decreasing function of κ [373]. The complete
expression is [374]

fdip(κ) =
1 + 2κ2

1− κ2
− 3κ2arctanh

√
1− κ2

(1− κ2)3/2
. (50)

Note that an angular integration of the DDI over an
isotropic distribution is zero, leading to fdip(1) = 0. fdip
is bounded by two limits: fully collinear dipoles (attrac-
tive DDI) limκ→0 fdip = 1, while side-by-side dipoles (re-
pulsive DDI) yield limκ→∞ fdip = −2. Thus, one readily
sees that Edd is reduced by lowering κ. In the TF approx-
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imation, minimising E leads to a transcendental equation
for κ [93, 372, 374]:

λ = κ

(
1 + 2εdd − 3εddfdip(κ)

1−κ2

1− εdd +
κ2

2
3εddfdip(κ)

1−κ2

)1/2

. (51)

The solution of this equation for a given λ thus gives the
degree of magnetostriction. A solution exists for any λ
provided that εdd 6 1. The absence of a MF solution
will be discussed at the end of this section, and for now
we assume there exists one.

We note that assuming a 3D Gaussian shape for the
dBEC is another common approximation [92, 93, 97,
372, 375]. This approximation will be later reviewed in
Sec. IVA4 a. Interestingly, and despite the difference in
the approximations, such a Gaussian variational ansatz
for ψ yields the same equation as Eq. (51) for the aspect
ratio. We note that both the TF and the Gaussian ap-
proximations can describe a regular BEC wavefunction
with only maximal density at the trap centre. They fail
in describing more complex phenomena that can occur in
dBECs, e.g., when operating close to the MF instability
threshold; see Secs. IVA4 c and VD. In this paragraph,
we focus on the shape of stable dBECs.
• In-situ measurements:
We now describe the distortion of the gas shape inside

the trap. Quantitative in-situ measurements of magne-
tostriction have only recently been possible: The first in-
situ images of dipolar BECs were reported in Ref.[185]
and in-situ magnetostriction images first presented in
Ref. [376]. An example is shown in Fig. 10.

FIG. 10: In situ imaging of magnetostriction of a 162Dy
dBEC. The atoms are held in a pancake-shaped trap,
nearly isotropic in the plane. The field is out of plane
in the left image, and in-plane for the right image, while
the trap is kept unchanged. Adapted from Ref. [376].

• Magnetostriction in the TOF dynamics of
BECs:

Observing the (hydrodynamic) expansion of the gas
trap release is a common way to reveal BEC physics [377,
378], and in particular the impact of interactions on
quantum gases. The hydrodynamic equations for the ex-
pansion of a (nondipolar) BEC were first presented in
Ref. [379], showing inversion of ellipticity during TOF.

Solutions to the hydrodynamic equations for dipolar
gases can also be found [371, 372, 380]. The effect of the
DDI is the same as in trap: energetics favour a distortion
in the expansion that aligns the dipoles head-to-tail.

The first observation of magnetostriction in a gas
was observed in the hydrodynamic expansion of a 52Cr
BEC [381]. This was manifest as a dependence of the
inversion of ellipticity on the magnetic field direction.
Comparing the experimental dynamics with solutions to
the hydrodynamic equations, a value for εdd for 52Cr
away from FRs was extracted [382]. The value agrees
with most precise values of the background scattering
length abg obtained more recently [162]; see Sec. II D.
Using a FR to lower a—and thus to enhance dipolar ef-
fects into the εdd > 1 regime—magnetostriction in situ
and in TOF was strong enough so that a complete sup-
pression of ellipticity inversion was observed [383]. The
variation of the aspect ratio of an expanding cloud with
εdd can be seen in Fig. 11.

FIG. 11: Aspect ratio of an expanding 52Cr BEC, mea-
sured 2 ms after its release from a trap, as a function of
εdd. εdd was controlled using a a FR centred about B0.
Blue (red) dots: data with B < B0 (B > B0). Dashed
line: background εdd. Solid line: prediction from Eq. (49)
without adjustable parameters. Shaded area: uncertain-
ties in ωρ,z. Inset, same data as a function of B − B0.
From [383].

b. Magnetostriction and TOF dynamics of ultracold,
non-condensed gases

Observation of magnetostriction in gases requires low
temperatures and high densities. Otherwise, thermal en-
ergies are orders-of-magnitude larger than the DDI. As
mentioned above, the use of dBECs enabled the observa-
tion of magnetostriction both in TOF and in situ. Mag-
netostriction effects could also be observed in ultracold,
but non-degenerate thermal gases of sufficiently strong
dipolar atoms.
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FIG. 12: The anisotropic aspect ratio of dipolar thermal
gases after 16 ms of TOF. Aspect ratio for (a) 162Dy and
(b) 164Dy. Red (blue) is for magnetic field along ẑ and ŷ.
The solid (dashed) curves are the full (partial, MF-only)
theory developed in Ref. [306]. The Bose-condensation
temperature is marked by the vertical grey line. From
Ref. [306].

The dimensionless parameter relevant for DDI correc-
tions to the ideal gas law is obtained is obtained by com-
paring the mean dipolar energy to the mean kinetic en-
ergy: η = Edip/Ek. For a non-degenerate gas, Edip ∼
S2d2n and Ek ∼ kBT , such that η ∝ (nλ3th) × (kthadd),
with kth = 2π/λth =

√
mkBT/~ the thermal wavenum-

ber, and λth the thermal wavelength. To maximise η
in a thermal gas, we may choose Dy, which provides a
add = 131 a0; see Sec. II). At typical experimental densi-
ties for a gas with a temperature just above its BEC Tc, η
remains ≪ 1. Thus, at best, the DDI only weakly mod-
ifies the TOF expansion dynamics. Nevertheless, DDI
effects on time-of flight dynamics have been observed, as
we now discuss.

Tang et al. [306] theoretically and experimentally stud-
ied the anisotropic expansion of a thermal dipolar Bose
gases of 164Dy and 162Dy just above their degeneracy
temperature. Each gas, after TOF expansion, exhibits
an aspect ratio that depends on the polarisation angle of
the dipoles, as had already been noted in dBECs [17]; see
Fig. 12. The DDI strength of Dy is sufficient to cause the
magnetostriction of even a dilute thermal gas. To pre-
dict the experimental aspect ratios versus temperature
and dipolar angle, the authors developed a theory of the
expansion that accounts for the Hartree-Fock MF inter-
actions, Bose-enhanced scattering, and hydrodynamic ef-
fects that partially cross-dimensionally rethermalise the
gas during the expansion. By doing so, the authors were
able to quantitatively match the theory to the data. The
theory fits provided a method to extract the gas tem-
perature and is a relatively simple method for determin-
ing the scattering length of the gas, even near a FR; see
Sec. II D 2 a for the results of the a measurements us-
ing this technique, which are compatible with previous
measurements. Moreover, the momentum distribution
deformation scales with the ratio η = (nλ3th) × (kthadd),
as expected, and arises primarily from the two-body col-

lisions and the direct Hartree contribution to the MF
energy.

A similar effect arises in degenerate Fermi gases, al-
though with a few fundamental differences. The kinetic
energy is dominated by the Fermi energy, so the dis-
tortion in momentum space is smaller. This Fermi sur-
face deformation stems from the exchange contribution
to the mean interaction energy, which does not vanish in
the degenerate Fermi many-body state due to the Pauli
exclusion principle; see Sec. I D 2 and the discussion in
Sec. IVB.

3. Elementary excitations of dBECs

In the previous section, we were concerned with the in-
fluence of the DDI at equilibrium: i.e., the magnetostric-
tive effect on the gas wavefunction in real space, and
its consequences on the free-space expansion dynamics,
which allows observations of momentum-space magne-
tostriction. In contrast, elementary excitations around
equilibrium provide a window into dynamical behaviour
of the dipolar quantum gases. Due to the sensitivity
of spectroscopic measurements, experimental studies of
DDI effects on elementary excitations even at low εdd
are possible. Besides, stringent modifications of the ex-
citation spectrum at εdd ∼ 1 were also evidenced.

a. Elementary excitations in a (homogeneous) dBEC:
from phonons to free-particles.

• Continuous Bogoliubov spectrum:
Elementary excitations of BECs were introduced in

Sec. I D 1 c in the uniform BEC case. In presence of DDI,
the well-known Bogoliubov spectrum, obtained by lin-
earising the GPE around the ground state, with its linear
phonon branch followed by the quadratic free-particle de-
pendence, is modified. By combining Eqs. (8) and (16),
the spectrum of a uniform 3D dBEC of density n is [375]

~ω(k) =

√
~2k2

2m

(
~2k2

2m
+ 2 gn (1 + εdd(3 cos2 θk − 1))

)
,

(52)
where θk is the angle between the direction of excitation
propagation and the dipole orientation. The sound ve-
locity for BECs with only contact interactions (εdd = 0)

is c0 =
√
gn/m and acquires an angular dependence in

presence of the DDI, c(θk) = c0
√
1 + εdd(3 cos2 θk − 1).

Excitations propagating along the dipoles’ direction
(θk = 0) have the highest sound velocity (i.e., they are
stiff modes), while those propagating in the perpendicu-
lar plane (θk = π/2) have the lowest velocity (i.e., they
are softer modes). This anisotropy of the dispersion
relation is one of the main feature of dBECs with re-
spect to collective excitations and has important physical
consequences; namely, the anisotropic superfluid critical
velocity (see below) and a mechanical instability with
anisotropic nature manifest for gases with εdd ≥ 1; see
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Sec.IVA4.
• Bragg spectroscopy:
Using the standard method of two-photon Bragg spec-

troscopy (see, e.g., Refs [384–388]) on a dBEC of 52Cr,
Bismut et al. [389] probed the dispersion relation of such
a trapped dBEC away from FRs. In practice, the finite
size of the trapped samples sets a lower limit on the mo-
mentum at which one can probe and compare against
Eq. (52) (which holds in the homogeneous case). This
limit comes from the fact that the BEC smallest size
(RTFmin) must be larger than the excitation wavelength:
k RTFmin ≫ 1. In this limit, the local density approxi-
mation can be used, allowing one to take into account the
BEC’s inhomogeneity. Bismut et al. observed a Bragg
dispersion peak that depends on the relative orientation
between the Bragg momentum and the magnetic field
angle, in very good agreement with theory; see Fig. 13.
At low momentum, a departure from the homogeneous
expectation was observed. Numerical simulations taking
finite-size effects into account reproduce the evolution of
the measured dispersion relation and its anisotropy.

FIG. 13: Bragg excitation spectra of a 52Cr BEC, with
the magnetic field in two perpendicular directions. Lines
are fit to the data. From [389].

•Critical superfluid velocity measurement:
The DDI effect on the dBEC’s excitation spectrum im-

plies other changes to the BEC’s physical behaviour. A
prime example lies in the change to the superfluid crit-
ical velocity. The famous Landau’s criterion relates the
critical velocity for an impurity moving in the direction
v̂ in an (infinite and uniform) superfluid to its dispersion
relation: vc = min

k
( ωk

v̂·k ) [101, 390]. In the homogeneous

case discussed above, Eq. (52) implies that the critical
velocity becomes anisotropic in a dBEC, depending on
whether the excitation is applied along or perpendicular
to the dipole orientation [390, 391]. We note that the crit-
ical velocity does not generally match the speed of sound,
even in the homogeneous case. This is because the dissi-
pating excitations can occur in a different direction than

the impurity’s motion [390]. The critical velocity is thus
systematically smaller than the speed of sound in the
direction of motion. For anisotropic confinement, as dis-
cussed in Sec. IVA3 c, the critical velocity should also be
affected by the existence of low-energy high-momentum
modes, such as the roton mode [391, 392].

Superfluid velocity measurements were performed on
a 162Dy dBEC using a local light defect driven linearly
along one axis [393]. These showed that the anisotropy
of the critical velocity as well as of the heating rate above
the critical velocity are in excellent agreement with dy-
namical simulations based on the GPE; see Fig. 14. Large
corrections compared to the homogeneous predictions are
observed and mainly attributed to inhomogeneous den-
sity effects, as corroborated by numerical simulations of
the GPE.

T
(n
K
)

(a) (b)

FIG. 14: Temperature of the 162Dy dBEC after apply-
ing a stirring protocol. The stirring beam is moved along
x (red squares) or y (blue circles). The dipoles are po-
larised along x. The trap is cylindrically symmetric in x
and either (c) elongated or (b) made narrow in this direc-
tion; see insets with example of in situ images. A piece-
wise linear fit (dashed lines) quantifies the anisotropy of
the critical velocities (arrows) with respect to the dipole
orientation. For both trap geometries, the velocity, v⊥,
for a perpendicular excitation is small than for a paral-
lel one, v||, with v⊥ = 0.16(2)mm/s (0.12(3)mm/s) and
v|| = 0.36(3)mm/s (0.26(4)mm/s) in b (c). Numerical
simulations of the GPE (solid lines) show excellent agree-
ment with the experiment. Adapted from [376].

b. Low-lying collective modes of trapped dBECs and
oscillation measurements
For a trapped gas, if one lowers the excitation momen-
tum down to the regime where the corresponding wave-
length is on the order of the cloud size, then one reaches
the regime of low-lying excitations where the spectrum
is discrete and momentum is not a good quantum num-
ber. The low-lying modes are typically surface modes,
implying an (out-of-phase) oscillation of radii in different
directions. These modes typically have a compressional
character, yielding a density (and thus interaction) de-
pendence. Signatures of the DDI in these systems have
been theoretically studied [93, 97, 371, 394, 395]. MF
methods to extract the collective modes nature and fre-
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quency rely on expanding the energy functional Eq. (47),
or corresponding hydrodynamic equations, around the
stationary solution. This can be done semi-analytically
by either applying the TF approximation or using the
Gaussian ansatz; see Secs. IVA2 and IVA4 a.

Experimentally, Bismut et al. [396] studied the influ-
ence of the DDI on such modes with a 52Cr BEC. They
investigated the second-lowest-lying mode, a quadrupole
mode in a non-axisymmetric trap. The experimental re-
sults demonstrate that the collective mode frequency is
dependent on the relative orientation of the dipoles with
the trap axes, and that the frequency shift is dependent
on the trap geometry, see Fig. 15. The experiment is in
good agreement with a TF approximation theory, which
neglects the kinetic energy of the atoms. When lowering
the atom number below a few thousand, the frequency
shift is clearly reduced, demonstrating the importance
of quantum pressure for very small samples. Quantum
pressure can be taken into account by either perform-
ing full numerical simulations of the GPE, or by using a
Gaussian variational ansatz for the BEC wavefunction.

FIG. 15: Time evolution of the aspect ratio of a dBEC
oscillating due to the excitation of a low-lying surface
collective mode (taken after TOF expansion). The two
different colours show the time evolution for two differ-
ent angles of the B field, showing the dependence of the
frequency of the collective modes on the dipoles direction
due to the DDI. From [396].

c. Spectrum of elementary excitations in trapped
dBEC, roton mode.

As highlighted in Eq. (16), the DDI contributes to the
continuous excitation spectrum via an effective coupling

strength Ṽdd(k), which adds to the constant contact con-
tribution g. As observed in Eq. (52), in the 3D ho-
mogeneous case, the DDI contribution, simply given by
its Fourier transform (Eq. (8)), yields an orientation-
dependence, but no k-norm dependence. When com-
bining the DDI with an anisotropic confinement, even
more striking behaviours of the dBEC’s excitation spec-
trum arise. Here, a k-norm dependence may arise from
the interplay of the DDI with the trap’s natural length
scales. This k dependence yields qualitative differences
in the dispersion relation compared to that of a non-
dipolar BEC and of a uniform dBEC. In this section, we

keep the notation of Ṽdd(k) for the DDI effective coupling

strength, which determines the excitation dispersion re-
lation, even if the gas in non-uniform and this differs from
the Fourier transform of Eq. (8).

A particularly interesting case is when the dispersion
relation ǫ(k) of a dBEC becomes non-monotonic, pre-
senting a local maximum (maxon) followed by a local
minimum (roton). Such a qualitative change in the dis-
persion relation underlies important new physical be-
haviour. To get a first insight into such changes, it is
interesting to highlight that such dispersion relation re-
sembles the celebrated dispersion relation of superfluid
helium [101–103]. Here, roton excitation were first spec-
ulated to explain the exotic macroscopic properties of
this superfluid [101, 102, 397], long before their obser-
vation [103]. Thanks to its low energy, the roton exci-
tation strongly influences the response of the superfluid
to small excitations. Furthermore, because of its large
momentum, the roton underlies the tendency of the fluid
to crystallise (at the wavelength corresponding to its in-
verse momentum) [398–400] (although one should note
that the phase transition to solid helium is not due to
Roton softening).

• Roton excitation spectrum in anisotropic
semi-infinite dBECs:

In 2003, a dispersion relation presented a roton min-
imum was predicted to occur in anisotropically trapped
weakly interacting dipolar gases, first in the context of
light-induced DDI by O’Dell et al. [98] and, shortly after,
in that of magnetic or electric dipolar system by Santos
et al. [99]. These seminal works consider semi-infinite
trapping geometries, i.e., infinite along one (ωz = 0) [98]
or two (ωρ = 0) [99] directions of space, and harmonically
confined along the others. This treatment allows to ac-
count for anisotropy effects while facilitating theoretical

treatment, yielding semi-analytical expressions of Ṽdd(k)
within the TF approximation, and providing an intuitive
picture of the effect.

The occurrence of a roton minimum arises from Ṽdd(k)
becoming attractive at large k. In the quasi-infinite ge-
ometries of Refs. [98, 99], the confinement acts to limit
the attractive contribution of the DDI: The attraction
dominates over the repulsive contribution only if the mo-
menta (along an unconfined direction) have a norm larger
than the inverse characteristic confinement length ℓz.
In this way, for excitations along the unconfined direc-

tions, k ≪ 1/ℓz yields Ṽdd(k) > 0, while, for k & 1/ℓz,

Ṽdd(k) < 0. Therefore, the DDI stiffens the dispersion
relation in the phononic regime while it bends it down
for large k. Because of the additional contribution of ki-

netic term ~
2k2

2m which ultimately dominates at very large

k, the effect of Ṽdd(k) < 0 is the strongest at k ∼ 1/ℓz
and, for weak enough s-wave coupling strength g, a mini-
mum arises at krot ∼ 1/ℓz, matching a roton mode. Here
the roton wavelength is typically set by the confinement
along the direction of attractive DDI. Furthermore, the
roton energy ∆ can be lowered by increasing the den-
sity or increasing εdd. When ∆ = 0, Ref. [99] finds
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krot =
√
2/ℓz, independent of the density and the in-

teraction parameters g, εdd.

• Roton excitation spectrum in anisotropic fully
trapped dBECs:

Numerous subsequent theoretical works describe the
roton in dipolar gases confined in finite geometries
(Eq. (44) with λ ≫ 1). They study how the roton
spectrum of the infinitely elongated geometries described
above survive in the fully trapped case and how the
steady state and dynamical behaviour of dBECs are af-
fected [100, 113–115, 392, 401–411]. In the case where the
trap is tightly confining along the dipoles and sufficiently
anisotropic (e.g., λ≫ 1), a roton-like spectrum arises for
large enough εdd. The relevant range of εdd depends on
the exact trap geometry. While, in the inhomogeneous
case, the momentum is not longer a good quantum num-
ber, the rotonic properties of the spectrum are most di-
rectly revealed by the behaviour of the dynamic structure
factor. This factor S(k, ω) conveniently describes the
system’s response to a Bragg excitation at momentum
k and frequency ω [402]. Furthermore, in harmonically
trapped geometries, the elementary mode contributing to
the roton minimum in the dynamic structure factor has
an amplitude that vanishes away from the dBEC cen-
tre [403]. This confinement effect can be understood,
within the local density approximation, as the roton en-
ergy decreasing with increasing density. This translates
into a finger-like feature in the (discrete) dispersion rela-
tion [408]. Other signatures of the existence of the roton
mode in finite dBECs include anomalously large density
fluctuations at the roton wavelength in an equilibrium
gas [404, 407, 409], strong correlation emerging from an
interaction quench [411], and peculiar structures in the
collapse dynamics [114, 115]; see also Sec. IVA4 c.

When the trap anisotropy is reduced (e.g., λ & 1) and
R⊥ & Rz, the existence of a roton feature, occurring at
large k compared to 1/R⊥, becomes progressively lost.
Indeed, the argument of a finite k scale for the activation
of the attractions starts to break down. Yet the interplay
between DDI and geometry persists, now including also
finite-size effects. This yields other interesting features
in the excitation spectrum, in particular the so-called
angular roton mode that has a momentum k ∼ 1/R⊥,
but a non-zero angular momentum [113, 412]; see also
discussion in Sec. IVA4 c. Finally, we note that while
most of the theoretical work has focused on cylindrically
symmetric geometries about the dipole axis, extensions
to transversely anisotropic geometries have also been dis-
cussed [401].

• Experimental measurements of the roton
spectrum:

The roton mode has remained elusive in Cr experi-
ments due to the weak dipolar character of this species.
That weakness makes the a-range of existence of a po-
tential roton minimum very narrow, as well introduces
strong three-body losses when tuning within this small
a – see also Sec. V. This leads to a fast change of
the BEC’s properties, including its excitation spectrum.
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FIG. 16: Roton excitation spectrum measured with a
166Er dBEC of cigar shape (cigar along y, dipoles along
z). (a) Measured dispersion relation (dots) compared
to predicted response for the Bragg measurement (col-
orcode) at a = 52.5a0 [theory at 51.6a0]. (b) Measured
ǫ(krot) vs. scattering length (circles) and correspond-
ing theory prediction. The shadings show the calcu-
lations over the prediction interval of a. The dashed
line shows the power-law fit to the experiment. In-
set: zoom-in around the instability threshold compar-
ing ǫ(krot) (circles) to ǫ(kmax) of the maxon [local maxi-
mum] (triangles), respectively with the power-law fit and
a guide to the eye (dashed lines). The region where
0 ≤ ǫ(krot) ≤ ǫ(kmax) is highlighted with a white back-
ground. Adapted from [313].

The roton mode was experimentally observed in a 166Er
BEC [312, 313] using a cigar-shaped trap geometry with
the dipoles aligned along a tightly confining direction.
This geometry, simplifying experimental observations,
differs from most of the early theoretical works on roton
excitations, which rely on cylindrical symmetry around
the dipole axis. The observation of Ref. [312], relying on
instability dynamics, will be described in Sec. IVA4 c.
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In Ref. [313], Petter et al. [313] reported on roton spec-
trum measurements based on Bragg spectroscopy, sim-
ilar to Sec. IVA3 a. The scattering length was tuned
close to instability and the excited momentum, along the
trap axis, varied from k ≪ 1/ℓz to k ∼ 2/ℓz, thus prob-
ing the full phonon-maxon-roton dispersion relation; see
Fig. 16(a). When increasing εdd, a preferential softening
of ǫ(k) at large k is observed, finally forming a mini-
mum at k = krot ∼ 1.3/ℓz; see Fig. 16(a). The minimum
is observed only in a narrow range of scattering lengths
and the roton gap shows a fast decrease with εdd to-
ward instability (ǫ(krot) ≈ 0), see Fig. 16(b). The Bragg
measurements also proved, through the increase of the
Bragg response, the enhancement of density-density cor-
relations at krot as the roton instability is approached,
indicative of the system tendency to crystallise. More
recently, experiments performed on Dy BECs revealed
roton excitations by a direct analysis of the in-situ den-
sity fluctuations [413], following early theoretical stud-
ies [404, 407, 409]. Fluctuation analysis provides ac-
cess to the static structure factor. It also allowed to
identify the two degenerate roton modes, which corre-
spond to symmetric and antisymmetric density patterns
to the trap centre. The study of roton excitations via the
induced density fluctuations was extended beyond the
cigar-shaped case, to oblate systems, in an independent
set of experiments [414]. Here the the distinct soften-
ings of several radial and angular rotons were revealed.
As introduced in the previous paragraph, radial rotons
correspond to the standard situation of a mode of large
radial momentum 〈k〉 and radial symmetry, angular ro-
tons distinctly have low 〈k〉 but large angular momentum
and show azimuthal patterns [408, 412] and reveal as such
in the density fluctuations.

4. Mean-field stability of dBECs

Beyond the properties of the ground state and its col-
lective excitations in a stable regime, the DDI also im-
pacts the very stability of the state, in particular making
it geometry dependent. In this section, we review in de-
tail the effect of the DDI on the stability of the quantum
gases: first, how the DDI makes stability depends on
the trap geometry; second, how it affects the stability of
a cloud via long-range interactions between neighbour-
ing clouds; and finally how the DDI introduces, beyond
the global stability condition, a distinct (local) collapse
mechanism in some special geometries. We will see how
the later case relates to the softening of excited modes
distinct from the lowest lying ones, arising from the in-
terplay of DDI and either anisotropic geometries or, ad-
ditionally, finite-size effects.

a. Global mechanical stability for a single BEC

Three-dimensional, homogeneous BECs under contact
interactions are mechanically stable for positive com-
pressibility [415] χ = 1

nmc20
> 0 (where c0 is the speed

of sound; see Sec. IVA3 a), they are thus unstable for
a < 0 [11, 110]. Finite-sized [416] and harmonically
trapped [3, 106] BECs can be stabilised by quantum pres-
sure for small negative scattering length. As dBECs ex-
perience competing interactions, their mechanical stabil-
ity criterion is more complex. Even at positive scattering
length, this mechanical instability occurs for εdd = 1 as
the sound velocity perpendicular to the dipole orientation
then cancels, c2|θk=π/2 = 0; see Sec. IVA3. However,
this holds for only infinite, homogeneous, and isotropic
BECs. Because of the anisotropic character of the DDI,
the anisotropy of real samples must be considered to un-
derstand their stability.
• Stability within the TF approximation:
Global mechanical collapse can be alternatively under-

stood from an energy argument. The energy density of
MF interactions, when attractive, scales like EMF ∼ −n2

and is thus minimised for infinite density. Using the TF
approximation and neglecting the kinetic energy contri-
bution, EMF < 0 leads to a singularity of the ground state
density, thus giving an instabibility. From Eq. (49), the
sign of the MF dipolar energy of a cylindrical dBEC de-
pends on the cloud aspect ratio κ. Taking into account
both interactions, one can show that the total MF inter-
action energy scales like

EMF ∼ gn0N(1− εddfdip(κ)). (53)

Imposing an attractive MF interaction, EMF < 0, leads
to the instability condition a < addfdip(κ). Solving for
κ(λ) through (48) leads to a stability diagram as a func-
tion of a and λ. Intuitively, for very prolate traps, λ≪ 1
and the dipoles are aligned head-to-tails κ≪ 1 while the
DDI is mostly attractive (fdip(κ) ≈ 1). Thus, a must
surpass add for stability. For the opposite case of very
oblate traps (λ≫ 1), dipoles repel each other twice more
strongly fdip(κ) ≈ −2, and a must be large and negative
to reach an effective attractive MF energy, a < −2 add.
This simple reasoning that considers only the MF interac-
tion leads to a prediction that well describes experimental
observations [417]; see Fig. 17(a).
• The Gaussian ansatz for a BEC near collapse:
However, near collapse, kinetic energy effects also play

a role, especially for low atom numbers. One must de-
part from the TF approximation, keeping all terms in
Eq. (47). The variational Gaussian ansatz provides a
semi-analytical approach

ψ(r) =
N

π3/4σ̄3
e
−

∑
j=(x,y,z)

i2

2σ2
j , (54)

inserted into Eq. (47), the energy is minimised with
respect to the variational parameters σx,y,z, describ-
ing the BEC sizes along the trap axes x, y, z. Here,
σ̄ = (σxσyσz)

1/3. Once the integral is carried out, the
different contributions read:

Ek = N
~
2

4m

∑

i

1

σ2
i

(55)
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(a)

(b)

FIG. 17: Stability diagram of a 52Cr dBEC in a cylin-
drical trap of aspect ratio λ versus a. (a) Taken from
[417]. The thin grey line is the result of the condition
a < addfdip(κ), while the green line is the result of the
Gaussian ansatz analysis. The red line is for εdd = 0.
In the large N limit this diagram is universal, i.e., it also
holds for electric dipoles. (b) Same data as (a), now com-
pared to either a Gaussian ansatz (dashed line) or a nu-
merical solution, minimising Eq. (49) (solid line). From
[412]

for the kinetic energy,

Etrap = N
m

4

∑

i

ω2
i σ

2
i (56)

for the external trapping energy, and the MF interaction
energy reads

EMF = N2 g

2(2π)3/2σ̄3
(1 − εddfdip(κx, κy)) (57)

where we allowed non-axisymmetric traps. The expres-
sion for the generalised fdip function in terms of the
two aspect ratios κx,y = σx,y/σz was first worked out
in [418]. One can then minimise the total energy E =
Ek +Etrap +EMF to find the ground-state size σx,y,z. In
general, for εdd > 1, there is always a global singularity
with κx,y ≪ 1 andE → −∞, but a local metastable mini-
mum exists as well and sets the stability condition. While
they coincide for very large N , at finite N the stability
diagram from the Gaussian ansatz differs from the one
derived using a TF approximation, see, e.g., Fig. 17(a).

At low trap aspect ratios λ≪ 1, the kinetic energy acts to
stabilise the gas against collapse, as in the contact case.
However, for λ ≫ 1 the effect is opposite, kinetic energy
increases the smallest size, which adds a little attraction
via dipolar effects and destabilises the gas.

• First measurements of the instability thresh-
old:

The instability threshold was studied in 52Cr BECs of
about 25,000 atoms in tunable traps [417]: When quench-
ing a downward using a magnetic FR, the authors ob-
served an abrupt and quick disappearance below a crit-
ical value, acrit, of the BEC peak in TOF images. The
experimental values of acrit as a function of λ were found
to agree well with the Gaussian ansatz predictions; see
Fig. 17. For the first time, the stability and thus the
very existence of a BEC was ensured solely by dipolar
interactions, and a purely dipolar BEC with a = 0 was
obtained [417].

b. Stability of dBEC assemblies

Consider a stack of pancake-shaped BECs, realised
with a one-dimensional optical lattice. The DDI being
long-range, the total energy of a given layer contains
contributions from interactions with neighbouring lay-
ers. Since the stability of the system is ensured by the
existence of an energy minimum, nearest-neighbour in-
teraction can modify the stability diagram. Indeed, the
first observation of nearest-neighbour dipolar effects was
reported in [419] via dephasing of Bloch oscillations in
a potassium optical lattice interferometer. Fattori et al.
then calculated the inter-site interaction using a Gaus-
sian ansatz for an individual layer. The contribution is
attractive if the dipoles are aligned with the lattice di-
rection. This negative contribution modifies the energy
landscape and can suppress the local minimum, destabil-
ising the gas. This can be understood in the following
way: The neighbouring layers attract the atoms result-
ing in an effective repulsive potential along this axis. The
pull is stronger at the radial centre where the neighbour-
ing density is highest leading to a stronger effective radial
trapping. The total effect is destabilising the BEC. The
instability threshold in scattering length is thus higher.
Müller et al. [420] have observed this effect with a 52Cr
gas in a one-dimensional optical lattice, obtained with
a retro-reflected 1064 nm beam. The difference in criti-
cal scattering length with respect to a theory neglecting
the neighbouring layers was as high as 8 a0, in agreement
with expectations; see Fig. 18.

All arguments given above consider the stability of a
dBEC at equilibrium inside a trapping potential (har-
monic or optical lattice). The in-situ density distribution
determines the MF stability. However, even for a stable
in-trap density, it is possible that the release from an op-
tical lattice into free-space modifies the distribution in
a way that makes it mostly attractive and then induces
collapse. This deconfinement-induced collapse has been
observed experimentally in Ref. [421]. Experiments were
performed in an optical-lattice along the dipoles axis.
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FIG. 18: Stability diagram of a dBEC in an optical lat-
tice as a function of lattice depth and scattering length.
The experimental data is compared with theory includ-
ing (excluding) the influence of neighbouring traps as full
(dot-dashed) lines. Red lines correspond to a full nu-
merical solution of the GPE (Eq. (9)), while blue lines
correspond to a Gaussian variational ansatz for the on-
site density distribution. From S. Müller, PhD thesis,
Stuttgart University.

They showed that, for large lattice depths, no losses were
observable in-trap. However the release from the trap
leads to a collapse visible in the d-wave shape of the den-
sity distribution, see also Sec. V. Simulations of the GPE
confirmed that no atomic losses were expected in trap,
but were induced by the deconfinement and following col-
lapse.

c. Modulational instabilities

• Modulational instabilities predicted from
DDI:

The stability criterion developed above, based on the
existence of a local minimum in the energy landscape
as a function of the BEC widths (σx,y,z), is only par-
tial. It allows only shape-conserving perturbations to
the BEC profile. However, other perturbations contain-
ing local density modulations are not taken into account
by this criterion. The existence of instabilities driven by
higher lying modes in dBECs was first noted in the semi-
nal paper [99] predicting a roton-type dispersion relation
in anisotropic semi-infinite dBECs, see Sec. IVA3 c and
ref. [100]. Tuning the parameters of the dBEC (i.e., its
scattering length and trapping geometry) can lead to a
softening of this roton minimum (ω reaching zero and be-
coming imaginary). Then, the dBEC becomes unstable
and, in the early dynamics, its population gets trans-
ferred to the roton mode leading to the onset of density
waves and, hence, a type of modulational instability.

The combined effect of axial trapping and DDI is also
present in finite-size dBECs, as long as a tighter confine-
ment is applied along the dipoles; see also Sec. IVA3 c.
This mechanism was also shown to favour local density
modulations in the equilibrium profile of the dBEC it-
self, i.e., as a result of finite-size effects [113, 422, 423].

In this case, an instability can be triggered when εdd > 1.
It differs from a global instability in that several local at-
tractors gather the atomic density leading to an ensemble
of local collapses [114, 115, 412]. This kind of instabil-
ity can be seen as the softening (ω2 < 0) of a mode
that is not one of the lowest-lying surface and monopole
modes: one quantum number is not the lowest possi-
ble one, for instance the momentum 〈k〉 or the angular
momentum m [408, 412]. Yet, due to confinement, this
mode still belongs to the discrete part of the spectrum
where the wavenumber is not a good quantum number :
〈k〉 ×R⊥ . 1 where R⊥ is the typical size of the BEC in
the plane perpendicular to the magnetic field and 〈k〉 is
calculated for the given mode. In particular, in narrow
regions of the (λ,N)-space, BECs with biconcave shapes
have been predicted by minimising the energy functional
of the GPE (i.e., in the MF regime) and their collapse
are driven by angular roton [115, 412, 414, 422, 423].
The softening of this intermediate-low-lying modes also
yields a type of modulational instability.

We note that, in ultracold atom experiments, mod-
ulational types of instability were first predicted for
contact interacting gases [424] and investigated in this
case [425, 426]. These modulational instabilities are in
fact of a different nature to the one described above for
dBECs. Indeed, in the contact case, the lowest lying
mode is always soft at the instability (imaginary ω). The
modulational instability here arises when other modes are
also unstable and have a larger growth rate. The mode
with the highest growth rate has a finite k, which is then
favoured rather than global collapse [427, 428].

• Experimental evidence for local collapse:

In dBECs, the role played by local collapse was first
noted by an extensive theoretical analysis of the data
from Ref. [417] by Wilson et al. [412], going beyond
the Gaussian ansatz (Eqs. (54)-(57)) and solving exactly
the GPE (Eq. (9)). Their predictions, showing a better
agreement with the measured stability threshold at large
trap anisotropy with λ & 3 (Fig. 17(b)), implies the oc-
currence of local collapse. Yet the instability mechanism
was not experimentally resolvable and later studies of
the collapse dynamics also let modulational instabilities
remain elusive, see Sec. VA [429].

More recently, the impact of such instabilities was
experimentally studied on finite-size anisotropically-
trapped dBECs of 164Dy, either in pancake traps [185] or
in cigar shaped ones [430, 431] with a tight confinement
along the dipoles. Here, after quenching a down, remark-
able long-lived in-situ density structures were observed.
The observed density structures have been attributed to
the occurrence of a modulational instability following the
quench [185]. Because of the limited system size of the
original pancake-shaped geometry in Ref. [185], the insta-
bility is expected to be driven by an angular mode with
〈k〉 ×RBEC ∼ 1 and m > 1 [432], as also experimentally
evidenced in a recent set of experiment [414]. Following
their first observation, the authors of the above-cited ex-
perimental works characterised the absence or existence
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FIG. 19: Roton mode in a 166Er dBEC of cigar shape
(cigar along y, dipoles along z). (a) Average momentum
distribution showing the appearance of two side peaks
at finite ky (along the cigar elongation) after a quench
to lower a. (b) Extracted krot for different traps, as a
function of 1/ℓz, ℓz the confinement length along the
dipoles. Data (dots) are compared to a semi-analytical
theory (dotted line) and numerical simulations of the
GPE (dashed line). (c) Imaginary roton gap, ∆, versus a,
extracted from the growth rate of the momentum-peak
population and comparison to the results of the semi-
analytical theory (solid line). The inset show the same
data but as a function of the time after the a-quench.
[312].

of a modulational instability as a function of the trap ge-
ometry via its signature on the final density distribution;
i.e., the observation of single or multiple droplets long af-
ter the quench [433]. They identify a critical trap aspect
ratio λ = 1.87(14) (compared to the dipole orientation,
z) above which the modulational instability exists; see
also Sec. VC 1. The instability itself was not experimen-
tally investigated in these works as they focused on the
long-time behaviour, which results from a subsequent in-
tricate non-linear dynamics loosing track of the unstable
mode driving the collapse. The authors found that these
final density distributions were surprisingly stable, which
revealed an unpredicted stabilisation mechanism. This
discovery set the ground for a new paradigm of quantum
fluids, which will be discussed in the next Section V.

• Experimental investigation of the roton insta-
bility:

As introduced in Sec. IVA3 c, Ref. [312] first observed
the roton excitation by probing the instability dynam-
ics of a large, cigar-shaped dBEC of 166Er with trans-
verse magnetisation. Chomaz et al. performed a fast
interaction quench and studied the short-time evolution
of dBEC. The authors reported the transient appear-
ance of remarkable structure in the momentum distri-
bution of the dBEC with a high-amplitude central peak
framed along the cigar-long axis by two lower-amplitude
symmetric side peaks, see Fig. 19(a). Based on a Bo-
goliubov picture relevant for the short-time dynamics,
this was interpreted as the coherent population of finite-
momentum excitation modes thanks to its privileged dy-
namical softening to imaginary energies, indicative of an
unstable roton mode. By further studying the peak posi-
tion and the time evolution of its population, the authors
demonstrated the characteristic scalings krot ∼ 1/ℓz and
ωrot ∝ (a − a∗)1/2 for the unstable regime (a < a∗); see
Fig. 19(b-c). These observations are in agreement with
theory predictions based on an analytical model as well
as on GPE simulations.

B. Dipolar quantum-degenerate Fermi gases

FIG. 20: Anisotropy ∆ = 1−AR (AR is the cloud aspect
ratio) of the time-of flight distribution of a degenerate
Fermi gas of 167Er versus the parameter η = Edip/EF.
Data (dots) are compared to the predicted Fermi sur-
face deformation (dashed line) as well as the prediction
accounting for the interaction effects during the TOF.
From [434].

Degenerate Fermi gases of polarised dipolar fermions
constitute an interesting system in which identical
fermions directly interact. Alkali-metal polarised
fermions are usually non-interacting, as, away from FRs,
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the short-range interactions can be neglected due to the
Pauli exclusion principle; see III A. Because of univer-
sal dipolar scattering (see Sec. III B), dipolar fermions
do interact and thus offer a unique possibility to ex-
plore physics combining the effects of Fermi statis-
tics and interactions. In particular, this system of-
fers new prospects for the creation of novel Fermi liq-
uids [435, 436], anisotropic superfluids [437], interlayer
superfluids in optical lattices [438–440], or topological
px + ipy phases [441]. Interesting prospects relate to
higher-orbital BCS pairing. This is permitted in dipolar
DFGs (dDFGs) thanks to the partially attractive charac-
ter of the DDI. Such a high-orbital BCS transition would
induce exotic superfluid behaviour. However, it requires
a very low temperature to be observed [14, 16], beyond
current possibility; see Sec. II.

In dDFGs, the DDI competes with the Fermi energy,

EF =
~
2k2

F

2m . The figure of merit is given by the ratio

nS2d2/EF, corresponding to the ratio η = Edip/Ek also
used when considering thermal gases in Sec. IVA2 b. For
small values, η can be rewritten, using the density scaling
of the ideal Fermi gas as a function of the characteristic
dipolar length and the Fermi momentum, η = AkFadd,
where A is a numerical coefficient. In the homogeneous
case, A = 1/π2. In experimental systems of magnetic
atoms, kF is a few tens of µm−1 and add up to a few tens
of nm, so η is typically of the order of a few percent. This
small value makes the observation of many-body dipolar
phenomena more involved in a dDFG as compared to
a dBEC, due to the large kinetic energy stored in the
system (similar to the thermal case).

On the other hand, the small η-value enables a semi-
classical (Hartree-Fock) treatment of the physics of the
dDFG. Within the Hartree-Fock theory, introduced in
Sec. I D 2, the DDI contributes to the total mean energy
of the system via two terms: the Hartree direct term,
which is the usual MF term, and the Fock exchange in-
teraction, which comes from the required antisymmetri-
sation of the wave-function.
• Fermi surface deformation:
Similar to the Bose case presented in Sec. IVA, the first

effect of the DDI lies in a deformation of the ground state
compared to the non-interacting case (magnetostriction).
For a DFG, this deformation has a different flavour than
for Bose gases, because of the predominant role played by
the Fock term, which, it should be highlighted, has a pure
quantum origin: While the Hartree term dominates the
ground-state distortion in position space as in the bosonic
case, it is now the exchange term which gives a dominant
contribution to its distortion in momentum space; that
is to say, a distortion of the Fermi sea itself. This effect
has been extensively studied theoretically [123, 124, 442–
446].

The deformation of the Fermi sea under the effect of
the DDI has been experimentally observed in an Er DFG
via TOF expansion [434]. The experiment was performed
in a harmonic trap in which no well-defined Fermi surface
exists, but interactions do deform the Fermi sea momen-

tum distribution. In addition, interaction effects during
the expansion weakly break the one-to-one correspon-
dence between momentum and TOF distributions. Colli-
sions during TOF increase the deformation, but still the
bulk of the TOF distribution deformation stems from the
momentum distribution; see Fig. 20.

The TOF aspect ratio of the cloud is observed to rotate
with the quantisation axis of the dipoles and its value is
in agreement with theory. A linear dependence of the
deduced Fermi-surface-deformation amplitude on η has
been verified experimentally as shown in Fig. 20. Addi-
tionally, the effect has been seen to disappear at higher
temperature kBT/EF & 1. Complementary measure-
ments and theory have been later reported in Ref. [446].
Here, the Fermi-surface-deformation amplitude could be
reconstructed from the observed TOF aspect ratio for an
arbitrary gas geometry. It was also shown that the Fermi
surface deformation does not always rigidly rotate with
the dipoles’ orientation but can also change in amplitude
under the effect of the trap anisotropy. Yet such an ef-
fect remained elusive in the Er system due to the too
weak DDI and moderate achievable trap anisotropies in
the DFG regime.

Observation of many-body physics in spin-polarised
DFGs has been for now limited to the above described
Fermi surface deformation. However, many other inter-
esting aspects may arise, even without reaching more de-
generate samples. Following similar trends as for the
bosonic case, one can mention the effect of the DDI on
the excitation spectrum and in combination with (highly)
anisotropic confinement [14]. Other directions includes
the special character of impurity physics in dDFGs, the
physics of multilayered or multitube systems, etc.

V. Dipolar collapse and quantum stabilised states

of Bose gases

In Sec. IVA4, we discussed the instabilities of dBECs.
In the framework of MF theory, they lead to singular-
ities in the density (n → ∞) and thus in the energy
|E| → ∞ for the many-body ground-state. This unphys-
ical conclusion comes from the fact that the simple theory
framework developed in Sec.IV (see also Sec. I D 1) breaks
down at high density. When the density is increased, two
effects should be additionally taken into account.

• First, at high density the approximation neglect-
ing few-body collisions beyond binary ones breaks
down. At the next order, three-body collisions
should be considered. Their inelastic contribution
leads in particular to atomic losses at high density
[384, 447, 448]. Thus density is not locally con-
served and obeys the equation ∂tn + ∇ · (n~v) =
−L3n

3, where L3 is the recombination loss con-
stant. One can effectively add a non-conservative
term in the GPE which reproduces the above equa-
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tion, this term reads

i~∂tψ|3b = −i~
2
L3|ψ|4ψ. (58)

We also note that three-body interactions can addi-
tionally lead to a conservative term and, very early
on, its effect has been theoretically considered,
yielding the prediction of a liquid phase [449, 450].
Despite the fact that this mechanism has regained
recent theoretical interest in the case of dBEC [451–
453], it has remained elusive in current experimen-
tal setups [431]. Conservative three-body interac-
tions will then be neglected in the following.

• Second, strong enough interactions yield correc-
tions to the population (so-called quantum deple-
tion) and to the energy of the BEC mode. This
can be described within Bogoliubov theory, where
one still considers only two-body interactions and
assumes a macroscopic, yet not complete, occupa-
tion of the condensate mode (i.e. single-particle
ground state). Expanding to second order in pow-
ers of the non-condensed population (i.e. popu-
lation in the single-particle excited states) yields
a quadratic Hamiltonian approximating the many-
body one, which can be diagonalised [11, 88]. At
this order, the ground state energy is given by the
zero-point energy of the elementary excitations that
diagonalize the quadratic Hamiltonian, which cor-
respond to elementary excitations. This ground-
state energy is shifted compared to the MF energy
that matches that of a pure condensate (zero pop-
ulation in excited single-particle states). The cor-
rection to the MF results are thus referred to as
quantum fluctuations effects, i.e. coming from the
fluctuations of the vacuum of the excitations.

The resulting modification to the equation of state
for a non-dipolar BEC was first calculated by Lee,
Huang and Yang in 1957 [116, 117]. The energy of
a homogeneous repulsive Bose gas then reads E =
g
2
N2

0

V (1+ 128
15

√
π

√
n0 a3) whereN0 (n0 = N0/V ) is the

number (density) of atoms in the BEC occupying
a volume V . The first term of the sum is the usual
MF energy, the second one corresponds to the first-
order beyond-MF (BMF) correction, so-called Lee-
Huang-Yang (LHY) correction. The strength of the
LHY correction is set by the gas parameter n0a

3.

Adding the DDI modifies the spectrum of the ele-
mentary excitations, see Sec. IVA3, Eq. (52), and
thus should modify their zero-point energy. This
was calculated in [454–456], giving

E =
g

2

N2
0

V

(
1 +

128

15
√
π

√
n0 a3Q5(εdd)

)
, (59)

where the function Ql(x) =
∫
dθ sin θ(1 +

x(3 cos2 θ − 1))l/2 results from angular averaging

of Eq. (52). Since the dispersion relation becomes
imaginary at some angles for εdd > 1, so does Q5.
Therefore the energy (59) is formally defined only
for εdd 6 1. However, the imaginary part of Q5 re-
mains very low for εdd . 3. Then, one might ignore
it and use Eq. (59) for εdd & 1 without a complete
breakdown of the theory.

In addition to this energy correction, the compu-
tation of the many-body ground state (total den-
sity n) within Bogoliubov theory, also gives ac-
cess to the corresponding quantum depletion den-
sity δn = n − n0. For a homogeneous dBEC, one
finds δn/n0 = 8

3
√
π

√
n0a3Q3(εdd) [454–456], recov-

ering δn/n0 = 8
3
√
π

√
n0a3 in the contact interacting

case [116, 117]. One sees that the main assumption
behind the Bogoliubov theory, namely a dominant
population of the zero-momentum state, holds for
small gas parameters

√
n0a3 ≪ 1. In the dipolar

case, a similar discussion on the εdd-range takes
place as for the energy correction. This justifies a-
posteriori the validity regime given in Sec. IV for
the MF theory, namely na3 ≪ 1 and εdd 6 1.

The above results hold true only for infinite,
isotropic, homogeneous BECs. The connection to
experimental systems is done through two further
approximations to estimate Eq. (59). First, one
might neglect the quantum depletion assuming that
all the atoms are in the BEC n0 = n. One can
therefore write an equation only for the BEC den-
sity and ignore its coupling to other modes. This
approximation is mostly valid for experimental con-
ditions so far where δn/n0 is below a few percents.
Second, one might use the local-density approxi-
mation (LDA) for the calculation of the equation
of state. This assumes that the density varies suf-
ficiently slowly to calculate locally, for a given den-
sity n, the energy shift. The derivation of Eq. (59)
involves an integral over all momenta k, which is
dominated by the contribution at k ≃ ξ−1 where
ξ is the healing length [11]. Typically, ξ relates to
the sound velocity c0 via ξ = hm/c0. For dBECs,
following Eq. (52) (see Sec. IVA3), one can only
define an ’angle dependent’ healing length and this
diverges for εdd = 1 along the dipole orientation.
At first sight, thus, the LDA is never applicable for
εdd > 1. We will see below that the use of the LDA
can still be justified for typical experimental sam-
ples at εdd & 1, see Sec. VB. Thus, within both
approximations, the local energy shift can be cal-
culated, and identically the chemical potential shift
µBMF = ∂EBMF

∂N = 32
3
√
π
gn

√
na3Q5(εdd). To solve

the equation of motion for a non-homogeneous sys-
tem, one can then extend the GPE by this extra
chemical potential [432, 457, 458]:

i~∂tψ|BMF =
32

3
√
π
g a3/2Q5(εdd)|ψ|3ψ. (60)
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Now that we have effective terms to be added to the
GPE for three-body recombination (Eq. (58)) and BMF
(Eq. (60)) effects, we can compare their magnitudes to
the MF chemical potential (see Eqs. (9)-(10)) to know
which one comes first when the density increases signif-
icantly following an instability. To that end, one must
know add, a and L3. add is fixed for a chemical species,
see Sec. II E. Since the collapse occurs for εdd ≥ 1 with
the exact value depending on the particular trap geome-
try, we will fix a typical value of εdd = 1.5, which further
fixes a to the values a = 10 a0 (52Cr), 44 a0 (166Er), 87 a0
(164Dy). The parameter L3 must be measured experi-
mentally. In Figure 21 one can see the absolute values of
three different contributions as a function of density[459]
for the three dipolar atoms 52Cr, 166Er and 164Dy. The
values of L3 are extracted from Refs. [250, 383, 430]. For
the above given values of a, set using Feshbach tuning
via the FRs specified in the refs mentioned above, we
have L3 ≃ 2× 10−40 for 52Cr, ≃ 8× 10−41 for 166Er, and
≃ 5× 10−41 for 164Dy. Note that L3 depends on the few-
body-physics details and thus can vary with the specific
FR used to tune a. In Figure 21, one observes differ-
ent hierarchies of mechanisms depending on the atomic
species.

In the case of Cr, the weakness of add leads to a weak
a beyond instability and thus weak MF and BMF effects.
As a consequence the three-body losses will have a much
stronger effect and the BMF effect can be safely ignored
from the dynamics. In this case, the instability leads to
a so-called d-wave collapse, that we review in Sec. VA.

For Dy and Er, the BMF can be at par with the MF
effects before the three-body losses destroy the sample.
This leads to an entirely different dynamics, as well as
new ground states, stabilised beyond the MF instabil-
ity. We focus on this physics in Secs. VC-VD, see also
Ref. [460].

A. Dipolar collapse

We focus here on the case of 52Cr where the BMF ef-
fects are negligible (see above). A collapse occurs once
the instability threshold is crossed. Experiments have
focused on crossing the instability line (Fig. 17) by low-
ering a. Once a collapse occurs, the density increases
until the three-body losses become dominant over MF
attraction (Fig. 21 top). This leads to a strong den-
sity depletion at the density maximum. Then, the MF
attraction is reduced, down to a point where the kinetic
energy, which is itself increased by the strong localisation
of the wavefunction close to the collapse centre, becomes
stronger. At that point, the remnant BEC fraction is
strongly expelled, the BEC ’explodes’. This can be seen
as a reflection of the wavefunction at the collapse centre.
The explosion dynamics is thus expected to reflect the
symmetry of the collapse. Being induced by the DDI, the
collapse is not isotropic. The dipolar energy is minimised
by decreasing the gas aspect ratio κx,y (see Eqs. (53) and
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FIG. 21: Absolute value |µ| of the different non-linear
terms of the extended Gross-Pitaevskii equation, assum-
ing homogeneous density, and εdd = 1.5. The (attractive)
mean field dominates at low density. For 52Cr three-body
losses (Eq. (58)) first become stronger, while for 166Er
and 164Dy, BMF effects (Eq. (60)) first take over.

(57)), and so one might expect that the BEC collapses
radially, i.e. shrinks and later explodes in the directions
transverse to the dipole orientation. An interplay with
the initial anisotropy of the cloud is also expected.

The first experiments probing the collapse dynamics
of a 52Cr dBEC were performed starting from a nearly
isotropic BEC [461]. The collapse was induced by a
fast quench of a down to an unstable value. Imaged af-
ter time-of-flight, the expanding cloud displays a strong
anisotropy, see Fig. 22(a). As the collapse is induced in
the radial direction, the relevant timescale for the col-
lapse, τ , is set by the largest radial trapping frequency,
τ = min[1/νx, 1/νy]. Strong atom losses are observed to
occur at the initial time of the collapse (fraction of τ), be-
fore the wavefunction is reflected away, see Fig. 22(b). A
cloverleaf-like pattern is observed in the time-of-flight im-
ages after holding 0.2 to 0.5τ . This pattern, reminiscent
of the d-wave symmetry of the DDI, gave the name d-
wave collapse. The density distribution is then observed
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a b

c d

FIG. 22: Collapse dynamics of a Cr BEC, (a-b) in a
trap (νx, νy, νz) = (660, 400, 530)Hz for which the initial
BEC is nearly isotropic, adapted from [461] and (c-d) in a
trap (νx, νy, νz) = (650, 520, 400)Hz for which the initial
BEC is prolate, adapted from [429]. Dipoles are oriented
along z. (a) and (c), time-of-flight absorption images in
the yz plane (upper rows) and corresponding simulated
column density distributions (lower rows) for different
hold time after the quench of a (values given above).
Time of flight is 8 ms. The initial scattering length is
around 30-35 a0 while the final around 5-8 a0, well below
acrit. The in-trap inset shows the initial BEC aspect ratio
κy. (b-d) measured (dot) and simulated atom number as
a function of the hold time after the quench, thold, in
unit of τ = τx = 1/νx = 1.5ms. All simulations rely on
a GPE including three-body loss effects, i.e. Eq. (9) plus
Eq. (58).

to refocus after holding τ . This is because of the presence
of the harmonic trap. The observed dynamics is very well
reproduced by simulations of the GPE (Eq. (9)) addition-
ally including the three-body loss term (Eq. (58)). The
lost fraction of condensed atoms depends on the in-trap
wait time after the collapse start, also very well described
by the GPE simulation results, see Fig. 22 (a-b).

The fact that the expanding cloud remains condensed
was investigated by collapsing several independent BECs
in different sites of an optical lattice [429]. Following
the collapse, the expanding clouds overlapped, exhibiting
very clear interference fringes at long time. This proved
the local coherence of the individuals expanding clouds,
and thus that condensation was not fully destroyed by
the collapse.

In anisotropic traps, not only the DDI but also the
trap geometry impacts the collapse symmetry. In this
way, very different patterns of the expanding BEC can
be generated, evidencing the rich interplay between trap
geometry and DDI in dBECs. This effect has been ex-
tensively studied in Ref. [429], where the authors stud-
ied different cases from very prolate to very oblate ge-
ometry. They also investigated the cross-over from a
prolate geometry to the symmetric one of Ref. [461], as

shown in Fig.22(a,c). While the two traps considered
here have very similar frequencies within a simple per-
mutation νy ↔ νz, they display significantly different
dynamical behavior. This ultimately demonstrates the
role of the anisotropic DDI in the collapse dynamics.

B. Theoretical description of dipolar quantum

stabilised states

1. Simple description of dipolar quantum stabilisation

The phenomenology of MF unstable, strongly dipolar
BECs of Er and Dy is fundamentally modified by the
BMF effects. These effects can affect not only the dy-
namics of the BEC when driven to an unstable regime but
also modify its stability itself, as it introduces a stabilisa-
tion mechanism. Indeed, the LHY correction of Eq. (60)
provides an additional conservative potential, which acts
as an effective higher-order (in three-dimension, effec-
tive 5/2-body interaction) interaction term in the GPE
and which remains repulsive within its whole validity
range [462]. This higher-order repulsive term has a den-
sity dependence of a higher power than MF (2-body in-
teraction). In the attractive mean field regime, it thus
could be thought to stabilise a high-density state for
which BMF repulsion compensates MF attraction.

Let’s first consider the simplest case of single-peaked
ground state — standard BEC in the MF stable regime
and later called "droplet" in the MF unstable regime.
Using a gaussian ansatz for its wave function ψ (see also
Eqs. (54)-(57)), one can calculate the MF and BMF con-
tributions to the ground-state energy per particle and
single-out the key ingredients that lead to stability:

EMF

N
= 1

23/2
g
2 nc (1− fdip(κ) εdd) (61)

EBMF

N
=
(
2
5

)3/2 g
2 nc

128
15

√
π

√
nca3Q5(εdd) (62)

where nc is the central density. For fdip(κ)εdd > 1,
EMF < 0 while EBMF > 0. EBMF has a stronger de-

pendency in the density by a power n
1/2
c compared to

EMF, therefore, by increasing nc, the ground-state en-
ergy can be minimized at a finite value, corresponding to
a finite density. This stabilisation mechanism, relying on
the mere effect of quantum fluctuation, is what we coin
dipolar quantum stabilisation.

2. Simple description of ultra-dilute liquid state.

Remarkably, in presence of MF attraction, the single-
peaked state considered above can be stabilised even in
the absence of trapping, by competing MF attraction and
the BMF repulsion, the equilibrium between these two
forces fixing the peak density nc (MF attraction domi-
nates at low density, and BMF repulsion at high density).
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Such a stabilisation mechanism is reminiscent of a liq-
uid phase of matter. In ordinary liquids, the weak at-
traction on large distance (e.g. of van der Waals or
covalent types) is counterbalanced by a strongly repul-
sive core arising from the electromagnetic forces and the
Pauli exclusion between the atoms’ (or molecules’) elec-
tron cloud. This stabilises the liquid at a large density
at which the repulsion becomes effective nca

3
0 ∼ 1. The

stabilisation resulting from competing MF and BMF ef-
fects in strongly dipolar gases can similarly be seen as
resulting in a liquid state.

Considering for now such an untrapped system, and
neglecting kinetic energy, the equilibrium peak density
can be estimated by imposing ∂E

∂nc
= 0, with E = EMF +

EBMF. One gets

nc ∼
1

a3

(
fdip(κ) εdd − 1

Q5(εdd)

)2

. (63)

We note that Eq. (63) also provides a good estimate of
the peak density in a trapped stabilised state, as long as
one can neglect contributions of the kinetic and external
trapping energies.

Interestingly, from Eq. (63) one can read-off that a
stabilisation of the density occurs before reaching the
dense regime nca

3 ∼ 1, thus forming "ultradilute" liq-
uid states. Two main effects enable to maintain the di-
luteness: The equilibrium density is reduced by the fact
that there are two competing MF interactions, result-
ing in an effective MF attraction of much smaller am-
plitude than each of the two contributions (numerator
in Eq. (63)). Second there is an amplified BMF contri-
bution that leads to a further reduction of the density
(denominator in Eq. (63)) [463].

The relatively low stabilising density resulting from
these two ingredients protects the sample against an im-
mediate destruction by three-body recombination. The
dipolar collapse observed with Cr is thus prevented. In-
stead the BEC is stabilised via the effect of its quan-
tum fluctuations, resulting in a distinct phase of liquid-
like properties, the clouds formed are thus named quan-
tum (dipolar) droplets. These droplets are denser
than the MF-stable gaseous BEC, yet much more di-
lute than ordinary liquid (by ≈ 8 orders of magni-
tude). They offer a distinct paradigm of quantum fluid
where the BMF effects are predominant yet tractable, see
e.g. Secs. VB,VC 4.

We note that these exact same ingredients are present
in another experimental system, namely mixtures of
contact-interacting BECs with repulsive intra- and at-
tractive inter-species interactions [464–466]. The sta-
bilisation mechanism of bosonic mixtures was in fact
proposed prior to the observations on dipolar BECs by
D. Petrov [467]. For more information on these systems,
see Ref. [460].

Finally, we note that, despite the fact that we have for
now neglected trapping effects in this first description,
they may also play a crucial role in the newly stabilised

quantum states. In the case of dipolar atoms, this effect
is not only quantitative (energy shifts) but also quali-
tative. Indeed, the interplay between trap anisotropy
and DDI yields new features already in the MF-stable
BEC, as reviewed in Secs. IVA3 c,IVA4 c. These new
features in the excitation spectrum, that affect the MF
instability, when combined with quantum stabilisation,
may yield new ground states. This effects will be the
focus of Sec. VD.

3. Toward a quantitative theory description: extended
Gross-Pitaevskii equation.

Following the experimental observation of quantum
droplets that we will more thoroughly describe in
Sec. VC 2, several theory works [432, 457, 468] devel-
oped the framework based on an extension of the GPE
(eGPE) to include the first order BMF effects. As intro-
duced at the beginning of this chapter V, this consists
in extending Eq. (9) with the term Eq. (60) (and poten-
tially Eq. (58)). This perturbative approach is justified
because the sample remains dilute with nas ≪ 1. Here
the BMF correction comes into play not because the gas
parameter becomes large but rather because the overall
MF terms are tuned small while both contact and dipo-
lar interaction remains individually large. Then the BEC
quantum depletion remains limited.

We note that the theory model relies on the use of the
LDA for the LHY term. This approximation is justi-
fied if the dominant contribution to the LHY term have
momentum larger than the inverse size of the ground
state. Physically, the LHY correction, which corresponds
to the zero point motion of the elementary excitations
(see above), are dominated by contributions of the hard
modes, i.e. the most energetic ones. Crucially, when de-
creasing a (as to drive the MF-instability), the modes
whose excitation occurs perpendicular to the dipoles get
softer (and lead to the instability) while the one along
the dipole get harder. The latter will then dominate the
LHY correction. Remarkably, the BEC close to instabil-
ity and the quantum stabilised states get very extended
in the direction of the dipole, under the effect of mag-
netostriction (see Sec. IVA2). Therefore, the LDA may
remain a surprisingly good approximation in this regime,
and even beyond the instability threshold.

Quantitatively, Wächtler et Santos [432] show that, us-
ing an anisotropic momentum cutoff, with an anisotropy
matching the anisotropy of the droplet itself, at 1% of
the inverse of the droplet extent, one still recovers most
of the BMF effects (80%). This proves that the LDA is a
good qualitative, and even quantitative, approximation,
as long as the droplet remain elongated enough. The
contribution of the long-wavelength modes may lead to
small corrections, yet the authors note that this would
mainly modify the prefactor of the LHY correction while
the scaling should remain that of Eq. (60). This domina-
tion of the LHY correction by hard modes which makes
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relevant the use of the LDA even in small sized quantum-
stabilised states is also found in quantum droplets of
bosonic mixtures as originally proposed by Petrov [467],
see also Refs. [460, 464–466].

The relevance of eGPE framework was later quanti-
tatively studied both in theory and experiments. Re-
sults from the eGPE and quantum Monte-Carlo (QMC)
simulations of dipoles with hard-sphere repulsion were
compared in Ref. [458] and found to be in good quantita-
tive agreement. In experiment, the degree of agreement
was found to vary depending on the exact settings, in
particular on the gas geometry and on the density, see
e.g. Refs. [190, 247, 250, 308, 312, 313, 329, 330] and
later discussions. Typical discrepancies could be simply
accounted by shifting the scattering length value by a
few, and up to a few tens, of percents. More recently,
a quantitative study compared eGPE theory, diffusive
QMC simulations using finite-range interactions, and ex-
periments [309]. A good agreement of the QMC results
and the experiments was found, whereas the eGPE re-
sults are systematically shifted. Boettcher et al elab-
orate on the eGPE mismatch and show that it may be
accounted by a more sophisticated description of the scat-
tering, in particular by accounting for the effects of finite
collision energy on the scattering properties, due to the fi-
nite temperature of the samples. Such effects are known
to result in an effective renormalisation of the dipolar
length [341], see also Sec. III A. By including such cor-
rections in the eGPE yields a better agreement with the
experimental data. Note that corrected eGPE and QMC
constitutes two complementary theories that are able to
describe experimental observations by accounting for dif-
ferent effects. The corrected eGPE accounts for tempera-
ture effects on the scattering properties but only includes
quantum fluctuations at a perturbative and approximate
level. QMC fully accounts for the quantum fluctuations,
yet neglects thermal effects. The two theories account
for different effects, and suggest that different sources of
corrections with respect to the standard eGPE theory
may be relevant. A full theoretical modelling, account-
ing for the different effects at once, and revealing their
repsective role, is yet missing.

C. Dipolar Quantum droplets

We now divide the discussion of quantum-stabilised
states and their observations in two sections. In the
present section, we will discuss the regime where the un-
derlying ground state present no self-modulation, i.e it
has only one density peak and forms either a standard
BEC (repulsive MF) or a droplet state (attractive MF).
In experiments, the droplets could there be produced ei-
ther in assemblies of independent droplets, forming then
a metastable state, or individually. We will more specifi-
cally focus on the latter case, which allows for a detailed
characterisation of the state’s properties, in presence and
in absence of external trapping. In a second part, we will

focus on the generation of self-modulated states in dipo-
lar gases with anisotropic confinement. We will particu-
larly focus on the global coherence and superfluid proper-
ties of the modulated states, and discuss the existence of
a so-called supersolid phase, where solid and superfluid
orders coexists, see Sec. VD.

1. single droplet ground state in an external trap, eGPE
phase diagram

FIG. 23: Eigen-state phase diagram of a dipolar BEC of
N = 10000 atoms in a cylindrical harmonic trap of aspect
ratio λ = ωz/ωr. This diagram is obtained applying a
gaussian ansatz to the energy functional 47, for a fixed
value of Nadd/aho ≃ 79, this corresponds for Dy (Er) to
a mean trap frequency of 80 Hz (312 Hz). The colouring
shows the ground-state density in logarithmic scale and
arbitrary units.

Following the seminal work establishing a theory de-
scription of the quantum-stabilisation mechanism, the-
oretical works tackle the question of the ground-state
phase diagram of a dipolar gas and in the presence of
the newly discovered stabilising term [457, 468].

The presence of an anisotropic harmonic trap with as-
pect ratio λ = ωz/ωr (see also Eq. (44)) was considered,
yet cylindrical symmetry around the dipoles direction z

was assumed. Mean trap frequencies and atom num-
bers following the experimentally relevant values were
considered. In these works, only single-peaked ground
states were predicted (i.e. no droplet assemblies, see
Sec. VD1). When decreasing a at fixed atom num-
ber and trap geometry, the ground state was found to
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change from a low-density phase, matching a standard
MF-stabilised BEC, to a high-density phase, stabilised
by the LHY term, forming a “quantum droplet". The
low-density BEC has a geometry roughly following that
of the trap, while the droplet state is not. In particular,
the droplet is always elongated in the direction of the
dipoles, which is why it is sometimes called "filament".
For traps elongated along the dipoles (λ & 1), the ground
state smoothly evolves from the low-density MF-repulsive
BEC to the high-density MF-attractive quantum-droplet
phase when decreasing a. This smooth crossover can be
apprehended as the trap elongation along the dipole di-
rection enables the two states to have similar geometries
(elongated along the dipoles), so that one can continu-
ously evolve into the other, while the BMF term sup-
presses the dipolar collapse described in Sec. VA. In the
opposite case of large λ, a discontiuous transition be-
tween the two states is found, with an intermediate re-
gion of bistability, where the two states form local energy
minima. This bistability can be apprehended from the
following argument: In such traps, a low-density state
can be stabilised even for εdd > 1 as the trap asymmetry
forces the dipoles to lie side-by-side enhancing the MF
DDI repulsion. This is exactly how Cr BECs have been
stabilised at low a, as described in Sec. IVA4, and the
addition of the BMF term only weakly modifies this be-
haviour. On the other hand, the BMF term stabilises an
other solution which is elongated along the dipoles and
where MF DDI is attractive. The bistability occurs as
there is an intermediate regime of a where both solutions
are local energy minima, while in the absence of the BMF
term (as relevant for Cr) in this region the MF repulsive
BEC is metastable.

The theoretical phase diagram is represented in fig-
ure 23. The exact position of the boundaries and crit-
ical point depend on the exact experimental parame-
ters (number of atoms, mean trap frequency, ...). The
crossover and the bi-stable region are separated at a crit-
ical aspect ratio λc, typically λc ≈ 1.5−2. In the remain-
der of this section, we review the extensive experimental
exploration of this phase diagram.

We note that the description given above does not give
a full picture of the dipolar gas phase diagram in presence
of quantum stabilisation. This description encompasses
the behaviour in a low-atom-number regime. For larger
atom numbers (and/or tighter traps), distinct ground
states may arise, and in particular spontaneous density
modulation may occur, or, in other words, ground states
bearing several droplets may be found. This regime,
achieved more recently in experiments, will be the topic
of Sec. VD.

2. First observations of droplet states: metastable droplet
assemblies and the quest for the stabilisation mechanism

The first evidence for the absence of dipolar collapse
and the existence of a stabilisation mechanism was re-

ported by Kadau et al. [185] on 164Dy, before any of
the theoretical development described in Secs. VB-VC 1.
Starting from a pancake-shaped BEC of 164Dy atoms in
a trap with aspect ratio λ ≃ 3, a was lowered down
to the mean field unstable regime. In this geometry,
we note that a modulational instability is expected, see
Sec. IVA4 c. Below the instability threshold, ordered
droplet ensembles were observed in the in-situ radial den-
sity distribution of the cloud, as can be seen in Fig. 24.
Contrary to the expectations at the time, these droplets
were observed to have very long lifetimes of several hun-
dreds of ms, simply limited by atom loss due to three-
body recombination.

As shown in the early theory works [432, 457], the ob-
servation of multiple droplets arises from a crossing of
the boundary between the BEC region and the bi-stable
region of the phase diagram. In this regime, a continuum
of metastable states, with different numbers of droplets,
is expected to exist. These works suggest that, following
the fast change of the interaction strength, the system
ends up in one of these metastable states, explaining the
observed long lifetime of the crystal as well as the shot-
to-shot variability of the structures. Experimentally, the
system’s bistability was evidenced via the hysteresis in
the appearance and disappearance of the droplet ensem-
bles when varying a down and back up, thus supporting
the theoretical picture. As observed after a long hold
time, the arrangement of the droplets was found to re-
sult from the repulsion between the corresponding macro-
scopic dipoles (see also Refs.[430, 431]).

FIG. 24: Ordered droplet ensembles observed in the MF-
unstable region of the phase diagram. The magnetic field
points put of the plane. Adapted from [185].

A following set of experiments [430] showed that the
droplets have an elongated shape along the dipoles with
an axial length of a few micrometers and a radial size
estimated to half a µm or less (this lies below the imag-
ing resolution). Furthermore, matter-wave interference
fringes observed from several expanding droplets proved
them to be individually superfluid. They were observed
to have extremely low expansion velocities when released
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into a waveguide. In Ref. [430], Ferrier-Barbut et al., in-
spired from the work of Petrov [467] on BEC mixtures,
proposed that BMF effects act as a stabilisation mecha-
nism. By comparing additional expansion and lifetime
measurements to a model following the lines given in
Sec. VB 2 (neglecting kinetic and trapping effects), they
validate this idea and invalidate a possible mechanism
based on three-body forces proposed in Refs. [451–453],
see also the earlier works of Refs. [449, 450]. In particular,
the lifetime τ of the sample, being set by the three-body
loss processes, gives information on the sample’s density
via τ = L3〈n2〉 (see Eq. (58)). The estimated density
scaling of density as a function of a deduced from mea-
suring τ as a function of a was found to reasonably agree
with the simple density scaling of Eq. (63), and disagree
with the scaling expected from three-body forces stabili-
sation.

In this setup, the bistability, yielding excited
metastable states of multiple droplets after an interaction
quench, prevents the formation of a large single droplet
in the ground state. This feature has limited the study
of the properties of the liquid-like state. Shortly after,
it was found out, in particular thanks to the theory de-
velopment described in Sec. VC 1, that this issue can be
resolved by taking advantage of the "crossover region" of
the phase diagram, i.e. changing the trap geometry, as
we will now discussed.

3. Crossover from a Bose-Einstein condensate to a large
quantum droplet.

Following the first droplet observations [185, 430, 431]
and the resulting theoretical development [457, 468],
Chomaz et al. tested the universality of the stabilisa-
tion effect (which relies on the sole quantum-mechanical
nature of the fluid, provided that the interactions are
strong enough), by realising the first quantum droplet of
a distinct chemical species, using 166Er [250]. They also
used a complementary geometry to the previous Dy ob-
servations, using a cigar-shaped trap with λ ≪ 1, and
thus they observed a smooth crossover from a BEC to a
single large droplet of Er atoms containing all the con-
densed atoms. Because the created droplet is isolated,
the authors could study its properties such as its elemen-
tary excitation, and its expansion dynamics, see Fig. 25.
The authors performed a systematic comparison of the
measurements with the eGPE predictions (Eq. (9) includ-
ing also Eqs.(60)-(58), see Sec. VB) using independently
measured values of a and L3. The quantitative agree-
ment reached confirmed the stabilisation scenario and
validated the eGPE framework in this setting. We note
again, that quantum droplets have later been observed in
mixtures of contact-interacting BECs [464, 466] follow-
ing Petrov’s initial proposal, establishing the quantum-
stabilisation mechanism as universal even across different
interaction types, provided that competing interactions
lead to a balance of MF and BMF contributions.
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FIG. 25: Examples of properties of a 166Er dBEC in the
crossover from a BEC to a single macrodroplet reported
in [250]. Here a is varied in 10 ms to its final value, in
abscissa. (a) mean expansion velocity measured in 16
to 28 ms free-expansion after 5 ms holding in trap. The
insets show measured distributions in the plane trans-
verse to the dipole orientation for 28 ms of free-expansion,
and also evidence the absence of collapse dynamics in the
low a-regime. (b) The axial mode of the dBEC, whose
character is illustrated in inset, is excited by transiently
decreasing the confinement frequency along the dipole,
ν||, and the mode frequency, νax, measured by recording
the time-evolution of the cloud size along the dipole. In
(a) and (b), the data (squares) are compared to simula-
tions from real time evolution of the eGPE including (red
solid line) or not (orange dashed line) the LHY correc-
tion (Eq. (60)). In (b), νax cannot be reliably extracted
for quenches to a ≤ 56a0, nor from the experiment (open
squares) neither from the eGPE theory (open circles, thin
line).

Finally, the two regimes of bi-stability and crossover
where experimentally connected in [433], where similar
experiments were performed using 164Dy in traps of vari-
able aspect ratio λ. The formation of a single droplet re-
sulting from lowering a in the crossover was observed for
small λ up to a critical aspect ratio λc which marked the
onset of a modulational instability as in [185]. The ex-
perimental value of λc is in agreement with the expected
critical aspect ratio marking the separation between the
crossover and bi-stable regions.
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4. Droplet properties and their signature in the collective
modes

Following the first experimental observations, several
works investigated the specific properties of the droplet
states properties.

Theoretically, it is interesting to highlight that, while
the trap plays a role in the phase diagram and the tran-
sition between the different phases (see Sec. VC 1), it
plays a much lesser role on the properties of the sin-
gle droplet state itself, at least for large enough atom
number and εdd. By studying full ground-state solution
from the eGPE, Refs. [431, 457, 468] show for instance a
very weak dependence of the droplet density on the trap-
ping potential. At very low atom number (i.e. on the
order of a few thousand), the one-body kinetic energy
is non-negligible, and its interplay with the interaction
energies leads to a dependence of the central density on
N . However, at high atom number, the interaction en-
ergies fully dominate. Following the simple description
of Sec. VB 2, the density then reaches a saturation value
independent of N , given only by the balance of MF and
BMF energies. This marks the low compressibility typ-
ical of a liquid phase, and which stems here from the
high energy cost of increasing density due to the BMF
term. While early experiments have mostly explored the
low atom regime, first measurements showing the onset
of this density saturation have been recently reported in
Ref. [460].

Besides its evidence via density saturation, the low
compressibility of the dipolar quantum droplets has been
revealed in different sets of measurements, in particu-
lar focusing on the collective modes. First investigations
were preformed by Chomaz et al., studying a particular
collective mode, with compressional character, of a quan-
tum gas of 166Er in the BEC-droplet crossover [250]. As
the scattering length is lowered through the crossover, a
steep increase in the mode mode frequency was observed,
changing by 50% when varying a by less than 20% while
the trap frequency remained constant, see Fig. 25. This
shows that the compressibility quickly drops when going
from the BEC to the droplet phase.

In addition to being weakly compressible, a dipolar
quantum droplet is anisotropic. This stems of course
from the anisotropy of the DDI with respect to the ex-
ternal magnetic field axis. The consequence of this ex-
ternal breaking of rotational invariance is the existence
of a collective mode, deemed the scissors mode. It cor-
responds to a rigid-body angular oscillation around the
magnetic field direction. This scissors mode has been
observed first in atomic nuclei [469–471] and in contact-
interacting BECs in anisotropic traps [472, 473]. In the
presence of the DDI, the rotational symmetry is bro-
ken even in isotropic traps. This was showed to result
in a scissors mode for MF dipolar BECs in Ref. [474].
This mode is well-defined only for angular oscillations
in the xz-plane with an amplitude lower than θmax =
(〈z2〉 − 〈x2〉)/(〈z2〉 + 〈x2〉) where z is the field direction

[472]. It is thus very challenging to observe with dipolar
MF BECs, but was observed in dipolar quantum droplets
of 164Dy thanks to their considerable anisotropy [308]. In
conclusion, studies of the collective modes of the liquid
state are a sensitive probe for its properties [475] and will
likely be pushed further.

5. Self-bound droplets and liquid-gas phase diagram

The possibility of creating a single large quantum
droplet by tuning the trap aspect ratio, as described in
Sec. VC 3, was key in the demonstration of the self-bound
liquid nature of this phase. A quantum droplet living in
equilibrium between the repulsive BMF and the attrac-
tive MF interactions, the question of the necessity of the
trap for the existence of this phase then arises. Two the-
ory papers demonstrated indeed the existence of a self-
bound state in the absence of a trap, characterised by a
non-vanishing peak density in infinite volume [468, 476].
This defines a liquid state, existing from the mere balance
between high-density repulsion and low-density attrac-
tion. However, this liquid is in essence quantum, which
provides it with macroscopic new properties. First, it
remains phase-coherent within a droplet. Second, the
self-binding potential resulting from MF attraction from
other atoms within the droplet must counter-act kinetic
energy. As a consequence if the volume is too small,
kinetic energy prevents the existence of a bound state.
This yields a phase diagram as a function of atom num-
ber and scattering length, with a single line separating
the self-bound state from a gas at low atom number and
high scattering length, see Fig. 26. The scattering length
dependence of the atom number value on the separation
line is sharp. Indeed, using scaling arguments, one can
show that the minimal atom number for the existence of
the self-bound state scales as Nc ∼ (1− εdd fdip(κ))

−2/5.
First indications of a self-bound behaviour were already
evidenced in the early work [430] through the absence of
expansion in a waveguide and record-low expansion ve-
locities in free space. Yet, the self-bound character could
not be observed because of the limited atom number. Be-
cause of the large loss rate occurring in Er droplet (see
Fig. 21), the evidences of the self-bound behaviour of the
macro-droplet of Ref. [250] was partial, limited by the
state lifetime. Here, only a slowing down of the expansion
dynamics was observed. An unambiguous self-bound be-
haviour was then observed on 164Dy in Ref. [247]. Here
a single droplet was created using an axially elongated
dBEC [477] of 3000 Dy atoms and cruising the crossover
to the single droplet state, similarly to Ref. [250]. The
trap was then smoothly released while the atoms were
levitated against gravity using a magnetic-field gradient
(see Fig. 27). Unexpanded droplets were observed up to
90 ms of levitation. Using the atom loss as a probe, the
liquid-to-gas transition was mapped out in the (a,N)-
space. This phase-diagram was later expanded to larger
atom number by using samples of 162Dy atoms [309], see
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FIG. 26: Measured self-bound liquid to gas phase dia-
gram of Dy atoms. The theory curve results from simu-
lations of the eGPE. Data are shown for both 164Dy and
162Dy. For 164Dy, the background scattering length had
to be adapted from the literature value (92(8) a0, green
circles) to a lower value (69(4) a0, red diamonds), see also
discussion in Secs. VB and VC 4. The horizontal error
bars are systematic errors coming from uncertainties on
FRs positions and widths. Adapted from Refs. [247, 309].

Fig. 26. The experimental points of the two isotopes
match well together and agree with eGPE predictions,
at the expenses of a substantial renormalisation of the
background scattering length of the 164Dy isotope, by a
factor of 3/4. The need of such an important change of
abg rose questions about the validity of the eGPE treat-
ment in particular in the low-atom-number and large-εdd
regimes(see also the discussion in Sec. VB), or again of
the methods employed to extract abg (see Sec. II D), in
particular in the Dy case.

FIG. 27: Single self-bound droplets without a trapping
potential can be produced by preshaping the droplet in
an appropriate trap which is then switched off. The
droplet stays bound and floating in the chamber until
eventually the losses reduce the atom number below a
critical value where no bound states exist any more. That
manifests the transition to a gaseous phase where the
atoms expand like a gas. Adapted from Ref. [247].

To conclude, the self-bound liquid-gas phase diagram,
being simply due to the quantum mechanical nature of
the system, is not restricted to the dipolar case. It may
in fact be generally expected in quantum gases where
two interactions of different origin compete, and as such
it has been observed in Bose-Bose mixtures [464, 466].
It is interesting to note that in lower dimensions this
phase diagram is completely modified. This has been the
topics of several theoretical works, both for dipolar and
mixtures systems, see e.g. [478, 479].

D. Dipolar Supersolids

In Section VC, we have reviewed how the quantum-
stabilisation mechanism discovered in 2016 (see Sec. VB),
may yield new ground states beyond the MF instability.
There the ground state were limited to single droplet,
as relevant for the early experiment, due to the small
atom numbers and shallow traps (independent on the
trap geometry, see Sec. VC 1). Here we review how the
same stabilisation mechanism yield to formation of self-
modulated and in particular supersolid ground state, as
well as their experimental investigations.

1. Preliminary works

Supersolidity is a paradoxical phase of matter in which
the antithetical properties of crystal arrangement and of
superfluid flow coexist. It has been suggested more than
half a century ago as a paradigmatic manifestation of a
state in which two continuous symmetries of distinct na-
ture are simultaneously broken [480–482]. Originally pre-
dicted in quantum solids with mobile bosonic vacancies
[483–485], the search for supersolidity has spread in many
different fields of physics. Observation of supersolidity in
helium was claimed [486] but the claim was withdrawn by
the same authors a few years later [487] and the quest for
supersolidity in helium is still open [482, 488]. The possi-
bility of supersolid states in quantum gases were theoreti-
cally proposed long ago, see Refs. [489–499]; this possibil-
ity linking back to the seminal work from E. Gross [481]
on assemblies of bosons with momentum-dependent in-
teractions, see also Ref. [399, 500].

Besides the supersolids made from dipolar quantum
fluids alternative approaches to supersolidity with ultra-
cold atoms include miscible two-component BECs with
SOC as well as optically pumped superfluids in a cavity
that mediated interactions via the scattered light [501,
502]. All concepts have in common a momentum-
dependent interaction that leads to a minimum at finite
momentum in the dispersion relation on the superfluid
side of the phase transition. This is called the roton
minimum. In both the dipolar supersolid and the SOC
systems, two branches of the excitation spectrum exist
on the supersolid side of the phase transition. They
correspond to the Goldstone modes of the two double
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symmetry-breaking processes, the breaking of the trans-
lational symmetry and the breaking of the U(1) phase
invariance of the condensate. More recently, a continu-
ous U(1) translational symmetry was created in system of
multimode cavity light coupled to a BEC. The breaking
of this symmetry resulted in a supersolid with transverse
vibrations exhibiting a Goldstone dispersion of phonon
excitations [503]. We will now focus the discussion on
the simultaneous quest for a supersolid supporting crys-
tal phonon excitations like a real solid in a dipolar gas
only.

This authentic supersolid behaviour can be expected
if the simultaneous breaking of the two symmetries arise
from the intrinsic interactions between the particles. As
already highlighted by E. Gross, the relevant platforms
for observing supersolidity are quantum gases with inter-
particle interactions yielding large-momentum attrac-
tion [399, 481]. Practical examples are Rydberg-dressed
potentials, spontaneous or light-induced dipole-dipole in-
teractions in confined geometries [490–499]. In these set-
tings, a roton-type excitation is induced in the superfluid’
excitation spectrum by the large-k attraction (see also
Sec. IVA3 c). Its full softening may indicate the transi-
tion to a density-modulated state as the roton signals an
intrinsically favoured length scale and has been seen as
a precursor of crystallisation [399, 500]. The observation
of a roton mode in dBECs confined in cigar-shaped ge-
ometries [312, 313] was key to point promising grounds
to observe supersolidity [499], see also Sec. IVA3 c.

A recurrent hindrance to the interaction-driven for-
mation of supersolid in quantum gases lies in the pre-
dicted MF collapse of the gas at the roton instability,
see Secs IVA4 c,VA and Refs. [504, 505]. Protocols to
stabilise the gases beyond its instability thanks to the
engineering of higher-order (three-body) interaction po-
tentials have been proposed [498]. However, these pro-
tocols have not been implemented in experiments so far.
The discovered BMF stabilisation mechanism provides
the key ingredient for an intrinsic stabilisation.

In 2017, theoretical works based on the eGPE [506,
507] demonstrated that not only a single droplet (as
described in Sec. VC 1) but also assemblies of multi-
ple droplets, or in other words density-modulated states,
could constitute the ground state of dipolar quantum
gases. This was found for both pancake and cigar ge-
ometries, by simply using tighter trap and/or larger
atoms numbers than in the previous works of Ref. [457,
468, 475]. Similar observations were also achieved via
quantum Monte Carlo simulations with large densi-
ties [508, 509]. Starting from the picture of a single
droplet state, the physical argument to the formation of
multiple-droplet ground-states can be formulated as fol-
low: The liquid phase has a weak compressibility that
yields a sharp increase in energy at high density, see
also Sec. VC 4. If one compresses an (isotropic) liquid
in one or two directions, it then deforms to keep a con-
stant density at the small cost of increasing its surface
energy. Yet for the dipolar quantum liquid, the DDI dic-

tates an anisotropy, and deformation costs a high amount
of (dipolar) energy. Therefore, when a dipolar quantum
droplet is compressed along its long axis, it might be en-
ergetically favourable to split it in several droplets (of
smaller radial sizes), recovering thus an anisotropy closer
to the one naturally imposed by the DDI. Ground states
can thus form spontaneous density modulation. Calcu-
lations with periodic boundary conditions along one di-
rection were also performed, see Ref. [506], proving that
a continuous translation symmetry can indeed be bro-
ken (at the thermodynamic limit). These predictions in-
dicate possibilities for quantum-stabilised dipolar “crys-
tallised" ground states and in particular open the doors
for quantum-stabilised dipolar supersolids.

The work of Ref. [506] also experimentally produced
spontaneously density-modulated states in cigar-shaped
Dy gases that show close features to the expected ground
states yet global phase coherence was found to be ab-
sent. The lack of phase coherence was interpreted based
on a Josephson-Junction formalism, which describes the
maintenance of a phase relation via tunnelling processes
between the individual droplets, and its preclusion via
quantum or thermal fluctuations. In this experimental
realisation, the tunnelling rate between the individual
droplets, or in other words, the wave-function overlap
between them, was not enough to lock the droplets in
phase. The authors of Refs. [506, 507] also showed that
assemblies of droplets with sizeable wave-function over-
lap were theoretically possible by either increasing the
trap frequencies or the atom numbers compared to the
current experimental configurations.

2. First experimental evidences of supersolid behaviors

At the end of 2018, the progressive understanding
of the many key features of Bose gases of highly mag-
netic atoms combined in an acute picture. These fea-
tures include the discovery of the BMF stabilisation
in such gases (see Sec. VC 2), the observation of the
roton mode and its softening in cigar-shaped clouds
(see Sec. IVA3 c-IVA4 c), the possibility of density-
modulated ground states, matching an assembly of
quantum-stabilised droplets (see Sec. VD1), and the
need of making the droplets more extensively overlap in
order to maintain the global phase coherence in such as-
semblies (see Sec. VD1). Building on this knowledge,
a set of experiments [190, 329, 330] observed hallmarks
of supersolid behaviours in cigar-shaped gases of 162Dy,
166Er, as well as 164Dy atoms. Accompanying theoretical
works [329, 330, 499, 511, 512] related these observations
to an underlying supersolid ground state of the gas, see
Sec. VD3.

The three experimental works proved two hallmarks
of supersolidity in experiments, namely the simultaneous
occurrence of a spontaneously formed density modula-
tion and of a global phase coherence. Density modula-
tion was revealed by the occurrence of modulated pat-
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FIG. 28: Examples of statistical analysis of the self-
interference patterns of dipolar quantum gases showing
hallmarks of supersolidity (a,c) (or normal solidity (b,d)),
i.e., density modulations with (or without) global coher-
ence. (a), (b) Norm of the Fourier transform of the inte-
grated density profiles from the individual TOF images
(grey lines) and the norm of their complex average (thick,
blue or red, line) in the supersolid case and the insulating
array of droplets case. The existence of side peaks in the
norm of the complex average evidence coherence in be-
tween density peaks (see inset). Adapted from ref. [330].
(c),(d) Representation in the complex plane of the values
of the Fourier transform of the TOF profiles at the posi-
tion of the first side peak (see a). The limited spread of
the phases Φ evidences global phase coherence. Adapted
from Ref. [510].

terns in the gas absorption images, either in situ [330]
or in time of flight. Here the density patterns form
from the self interference of the gas via free expansion
of the in situ modulation. The global coherence was
demonstrated by a statistical analysis of multiple rep-
etitions of this self-interference TOF patterns. Global
coherence is here marked by the stability of the inter-
ference patterns, differentiating supersolids from an in-
coherent array of droplets. Global coherence was mostly
quantified through an analysis of the complex values of
the Fourier transform of the TOF density profiles, see
Fig. 28. We note that the coexistence of density modula-
tion and phase coherence does not prove the superfluidity
of the state, which can be demonstrated only by probing
dynamic-related properties of the state, see Sec. VD4.

All three experiments used relatively shallow cigar-
shaped traps with transverse magnetisation, similar to
Ref. [312]. The spontaneous density modulation occurred
only along one axis, the long axis of trap. The coex-
istence of density modulation and phase coherence was
observed in narrow ranges of scattering length values, of
a few a0 wide, and survives a few tens [190, 329, 330]

up to a few hundreds of ms [329] in these first experi-
ments, later extended up to few seconds [513]. Building
on this long lifetime, Ref. [329] additionally established a
different route than standard interaction tuning towards
supersolid states, which is based on direct evaporative
cooling starting from a thermal state, see also [513].

In all three works, the states with supersolid proper-
ties could be achieved by ramping down the scattering
length starting from a stable BEC, using a slower ramp
and a finer tuning of a than Ref. [312]. In the earlier
works of Refs. [431, 506] observing droplet assemblies in
cigar shaped traps, the rougher tuning of a as well as
the lower initial BEC atom numbers are also thought to
have prevented the observation of supersolid properties
(see also Secs. VC 2, VD1). Finally, in the seminal work
of Ref. [185], a distinct pancake-shaped geometry as well
as smaller initial BEC atom numbers were used. Sev-
eral following theoretical as well as experimental works
indicates that the use of a cigar-shaped geometry was
crucial for more easily achieving supersolid states in ex-
periment. In this geometry, the MF instability is driven
by the softening of a single (doubly-degenerate) roton
mode dictating the dominant wavelength of the density
fluctuations [312, 313, 413]. In contrast, the pancake case
is more complex, with several radial and angular rotons,
corresponding to different structures of density fluctua-
tions, simultaneously softening [414, 514]. Furthermore,
in the cigar-shaped case, it is expected that the transition
to a supersolid state can occur continuously, with the su-
persolid modulation directly connecting to the softened
roton mode, see e.g. [515].

3. eGPE phase diagram beyond the single-droplet regime:
droplet assemblies and supersolid states.

Following the observations of the roton mode popu-
lation in Ref. [312] and shortly preceding the works of
Refs. [190, 329, 330], Rocuzzo and Ancilotto [499] theo-
retically explored the phase diagram of an Er quantum
gas in an infinite cigar-shaped geometry with periodic
boundary conditions. They relied on the eGPE frame-
work developed in the context of the quantum droplet
studies (see Sec. VB) and calculated the ground state
as a function of a. In this setting, they demonstrated
the existence of a supersolid phase (SSP) in an inter-
mediate range of a, separating an array of insulating
droplet (ID) at low a and a regular BEC at large a.
Both the SSP and the ID are density modulated ground
states stabilised by quantum fluctuations, similar to the
single-droplet phase described in Sec. VC 1. The SSP
distinguishes itself by bearing a density modulation of
finite contrast. In addition, Rocuzzo and Ancilotto di-
rectly computed, via dynamical simulation, the super-
fluid density of the density-modulated states, thus rigor-
ously establishing the connection between the occurrence
of non-fully-contrasted density modulation and non-zero
superfluid fraction. This work proved the relevance of
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FIG. 29: Phase diagrams, calculated in [329] (a) and
[330] (e) for the relevant experiments using Er, Dy re-
spectively. (b-e) ((g-i)) corresponding insitu axial density
profile for N = 5×104 (N = 3.5×104). Besides the BEC
and single-droplet phases, identified in Fig. 26, density-
modulated ID and SSP ground states are found. The
SSP is identified by a non-fully contrasted density mod-
ulation. It is sandwiched in a narrow a-range in between
a regular BEC and a crystal of independent droplets (ID).

the SSP in cigar geometries, beyond finite-size effects,
see also Ref. [515].

Together with their experimental results, both
Refs. [329, 330] reported on eGPE calculations of the
ground-state phase diagrams in the finite experimental
geometries, see Fig. 29(a,f). The ground states were cal-
culated as a function of the atom number N and the
scattering length a for a given trap and atomic species.
At low N , a transition occurs from the regular BEC
to the single-droplet phase when decreasing a, as de-
scribed in Sec. VC 1, see also Refs. [329, 457, 468]. In
contrast, for large-enough atom numbers, three different
regimes could be identified similar to the infinite case re-
sults of Ref. [499]: When decreasing a, the regular BEC
state transitions first to a density-modulated state of fi-
nite contrast, identifying a SSP, and then to a density-
modulated state of contrast almost unity, forming an ID
array, see Fig. 29(b-e,g-i). We note that the atom num-
ber for the occurrence of density-modulated states ver-
sus single-droplet depends on the atomic species (being
smaller for Dy than for Er), and on the trap, both on
its overall tightness and on its shape. The exploration of
the most favourable parameters for supersolidity as well
as achieving such a phase in different settings are inter-
esting directions that are currently under investigation,

see e.g. Sec. VD5.
Based on the eGPE framework, Refs. [190, 330, 516]

also reported on simulations of the real-time evolution
induced by the finite scattering-length ramp used to
reach the various BEC/SSP/ID states in the experi-
ments. These show that in the SSP regime, the dynami-
cal state has strong similarities with the expected ground
state and shows limited phase fluctuations. In contrast,
when decreasing the scattering length lower, to an ID
regime, the dynamical state deviates from the ground-
state expectation and show large phase fluctuations.

4. Toward probing the dynamical response and superfluidity
of dipolar supersolids

Besides the study of the static properties of the
state, as the hallmarks reported in the first studies (see
Sec. VD2), a huge interest is drawn by the special dy-
namical properties associated to supersolidity. Indeed,
such a dynamics intrinsically connects to the superfluid
character of the supersolid and would characterise the
related rigidity of its phase. The study of the dynam-
ical properties covers a wide range of phenomena and
concepts, spanning from the study of the spectrum of el-
ementary excitations, to that of transport properties, or
of the response to an external rotation for instance. Su-
persolidity brings exotic characteristics to these different
features.

FIG. 30: Observed response frequencies for quadrupole-
type excitations in the BEC-SSP-ID phase diagram, from
(a) an Er sample, taken from [311], and (b) a Dy sam-
ple, from [191]. Theory predictions from (a) Bogoliubov
theory, (b) real-time simulations, based on eGPE theory
are shown. In (a) all the elementary excitations, l, are
shown and the colour highlight their expected response
Rl to the performed trap excitations.

The first of these aspects to be explored in dipolar
gas experiments concerns the properties of the spectrum
of elementary excitations of a supersolid at low mo-
menta. Here, not one but two branches of low-energy
(gapless) “phonons" modes [483, 499, 517–520] are ex-
pected, the different branches bearing excitations of dif-
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ferent characters. Following Goldstone’s idea [521], the
number of gapless branch connects to the number of
spontaneously broken symmetries – two in the case of
the supersolid: one branch holds phonons of the crys-
tal and relate to a broken translational symmetry, while
the other branch holds phonon of the superfluid (phase
phonons) and relate to a broken gauge symmetry. The
phase branch corresponds to the branch of lower ve-
locity, and, when evolving through the BEC-SSP-ID
phase diagram, it is observed to soften and its weight
in the response to decrease, up to vanishing in the ID
case. On the contrary the crystal branch slightly harden.
These properties of the supersolid excitation spectrum
were theoretically investigated in various systems [517–
520]. The excitation spectrum behaviour in dipolar su-
persolids was further theoretically investigated in various
works [311, 499, 516, 522].

Several experiments show signatures of these two
branches [191, 311, 413, 523]. Due to the finite system
size, the phonon branches are here discretised (see also
Sec. IVA3), and the experiments probe the response of
some specific low-lying modes of the trapped dipolar su-
persolid states. In Refs. [191, 311], the evolution of the
BEC’s lowest-lying quadrupole mode within the BEC-ID-
SSP phase diagram is probed, see Fig. 30. In the BEC
regime, the system responds at a single and roughly con-
stant frequency, and when reaching the SSP regime, sev-
eral frequencies are observed in the system’s response.
Furthermore, these frequencies are found to organise in
two branches as a function of a. One branch is softening
and one is hardening when decreasing a. These prop-
erties are indicative of the emergence of modes of domi-
nant phase and crystal characters, respectively. Ref. [191]
identifies the different modes via their distinct signa-
tures in the time-evolution of the gas’s self-interference
patterns. Ref. [311] identifies resonant frequencies via
an unbiased principal component analysis of the self-
interference patterns and observes a mixed character in
the associated principal component structures. The dif-
ferent modes’ characters between Refs. [191, 311] may
be attributed to the different numbers of density peaks
in the underlying supersolid states. Distinctly, Guo et
al. [523] probe the lowest lying mode of the trapped su-
persolid, which has a frequency lying below the dipole
mode and is a Goldstone mode of phase character, see
Fig. 31. The frequency of the mode itself is not probed
due to its low value, instead signatures of a spontaneous
population of the low-energy excited mode are observed
via a statistical analysis of the in situ density patterns.
A peculiar feature of this mode is that the motion it
induces preserves the centre of mass position thanks to
superfluid flow. This implies a correlation between the
array’s displacement and the population imbalance be-
tween the density peaks, see Fig. 31. By repeatedly pro-
ducing and imaging steady-state samples, Ref. [523] ev-
idenced such correlations in the limited a range where
the state is supersolid. The presence of such correla-
tions points to the existence of the phase Goldstone mode

and implies an underlying superfluid flow. An interest-
ing point to note is that the emergence of this Goldstone
mode in the excitation spectrum connects to the soften-
ing of the antisymmetric roton mode from the BEC [523],
see also Sec. IVA3 c. In contrast, the symmetric roton
mode connects to an amplitude mode, also called Higgs
mode, which sharply hardens when moving away from
the SSP-BEC transition in the SSP [522]. More recently,
a detailed study of the in situ density fluctuations in the
SSP also revealed the existence of density and crystal
phonons [413], see also Sec. IVA3 c.

FIG. 31: Dynamics induced by the lowest lying Gold-
stone mode of a supersolid (top) and observed correla-
tion between displacement and imbalance in the in situ
density patterns of experimental realisations of Dy su-
persolids at 97.6a0 (bottom). Adapted from Ref. [523]

Besides the study of low-lying excitations, investiga-
tion of higher energy modes of supersolids have been re-
cently undertaken. This includes studies of the response
to rotational excitations [524], or to large-momentum ex-
citations [516]. Rotation excitations in Ref. [524] probe
a scissor-type excitation, similar to that described in
Sec. VC 4 for droplet states. Here the observed scissor-
mode frequency decreases at the transition from BEC
to modulated states. This indicates an increase of the
state’s momenta of inertia. It is however not straightfor-
ward to relate this behaviour to the superfluid fraction
of the state. Ref. [516] probes the scattering of quasi-
free particles via Bragg excitations (see also Sec. IVA3)
along the BEC-SSP-ID phase diagram. Here a decrease
in the response amplitude is observed when crossing from
BEC to modulated states. From impulse-approximation
theory, this decrease probes a reduction of the popula-
tion of the zero-momentum state. The observed decrease
surpasses expectations obtained from the eGPE steady
states. This was related to coherent phase evolution, in-
duced by the dynamical crossing of the quantum phase
transition [525].
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Besides studies of specific excited modes, the super-
solid’s dynamical properties have also been unveiled in
the time evolution induced by parameter quenches or
ramps. This includes interaction quenches [510] and
evaporative cooling ramps [513]. Ref. [510] probes the
dephasing and rephasing dynamics of the gas’ global co-
herence when dynamically crossing the ID-SSP transi-
tion. The observed dynamic was understood by compar-
ing to a simple Josephson-Junction-Array model where
the Josephson tunnelling amplitude was quenched, while
dissipation is empirically introduced, using a Langevin
formalism. This model shows a good qualitative agree-
ment with experiments, while quantitative discrepancies
are attributed to the inherently soft nature of the su-
persolid’s crystal and the effects brought in by the pos-
sible excitation of the crystal’s phonons. Studying the
formation dynamics of supersolids via direct evaporative
cooling (ramp of optical dipole traps), Ref. [513] shows
that density modulation appears before global phase co-
herence, but after local phase coherence, is established.
Reference [513] also studies the subsequent decay process
of the supersolids, occurring spontaneously under the ef-
fect of three-body recombination. In this decay, in con-
trast to the formation dynamics, global coherence is ob-
served to survive longer than density modulation, while
the temperature remains roughly constant. Furthermore,
in this process, the strength of the density modulation,
for a fixed value of the number of locally coherent atoms,
is observed to depend on the temperature, being weaker
when colder, see also ref. [526].

The various dynamical studies performed up to now
provide valuable insights into the supersolid state special
behaviours, including direct and indirect signatures of
the existence of phase and crystal phonons (near k = 0)
and their mixing, of superfluid flow and transport, or of
coherent and incoherent phase dynamics in the experi-
mentally produced states. Interesting prospects include
direct measurements of the superfluid properties, and in
particular of the superfluid density of supersolids, and
the creation of vortices in the supersolid rotation, see
e.g. [527, 528].

5. Supersolids with richer crystalline patterns and
two-dimensional character

As discussed in Sec. VD2, the first observations of su-
persolidity in dipolar gases have been conducted in elon-
gated and relatively shallow, cigar-shaped traps, result-
ing in supersolids in which (i) the breaking of the trans-
lational invariance occurs only along one dimension, (ii)
the number of density modulations found in the finite
experimental system is small (typically a handful) and
thus finite size effects might be important. Yet, dipo-
lar supersolid states with larger and/or more complex
crystalline structures, and in particular where crystalli-
sation occurs in two directions of space have attracted
intense interest. Theoretically, a series of works have

focused on the phase-diagram and excitation spectra of
two-dimensional supersolids in isotropic and anisotropic
traps [529–533], on the possibility of creating vortex ex-
citations [527, 528, 534], and on the emergence of exotic
crystalline structures [514, 529, 530]. Very recently, two-
dimensional supersolidity has been observed in experi-
ments with Dy atoms, using anisotropic traps [531]. As
a function of the anisotropy of the trap in the directions
perpendicular to the atomic dipoles, experiments have
demonstrated evaporative phase transitions to ground
states of various supersolid patterns from a linear chain,
to a zig-zag crystalline structures [531], and finally to a
hexagonal structures in circular traps [532]. In a related
effort, two-dimensional angular roton modes, analogous
to the linear roton mode in elongated traps [99, 312, 313],
has been observed in radially extended traps [414], see
also Sec. IVA3 c for more details. By further tuning the
interplay between trapping configurations, interaction
parameters, and atom numbers, even more exotic ground
states are expected to appear, such as honeycombs, ring
and labyrinth-like supersolid phases [514, 529, 530].
With the considerable interest that the discovery of dipo-
lar supersolids have generated, we expect a quick devel-
opment of the field and a blossom of works probing the
various intriguing properties of this phase as well as ex-
ploring its possibility in different settings.

VI. Spin physics with highly magnetic atoms

In the previous Secs. IV and V, we presented the
many-body physics arising in quantum gases of magnetic
atoms fully polarised in their lowest Zeeman state, un-
der the influence of the elastic DDI between the aligned
atomic dipoles. In the following, we discuss the physics
of ultracold gases of magnetic atoms when the spin de-
grees of freedom are free and taken into account. Of
course, short-range interactions among atoms can also
be spin-sensitive, see Secs.VI A 6,II D: magnetism is typi-
cally driven by the interplay of spin-dependent long-range
dipolar forces and spin-dependent short-range forces.
This interplay intrinsically takes on a very different fla-
vor if the atoms are free to move and collide, or if the
experiment is performed with atoms confined in an opti-
cal lattice wherein the spins are localised at each node of
a 3D array. In the latter case, the system realises spin-
lattice models, where spins interact both at a distance,
directly through DDI, and by short-range interactions
via second-order processes in tunnelling. These so-called
super-exchange interactions will be reviewed in Sec. VII,
while the current section focuses on the situation without
a lattice potential.

After introducing a few important concepts of the
spin physics with ultracold gases, including that which
is unique to highly magnetic atoms in Sec. VI A, we will
review the experimental achievements revealing the im-
pact of the DDI on spinor physics and on two-component
Fermi mixtures; see Secs. VI B and VI C. The latter two
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situations can be distinguished by whether dipolar relax-
ation can be neglected, resulting in a system in which
the total magnetisation is conserved in the sample; see
Sec. VI B, or whether the demagnetisation is a key mech-
anism of the physics at play, yielding gases with free
magnetisation and an intrinsic spin-orbit coupling; see
Sec. VI C. Finally, we will discuss the engineering of spin-
dependent Hamiltonians using light fields and the unique
contributions provided by magnetic atoms in this respect;
in Sec. VI D. We will examine the engineering an artificial
spin-orbit coupling, realising a special class of artificial
gauge fields, and the engineering of spin-spin interactions
that yield entangled quantum spin states.

A. Introduction to spinor physics

1. Magnetic atoms: a large composite spin

Unlike electrons, atoms possess a composite spin that
may be large compared to electrons’ S = 1/2. This en-
riches spinor physics. For alkali atoms, the total spin
arises from the coupling of the spin-1/2 electron to its or-
bital angular momentum L and the nuclear spin I. This
large spin allows for the study of a new type of quantum
fluid, involving the interplay between magnetism and su-
perfluidity [95]. The study of degenerate quantum gases
with a large spin degree of freedom s > 1/2 initially
focused on bosonic atoms, i.e., Bose spinor gases [94].
Experiments explored the spinor physics of F = 1 Na
atoms and F = 1 and 2 Rb atoms [95]. More recently,
these studies were extended to spinor fermions using the
F = 9/2 state of fermionic K [535].

Strongly magnetic atoms such as Cr and Lns are multi-
electron systems, which can possess an even larger to-
tal spin in the ground state than alkalis. For example,
bosonic Cr atoms have an electronic spin S = 3 in the
ground state (L = 0), while bosonic Dy and Er atoms
have L = 6, S = 2 and L = 5, S = 2 respectively. Includ-
ing the hyperfine structure for the Fermi isotopes, one can
reach, for example, F = 21/2 using 161Dy atoms. Besides
the richer physics at the many-body level, such large-
spin atoms have also attracted attention for studying
highly non-classical behaviours involving quantum coher-
ence and entanglement, either at the many, few, or even
single-particle levels [181, 182, 536]. These prospects may
have important implications and applications for quan-
tum information processing, sensing, or metrology pur-
poses. In particular, we note that a single magnetic atom
provides the realisation of large spin states (length F ) in
an Hilbert space of relatively moderate size (2F +1) and
increasing linearly with the spin size. In contrast, a spin
of similar length realised by a set of spin-1/2 particles
lives in an Hilbert space whose size increases exponen-
tially with the spin length. The reduction of the Hilbert
space offered by magnetic atoms is beneficial to temper
the effect of decoherence in the system.

We note that, in atomic gases, research has also ex-

plored small-spin systems, e.g., those involving only two
spin states to form an (effective) spin-1/2 system. Such a
system can be accessed either by considering a hyperfine
level of F = 1/2 (as for fermionic Li and K [378, 537–
540]) or by isolating two states of a larger-F level; see
e.g. [541, 542]. For magnetic atoms, however, isolation is
complicated by the spin-changing DDI; see also Sec. III C.
Nevertheless, as we have seen in Sec. III C 4, thanks to the
quantum statistics, some subspaces can be effectively pre-
served in spin mixtures of ultracold fermions on long time
scales because decay rates are strongly suppressed [165].
This is in particular the case for the subspace formed by
the two lowest spin states of a fermionic magnetic atom.
This feature has been used in experiments to study ef-
fective spin-1/2 dipolar systems under the effect of an
artificial spin orbit coupling [252] and in bulk [314].

2. Spin-dependent one-body Hamiltonian for spinor gases

In order to study pristine spinor physics, i.e., to iso-
late the effects arising solely from spin-dependent interac-
tions, it is convenient to first consider a spin-independent
one-body Hamiltonian (typically the sum of a kinetic
term and external potential; see Eq. (9)). Using a spin-
space generated from the hyperfine level of an atomic
species, the kinetic part of the Hamiltonian is spin inde-
pendent. Then one need only consider the conservative
trap confining the atoms. This potential should be in-
dependent of the magnetic sublevels. For alkali atoms,
this is typically obtained by using optical dipole traps
created by far-off-resonant focused laser beams, in which
case the AC-Stark shift is approximately independent of
the magnetic sublevel [246]. As discussed in Sec. II C, the
situation of magnetic atoms differs. Both for Cr and for
Lns, the large electronic spin/angular momentum results
in large vector and tensor parts of the atomic polarisabil-
ity. This yields a significant dependence of the light shifts
on the magnetic sublevel, even when using light far away
of optical transitions. Typically, this is not negligible in
experiments exploring dipolar magnetism. It is then ex-
pected that spinor phases will be driven by an interplay
between spin-dependent interactions, the Zeeman effect,
and the tensor light-shift.

3. Spin-dependent interactions for large-spin atoms

To study of spin physics with large-spin atoms it is im-
portant to recall that the interaction between the atoms
can depend on the spin channel S of the collision. Here,
S describes the total spin of two atoms and is preserved
during the collision in the absence of a DDI, see Secs. II D
and III.

Quantum statistics plays a major role in selecting
which molecular potentials should be taken into account.
Generally speaking, regardless of the statistics of the par-
ticles involved, S+ l must be even, where l is the relative
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angular momentum; see also Sec. III A. For short-range
interactions, s−wave scattering dominates at low colli-
sion energy. Under these circumstances, only even S need
to be considered, both for bosons and fermions.

The different molecular potentials have identical mul-
tipole expansion parameters at long distance where only
electrostatic interactions contribute. However, at short
distance, where electronic orbitals may overlap, quantum
statistics also plays a pivotal role. This is because the
molecular potentials associated with different spin chan-
nels are often quite different. Therefore, different spin
channels S typically correspond to different scattering
lengths aS . This is clearly true in the case of Cr because
of the large electronic spin of the atom. This leads to
seven very different molecular potentials, as calculated
in Ref. [543] and confirmed by experiments [162, 196].
Scattering lengths are also (most likely) spin dependent
in Lns. Because the outermost electronic shell has zero
spin (identical to the case in Yb), all molecular potentials
have a similar shape even at short distances. However,
slight differences between the molecular potentials (due
to, e.g., orbital anisotropy of unfilled submerged f -shell)
are most likely sufficient to lead to spin-dependent con-
tact interactions [207]. As highlighted in Sec. II D, scat-
tering properties of Ln are extremely difficult to predict,
while, on the experimental side, spin-dependent scatter-
ing lengths have remained unexplored in these atoms; see
also Sec. II D.

In gases of large-spin magnetic atoms, there is, in ad-
dition to spin-dependent contact interactions, the DDI
that must be taken into account. Dipolar interactions
are not only spin-dependent, but they also induce direct
spin-orbit coupling (SOC); see Eqs. 3-5. Indeed, when in-
cluding the spin degree-of-freedom, the DDI leads to two
extra terms in the Hamiltonian. These are in addition to
the bare (yet also spin-dependent) elastic term Eq. (3)
that we have considered up till now. The first term is
the so-called spin-exchange term of Eq. (4): it changes
the spins of atoms at long distances while conserving the
total longitudinal magnetisation of the pair of particles.
The second term is the relaxation term of Eq. (5). This
leads to a change in magnetisation and converts spin an-
gular momentum into orbital angular momentum to con-
serve the total angular momentum in the system, thus
providing a form of SOC. Due to this peculiar SOC, and
to the long-range coupling between spins, large-spin sys-
tems thus allow the exploration of magnetism beyond
paradigms inherited from solid-state physics in addition
to beyond what could be achieved with ultracold atomic
gases up till now. Experiments can be performed both
with bosonic and fermionic isotopes (see Sec. II), greatly
enhancing the scope for new magnetic behaviour.

4. Mean-field spinor physics with spin-dependent contact
interactions

Because of the spin-dependence of the contact interac-
tions described above, the Hamiltonian of a spinor gas
depends on the spin s of the interacting particles even
in the absence of a DDI. The Hamiltonian becomes in-
creasingly complicated for increasing s [94]. It is useful
to examine the simplest case for what can be consid-
ered as a large-spin system, i.e., one beyond the spin-1/2
case. This is the case of s = 1 atoms. In this case, only
two spin channels exist for the short-range interactions,
S = 0 and S = 2, with the corresponding scattering
lengths aS=0 and aS=2. In the Hamiltonian, given by
Eq. (13) within the mean-field picture, the difference be-
tween the two scattering lengths is the key ingredient for
spinor physics, giving rise to a so-called c1-interaction
term with c1 ∝ (a2 − a0).

This spin-dependent interaction term for example re-
sults in spin-exchange dynamics that is experimentally
apparent by monitoring the evolution of the population
in the different Zeeman states as a function of time. The
spin-exchange processes correspond to the Forster-like
exchange of a spin excitation (ms = 0,ms = 0) → (ms =
−1,ms = 1) and are driven in the mean-field picture at
a rate:

Γexc ∝
4π~2

m
n(aS=2 − aS=0). (64)

Spin dynamics has been widely studied in the community
for both Bose and Fermi quantum degenerate and ther-
mal gases [95, 535, 544–551]. More generally, the study
of excitations within a spinor condensate is expected to
be very rich, with a number of possible topological ex-
citations observable, such as line defects, point defects,
skyrmions [552], and knots [94].

Most importantly, spin-exchange processes associated
with contact interactions conserve the total longitudi-
nal magnetisation of the pair of particles. This con-
servation stems from the isotropy of contact interac-
tions. A very important practical consequence is that
the linear Zeeman effect is gauged-out and does not con-
tribute to the dynamics or to the phase diagram. Spinor
phases are rather determined by the interplay between
spin-dependent contact interactions and the quadratic
Zeeman effect [95], leading to quantum phase transi-
tions [546–548]. At low magnetic fields, where the
quadratic Zeeman effect may be neglected, the spinor
ground state strongly depends on interactions. For s = 1,
when a2 < a0, the BEC is ferromagnetic (favouring col-
lisions in the S = 2 channel), while the predicted ground
state when a0 < a2 is polar [553, 554]. On the other
hand, a large positive quadratic Zeeman effect favours
the polar state. As the spin increases, the wealth of possi-
ble phases makes spinor quantum gases a promising area
of research [94], including for the study of non-Abelian
spinors [157].
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5. Beyond-mean-field spinor physics with spin-dependent
contact interactions

One of the important features of spinor gases is that
quantum correlations can naturally occur, allowing quan-
tum fluctuations to play an important role. For example,
spin-exchange dynamics vanish at the mean-field level
when a spinor condensate is prepared in the initial state
ms = 0. Quantum fluctuations then drive the onset
of spin dynamics, with analogies to parametric ampli-
fication [551, 555, 556]. Atomic quantum optical effects
lead to the generation of entanglement [557], which may
have important applications for atom-based squeezing
and atom interferometry [558].

Quantum fluctuations can also play a key role in de-
termining the nature of the many-body ground state. A
formal mapping to quantum optics was proposed by Law
et al. [559], who showed that the ground state differs from
mean-field predictions [553, 554], at least for mesoscopic
systems. Depending on the sign of the spin-dependent in-
teractions, the ground state is strongly degenerate (with
spontaneous symmetry breaking likely), or a condensate
of spin-singlet pairs. So-called ‘fragmented BECs’ have
also been studied by Ho and Yip [560], and were very
recently experimentally produced in Ref. [561].

While most of the experiments have been performed
with bosonic atoms, large-spin fermions are also a
promising direction for research on large-spin systems.
First studies have been performed in Hamburg [535, 550].
These large-spin Fermi systems possess increased spin
fluctuations due to the large spin [562], new SU(N) sym-
metries for purely nuclear spins, as it is the case for Yb
and Sr [563–567], BCS pairing with a non-singlet charac-
ter [568], and greater than two-particle clustering [569].

6. How are dipolar interactions expected to impact spinor
physics?

The impact of dipolar interactions on spinor gases cru-
cially depends on whether the dipolar field is larger or
smaller than the external magnetic field. For a large
magnetic field, magnetisation-changing collisions merely
lead to atomic losses, and therefore, within the dipole-
relaxation-limited lifetime, the experiment is essentially
performed at constant magnetisation. That is, it evolves
under terms that conserve the longitudinal magnetisation
in the dipolar Hamiltonian.

Because they are spin-dependent, the DDIs modify
the properties of spinor gases when they are not negli-
gible compared to spin-dependent contact interactions.
To judge a priori the impact of the DDI, one needs to
compare the dipolar length add to differences between
scattering lengths [17]. As a consequence, dipolar effects
can be prominent even for the case of alkali metal atoms,
such as Na or Rb for which spin-dependent contact in-
teractions are much weaker than spin-independent inter-
actions. For example, the long-range and anisotropic na-

ture of the DDI introduces a nonlocal nonlinearity that
can modify spin textures, as experimentally investigated
using alkali atoms [570, 571]. As we will see, dipolar
interactions also impact spin dynamics.

The modifications introduced by the DDI on spinor
physics are even more pronounced when the magnetic
field is not large compared to the dipolar field. Then,
the magnetisation-changing terms in the dipolar Hamil-
tonian cannot be neglected. Unlike contact interactions,
the DDI, by allowing changes in magnetisation, yields
an intrinsic SOC which breaks rotational symmetry; see
Sec. VI A3. It thus modifies the classification of the
possible spinor phases. The exact nature of the dipolar
spinor ground state phases at low magnetic field, which
may depend on the trapping geometry and other spin-
dependent forces, is still a matter of theoretical investi-
gation; see for example [572] for the s = 1 dipolar system
in the single mode approximation and Refs. [157, 158].

Spin-orbit coupling associated with the DDI corre-
sponds to the exchange between orbital angular momen-
tum and spin angular momentum. The DDI can, for ex-
ample, trigger the demagnetisation of a sample, leading
to spontaneous rotation, analogous to the Einstein-de-
Haas effect [350, 352–354, 573, 574]. Furthermore, be-
cause of magnetisation-changing processes, the dipolar
spinor gas is sensitive to magnetic field, which provides
new ways to study phase transitions driven by the inter-
play between spin-dependent interactions and the linear
Zeeman effect [351]. For example, it is expected that
a ferromagnetic spinor dipolar condensate may display
spontaneous circulation in the ground state at low mag-
netic fields [575].

In the following, we will describe the experiments that
address the role the DDI has played in spinor physics,
distinguishing between the cases where magnetisation is
conserved from those where it is free to evolve.

B. Effects of dipolar interactions on spinor physics

at constant magnetisation

If the time-scales of dipolar relaxation are large com-
pared to the other relevant timescales in the system (see
III C), one can study spinor physics under the effect of the
DDI but at constant magnetisation. Here, the effect of
the DDI arises from the elastic term of DDI, Eq. (3), and
the spin-exchange term, Eq. (4). The intrinsic spin-orbit
coupling introduced above is neglected for now. The spin-
dependent elastic DDI term impacts the spinor physics
because of its long-range and anisotropic nature.

1. Dipolar-induced spin textures in BECs

One of the prominent features of the DDI, associated
with its non-trivial momentum dependence shown in Eqs.
(8), is a tendency to develop spatial structures. This
has already been discussed in the spin-polarised case in



63

Secs. IVA3 c, IVA4 c, and V. In the context of spinor
dipolar gases, this tendency translates into the possibil-
ity of developing various spin-textures [94], i.e., inhomo-
geneous distributions of the spin vector.

The influence of the DDI on spin domains of Bose
quantum gases was experimentally studied both in Berke-
ley [570] (for a Rb F = 1 BEC with ferromagnetic contact
interactions) and in Tokyo [571] (for a Rb F = 2 BEC
whose contact interactions disfavour ferromagnetism).
In both experiments, spin domains were created using
a well-defined magnetic field gradient. In Ref. [570],
the spin textures decayed toward a spatially modulated
structure of spin domains. The crucial role of the DDI
was demonstrated by eliminating the DDI by a sequence
of rf pulses, in which case the authors observed a sup-
pression of the formation of the short-range domains.
In Ref. [571], the spin textures observed after propaga-
tion within the magnetic field gradient are compared to
numerical simulations of the Gross-Pitaevskii equation.
This reveals that the observed spatial modulation of the
longitudinal magnetisation is due to the spin precession
in the effective magnetic field produced by the DDI. Both
these results demonstrate that the DDI has considerable
effect, even on spinor condensates of weakly dipolar alkali
metal atoms.

2. Gapped magnon excitations of BECs

Phonon excitations have been studied in the context of
scalar BECs through, e.g., Bragg excitation spectra [385–
389, 576]; see also Sec. IVA3 for the dipolar case. More-
over, there exists, in spinor BECs, spinfull excitations
that also behave like quasiparticles. Surprisingly, these
excitations remain relatively unexplored experimentally.
One of the first investigations was performed at Berke-
ley on a ferromagnetic Rb BEC [577]. Magnon excita-
tions were precisely studied and shown to consist of a
standing-wave of spin-excited atoms above a ferromag-
netic BEC. While the Goldstone theorem predicts that a
ferromagnetic state has gapless excitations (for symmet-
ric interactions), a gap was measured and ascribed to the
presence of a weak DDI that breaks rotational symmetry.
Perhaps related to this feature, the authors also observed
a larger effective mass than expected by mean-field and
beyond-mean-field theories involving only s-wave inter-
actions. Although these effects remain small due to the
weakness of the DDI in alkali atoms, they provide qual-
itative departures from the paradigms of magnetism in
the presence of symmetric short-range interactions. This
constitutes but one illustration of the possibilities dipolar
spinor gases offer.

In the case of Cr, trapped magnon excitations were cre-
ated by applying, on a polarised BEC, magnetic field gra-
dients perpendicular to the magnetic field axis [261]. In
that experiment, the wavelength of the excitation is not
small compared to the cloud’s size. The magnons that are
created are quantised in energy, and manifest themselves

as collective modes that couple the spin and the orbital
degrees of freedom. The lowest energy mode, whose fre-
quency is set by the zero-point energy of the BEC, con-
sists of a sinusoidal oscillation of the local spin around its
original axis, with an oscillation amplitude that linearly
depends on the spatial coordinates. The observations are
in excellent agreement with hydrodynamic equations. In
the regime the experiment was performed, the observed
spin mode has a universal character, independent of the
atomic spin and spin-dependent contact interactions, and
is therefore rather insensitive to the DDI. It was neverthe-
less predicted that dipolar interactions could alter such a
mode, provided that the atomic sample has a size larger
than a natural wavelength set by the DDI [261].

3. Out-of-equilibrium spin dynamics at constant
magnetisation

Strong dipolar effects have been observed in the spin
dynamics of magnetic atoms even on time scales short
compared to the dipolar relaxation processes. Studies
where performed on S = 3 52Cr atoms, initially polarised
in the lowest energy spin state ms = −3, and after ho-
mogeneously quenching a BEC into a spin-excited state.
This was first performed using an engineered tensor light
shift to promote all atoms into a well-defined Zeeman
state ms = −2 [356]. In a latter experiment, the spin
excitation was performed by simply rotating the spins
using a rf pulse [258].

In both cases, out-of-equilibrium spin dynamics was
monitored by means of a Stern-Gerlach procedure to
measure the population of atoms in the different Zee-
man states as a function of time. It was found that
spin dynamics was driven by an interplay between spin-
dependent contact interactions and DDI. Spin-dependent
contact interaction played the dominant role in the spin
dynamics because they are relatively strong in the case
of 52Cr atoms.

In the case where the atomic spins are tilted compared
to the magnetic field by an rf pulse, it was neverthe-
less demonstrated that initial spin dynamics were entirely
triggered by the DDI. This is a consequence of the SU(2)-
symmetric nature of contact interactions, which cannot
trigger dynamics after a simple rotation of the atomic
spin initially in a stretched (ferromagnetic) state. There-
fore, the onset of spin dynamics after rotation of the spins
seen in Ref. [258] is a purely dipolar effect. Finally, in the
specific case where the spins were tilted by π/2 compared
to the magnetic field, it was found that the spin dynam-
ics vanishes. The mean-field theory provides a natural
explanation for this phenomenon, as the torque associ-
ated with the inhomogeneous magnetic field carried by
the atoms vanishes when the magnetisation of each atom
vanishes [578].

In the π/2 rotation case, spin-dynamics could be re-
covered by applying a magnetic field gradient providing
the necessary spin-orbit coupling to trigger dynamics. It
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was then discovered that spin dynamics develops while
preserving the local spin length of the condensate [258].
This protection of the initial ferromagnetic character of
the gas was attributed to an energy gap provided by suf-
ficiently large spin-dependent contact interactions. This
dynamical protection of ferromagnetism is the reason
why trapped magnon excitations could be observed in
the Cr experiments and described using the hydrody-
namic equation of a ferrofluid, indicating that the Cr
BEC behaves like a genuine ferrofluid; see Section VI B 2
and [261].

It should be noted that the protection of ferromag-
netism in the 52Cr condensates is tied to the relatively
small strength of the DDI compared to spin-dependent
contact interactions; it is likely that similar experiments
performed (for example with Ln atoms) in the regime
where dipolar interactions overwhelm spin-dependent
contact interactions may lead to qualitatively different
behaviour, since the DDI does not preserve the spin
length. As we will see in Sec. VII, working in optical
lattices is another way to investigate a purely dipolar
spin system. In this case, the collective spin length is
indeed reduced during dynamics [579].

4. Effective spin-1/2 mixture of dipolar fermions

Beyond the case of BEC described above, recent work
has been dedicated to the study of spinor systems of dipo-
lar fermions [165, 252, 314]. This system is of great inter-
est for the study of how the DDI affects superfluid pair-
ing and the celebrated crossover from delocalised Cooper
pairs in the BCS regime to a BEC of molecules [14, 128].
By choosing specific spin mixtures, spinor gases of con-
stant magnetisation can be studied over long time scales,
even for highly magnetic species of Er and Dy. This
is due to the quantum statistical suppression of dipolar
relaxation [165]; see also Sec. III C 4. This feature has
been recently used to realise a long-lived spin-1/2 spin-
orbit-coupled degenerate dipolar Fermi gas [252]. This
experiment will be discussed in Sec. VI D1.

A spin-1/2 degenerate Fermi mixture of strongly mag-
netic atoms 167Er was created [314], and the collisional
behaviour of this mixture experimentally investigated.
This experiment used a deep 3D optical lattice as a tool
during the preparaiton of the mixtures, which serves to
inhibit collisional losses induced by large magnetic field
sweeps and the crossing of numerous FRs: A quantum-
degenerate spin-polarised sample is first loaded into a
deep 3D optical lattice at low magnetic field, such that
double occupancy are precluded and fermions are spa-
tial separated. The magnetic field can there be ramped
up to a value where quadratic Zeeman shifts are sig-
nificant, allowing spin state preparation using using rf
sweeps, and later be ramped down to the low-field re-
gion, where the physics of the spin mixture is studied.
To do so, the 3D lattice is slowly ramped down and the
Fermi mixture loaded back into a 3D trap. As already

observed for the spin-polarized case – see Sec. II D) – the
collisional properties of the spin mixtures as a function
of the bias magnetic field amplitude, B, is marked by
a large number of intra- and inter-spin FRs. Baier et
al. [314] mapped the FR spectra for B in the [0, 2]G range
via loss spectroscopy. Many narrow and overlapping fea-
tures are obserrved. A comparatively broad and isolated
interspin FR is also identified. Baier et al. used this res-
onance to reach the strongly-interacting regime. Here,
a large collisional stability of the balanced spin-mixture
at T/TF ≈ 0.3 is observed, in particular on the repul-
sive side of the FR. This paves the way toward study of
BEC-BCS physics in such systems.

C. Spinor physics with free magnetisation

Besides the studies at constant magnetisation de-
scribed above, the DDI introduces fundamental new fea-
tures due to the presence of magnetisation-changing col-
lisions; see Eq. (5). In this context, the linear Zeeman
effect can impact out-of-equilibrium physics and phase di-
agrams. In particular, magnetisation-changing collisions
can free the total magnetisation of a gas, so that the sys-
tem now becomes sensitive to the linear Zeeman effect.
Different regimes may be reached depending on the ratio
of the Larmor precession energy to other energy scales.
A rather complex phenomenology unfolds, depending on
the Larmor frequency gJµBB/h compared to the follow-
ing energy scales; note that typical values are indicated
on the right column for the specific case of 52Cr atoms
and gJ is the Landé factor:

Physical process Energy scale
Trap depth U0/h = 500 kHz
Thermal excitations kBT/h = 2.5 kHz
Fermi energy ǫF /h = 2.5 kHz
Spin-dependent Γexc/h = 250 Hz
interactions
Trap frequency ωL/2π = 250 Hz
DDI Vdd/h = 25 Hz

Γexc was defined in Eq. (64).

• gJµBB > U0. Dipolar relaxation leads to (spin-
sensitive) losses.

• U0 > gJµBB. Dipolar relaxation does not lead to
losses, but introduces heating. If gJµBB ≫ kBT ,
most of the atoms are polarised in the lowest energy
state at equilibrium.

• gJµBB ≈ kBT ≫ Γexc. The thermal gas is sponta-
neously depolarised, populating a few Zeeman sub-
levels at equilibrium. For bosons, Bose-stimulation
insures that the BEC remains polarised in the low-
est energy state. However, for Fermi gases, the
DFG may be depolarised if gJµBB < ǫF .
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• gJµBB < Γexc. A demagnetised spinor BEC may
be produced provided spin-dependent contact in-
teractions do not favour a polarised BEC in the
lowest energy state.

• When gJµBB ≈ ~ωL, the released energy due to
dipolar relaxation corresponds to one unit of exci-
tation in the trap. This is favourable for measuring
the change in angular momentum associated with
dipolar relaxation; this is a quantum gas analogue
of the Einstein-de-Haas effect.

• Reaching gJµBB ≤ Vdd would be very interest-
ing as the dipolar field then overcomes the ambient
magnetic field. The (inhomogeneous) dipolar field
itself sets the lowest-energy spin-textures.

1. Thermodynamics of a Bose gas with free magnetisation

Thermodynamics of a Bose gas with a spin degree of
freedom is derived by including the single-particle mag-
netic energy in the Bose occupation factor. For non-
interacting particles,

fk,ms =
1

exp [(ǫk,ms − µ) /kBT ]− 1
, (65)

where µ is the chemical potential, and ǫk,ms is the single-
particle energy of the (trapped) states labeled by the in-
dex k, in the Zeeman state ms. When magnetisation is
free (case of dipolar particles) ǫk,ms includes the linear
Zeeman effect, whereas when magnetisation is fixed (as
for example of Rb and Na atoms), the linear Zeeman ef-
fect is gauged out and ǫk,ms includes only the quadratic
Zeeman effect.

For the generic case of a F = 1 spinor Bose gas in-
teracting solely via contact interactions (and thus at
constant magnetisation and without the quadratic Zee-
man effect), the phase diagram has been worked out
by Isoshima et al. [580] as a function of the tempera-
ture T and the magnetisation M . Two phase transi-
tions were predicted. The first transition, at a critical
temperature T1(M) separates the normal phase, and a
phase where a condensate forms in the (most populated)
stretched state. Below a second critical temperature
T2(M), all other spin components condense simultane-
ously (see Fig. 32).

First investigations of spinor physics with free mag-
netisation were performed using cold Cr atoms in an
optical dipole trap. It was observed that the spin de-
grees of freedom equilibrated to the gas mechanical tem-
perature [581]. At high temperature, the population of
the different Zeeman states followed a distribution close
to the Boltzmann distribution. The spin temperature
was equal to the mechanical temperature, and thermal
equilibrium between spin and orbital degrees of free-
dom was ascribed to magnetisation-changing dipolar col-
lisions. Below the critical temperature for BEC, a spon-

FIG. 32: Measured and predicted phase diagram of a
spin 3 Cr BEC. Three phases are observed: (A) thermal
gas; (B) polarised BEC in stretched state; (C) spin-full
(depolarised) BEC. The histograms show typical experi-
mental population distributions. Black triangles are the
measured T1. Solid lines shows the predictions of T1,2 in
the non-interacting case. Dashed lines show typical evo-
lution predicted by theories with no interactions when
the temperature is lowered at a given magnetic field B,
for two different regimes depending on whether magneti-
sation is fixed (left curve) or free (right curve). Adapted
from [581].

taneous accumulation into the Zeeman state of lowest
energy was observed. This led to a bimodal spin distri-
bution, arising from BEC and the spontaneous accumu-
lation of the atoms in the lowest-energy spin state.

By varying the temperature and the magnetic field,
it was possible to map out the corresponding critical
line T1(M) (see Fig. 32). However, the second predicted
phase transition at T2(M) could not be studied. Indeed,
when magnetisation is free, Bose stimulation towards the
single-particle lowest-energy state insures that the BEC
is only produced in this polarised state [581]. The second
transition was recently observed in the case of sodium
atoms with negligible DDI by Frapolli et al. [582]. The
authors also studied the impact of spin-dependent inter-
actions on the double-condensation scenario.

In a later study, it was possible to reach a multicom-
ponent phase with Cr atoms by applying rapid, forced
evaporative cooling to a depolarised gas, thus perform-
ing the experiment fast compared to the time scale for
magnetisation-changing collisions. However, the spinor
BECs were very small due an interplay between Bose con-
densation and spin dynamics [583]. This result pointed
out the difficulty of fully thermalising the spin degrees
of freedom. This is a prominent effect to be taken into
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account for very large spin systems such as Dy and Er
where all spin states must be saturated for a stable mul-
ticomponent BEC to be produced.

The connection between magnetic order and super-
fluid order and the BEC transition is an intriguing ques-
tion that remains largely unexplored. While these or-
ders are intrinsically connected due to Bose stimulation,
it was predicted that strong spin-dependent interactions
induce spin ordering at a finite T above the BEC tran-
sition [584]. In low dimensions, the connection between
magnetic order and superfluidity promises to be espe-
cially interesting. In particular, in the 2D polarised case,
superfluidity does not arise from condensation but by the
pairing of vortices with opposite circulation through the
Berezinskii-Kosterlitz-Thouless mechanism. This gives
rise to a topological order [82, 585–587]. The case of
a depolarised gas promises new scenarios for superfluid-
ity, due to the existence of topological excitations such
as half-quantum vortices that include the spin degree of
freedom [588].

We note that the case of fermions will drastically differ
from the scenario described above due to the presence of
the additional energy scale provided by the Fermi energy.
One consequence is that spontaneous demagnetisation of
a noninteracting Fermi sea is expected provided the Lar-
mor energy is smaller than the Fermi energy (Pauli para-
magnetism). How interactions modify this picture is an
open question and connected to Stoner instability.

2. Spontaneous demagnetisation of a BEC

One of the fascinating avenues of research for dipo-
lar spinor physics is the investigation of the zero-
temperature phase diagram at low magnetic fields when
the Larmor energy is comparable to spin-dependent in-
teractions. For the experiments performed with alka-
lis, spin-dependent contact interactions are extremely
small compared to the linear Zeeman effect. In addition,
the gas magnetisation remains constant for all practical
purposes because contact interactions are isotropic, and
anisotropic DDIs between alkali atoms are small. Con-
sequently, the true ground state of these system, with
free magnetisation at extremely low magnetic fields, has
never been experimentally investigated.

Quantum gases made of strongly magnetic atoms, on
the other hand, offer the new possibility of free magneti-
sation introduced by the DDI. Moreover, spin-dependent
contact interactions provide an energy scale that corre-
sponds to a magnetic field in the few 100-µG range for
Cr atoms (compared to 10 µG for alkalis). It therefore
becomes possible to investigate phase transitions driven
by the competition between the Zeeman effect and spin-
dependent interactions. For example, the phase dia-
gram of Cr atoms has been calculated (ignoring the DDI)
by [353, 589], and is expected to display a number of tran-
sitions separating ferromagnetic, cyclic, polar, and biax-
ial nematic phases as a function of the magnetic field.

FIG. 33: Absorption images of a Cr BEC held in a mag-
netic field of (a) 1mG, (b) 0.5 mG, (c) 0.25 mG, and (d)
0 mG ±100µG. These were obtained after Stern-Gerlach
separation of the seven Zeeman components. The BEC
spontaneously depolarises when the field is lowered below
a critical value. Figure adapted from [351].

The phase diagram of Ln atoms is unknown to the best
of our knowledge, though some have speculated [157]. We
note that the case of Lns may be quite different, because
contact interactions themselves contain an anisotropy as-
sociated with the large electronic angular momentum in
the ground state.

The exploration of the spinor phase diagram at very
low magnetic field was started with a Cr BEC in the
B ∼ 100µG regime [351]. While the BEC remains po-
larised in the lowest energy single-particle state for large
enough magnetic fields, it was then shown that a dipolar
BEC spontaneously depolarises when the Zeeman energy
is quenched below a (density-dependent) critical value
(see Fig. 33). It was furthermore shown that, while the
DDI was presumably too small to significantly modify
the observed phases, the dynamics of depolarisation was
driven by dipolar interactions.

A number of open questions remain after the first re-
sults described in [351]. One interesting question con-
cerns the possibility of characterising the excitations that
may be produced when the phase transition is crossed.
As magnetisation is dynamically modified, the sample
should start rotating, in the spirit of the Einstein–de-
Haas effect. Such rotation could not be observed. How-
ever, simulations indicate that the threshold for demag-
netisation could originate in the resonant dynamics asso-
ciated with this exchange between spin and orbital mo-
mentum [590].

Furthermore, the impact of the DDI on the phases at
low field also remains unexplored. Note that it would
be especially interesting to study the regime where the
Zeeman energy is smaller than the mean-field energy as-
sociated with the dipolar field, which could provide a
scenario for symmetry breaking and modify the possi-
ble quantum phases [572]. The requirements in terms of
magnetic field, below 50 µG, are demanding, yet within
reach of state-of-the-art experiments [591].



67

3. New cooling methods

a. Demagnetisation cooling The coupling between
the spin degree of freedom and the orbital degree of free-
dom due to the DDI also presents the possibility of ex-
changing Zeeman energy and mechanical energy for cool-
ing purposes. This strategy, first suggested in Ref. [592],
is based on the depolarisation of a gas of trapped atoms.
Similar to adiabatic demagnetisation cooling, the cou-
pling between the internal spin reservoir of the gas and
the external kinetic reservoir via dipolar relaxation re-
duces the temperature of the gas. Although a single
dipolar relaxation event per atom is insufficient to sig-
nificantly cool the sample, it was suggested that optical
pumping can bring the atoms back into the initial state,
cool the spin reservoir, and begin a repeat of the cooling
process.

Demagnetisation cooling of a gas of ultracold 52Cr
atoms was demonstrated soon after by Fattori et al. [593].
Demagnetisation was driven by inelastic dipolar colli-
sions, and optical pumping was used to magnetise the
system and drive continuous demagnetisation cooling.
An increase of the phase space density by one order–of–
magnitude was demonstrated, with nearly no atom loss.
In Ref. [201], demagnetisation cooling of a Cr gas was
further studied in a deep optical dipole trap, which al-
lowed the exploration of a large temperature range and
could access high densities up to 5.1019 m−3. An in-
crease of two orders in phase space density was shown,
up to 10−2. For Cr atoms, inelastic collisions between
one ground state atom and one atom optically excited
by the repumping laser was shown to be the main pro-
cess limiting the increase in phase space density.

Nevertheless, demagnetisation cooling offers a realistic
potential for reaching degeneracy by optical cooling only.
In particular, dysprosium or erbium atoms are good can-
didates, due to smaller recoil energy (larger mass), and
the existence of narrow lines for optical repumping. In
addition, the use of spin-changing collisions for cooling
purposes may even be used for non-dipolar particles us-
ing spin-exchange contact interactions [594].

b. Purification of a BEC by spin-filtering Another
closely related cooling scheme, which is efficient below
quantum degeneracy, has been demonstrated by Naylor
et al. [595]. This scheme also relies on redistributing pop-
ulation between different spin states, with free magneti-
sation. The key idea is that only non-condensed atoms
may populate spin-excited states since Bose thermody-
namics enforce a fully polarised condensate; see Section
VI C 1. Therefore, expelling spin-excited atoms from the
trap provides a way to engineer losses specific to non-
condensed atoms, thus cooling and purifying the conden-
sate.

The scheme, experimentally demonstrated using 52Cr
atoms, starts with a partially condensed Bose gas po-
larised in the lowest energy spin state. Demagnetisation
of the thermal component is triggered by lowering the
magnetic field, such that the Larmor energy is compara-

ble to the thermal energy. Then, the spin-excited thermal
components produced by magnetisation-changing colli-
sions are filtered out by a magnetic field gradient. It was
found that when the initial BEC fraction is high enough,
this scheme ends up with a polarised BEC in the lowest
energy state with an increased BEC fraction. This pro-
vides a thermodynamic cycle that, in principle, decreases
the entropy by a factor of up to (2s + 1)3/4 (where s is
the atomic spin), and could also be in principle repeated.
The obtained reduction in entropy was typically a factor
of 2 for one cycle in the Cr experiment.

In the experiment, technical limitations arose from the
difficulty to control the magnetic field at very low val-
ues. This limitation is directly related to the fact that
dipolar gases are sensitive to the linear Zeeman effect.
It was suggested in Ref. [595] that the purification of a
BEC by spin-filtering could be extended to non-dipolar
species by using spin-dependent contact interactions and
spin-exchange interactions. Both the dipolar and the
non-dipolar cooling schemes were theoretically explored
in [596]. A related cooling scheme was demonstrated with
Rb atoms [597].

Note that, despite their highly magnetic character,
such cooling techniques could be difficult to apply to Lns,
because the Feshbach spectrum of these atoms might be
too dense at low field, below typically 10 mG. Up to now,
these techniques haven not yet been reported using Ln
species.

Both approaches described here are ways to use the
spin degrees of freedom to efficiently store and remove en-
tropy from a gas. We point out that ideas using the spin
degrees of freedom have already been developed in the
context of lattice-based large-spin Fermi gases [566], mix-
tures of Bose gases [598], and Bose and Fermi gases [599].
Alternatively, it has also been suggested that the spin de-
grees of freedom, and/or spin-changing collisions, may be
employed for thermometry purposes down to extremely
low temperatures. Such temperatures are typically im-
possible to measure in BECs with usual thermometric
techniques [597, 600].

D. Light-induced spin-dependent Hamiltonians in

dipolar gases

Apart from their large DDI, the large spin and rich
electronic properties of highly magnetic atoms open in-
teresting directions to explore spin-light coupling; see
Secs. II B 1,II C. The wide variety of transition linewidths
allow spin manipulation with reduced heating and the
strong vector and tensor parts of the atomic polarisabil-
ity allow the strong coupling of the electron’s angular
momentum to light; as detailed in Sec. II C. These higher-
rank polarisabilities are intrinsically stronger in magnetic
atoms due to their larger L and S values. In addition,
in the case of Lns, LS coupling occurs in the electronic
ground state itself. This is in contrast to the case of alkali
atoms for which spin-dependent coupling to light occurs
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FIG. 34: Comparison of demagnetisation cooling and
spin filtering. (a) Demagnetisation cooling. Spin-
changing collisions transfer kinetic energy of the most en-
ergetic atoms to magnetic energy, allowing a net cooling
of the remaining atoms. Optical pumping can bring back
spin-excited atoms to the initial spin state, enabling con-
tinuous cooling with no atom loss (graph). (b) Spin filter-
ing. In presence of a condensed Bose gas, spin-changing
collisions affect only thermal atoms that can then be se-
lectively removed. This removal of entropy results in the
cooling of the remaining gas and an increase of the con-
densed fraction (graph).

only through the mediation of the excited electronic lev-
els. This yields a different scaling of the vector and ten-
sor polarisabilities with the detuning of the laser to the
atomic transition, ∆a: scaling as ∝ ∆−1

a and ∝ ∆−2
a in

Lns and alkali-metals, respectively [158, 260]. This makes
Lns promising candidates with which to implement spin-
dependent Hamiltonian tailored by light. Indeed, even
if such synthetic spin-dependent Hamiltonian have been
realised with alkali-atoms, they have been subjected to
strong heating associated with incoherent light scatter-
ing. As a result, some of the most interesting regimes
could not be reached with long-lived gases.

1. Synthetic spin-orbit coupling in gases of magnetic atoms

a. Synthetic spin-orbit coupling and artificial gauge
fields.

The coupling of a particle’s momentum and spin un-
derlies many important phenomena in quantum sys-
tems, and in particular in electronic, solid-state sys-
tems [601]. For example, topologically nontrivial materi-
als often require the coupling of the electron spin to mo-
mentum [602, 603]. Here, SOC typically arises from the
movement of electrons through the crystal electric field.
The effect of a magnetic field on charged particles also

yields intriguing phenomena, the most famous of them
being the quantum Hall effect [604]. This effect has its
roots in the special form of the Lorentz force, which, at
a quantum level, yields a kinetic term of the form:

Ĥk =
[p̂− Â(r̂)]2

2m
, (66)

where p̂ is the canonical momentum and Â(r̂) is the vec-
tor potential or gauge potential. Even more exotic be-
haviour, such as the fractional quantum Hall states [605],
Laughlin liquids [606], and topological superconductors

harbouring Majorana excitations [152] can arise if Â(r̂) is
not just a classical vector (i.e., three complex numbers),

but a set of three operators Âx(r̂), Ây(r̂), and Âz(r̂) that
do not commute. This yields a non-Abelian field.

Interestingly, ultracold atoms enable the combination
of SOC and gauge potentials by the engineering of a re-
alisation of Eq. (66). This mimics the effect of a Lorentz
force on neutral matter while, additionally, the set of
operators Âi connect to the atomic spin operators. If
realised in high dimensions (i.e., greater than one), non-
Abelian gauge fields may then be synthesised. This tech-
nique relies on laser-field dressing [161]. In the following,
we will review this SOC protocol and discuss its extension
to magnetic atoms. We note that several other strategies,
not connected to SOC, have been developed over time to
realise artificial gauge fields on neutral atoms, e.g., by
engineering trap rotations [607].

As introduced in Sec. I C 3, and reviewed in detail in
the above Sec. VI C, the DDI provides intrinsic SOC
through the dipolar relaxation terms of Eq. (5). How-
ever, this is not generally the sort of SOC that results
in the physics of artificial gauge fields mentioned above.
It gives rise to an interaction term that does not con-
form to that of Eq. (66). (See Ref. [355] for a method
that does.) In contrast, light-induced SOC schemes ap-
plied to ultracold quantum gases do realise a Hamilto-
nian term of the form of Eq. (66). The basic idea can
be formulated as follows: Light fields are applied to cou-
ple Zeeman sublevels via a two-photon Raman transition.
Recoil momentum is transferred as the optically coupled
spin flips. The adiabatic evolution of these dressed states
as the atom moves in the Raman field creates a synthetic
gauge field [608]. This field provides SOC when these
states form a (near) degenerate manifold. The general
form of the SOC Hamiltonian under the 1D Raman cou-
pling along the direction x̂ of two Zeeman ground states
is

Ĥ(p) =
[p− ~kσ̂z ]

2

2m
+

~Ω

2
σ̂x +

~∆

2
σ̂z , (67)

where σ̂x,y,z are the Pauli spin matrices. Ω and ∆ are the
two-photon Raman Rabi frequency and detuning, respec-
tively. The form of this coupling is the sum of Rashba
(kzσz + kyσy) and Dresselhaus (kzσz − kyσy) SOC with
equal weights. The resulting dispersion relation is of the
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form of a double well centred at k = 0, as is typical of
SOC systems. That is, the momentum of spin up atoms is
oriented in the opposite direction from that of spin down
atoms. In the 1D case described by Eq. (67), Âz = ~kσ̂z
and Âx,y = 0, which does not describe a non-Abelian

coupling because the single component of Â commutes
with itself. Generalisations to 2D and 3D with a truly
non-Abelian gauge potential have been proposed [161]
and realised in the case of 2D SOC [609, 610].

b. Spin-orbit-coupling in quantum gases: limitations
and prospects
Spin-orbit coupling in BECs [148, 611] and DFGs [610,
612, 613] of alkali-metals have been achieved. However,
heating due to spontaneous emission is severe. This
arises because Raman coupling is not very efficient com-
pared to spontaneous light emission due to the generally
weaker tensor versus scalar polarizability. The optimal
ratio of Raman coupling to spontaneous emission occurs
at a Raman-laser detuning approximately equal to the
fine-structure splitting [614]: alkali’s small fine structure
splitting implies a large spontaneous emission rate if suffi-
ciently strong coupling strengths are to be achieved. The
heating from spontaneous emission leads to loss of quan-
tum degeneracy and atomic population and the short life-
times severely hamper the study of quantum many-body
phenomena.

We note that lattices of fermionic alkaline-earth
atoms [615–617] have also been used in SOC experiments.
However, optical lattice confinement and inelastic colli-
sions [618–620] among atoms limit the future ability to
explore a wide variety of many-body phenomena.

By contrast, Ref, [158] suggested that fermionic open-
shell Ln atoms like Dy and Er might better serve due
to their large orbital angular momentum and narrow-
line transitions. Spontaneous emission can be eliminated
while still producing large Raman coupling even with-
out lattice confinement or narrow lines because their
ground-state orbital angular momentum is L > 0. This
is due to the fact that the vector and tensor polarizabil-
ities that factor into the Raman coupling scale as the
inverse atomic detuning ∆−1

a of the Raman lasers from
the atomic transitions in these systems, as opposed to
the faster ∆−2

a scaling in alkali-metals once ∆a exceeds
the fine-structure splitting [260, 621]. Thus, in open-shell
Lns, one can always choose a detuning that provides a
large Raman coupling Ω while minimising heating from
incoherent scattering [158]. The realisation of long-lived
SOC Fermi gases would open new avenues to experimen-
tally study topological matter not easily realisable in the
solid state [148, 160, 161, 622, 623]. For example, one
could create and study topological superfluids and exotic
quantum liquids [148–155] in a well-controlled manner.

c. Spin-orbit-coupling in assemblies of magnetic
atoms

Burdick et al. [252] first reported the realisation of
SOC in degenerate Fermi gases of Ln atoms using Dy.
The SOC was induced using Raman light near the 741-

nm transition. Its 1.8-kHz width reduces spontaneous
emission rates below the background lifetime of the gas
with only modest ∼GHz detuning, which is large com-
pared to the hyperfine splittings, but smaller than the
fine-structure; see Refs. [215, 239]. The lifetime of SOC
gases was then limited, not by spontaneous emission, but
rather by dipolar relaxation.

Due to the suppression of inelastic dipolar scattering
(see Sec. III C 4 for details), relatively long-lived SOC
Fermi gases could be realised while working at a bias field
of a few tens of G. Such magnetic fields were required,
not only because the suppression effect scales as

√
B, but

also because the isolation of an effective pseudospin 1/2
requires a large the quadratic Zeeman shift obtainable
only at large B. However, as discussed in Sec. II D, the
extreme density of FRs in fermionic Lns, increasing with
B, complicates the situation, and Ref. [252] even reported
the overlapping of resonances at these fields. Neverthe-
less, a field region at 33.846(5) G was found that allowed
fermionic spin mixtures to live enough to allow spin-
orbit coupled 161Dy gases to be created with a lifetime of
∼400 ms at a Raman coupling strength of ~Ω = 1ER; see
Fig. 35(b). At this field, quadratic Zeeman shifts ensures
that the Raman fields couple only the mF = −21/2 and
mF = −19/2 states, providing maximum fermionic sup-
pression of dipolar relaxation; see Fig. 35(a). Note that
by contrast, the lifetimes of SOC 40K and 6Li were lower
by ∼10 and 100, respectively [610, 612, 613]. Moreover,
the SOC 161Dy lifetime is similar to that of free-space
bosonic SOC alkali gases [611] and ∼10× longer than
that achieved in a bosonic lattice system [624].

Reference [252] also reported that Raman-coupled
bosonic Dy has a short lifetime of less than 10 ms at
low B field. This is just as short as 6Li, demonstrating
the importance of fermionic statistics in preventing fast
relaxation. Finally, the effect of dipolar interactions on
Rabi oscillations was observable, highlighting the inter-
acting dipolar character of the fermionic SOC system.

d. Dipolar relaxation of Raman-dressed spins

The physics of dipolar relaxation of Raman-dressed
spins differs from the scenario of equilibrium gases de-
scribed in Sec. III C. While one might suppose that atoms
colliding in dressed spins are identical—the spins are just
rotated on the Bloch sphere—and should therefore enjoy
the full suppression of identical fermions (see Sec. III C 4),
this is not the case for SOC fermions. Since spin is locked
to momentum, atoms colliding with different momenta
along the 1D SOC axis no longer behave as identical par-
ticles (they have different spin states) [252].

Although dipolar relaxation along the 1D-coupling axis
proceeds unhindered, not all is lost: dipolar relaxation
remains suppressed for collisions with momenta aligned
primarily along axes transverse to the SOC coupling. A
simulation of these effects shows that in terms of relax-
ation rate, the gas neither behaves as identical fermions
enjoying full dipolar relaxation suppression, nor as distin-
guishable particles, but roughly halfway in between [252].
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FIG. 35: Spin-orbit-coupling of fermionic 161Dy. (a)
Coupling scheme for 161Dy at a magnetic field high
enough that the lowest two Zeeman states are isolated by
the quadratic Zeeman shift. δ is the two-photon Raman
detuning and ωZ is the Zeeman splitting. (b) Momen-
tum distribution after removing the coupling and sep-
arating the spin states with a magnetic field gradient.
(c) Quasimomentum dispersion curve for the spin-orbit-
coupled cloud in (b). The solid horizontal line indicates
the Fermi energy. (d) Experimental lifetimes for a gas of
1 × 104 161Dy atoms with T/TF = 0.4. Adapted from
Ref. [252].

Dipolar relaxation remains a nuisance when coupling
more than two spin states together, since such spin states
are not protected. In Ref. [165], the lifetime of SOC
Dy gases at low fields, around 1 G, were observed to
be of around 10 ms, for bosons as for fermions. Thus,
SOC in dipolar gases are limited to high fields, setting
limitations on the realisation of certain exotic many-body
states [158, 625–627].

e. Realisation of a synthetic quantum Hall system
using magnetic atoms

Reference [628] reported on the realisation of the equiv-
alent of a quantum Hall system, i.e., that dictated by
Eq. (66), with Âx(r̂) = eBŷ, Ây(r̂) = 0, using Ln atoms.
This achievement relied on SOC in one spatial dimension
(x), using light near the 626-nm transition, and the cou-
pling all the spin states of bosonic Dy, where the large
electronic spin J = 8 of Dy was interpreted as a synthetic
dimension (y), i.e., Ĵz ↔ ŷ. The SOC Hamiltonian, simi-
lar to (67), can then be interpreted as the Hall equivalent
formulated above [155]. Similar work has been performed
using non-magnetic atoms, yet bulk properties remained
elusive due to the narrowness of the synthetic dimension
used [615, 617, 629, 630]

In this work, Chalopin et al. demonstrated that their
system shows distinct sectors with respectively bulk and
edge behaviours in the ground band. This demonstrates
the relevance of large spin Lns systems to realise quan-
tum many-body systems with non-trivial topology. The
observed behaviour in each sector of the ground band
are reminiscent of Landau-level physics: In the bulk, dy-
namics is suppressed due to the flatness of the band. In
contrast, the edge modes exhibit a ballistic dispersion,
yet with a motion allowed in one direction only, i.e.,
showing chirality. The authors also characterised the ele-
mentary excitations above the ground band and directly
observe cyclotrons orbits, in the bulk, and skipping or-
bits at the edges. The cyclotron gap is roughly constant
over the bulk sector and the corresponding frequency is
large (≈ 40KHz) compared to both the decay rate (see
above) and the temperature scale. Finally, the Hall re-
sponse of the ground band was measured, by applying
a potential difference in the synthetic dimension. The
response shows a characteristically nearly quantised be-
haviour, with a Chern number of nearly one in bulk and
a vanishing mobility in the edge sectors. This is suggests
the topological protection of the edge states. While the
limited lifetime of the bosonic system due to dipolar re-
laxation may hamper the exploration of some many-body
physics, this results helps to establish Ln SOC systems
as promising platforms for the realisation of synthetic
topological quantum many-body states.

2. Synthetic spin-dependent interactions in gases of
magnetic atoms and generation of entangled quantum

states

In recent works using ultracold bosonic gases of 162Dy
and 164Dy, a spin-dependent Hamiltonian was generated
using laser light close to the 626-nm atomic line [181,
182]. The laser field has a linear polarisation along x
while the magnetic field points along z. The resulting
atom-light interaction yields an effective coupling term
~ωĴ2

x , with Ĵ being the total atomic angular momen-
tum. This scheme, similar to that previously investi-
gated with a large ensemble of room temperature Cs
atoms [536], realises a so-called one-axis twisting Hamil-



71

tonian [156], which has also been investigated in many
other systems [631–634]. Typical coupling strengths ω
are on the MHz scale and can be made to greatly exceed
the kHz-scale Larmor precession frequency as well as the
dipolar relaxation rate.

Highly non-classical spin states could be generated un-
der the effect of this coupling term [156]. Reference [181]
experimentally demonstrates the creation of Schrödinger
cat states resulting from the coherent superposition of
the two stretched spin states | ± J〉. In contrast to en-
sembles of s = 1/2 particles, for which entanglement
can only be generated between different atoms of the
ensemble, here the non-classical states arise because of
the entanglement between electrons within each individ-
ual atom [536]. This possibility is a key feature provided
by large-spin systems. These states appear in the time
evolution of the atomic spin (at the single particle level)
after a quarter of coupling period, T = 2π/ω. Further-
more, several revivals of the cat state spaced by T/2 as
well as a repolarisation into the Fock states |J〉 and |−J〉
at intermediate times (half integer multiples of T ) occur
during the time evolution. Coherence is seen to decay un-
der the effect of classical B-field noise, to which the cat
state is more sensitive than a classical (coherent) state.
Nevertheless, the cat state’s lifetime reaches up 60µs. Fo-
cusing on a similar dynamics but shorter time scales (set

by τ = 1/
(√

2Jω
)
), Ref. [182] probes the formation of

non-Gaussian “oversqueezed” states.

VII. Magnetic atoms in strongly confined

geometries: low-dimensional gases and lattice

systems

Up to now, we have discussed bulk dipolar effects, i.e.,
that which happens in assemblies of atoms free to move
and collide in space, both in the fully polarised case (Secs.
IV and V) and considering additionally the spin degree
of freedom (see Sec. VI). A complementary trend has
developed in the community, loading atoms in strongly
confined geometries, either using tight anisotropic traps
or periodic potentials made by light standing waves (so
called optical lattices) [7, 8, 129, 635, 636]. This has
proven to be a new platform to achieve the strongly inter-
acting regime and investigate interesting open questions
in quantum many-body physics [7, 8, 128, 129, 636–638].
In this section, we discuss the new physics arising from
loading highly magnetic atoms in strongly confined ge-
ometries, focusing on the experimental achievements to
date. In a first part we discuss the case of dipolar gases
effectively constrained to a one-dimensional (1D) space,
using a two dimensional optical lattice. In this case, the
atomic motion remain free in the direction transverse to
the lattice, realising an array of 1D gases. In a second
part (Sec. VII B), we discuss the new physics brought
by the long-range and anisotropic dipolar interactions
in a spin-polarised sample in 3D periodic potentials. In
this case, the atomic motion occurs in direction in which

the external potential is a lattice, realising Hubbard-like
models. In the third part (Sec. VII C), we still consider
3D periodic potential but additional allow for an internal
spin degree of freedom, relating to the very broad topic
of quantum magnetism.

A. One-dimensional dipolar gases

By using tight traps in one or two directions of space,
the motion of ultracold atomic gases is constrained, re-
ducing the dimensionality of the system. Such systems
have been studied in contact-interacting gases [82, 127].
In this section, we focus on 1D gases of magnetic atoms
and describe the new behaviour resulting from strong
DDIs.

The physics of interacting quantum particles in dimen-
sions higher than 1D is often reducible to an effective de-
scription of non-interacting quasiparticles composed of
the original particles “dressed” by their interactions. The
excitations of such a system are nearly single-particle-
like. That is, as we have seen in Sec. IVA, MF and
Bogoliubov treatments are often adequate for bosons,
while high-dimensional fermionic systems are accurately
described by the celebrated MF Fermi liquid theory of
Landau [639, 640]; see Sec. IVB.

Many-body quantum physics in 1D is far more strange.
Particles, being constrained to move on a line, cannot
avoid each other, and so all excitations are collective in
nature. Moreover, quantum fluctuations play a large role
in determining how the system may organise; e.g., strong
fluctuations prevent the establishment of long-range or-
der [125]. Fermi liquid theory is no longer applicable in
1D. Instead, Tomonaga-Luttinger liquid theory captures
the low-energy physics of both interacting fermions and
bosons [127]. For example, it describes the strange phe-
nomenon of the spin-charge separation of excitations: ex-
citations fractionalise into spinons that carry spin but no
charge, and holons that carry charge without spin [127].

The role of quantum statistics also changes in 1D.
Because particles can no longer exchange their posi-
tions without undergoing a collision, strongly interact-
ing fermions behave like bosons and vice-versa, at least
for some local observables like the density distribution.
Indeed, the Lieb-Liniger model for contact interacting
bosons,

HLLM = −
∑

atoms

~
2

2m

∂2

∂x2
+
∑

pairs

g1Dδ(x), (68)

describes how the physics of bosons map onto that of
free fermions in the limit of infinitely strong interactions
(g1D → ∞) [641]. The coupling strength g1D is approx-
imately related to the 3D scattering length a through
g1D = 2~2a/ma2⊥, where a⊥ =

√
~/mω⊥ and ~ω⊥ is the

excitation energy of the tightly confined directions per-
pendicular to the 1D axis [642]. For the system to be
considered within the 1D regime, ~ω⊥ should be much
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larger than the chemical potential of the gas µ.
The bosonic wavefunction describing the system in

the g1D → ∞ limit, referred to as a Tonks-Girardeau
(TG) gas, is equal to the absolute value of a fermionic
wavefunction [140, 641]. The ‘fermionised’ bosons repel
each other strongly enough that their two-body correla-
tion function g(2)(0) vanishes just like that of identical
fermions—repulsion in 1D mimics the effect of the Pauli
exclusion principle. The TG regime is reached when the
Lieb-Liniger parameter,

γ ≡ mg1D/n1D~
2, (69)

is much greater than one; n1D is the 1D density. Intu-
itively, γ compares the mean interparticle distance 1/n1D

to the length scale ~
2/mg1D over which the repulsive in-

teraction ‘bends’ the wavefunction. In this high-γ regime,
the density-density correlation g(2)(x = 0) → 0, i.e., the
quasiparticles antibunch, as expected from their fermion-
like character.

There exist even more exotic states, such as the super-
Tonks-Girardeau (sTG) gas. These highly excited states
are characterised by stronger-than-ideal Fermi gas cor-
relations. Such gases can be accessed by quenching
g1D from +∞ to −∞, as has been observed in Cs and
Dy [142–144, 643–645]; see Sec. VII A 3.

Many aspects of 1D fermionic systems have been ex-
plored in the condensed matter setting [646], and bosonic
1D gases have been realised and studied both near and
below the TG limit using ultracold atomic gases confined
in arrays of 1D optical potentials using 2D optical lattices
or in magnetostatic potentials from atom chips [140, 641,
647–652]. Several characteristic properties have been ob-
served, including antibunching [653, 654]; unusual trans-
port [655]; quantum integrability (i.e., the existence of an
extensive number of integrals of motion) [656]; long-lived
metastability of a sTG gas [143]; pinning quantum phase
transitions [657]; unusual excitation spectra [658, 659];
velocity of sound [660]; and rapidity (i.e., quasiparticle
momentum) distributions [661]. One-dimensional Fermi
gases have also been created with excitation spectra con-
sistent with Luttinger liquid theory [567, 662].

Dipolar interactions enrich the physics accessible with
1D gases. Theoretical results have primarily focused on
purely dipolar quantum gases, in which the only inter-
action comes from the DDI [138, 139, 663–667]. Various
effects of the DDI have been predicted, in particular in-
cluding increased correlations of akin to sTG gases, or
even crystallisation in the ground state.

1. The effective quasi-1D DDI and realisation of 1D dipolar
gases

In a quasi-1D geometry, the external motion of the
atoms is effectively frozen in two directions when ~ω⊥ ≫
kB, µ. The effective form of the DDI in quasi-1D ge-
ometries can be derived from the 3D expression, Eq. (1),

FIG. 36: Red line is the 1D DDI, while dashed line is the
3D DDI. The 1D DDI approaches the 3D curve at large
normalised distance u = x/a⊥. Unlike the 3D divergence
at short range, the 1D DDI assumes a finite value. Figure
reproduced from Ref. [668].

by integrating out the transverse degrees of freedom, as
shown in Refs. [137–139]. Under a single-mode approxi-
mation, this yields

U1D(u) = V (θ)

[
V 1D(u)− 8

3
δ(u)

]
, (70)

where

V (θ) =
µ0µ

2

4π

1− 3 cos2 θ

4a3⊥
, (71)

and

V 1D(u) = −2|u|+
√
2π(1 + u2)eu

2/2erfc(|u|/
√
2). (72)

Here, u = x/a⊥, and erfc(u) is the complementary er-
ror function. There are two contributions to the short-
range part of the 1D DDI. The first is the δ-function
term. It comes from the point limit of an extended
dipole [669] and has an opposite sign to V 1D(u). The sec-
ond contribution is an effective delta-function term that
arises from the fact that V 1D(u) becomes more sharply
peaked as a⊥ shrinks [138, 139]. At distances |x| ≫ a⊥,
V 1D(u) → 4/|u|3. This x−3 long-range potential is just
like the DDI in 3D, but with diminished magnitude at
ranges on the order of a⊥. Within a distance set by a⊥,
the DDI ceases to seem 1D to atoms that approach near
each other. The underlying 3D spatial nature is mani-
fest and a small attractive (repulsive) contribution to the
DDI emerges from the part of their wavefunctions that
extend transversely by a⊥, even if the long-range interac-
tion along the 1D axis is repulsive (attractive) [138, 139].

The DDI in 1D thus has both long and short-range
components [138, 139, 663]. The chemical potential re-
mains intensive in 1D, which is indicative of a short-range
interacting system. However, like a long-range interact-
ing system, there is no asymptotic phase shift (scatter-
ing length) that can be defined for two-body collisions
in 1D [663]. Away from collisional resonances, the short-
range part of the DDI can add to the van der Waals con-
tact pseudopotential to yield a total hard-core contact in-
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teraction strength g1D, as considered in Refs. [141, 670].
In addition to the FR-tunability of the van der Waals
contact interaction (discussed in previous sections), the
1D DDI provides wide tunability in the properties of 1D
many-body systems because both the short and long-
range parts of the DDI in 1D can be set to a positive
or negative sign, or made to completely vanish at the
magic angle θm = 54.7◦.

Dipolar 1D gases have been created by loading BECs
of either 52Cr or 162Dy into 2D optical lattices creating
arrays of 1D tubes [141, 163]. In this geometry, the DDI
affects different aspects of the interactions: 1) the de-
pendence of g1D(θ) on the short-range component of the
1D DDI; 2) the intratube long-range DDI; and 3) the
mutual long-range DDI of atoms in nearby tubes. The
intertube DDI does not change the dimensionality of the
system, but rather is a multichannel effect that couples
different flavors of 1D quasiparticles [141]; i.e., coupled
1D systems remain 1D because the phase space degrees of
freedom are still 1D when there is no transport between
tubes.

The first experimental work with 1D dipolar gases used
Cr and explored magnetisation-changing collisions and
their suppression in 2D optical lattices [163]; see Fig. 6
and Sec. III C 5 for more details. The first experiments
with strongly interacting gases entering the fermionised
γ > 1 regime used Dy with ∼50 Dy atoms per tube [141].

2. Thermalization in a dipolar quantum Newton’s cradle

Tang et al. [141] investigated the thermalization of
a near-integrable quantum system. The Lieb-Liniger
model is an example of a quantum integrable Hamilto-
nian, in which there exists an extensive number of con-
served quantities, resulting in regular, non-chaotic, non-
thermalizing dynamics for any value of g1D [140, 641].
This is due to the 1D geometrical constraint imposed
on interactions: Two-body interactions permit non-
diffractive scattering between nearest neighbours only,
leaving the set of incoming momenta unchanged with re-
spect to the set of outgoing momenta [671]. As a result,
the scattering matrix obeys the Yang-Baxter equation, a
sufficient condition for integrability [641, 671–673], since
the binary collisions are unable to alter the distribu-
tion functions. Therefore, an empirical ‘smoking gun’
for integrability would be the persistence of an out-of-
equilibrium momentum distribution beyond the intrinsic
dynamical time scale.

The group of David Weiss at Penn State University
observed this persistent non-equilibrium momentum dis-
tribution in 1D gases of contact-interacting Rb atoms,
thereby experimentally establishing the integrability of
the Lieb-Liniger model. Their experiment relied on quan-
tum quenches using what they called a ‘quantum New-
ton’s cradle’ [656]: Atoms in 1D traps were set in mo-
tion using a Bragg diffraction pulse as a system quench.
The atoms oscillated in counterpropagating packets and

collided twice each period under the strong-coupling con-
dition of γ ≫ 1. This is akin to the desktop Newton’s
cradle toy, except that instead of the metal spheres re-
flecting upon each collision, the Rb atoms could also pass
through one another as a manifestation of the quantum
nature of the system. Rather than rapidly come to a
steady state (i.e., a stationary Gaussian momentum dis-
tribution), the packets were observed to oscillate many
times (far longer than what one would expect in a 3D
gas) before the onset of heating from spontaneous emis-
sion. Thus, the Weiss group established that a strongly
interacting integrable quantum system could be studied
in the laboratory. Although both longitudinal confine-
ment and transverse (virtual) motional excitation break
integrability, these detrimental effects are suppressed in
the γ ≫ 1 regime [674–676].

Tang et al. [141] used the magnetic DDI in a 1D Dy
gas as the controllable interaction with which to break in-
tegrability in a dipolar version of the quantum Newton’s
cradle experiment. It is known from classical physics that
magnetic spheres cause the motion of a toy Newton’s cra-
dle to be chaotic due to the long-range interaction; the
long-range DDI should likewise break integrability in the
quantum systems, since it allows for “diffractive” colli-
sions among atoms. Indeed, the DDI allows for “diffrac-
tive” collisions among atoms: i.e., in addition to two col-
liding atoms swapping their momentum, as in the case of
contact collisions (which are non-diffractive), their mo-
mentum may also be imparted to a third particle. This
violates the Yang-Baxter condition, and hence breaks in-
tegrability. Since the DDI strength falls off slowly in
space, the probability for a diffractive interaction is not
suppressed by the usual need for three particles to be
at the same place at once. Furthermore, by simply con-
trolling θ, the strength of the integrability-breaking per-
turbation can be tuned. Figure 37 depicts the dipolar
quantum Newton’s cradle.

The dipolar quantum Newton’s cradle opens new av-
enues to explore how quantum thermalization arises upon
the introduction of a perturbation that lifts integrabil-
ity. For example, theoretical consensus is lacking regard-
ing whether relaxation involves two distinct timescales
or three for strongly interacting quantum near-integrable
systems (i.e., first prethermalization, then a prethermal
plateau of a near steady-state prethermal state, and fi-
nally a decay to the thermal state) [677–682]. More
generally, thermalisation of a near-integrable system is
an old question with a celebrated answer in the realm
of classical physics [683]. In the 1950’s, Kolmogorov,
Arnold, and Moser developed what became known as
KAM theory, establishing that chaos, and hence ther-
malization, sets in as a smooth crossover as the strength
of a nonlinear, integrability-breaking perturbation is in-
creased [684]. In the quantum realm, it has long been
wondered whether any meaningful analogue to KAM the-
ory exists, and a general theory for quantum thermaliza-
tion in near-integrable systems is lacking despite much
work [652, 677, 678, 680–682, 685–694].
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FIG. 37: a) An array of 1D tubes for Dy atoms is created
by a 2D optical lattice. b) Cartoon of dipolar quantum
Newton’s cradle. Dipolar Dy atoms are made to collide
within the 1D tubes (only one in the is array shown).
The dipolar interaction is controlled by an external mag-
netic field making an angle θ with respect to the 1D axis
along ŷ. This provides a knob with which to control this
integrability-breaking interaction.

In their experiment to investigate this issue, Tang et
al. [141] observed relaxation and thermalization dynam-
ics in the time evolution of the momentum distribution
of the kicked 1D gas. The distance to a thermal dis-
tribution is quantified and is observed to undergo two
distinct exponential decay regimes. The first evolution
is a prethermalization (dephasing) decay, and the second
consists of the relaxation from the prethermal state to-
wards a Gaussian thermal distribution determined by the
Gibbs ensemble.

Tang et al. found that the thermalization rate in this
second step obeys a simple scaling expression that de-
pends only on θ without any free parameters. The ex-
pression accounts for the DDI perturbation using Fermi’s
golden rule formula, multiplied by the cross section
for short-range interactions to occur. This describes
the dominant integrability-breaking diffractive interac-
tion term: that of two atoms scattering via the con-
tact interaction while simultaneously interacting with a
third atom at long range via the DDI. It is remarkable
that such a simple description appropriately describes
the thermalization dynamics of such a strongly interact-
ing system near an integrable point.

The experiment was supported by an exact diagonal-
ization calculation of a two-rung XXZ quantum mag-
netism model [695] with long-range hopping serving as
the perturbation. Similar two-stage thermalization dy-
namics was observed despite the microscopic dissimilar-
ity of the systems.

Future work could attempt to understand how gener-
ally applicable is this simple, Fermi golden rule-like ex-
pression for a wider variety of quantum quench exper-
iments. One could also explore how more sophisticated
descriptions based on, e.g., adaptations of generalised hy-
drodynamics, may better describe the dipolar 1D near-
integrable system. More generally, this work sets the
stage for a wide array of inquiries into the physics of
strongly interacting quantum systems near integrability.
In the next section, we describe one such investigation,
that of quantum many-body prethermal ‘scar’ states, en-
abled by the realisation of dipole-stabilised excited 1D

quantum gases.

3. Dipolar stabilisation of super-Tonks-Girardeau gases

As mentioned above, the TG state is one in which 1D
bosons with a divergently repulsive coupling strength be-
have like fermions. The two-body wavefunction vanishes
when the atomic positions coincide, and so possesses ex-
clusion correlations as if it were an ideal Fermi gas. A
quantum quench of the TG gas prepares an eigenstate
of the attractive Lieb-Liniger model, the so-called super-
TG gas mentioned above in Sec. VII A. The TG and sTG
state wavefunctions and energies are smoothly connected
as a function of g1D, so while the effective model exhibits
a discontinuity, the system remains adiabatic through-
out the parameter quench. The result is a highly excited
sTG state wherein the 1D bosons that attractively inter-
act at short range behave as if they were ground-state
fermions repulsively interacting at long range. That is to
say, the bosons develop even stronger exclusion correla-
tions than the ideal Fermi gas. The two-body wavefunc-
tion node inherited from the quench from the TG state
extends into a pair of nodes separated by the length a1D,
effectively introducing a rigid exclusion zone similar to
the classical hard rod model. Moreover, its excited-state
many-body wavefunction exhibits many more nodes than
the TG wavefunction, which enhances the stiffness of the
sTG gas [142, 696].

Such metastable attractive gases typically collapse into
bound states (cf. the ‘Bose-nova’ implosion of strongly
attractive BECs in 3D [106]). By contrast, however, the
strong antibunching correlations in the sTG gas wave-
function prevent atoms from approaching each other close
enough to bind into cluster-like states. The sTG gas is ex-
pected to never collapse, despite the multitude of bound
states of lower energy. The deeper reason for this surpris-
ing metastability lies in the aforementioned integrability
of the Lieb-Liniger model, for any g1D value. That is, the
sTG state is also a solution to the Bethe ansatz equations
of the Lieb-Liniger model [645].

Experimentally, however, the sTG gas does collapse for
attractive interactions weaker than those in the unitary
g1D → −∞ regime, as first observed in the nondipolar Cs
system [143]. While the system remains effectively inte-
grable in the unitary regime, since the interaction term
dominates all others in the perturbed Lieb-Liniger Hamil-
tonian, the system can collapse when the interactions be-
come sufficiently weak outside the unitary regime. That
is, the breaking of the integrability of the Lieb-Liniger
model becomes manifest once the system is no longer
unitary near the resonance. Experimental imperfections
such as the longitudinal harmonic trap and the virtual
excitation of the higher motional bands of the transverse
2D optical lattice forming the array of 1D traps all break
integrability, if only weakly [144, 674–676]. These yield
nonzero matrix elements coupling the initial state and
molecular/cluster-like bound states in the near-integrable
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system that enable the collapse of the sTG state at finite
negative g1D coupling strength.

This may be understood in analogy to the classical
1D gas of hard rods of length a1D. The rod length a1D

extends an exclusion zone that prevents rods from over-
lapping. When more rods N are stuffed into a box of
length L than can fit end-to-end (i.e., when Na1D > L),
then the system “collapses” by kinking the rods out of
1D alignment. In the quantum system, a1D is the 1D
scattering length definable through g1D = 2~2a/ma2⊥ =
−2~2/ma1D. Both g1D and a1D are tunable using a con-
finement induced resonance (CIR) [642]. These arise
in quasi-1D traps due to the open-channel-like role of
higher-energy transverse motional states of the trap and
were first observed in Cs [697]. The CIR provides tun-
ability through the dependence of a on B-field near a 3D
FR:

g1D(B) =
2~2a(B)

ma2⊥

1

1− Ca(B)/a⊥
, (73)

where a⊥ is the transverse oscillator length and C ≈
1.46 [642].

Kao et al. [144] explored the effect of DDIs on the
stability of the sTG gas. An array of 1D Dy gases
were quenched into the sTG state under various angles
θ with respect to the 1D axis. CIRs were found near a
broad 3D FRs in 162Dy, allowing g1D to be tuned from
0+ → +∞ → −∞ → 0− by increasing the magnetic
field. Note that unlike theory predictions [137, 698–700],
molecular binding energy measurements of the CIRs em-
ployed in Ref. [144] showed that they did not exhibit a
dependence on θ, neither in the repulsive (θ = 90◦), at-
tractive (θ = 0◦), nor non-dipolar θ = θm configurations.
The state of the system was revealed through gas stiff-
ness measurements obtained from the observations of the
square of the ratio of the breathing–to–dipole oscillation
frequencies. This quantity R is greater than four in an
sTG gas, but dives toward zero when a gas collapses into
bound states due to diverging compressibility. Figure 38
contrasts the repulsive and attractive DDI cases.

Intuitively, one might expect that a repulsive DDI
would inhibit the sTG gas from collapsing, by adding a
repulsive energy barrier between atoms, at least until the
contact interaction becomes too weak. Conversely, an at-
tractive DDI might cause the sTG to collapse at a more
strongly negative g1D than in a nondipolar gas. However,
this intuitive picture is confused by the fact that the DDI
breaks integrability, see Sec. VII A 2, leading to collapse
through eigenstate mixing with cluster states.

Reference [144] indeed found that the repulsive DDI
stabilises the excited gas, and surprisingly, does so re-
gardless of how close to zero the negative g1D is tuned.
That is, the DDI does not simply expand the region of
sTG gas stability by a small margin, but prevents col-
lapse for all attractive contact interactions. By contrast,
an attractive DDI hastened the collapse, as expected,
while collapse in the nondipolar case occurred at a cou-
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FIG. 38: Comparison of excited state stiffness R ver-
sus coupling parameter A2 ∝ g−2

1D showing a) increased
instability due to an attractive DDI in contrast to b)
the complete stabilisation of the excited gas due to the
repulsive DDI. A is a normalised form of the coupling
constant [701], a‖ is the longitudinal oscillator length in
the 1D trap, and N is the average number of atoms per
tube. The regime of collapse is indicated in panel (a),
while the unitary, scar, and weakly interacting regimes
are roughly sketched in panel (b). Figure adapted from
Ref. [144].

pling strength similar to that found in Cs.

The reason for the dramatic influence of DDI on the
stability of the excited states, despite being too weak to
affect the phase diagram of the ground state, remains
unclear, pending future studies. This experimental dis-
covery nevertheless provides access to a brand-new near-
integrable system where prethermal scar-like states can
be explored. We note that stable gases with R < 4 were
also observed, suggesting that gas-like few-body cluster
states had been formed as predicted in Ref. [644]. In the
next section, we discuss how the stabilisation enabled a
novel state-preparation scheme that exploits a quantum
holonomy inherent to the Lieb-Liniger Hamiltonian.

4. Quantum holonomy, topological pumping, and strongly
correlated prethermal states

Systems with a quantum holonomy possess the prop-
erty that eigenstates can change after a cyclic, adiabatic
variation of Hamiltonian parameters: while the Hamilto-
nian stays the same, the resulting eigenstate differs [702].
The Lieb-Liniger Hamiltonian harbours one such exotic
quantum holonomy [703]. It is realised by cycling g1D
through 0+ → +∞ → −∞ → 0−, resulting in different
eigenstates of higher energy upon the return to the same
g1D value.
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FIG. 39: The hierarchy of energy eigenstates accessible
via topological pumping using the quantum holonomy
point at g1D = ±∞. Two complete quantum holonomy
cycles are shown verses energy per particle E/N . The
Bethe ansatz solutions for the repulsive (attractive) LL
model are shown in dotted (solid) curves, along with the
associated data on the repulsive (attractive) branches in
black circles (blue squares). The intermediate coupling
region associated with scars is shaded (starting above the
ground-state repulsive branch). To the left and right are
the weakly interacting and effectively integrable unitary
regimes, respectively. Figure adapted from Ref. [144].

Such holonomies provide a topological means with
which to pump a system into higher energy states. A
simple, single-particle example of an energy pump arises
in the case of a 1D infinite square well: Periodically im-
posing a delta function potential between the infinite bar-
riers pumps the ground state wavefunction to higher en-
ergy eigenstates [704, 705]. Topological pumping in space
has been known at least since Archimedes discovered the
use of a screw to move water up an incline. Rotating
Archimedes’ screw by 2π returns it to the same configu-
ration, but the water within the screw advances by one
screw site. Similarly, the Thouless charge pump trans-
lates an electron one lattice site due to topological prop-
erties of the system [706], inducing quantised transport
in an insulator; such spatial quantum topological pumps
have been demonstrated using quantum gases in special
optical lattices [707, 708].

The many-body quantum holonomy of the Lieb-Liniger
Hamiltonian was realised in Ref. [144] using Dy 1D gases
by scanning B through a sequence of CIRs. This enabled
the first topological pumping of a quantum many-body
gas up a hierarchy of extensively higher energy eigen-
states because the gas was stabilised by the repulsive
DDI; see Sec. VII A 3. Figure 39 shows this hierarchical
ladder.

In the very strongly interacting g1D → ±∞ regime
of the energy eigenstate spectrum, the system is effec-
tively integrable because the large contact interaction
overwhelms all integrability-breaking terms in Hamilto-
nian. By contrast, in the opposite, weakly interact-
ing regime, the system is effectively single-body (mean-
field). It is thus only in the intermediate-coupling regime
where the topological pump prepares a hierarchy of ex-
otic, ergodicity-avoiding prethermal states in a system
that remains many-body and correlated but also effec-
tively not integrable because of non-negligible contribu-
tions from the trap and the DDI. Surprisingly, despite the
lack of perfect integrability, its energy density follows the
solutions to the Bethe ansatz equations throughout the
coupling regimes, within experimental uncertainty.

These particular excited states resemble the atypi-
cal, nonergodic quantum many-body scar states that
fail to immediately thermalize [145]. Their name de-
rives from the regular patterns (scars) traced by spe-
cial wavefunctions through the otherwise ergodic phase-
space of single-particle chaotic quantum systems [709].
Until very recently, it was believed that long-lived far-
from-equilibrium states of quantum many-body system
only exist in integrable and many-body localised sys-
tems [710, 711]. The discovery of “quantum many-body
scars" in a Rydberg-atom lattice [25, 712] showed that
such far-from-equilibrium states can be long-lived out-
side these limits, and thus potentially serve as long-lived
quantum memories [145].

The novel scars exhibited by the dipolar-stabilised ex-
cited 1D gas are the first observed in a continuous,
rather than lattice-based system. The fact that scars
might form near integrability was first pointed out in
Refs. [678, 713], and their observation in the 1D dipo-
lar system makes this connection experimentally explicit.
Measurements of stiffness and energy–per–atom versus
time show that the states do not heat; rather, they per-
sist far longer than the collective-oscillation time scale
in a prethermal state [144]: entropy rather than energy
increases while the gas weakly thermalizes.

The dipolar-stabilised 1D gas results mark an advance
in our understanding of the exciting and highly active
topic of quantum nonequilibrium many-body dynamics:
not only do they provide a new way of creating a class of
interesting nonequilibrium states that are relatively un-
explored from both theoretical and experimental points
of view, but they also draw a rich new correspondence
between quantum scars, topological pumping, and near-
integrability. In addition to preserving quantum many-
body correlations, these scars may play a role in the
quantum simulation of exotic fermionic many-body sys-
tems, since Feynman’s ‘no-node’ theorem does not apply
to the wavefunctions of excited bosonic states [714, 715].
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B. Spinless dipoles in lattices.

Even in absence of a spin degree of freedom, because of
its long-range and anisotropic character, the DDI dras-
tically affects the physics of lattice-confined atomic as-
semblies, both its static properties and in its dynam-
ics. In the first part, we describe assemblies of spin-
polarised dipolar particles, loaded in three-dimension op-
tical lattice potentials, and the status of their experimen-
tal achievements with highly magnetic atoms.

1. Extended Hubbard Hamiltonian and consequences

Assemblies of spinless interacting particles, confined
in deep lattices (tight-binding regime), are typically well
described via Hubbard models of the form:

H = −
∑

i 6=j

ti,j â
†
i âj +

1

2

∑

i,j

Ui,j,k,lâ
†
j â

†
l âkâi (74)

Here, âi is the (Wannier) destruction operator for a parti-

cle at site i, and we note the number operator n̂i = â†i âi.
We first keep the discussion general, and the operators

â†i, âj abide either the canonical commutation or anti-
commutation relations for bosonic or fermionic particles,
respectively. In ultracold atomic systems, the Hubbard
model is derived by writing the Hamiltonian of the parti-
cles moving in the periodic external potential of the lat-
tice in the basis of the associated Wannier wavefunctions
{wi}i, lattice sites in the lowest band and restricting the
motion to this lowest band [8, 128, 129, 635, 636, 716].
The ti,j coefficients correspond to the energies from
the single-particle kinetic and external (lattice) poten-
tial terms for a particle initially at site i and mov-
ing to site j. They are thus denoted hopping or tun-
nelling coefficients. Due to the weak overlap between
Wannier functions at different sites in the tight-binding
regime, hopping is generally restricted to the nearest-
neighbour hopping, j = i + uα, uα denoting the lat-
tice unit cell vector in direction α = x, y, z. The Ui,j,k,l

describe interparticle interaction energies for two parti-
cles located at sites i and k initially and, after the in-
teraction, at sites j and l. Explicitly, those coefficients
write Ui,j,k,l =

∫
drdr′w∗

j (r)w
∗
l (r

′)U(r− r′)wk(r
′)wi(r)

with U(r), the interparticle interaction potential. Be-
cause interaction potentials usually decay with distance,
the largest interaction contribution for bosonic assembly
is the on-site interaction (i = j = k = l) yielding a term
Un̂i(n̂i − 1), with U = Ui,i,i,i. We note that the on-site
term cancel for fermions due to the Pauli exclusion prin-
ciple and the single-band assumption, precluding multi-
ple occupancy at one lattice site. Off-site interactions
terms may also arise. In deep lattices (i.e., additionally
accounting for the weak overlap between Wannier func-
tions), the largest contribution of off-site interactions are
those involving no particle motion, i.e., i = j 6= k = l be-

tween two particles located at cite i and k respectively,
yielding the coefficients Vi,k = V i, i, k, k.

In the case of contact-interacting assemblies, off-site
interactions vanish with the Wannier functions overlap.
Therefore, the standard Hubbard model for bosonic spin-
polarised contact-interacting samples in a cubic lattice
(spacing d) has only two parameters: the tunnelling rate
t = ti,i+uα , independent on the bond direction α, and
the onsite interaction U [635]. This yields the so-called
Bose-Hubbard model:

H = −t
∑

〈i,j〉
â†i âj +

U

2

∑

i

n̂i(n̂i − 1), (75)

with 〈i, j〉 denoting nearest neighbours sites. For the
spinless fermionic case, in absence of long-range inter-
actions, the standard Hubbard model only yields tun-
nelling terms, which intimately interplay with Pauli
exclusion principle. We note that, in the contact-
interacting fermionic case, two spin components are
usually considered, which also yields a two-parameter
(tunnelling/on-site interaction) model called the Fermi-
Hubbard model [716]. This is:

H = −t
∑

〈i,j〉,σ
â†i,σâj,σ +

U

2

∑

i,σ 6=σ′

n̂i,σn̂i,σ′ , (76)

with âi,σ (n̂i,σ) being the fermionic destruction (num-
ber) operator for particle of spin σ at site i. This ex-
pression matches the original model heuristically intro-
duced by Hubbard in the context of condensed matter
systems, where strongly correlated electrons move in the
ionic crystal. In this context, Hubbard models have been
powerful in predicting or explaining quantum phases of
matter [118, 717, 718].

Atomic systems offer direct and convenient control
of the Hubbard model parameters. In particular, for
contact-interacting particles (spinless bosons or spin-1/2
fermions) on a cubic lattice created by standing-wave of
light (e.g., retroreflection of a laser beam) [7, 636], t and
U intrinsically depend on the light intensity. The light
intensity indeed sets the depth of the periodic lattice po-
tential, VL. Consequently, it controls both the exter-
nal potential in the Hamiltonian (coming in the expres-
sion of t) and the extension of the Wannier wavefunc-
tion, at the basis of the Hubbard derivation. Defining
s = VL/Er to be the ratio of the lattice depth to the
recoil energy, Er = ~

2kL/2m (m is the atomic mass and
kL = 2π/d the reciprocal lattice constant), t is found to
vary as t ∝ s3/4 exp

(
−2s1/2

)
and U as s3/4 at large lat-

tice depths [7]. Therefore, the ratio t/U ∝ exp
(
−2s1/2

)

decreases for increasing lattice depths. Furthermore, U
is proportional to the scattering length and can be addi-
tionally controlled thanks to Feshbach resonances [269].
Relying on these control knots, ultracold-gas experiments
have revealed and explored the spectacular effects re-
lated to the dynamics and thermodynamics of Hubbard
models. For instance, the transitions from superfluid or
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metallic phases to strongly interacting insulating ones,
called Mott phases, arising from the competition between
U and t, have been observed both in bosonic and in
fermionic systems [8, 128, 636–638, 719–722].

In the reminder of this section, we only consider spin-
less atoms. In the case of highly magnetic atoms, the
long-range and ansiotropic DDI gives rise to additional
interaction terms in the Hubbard model, following the
general form of Eq. (74). Additionally, the DDI in-
troduces dependencies in the coefficient values related
to the orientation of the dipoles defined by the angles
(θ, φ) compared both to the on-site Wannier function
anisotropy or to the lattice geometry [14, 147, 723, 724].
For simplicity, we first consider the case of dipolar
bosons. In the tight binding regime, the relevant ex-
tended Bose-Hubbard model can be written as [147]

H = −
∑

〈i,j〉
ti,j â

†
i âj +

Uc + Udd(θ, φ)

2

∑

i

n̂i(n̂i − 1)

+
1

2

∑

〈i,j〉/uα=i−j

Vα(θ, φ)n̂in̂j

+
1

2

∑

〈i,j〉/uα=i−j

∆ti,j â
†
j âi(n̂j + n̂i − 1), (77)

which includes the terms with contributions up to first
order in the Wannier wavefunction overlap. The domi-
nant effect of the DDI is the on-site dipolar-interaction
term Udd(θ, φ), which adds to the contact-interaction
one, Uc, and which depends on the Wannier function
anisotropy compared to the dipole orientation due to the
DDI anisotropy. For an isotropic Wannier function, Udd

cancels. Because of the long-range character of the DDI,
off-site terms also contribute. These are: (i) a nearest-
neighbour interaction (NNI) Vα between two atoms lo-
calised on neighbouring sites i and i+uα; (ii) a density-
induced tunnelling (DIT) term of strength ∆tα, arising
from the interaction between one atom localised at site i
or i + uα and one delocalized between i and the neigh-
bouring site i + uα. Remarkably, at zero order in the
wavefunction overlap, the NNI does not cancel, but be-
comes independent of the lattice depth, its strength is
approximately given by Vα = Udd(duα) with Udd given
in Eq. (11). In contrast, the DIT only exists at first order
in the Wannier overlap between sites. Additionally, due
to the DDI anisotropy, Vα depends on the dipole orienta-
tion, mainly compared to the direction uα of the lattice
bond on which the interaction occurs. ∆tα also depend
on (θ, φ) both via the bond direction and the Wannier
wave function anisotropy.

The competition between the additional terms appear-
ing in Eq. (77) (i.e., Vα and ∆tα) and the conven-
tional ones (i.e., U and t) are expected to yield new
physics. Such extended Hubbard models have been
extensively studied theoretically, in various lattice ge-
ometries and dimensionalities, for various parameters
strengths and lattice filling n, as well as for different par-

ticle statistics (fermions or bosons) [147]. Rich phase di-
agrams, including unconventional quantum phases sup-
porting strong and exotic correlations, have been pre-
dicted. The most studied case is the one of bosons
in a 1D or 2D square lattice [725–737]. Here, charge-
density waves, i.e., insulating phases with modulated
density, have been predicted for strong enough NNI,
Vα [725, 728, 729, 731, 734, 737, 738]. Depending on
the filling and on the dipole orientation, star, stripe or
chequerboard spatial patterns have been predicted [730].
The transition from superfluid to density-wave states
can occur directly without an intermediate “supersolid"
(or “lattice-supersolid") phase [728, 729, 731, 734, 737],
i.e., a superfluid with a spatial density modulation dif-
ferent from the lattice itself [739]. Yet, under some con-
ditions (typically low filling n < 0.5 and finite U > t), a
lattice-supersolid phase has also been predicted in simu-
lations [725, 726, 732, 734, 735, 737]. It is in particular
expected to be stabilised by doping (adding holes or par-
ticles) of the density-wave state away from the rational
fillings. At incommensurate fillings and large enough Vα,
phase separation into a pure solid and a homogeneous
superfluid has also been predicted to occur [725]. Phase
separation is favoured by large U , yet it is destabilised,
contrarily to the supersolid, by considering the next order
of extension of the DDI, and may ultimately disappear
when one consider the full range of the DDI. In 1D, an
Haldane-like phase has also raised high interest [727, 732–
734, 737]. This insulating phase occurs at unit filling for
U ∼ V > t; it does not break the translation symmetry
but stands out by its special correlations. Compared to
the Mott insulator phase, the particle-hole fluctuations
indeed appear with an alternating order. These uncon-
ventional phases have critical temperatures typically scal-
ing with Vα/kB.

For spinless fermions, a similar expression Eq. (77)
can also be derived, yet because of the Pauli exclusion
principle, the second and fourth terms of the sum in
Eq. (77) cancels, only retaining the tunnelling and NNI
terms. Theoretically, this case is also of interest, yet
turns out to be more complicated to treat than the bo-
son one [14, 147, 740–746]. Few studies have shown
that various kinds of charge-density-wave and supersolid
phases also forms in dipolar fermions lattice systems in
2D [740–743, 745] and 3D [744]. Additionally, p-wave su-
perfluidity may arise. The interplay between lattice and
dipole-induced Fermi surface deformation has also been
predicted to yield a topological phase transition, of a Lif-
shiftz type [746]. Of even larger interest has been a case
recovering a situation closer to the bosonic model, with
(effective) spin-1/2 fermions as for the conventional Hub-
bard model; see Eq. (76). This particular case will not
be discussed further here, interested readers can consult
e.g. refs. [14, 147].
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FIG. 40: Measurement of the extended Bose-Hubbard
model from a spin-polarised 168Er BEC loaded in a 3D
anisotropic lattice [307]. (a) illustrates the lattice and
atomic dipoles geometry. (b) illustrates the different
term of the Hamiltonian. (c-d) shows the measurement
revealing the NNI term via its effect on the particle hole
excitation energy. (c) exemplifies the principle of the
differential measurement, comparing the resonance posi-
tion from the modulation in two different excitation di-
rections using the same overall configuration. The shift
between y (red) and x excitation is attributed to the loss
of one distinct NNI unit Vy or Vx as illustrated in the
insets. (d) summarise all the differential measurement
performed with the dipole oriented along y (green) or
along x (orange) and the comparison to the theory pre-
diction (dotted line). Adapted from [307]

2. Experimental status

Up to now, one experiment has reported on dipolar ef-
fects in quantum gases of spin-polarised highly-magnetic
atoms confined in a deep lattice potential [307]. It is
based on 168Er BEC loaded in a 3D optical lattice of par-
allelepipedic unit cell with spacings (266, 266, 532)nm,
see Fig.40(a). This work demonstrates the relevance of
the extended Hubbard model (Eq. (77)) for magnetic
bosons, see Fig.40(b). By varying both the lattice depths
independently in each spatial direction and the dipole ori-
entation, Baier et al. [307] reveal the impact of the DDI
in the lattice system — that is on the excitation spec-
trum, in particular affecting the gap of the Mott-insulator
phase, and on the phase diagram itself, in particular shift-
ing the superfluid-to-Mott-insulator transition. Baier et
al. [307] additionally quantified the various terms of the
extended Hubbard model (Eq. (77)). They measured the
dipolar on-site interaction contribution , Udd, by varying
the Wannier wavefunction anisotropy and the dipole ori-
entation. They also observed the two leading long-range
interaction terms, i.e. the NNI and DIT. The strength
of the NNI was isolated and quantified thanks to a dif-
ferential measurement of the particle-hole excitation gap,
comparing two excitation directions in an otherwise iden-

tical system, see Fig.40(c). Based on Eq. (77), the exci-
tation gap depends on on the excitation direction com-
pared to the dipole orientation by the contribution of
−Vα(θ, φ). The differential measurement shows that Vα
is tunable from −h 30 Hz to h 60 Hz, in the 266-nm-
spacing directions, in agreement theoretical expectations,
see Fig.40(d). The DIT was evidenced by the observed
shift of the superfluid-to-Mott-insulator transition, which
cannot be entirely explained by a theory accounting for
the effect of the on-site DDI but is when accounting for
DIT additionally [747].

The predicted exotic phases of the extended Hubbard
model have not yet been observable in the experiment.
We note that the strength of the NNI, being mainly set by
the simple magnetic moment µ and by the lattice spac-
ing, cannot be easily increased in the experiment. Its
relative weakness in systems made of magnetic atoms
impose stringent restrictions on the temperature below
which the phases of interest would become observable as
well as on the time needed for their spontaneous emer-
gence or their (adiabatic) preparation. Such regimes are
on the edge of the experimental possibilities to-date. To
mitigate these constraints, interesting approaches consist
in designing optical lattices with small (sub-wavelength)
spacings, thus increasing the NNI coefficient [748–754].
Finally, preparation and detection schemes at the single-
atom level [638, 755, 756] are a direction of broad interest
which would ease the observation of exotic phases as well
as many others effects of interests, e.g. the influence of
the DDI on the correlations or the dynamics of impuri-
ties. Beyond the case of spin-polarised bosons in rect-
angular lattices, very important prospects relate to the
case of the distinct fermionic statistics, as well as to the
change of the lattice geometry and the investigation of
frustration or disorder effects.

C. Exploration of spin lattice models and quantum

magnetism

1. Introduction

Beyond the spin-polarised case, magnetic atoms in op-
tical lattices make it possible to explore quantum mag-
netism. For this reason, these are exciting system that
may realise an analogue quantum simulator of canoni-
cal open problems associated with quantum many-body
physics [7, 8, 14, 129, 147, 638].

In typical experiments with ultracold atoms interact-
ing at short range, a spin degree of freedom can be in-
cluded by, e.g., populating different Zeeman sublevels in
the ground-state hyperfine manifold, see also Sec. VI A1.
In this case, the system is well described by a spinfull
Hubbard model: Extending the case of Eqs. (75),(76), it
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takes the general form:

H = −t
∑

〈i,j〉,m
â†i,mâj,m+

1

2

∑

i,k,l,m,n

Uk,l,m,nâ
†
i,lâ

†
i,nâi,mâi,k,

(78)
where âi,m is the destruction operator of an atom of spin
m at site i and Uk,l,m,n is the on-site spin-dependent
interaction that one can deduce from the aS scattering
lengths; see also Secs. II D and III. Here, we assume a
spin and direction independent tunnelling rate t. If t
remains weak compared to the on-site interactions, tun-
nelling processes between two adjacent occupied lattice
sites are energetically forbidden and they contribute as
only a second-order virtual process. In such a process, an
atom tunnels to an occupied site where spin-dependent
onsite interaction may lead to a change of the individual
spin of the atoms before the atom tunnels back to its
original (unoccupied) site. In the case where there is one
particle per lattice site, this results in an effective lat-
tice model with spin-spin nearest-neighbour interaction.
In the case of effective spin-1/2 systems (or larger spin
with SU(N)-symmetric interactions), with interpsin on-
site interaction strength U , the system is well described
by the Heisenberg Hamiltonian,

Hex =
Jex
2

∑

〈i,j〉

[
Ŝz
i .Ŝ

z
j +

1

2

(
Ŝ+
i .Ŝ

−
j + Ŝ−

i .Ŝ
+
j

)]
, (79)

with Jex = ±4t2/U [757–759], where + holds for

fermions, and − for bosons. Ŝ
(−,+,z)
i are the

spin operators on site i and defined as Ŝ
(−,+,z)
i =∑

m,m′ S
(−,+,z)
m,m′ â†i,mâi,m′ , with âi,m the Wannier oper-

ator annihilating a particle on site i in the internal

state m and S
(−,+,z)
m,m′ the usual spin matrices elements

〈m|Ŝ(−,+,z)|m′〉. In the case of a spin 1/2 system,
they are the Pauli matrices. This effective interaction,
known as super-exchange, is the direct analogue of the
exchange interaction between strongly interacting elec-
trons, which arises from the interplay between tunnelling
and Coulomb blockade [118]. For the goal of gaining
a deeper understanding of condensed matter phenom-
ena, physics arising from the super-exchange interaction
in atomic assemblies has been widely studied, both in
bosonic [541, 760–763] and in fermionic [764–770] as-
semblies; see also Ref. [638] for a review. In the case
discussed here of atoms interacting at short range, the
resulting Heisenberg Hamiltonian is limited to isotropic
(XXX) interactions between nearest neighbours, which
conserve the total longitudinal magnetisation.

In the case of particles interacting via the DDI, the
situation is qualitatively different. This is because
the DDI introduces a direct coupling between spins
which, in contrast to super-exchange interactions, is long-
ranged (not limited to nearest-neighbour interactions),
and anisotropic (following the intrinsic anisotropy of the
dipolar forces). In addition, as a direct consequence of

the anisotropy, the total longitudinal magnetisation is
not conserved. The associated two-body interaction po-
tential is given in Eq. (2) and leads, by projection on
the Wannier basis (see also Sec. VII B), to on- and di-
rect off-site interactions terms comprising similar elastic,
exchange and relaxation processes in the lattice Hamil-
tonian.

When tunnelling is absent, as is the case in very deep
lattices, it becomes possible to study spin lattice mod-
els due to the mere DDI, i.e., without the addition of
super-exchange effects. In practice, for magnetic atoms,
the DDI can noticeably exceed super-exchange interac-
tions even when t is not negligible, which eases the re-
quirements for investigating equilibrium versus out-of-
equilibrium quantum dipolar magnetism. In addition,
compared to the situation governed by a Heisenberg
Hamiltonian, it is expected that these dipolar interacting
spin ensembles will display a number of exotic quantum
magnetic behaviours [83].

2. Free magnetisation and XYZ spin models

Perhaps the most striking differences between the
spin-lattice models of the super-exchange Hamiltonian
(Eq. (79)) and the DD lattice Hamiltonian in Eq. (2)
arise from the presence of magnetisation-changing colli-
sions. Through the conservation of total angular momen-
tum, these magnetisation-changing collisions introduce
an intrinsic nonlinear coupling between the spin degrees
of freedom and the orbital degrees of freedom, see also
Sec. VI. In the context of lattice systems, this coupling
can result in an effective XYZ Hamiltonian

HXY Z =
∑

i,j

Ji,j

(
αŜx

i .Ŝ
x
j + βŜy

i .Ŝ
y
j + γŜz

i .Ŝ
z
j

)
, (80)

where α, β, and γ differ. Note that in Eq. (80), the cou-
pling rate Ji,j may also depend on the intersite bond,
and the sum is not restricted to nearest neighbours.

Since αŜx
i .Ŝ

x
j + βŜy

i .Ŝ
y
j = α+β

4

(
Ŝ+
i .Ŝ

−
j + Ŝ−

i .Ŝ
+
j

)
+

α−β
4

(
Ŝ+
i .Ŝ

+
j + Ŝ−

i .Ŝ
−
j

)
, the fact that α and β differ is

directly associated with the DDI couplings that do not
conserve magnetisation.

This Hamiltonian is associated with novel quantum
phases presenting non-trivial topologies [771–774]. In
these proposals, the topological states arise due to the
spin-orbit coupling associated with the DDI, and the
associated circulation. As for the bulk case of dipo-
lar spinor physics (see Sec. VI C), the actual use of the
spin-orbit term to achieve coherent coupling between dis-
crete single-particle states with different external (orbit)
and internal (spin) properties, may require extremely fine
tuning of the experimental parameters such as the mag-
netic field with a precision better than the 10 µG level.
Similar to the case of the control of dipolar relaxation,
described in III C 5, the presence of a lattice and its as-
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sociated band gap might relax these conditions.

3. Fixed magnetisation and the secular NMR Hamiltonian
(XXZ model)

The experiments have first concentrated on the regime
where magnetisation-changing collisions may be ignored.
Such a situation may be realised naturally when parti-
cles never share the same lattice site, as dipolar relax-
ation is a localised phenomenon when the magnetic field
is sufficiently high, see Sec. III C 3. This applies when
Rdr(B) ≪ d, where d denotes the lattice spacing, see
Eq. (38). It yields B ≫ 2

π2
Er

gFµB
, where Er is the lat-

tice recoil energy, typically of a few kHz, while gFµB

is of a few kHz/mG (see Sec. VI C) and off-site dipo-
lar relaxation is practically suppressed for B & 10mG.
Additionally, as described in Sec. III C 5, a very strong
reduction of magnetisation-changing collisions can also
be obtained in optical lattice, when the energy released
in a dipolar relaxation event does not match the energy
for band excitation. This applies for both on-site and
off-site processes and as long as the magnetic field is low
enough so that the Zeeman splitting is smaller than the
lattice band gaps [164]. Typically the lattice depth VL is
a few tens to hundreds of Er and the above suppression
holds for small B up to few tens of mG.

The effective Hamiltonian that describes interacting
dipoles in a lattice in absence of dipolar relaxation is
known from the nuclear magnetic resonance community
as the secular dipolar Hamiltonian [257], which reads:

Hsec =
1

2

∑

i,j

µ0(gFµB)
2

4πr3i,j
(1− 3

z2i,j
r2i,j

)×
[
Sz
i .S

z
j − 1

4

(
S+
i .S

−
j + S−

i .S
+
j

)]
, (81)

where ri,j and zi,j are the distance between sites i and
j and its projection along the quantization axis z, re-
spectively. Compared to the Heisenberg Hamiltonian of
Eq. (79) introduced above, the main differences are (i)
the long-range and anisotropic nature of the coupling

Ji,j ∝ 1
r3i,j

(1 − 3
z2
i,j

r2i,j
) not restricted to nearest neigh-

bours, and (ii) the fact that the magnitude of the ex-
change term

(
S+
i .S

−
j + S−

i .S
+
j

)
is different, changed by

a factor −1/2. This seemingly slight modification in fact
breaks the SO(3) rotational symmetry of the Hamilto-
nian and can have important consequences both for the
magnetic phases in the ground state [83], and for out-
of-equilibrium properties [775]. Hsec in fact corresponds
to an XXZ Heisenberg model (α = β compared to the
general XYZ model of Eq. (80)).

4. Large spin magnetism

The Hamiltonians HXYZ and Hsec introduced above
show that magnetic atoms can become a useful platform
to investigate spin lattice models for frozen particles.
As previously discussed in the bulk case in Sec. VI A1,
the large DDI from magnetic atoms is the consequence
of a large total (spin plus angular) orbital momentum
s > 1/2, so that these lattice models can typically be
investigated for rather large spins. One of the interesting
practical consequences is that the large spin of atoms pro-
vide new measurement protocols because spin dynamics
can be monitored by measuring the evolution of the pop-
ulation of the different Zeeman states directly, contrary
to the case of s = 1/2 particles.

Moreover, the existence of a large spin also intro-
duces novel physics compared to that associated with
the pure dipolar-based models, HXYZ or Hsec, as well
as with Hex for s = 1/2-particles. For example, spin-
dependent contact interactions, directly related to the ex-
istence of spin-dependent scattering lengths (as discussed
in Sec. VI A3), also need to be taken into account. As for
the bulk case, the description of the interaction and the
different ground state phases becomes increasingly com-
plicated with the spin length, even without dipolar inter-
actions. Reference [776] studies the specific case of spin-1
atoms with antiferromagnetic interactions (a2 > a0) and
shows a phase diagram similar to that obtained with spin-
less bosons, but with a polar superfluid phase and sin-
glet to nematic phase transitions now present inside the
insulating lobes. This spin-1 phase diagram was first ex-
perimentally investigated with sodium atoms [777], with
negligible dipolar interactions.

Studying the interplay between spin-dependent con-
tact interactions and dipolar interactions in a lattice
setting is an extremely appealing prospect, in particu-
lar at large lattice depth where spin-exchange processes
within a lattice site will result in a spin-dependent super-
exchange interaction between neighbouring sites. New
spin-dependent terms, thereafter denoted as Hsd, thus
arise in the nearest-neighbour interaction in addition to
Hex and Hsec. This results in a very complicated Hamil-
tonian which has now become experimentally available.

5. Magnetism as a function of lattice depth

In the presence of tunnelling, super-exchange processes
Hex and Hsd and dipolar interactions Hsec must all
be taken into account. Interestingly, while the onsite
interaction U (possibly spin-dependent) increases with
lattice depth, the tunnelling t, and Hex and Hsd de-
crease, while Hsec is more or less independent of lat-
tice depth. By varying the lattice depth, it is thus
possible to study the interplay between these different
mechanisms. When the lattice depth is weak and tun-
nelling is allowed, magnetism is driven by the interplay
between long-range dipolar interactions and short range
physics. When the lattice is very deep and tunnelling
if frozen, the arrangement of the atoms in the lattice is
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typically very regular due to the Mott insulator tran-
sition [8, 128, 635, 638, 719–721] (see also discussion in
Sec. VII B), Hex and Hsd vanish, and one can then revisit
spin lattice models associated with the secular Hamilto-
nian.

Varying the lattice depth thus offers a unique and
exotic situation to study the cross-over between quan-
tum magnetism associated with Heisenberg-like Hamilto-
nian, the t-J model at intermediate lattice depths, where
quantum magnetism and transport compete, and, at low
lattice depth, spinor physics. The intermediate regime
is especially enticing, as it represents a challenge for a
realistic theoretical simulation. While most of the re-
search on magnetic atoms has up to now focused on Bose
systems [257, 778], dipolar Fermi gases are also avail-
able [264] and should be fascinating systems with which
to study quantum magnetism, as tunnelling and spin-
dynamics are expected to be strongly coupled and the
atoms are under the strong influence of the Pauli exclu-
sion principle.

6. Other experimental systems

Similar spin models can also be studied using either
heteronuclear molecules [20, 21, 130, 779] or Rydberg
atoms with electric dipoles [25, 131, 132, 780]. In these
cases, the reduced collisional lifetime forbids working in
the regime where tunnelling is significant. Important ex-
perimental results have recently been obtained for these
systems exploring the physics of spin-lattice models for
an assembly of effective spin-1/2 particles pinned in a pe-
riodic potential. One of the attractive features of these
systems is that the relative strength of the exchange and
Ising terms of the interaction can be experimentally con-
trolled.

Furthermore, ions have become a prominent platform
to study spin-lattice models [31, 781, 782]. In these en-
sembles of crystallised ions, an effective spin-spin interac-
tion is mediated between the ions using phonons. These
systems possess the unique possibility to vary the range
of the effective interaction potential between the parti-
cles.

While these other systems are extremely promising and
offer complementary paradigms of quantum magnetism,
a few characteristics distinguish the prospects offered by
highly magnetic atoms to date:

• Magnetic atoms uniquely realise large-spin sys-
tems, beyond the effective spin-1/2 case (see also
Sec. VII C 4).

• Up to now, systems of ions, Rydberg atoms and
molecules remain limited in the size of the sample
under studies or in their densities. While ultracold
atoms offer many-body systems of several thou-
sands or tens of thousands of atoms with lattice
filling factors on the order of unity, Rydberg and

ion assemblies are restricted to a few tens to hun-
dred particles. This size limitation is particularly
problematic for the case of long-range interacting
systems, for which border and finite-size effects are
important. Despite the tremendous progress made
on molecular systems, the fillings achieved remain
below 0.5 [41].

• Magnetic atoms primarily offer a competition be-
tween spin-spin interactions and tunnelling, as both
terms can be allowed and tuned on the same
scale. This enables the exploration of quantum
magnetism when transport competes with spin-spin
interactions, which is perhaps the most relevant
regime from the point of view of quantum simu-
lation.

7. Experimental status with magnetic atoms

The study of dipolar lattice systems has started with
two complementary experiments performed with ultra-
cold KRb molecules [130] and a BEC of Cr atoms [257].
For the experiments with KRb, an effective spin 1/2 sys-
tem is encoded in two rotational states of the vibra-
tional ground state. NMR-like experiments have been
performed which revealed the impact of inter-site pair-
wise dipolar interactions on the decay of the contrast of a
molecular Ramsey interferometer. This experiment was
performed in a rather dilute environment with a filling
factor of typically 5 to 10 percent, and tunnelling was
absent to prevent inelastic collisions when two molecules
physically meet [130]. In a latter study, the experimental
results were compared to a new theoretical model based
on a cluster expansion technique, and an extremely good
agreement was found [779].

In the Cr experiment [257], a BEC was loaded in
a 3D optical lattice, which, at large lattice depth, led
to the production of a Mott insulating state with a
core with double occupancy and a shell with unit fill-
ing. Spin dynamics was studied after spin excitation
in a well-defined state. The experiments revealed a
non-equilibrium spinor dynamics resulting from inter-site
Heisenberg-like spin-spin interactions provided by non-
local DDI. While mean-field theories could not reproduce
the experimental data, a model based on exact diagonal-
ization techniques on a plaquette provided a good agree-
ment with the experiment for short times. This showed
the many-body character of spin dynamics, and the im-
portance to take quantum correlations into account. For
doubly occupied site, a complex spin dynamics was ob-
served, involving both short-range interactions and inter-
site DDI. This experiment therefore showed the potential
of lattice gases made of strongly magnetic atoms for the
study of quantum magnetism of high-spin systems.

In a another set of experiments, the group in Villeta-
neuse also studied the impact of the lattice depth on spin
dynamics [356, 783]. The experiment unveiled a smooth
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crossover from a complex oscillatory behaviour to an ex-
ponential behaviour of the spin populations throughout
the Mott-to-superfluid transition, as shown in Fig. 41.
The experiment provided data in the intermediate regime
between superfluid and Mott insulating, where dipo-
lar interactions, contact interactions, and superexchange
mechanisms compete. In this strongly correlated regime,
spin dynamics and transport are coupled, which consti-
tutes a challenge for theoretical models of quantum mag-
netism. As exact modelling of the experimental dynamics
exceeds the capabilities of classical computation, exper-
imental results in [783] were compared to approximate
models. The comparison between experimental data and
theory demonstrated that the dynamics at low lattice
depth is qualitatively reproduced by mean-field calcula-
tions based on the Gutzwiller ansatz. In this regime, it
was found that transport and contact interactions both
play an essential role in spin dynamics; on the contrary,
only a beyond-mean-field theory could account for the
dynamics at large lattice depths, which is then mostly
driven by dipolar interactions [783].

The potential offered by magnetic atoms to study out-
of-equilibrium quantum magnetism was recently further
demonstrated by two works that realised clean instances
of the above-described XXZ Heisenberg model [264, 778].
The experimental systems were prepared in order to form
large unit-filled arrays of magnetic atoms in deep lat-
tices. An out-of-equilibrium dynamics, occurring under
the pure effect of intersite DDI, was initiated by prepar-
ing the atomic assembly in a given spin state. In the first
study [778], the first shell from a Mott insulator made of
bosonic Cr was isolated and a spin excitation was per-
formed by tilting the spins with respect to the magnetic
field orientation (quantisation axis), yielding a coherent
spin state. In the second study [264], a band insula-
tor of fermionic Er was realised (ensuring single filling
from Pauli exclusion principle) and the spin excitation
was performed by fully transferring the population from
the lowest m = −F -state to an excited m-state, thus
forming a spin Fock state. In both studies, the dynamics
was observed directly on the evolution of the m-states
populations. The effect of quantum correlations on the
dynamics was demonstrated by discrepancies in the com-
parison with mean-field theories.

The good agreement with simulations based on a gen-
eralisation of the discrete truncated Wigner approxima-
tion [784] to the case of large spins, additionally proves
the role of quantum correlation and shows that the
spin dynamics leads to a growth of entanglement. In
Ref. [778], this was characterised by a calculation of the
Renyi entropy. Here, the role quantum correlations was
observed to increase when the initial tilting angle with
respect to the magnetic field approaches π/2. Experi-
mentally, the isolated ensemble of atoms approaches an
effective thermal equilibrium, in the spirit of the Eigen-
state Thermalisation Hypothesis [785–787], in which the
growth of entanglement conveys a thermal character to
local observables.

By performing a Ramsey experiment and analysing the
contrast of the interferometer as a function of time for
the ensemble of unit-filled Cr atoms, it was also observed
that, during spin dynamics, the collective spin length of
the atoms decayed under the effect of dipole-dipole in-
teractions, as was theoretically expected [775]. Interest-
ingly, for a pure homogeneous system, the dynamical re-
duction of the collective spin length is a purely beyond
mean-field effect. The results in [579] show that the de-
cay of the spin length was slower than expected by a
spin model of frozen particles, a finding that could not
be previously deduced from the measurements on popu-
lation dynamics. This illustrates how measurements of
spin coherences provide valuable and complementary in-
formation on quantum many-body systems, and shows
that further experiments as well as new observables are
needed to fully characterise the growth of correlations in
this system.

In Ref. [264], the rate of the spin dynamics was addi-
tionally tuned thanks to the two distinct knobs available
to control the single-spin-state energies. The level spac-
ing could thus be tuned to be equal, providing a resonant
condition for the spin-exchange process of Hsec. The two
control knobs are the light-shift induced by off-resonant
laser beams (e.g., the one forming the optical lattice po-
tential, see also Sec. II C) and the Zeeman effect induced
by the bias magnetic field. While both effects also exist
for bosonic Cr, the missing point lies in the existence of
quadratic Zeeman shifts (induced by the hyperfine struc-
ture of the fermions) which can be tuned to compen-
sate the quadratic light shifts in the case of fermionic Er.
This exquisite control enables a thorough investigation
of the secular Hamiltonian. The large quadratic light
shifts can be additionally used for a fast (and potentially
local) control of the spin dynamics. Reference [264] ad-
ditionally studies the effect of the excited m-state on the
rate of the initial spin dynamics, deducing a universal
scaling, independent on the detail of the initial prepara-
tion and probes the effect of tilting the quantization axis
compared to the lattice geometries, providing first steps
towards more generic lattice models.

These first experiments reveal that dipolar lattice gases
provide a new arena with which to study an exotic quan-
tum magnetism of large spin systems, driven by the com-
petition of long-range and short-range interactions and of
tunnelling. From the theoretical point of view, the full
description of such a system in the presence of tunnelling
(thus being analogous to the the t-J model of magnetism)
is already a challenge. From the experimental point of
view, a number of challenges remain ahead. Here, we
only point a few of the challenges and perspectives for
magnetic atoms:

• Impact of quantum statistics: Up to now,
experiments were only performed with bosons or
with fermions in the frozen regime. The study
of fermions in presence of tunnelling would be ex-
tremely interesting, with an expected interplay be-
tween spin and motional dynamics, and the Pauli
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(a)

(b)

(c)

FIG. 41: Spin dynamics of chromium atoms as a function
of lattice depth, from [356]: (a) Simple representation
of the system close to the Mott-to-superfluid transition.
Atoms interact both due to intersite (white ellipse) and
on-site (black ellipse) interactions. (b) Measurement of
the spin components (ms = −3 to ms = 1) as a function
of time for a lattice depth of 16 Er. (d) Time evolution
the ratio between populations in ms states -3 and -2,
for four different lattice depths (27Er, 16Er, 11.5Er, and
3Er, from top to bottom). Lines are guides for the eye
resulting from fits.

exclusion principle.

• Revealing the expected growth of entangle-
ment in large spin systems: The use of entan-
glement witnesses is a possibility, although prelimi-
nary studies show that the extension of the existing
witnesses to large spins is not straightforward nor
favourable. Bipartite entanglement could also be
revealed by in situ measurements of spin fluctua-
tions.

• Magnetic phases: Up to now, only out-of-
equilibrium experiments have been performed. The
magnetic ground state close to zero temperature re-
mains out of reach of our current technology, lim-
ited by a rather large entropy. However, the anal-
ysis of the equilibrium state reached after spin dy-
namics has occurred is also an interesting avenue
for future research, which is readily accessible. For
example, the nature of the equilibrium state, the
presence of quantum correlations within it, and
how it differs from a thermal state, are open ques-
tions. Likewise, the study of the nature of this
quasi-equilibrium state as a function of the lattice
filling factor, and as a function of entropy, is also
a very interesting question related to many-body
localisation.

VIII. Perspectives

The present time is highly exciting for research based
on magnetic atoms. Many substantial advances are being
made at an impressively rapid pace. New experimental
apparatus are coming online soon and promise to bring
even more excitement. State-of-the-art techniques, re-
cently implemented in other ultracold-atom experiments,
will soon become available in lanthanide experiments.
These promising to shed new light on the physics that
has been revealed within the few last years. For example,
single-atom ‘quantum gas’ microscopes are well-poised
to reveal additional details regarding the strong correla-
tions of the many-body states that have been observed
both in bosonic and fermionic dipolar quantum gases as
well as open the way to extend investigations of their
far-from-equilibrium dynamics. Control on the single-
atom level will also provide novel understanding, at the
few-body level, of scattering phenomena in these com-
plex lanthanide systems. Complete magnetic shielding
will enable the exploration of the zero-field regime of spin
physics. Exploiting the rich optical transition spectrum
of the lanthanides will also provide novel capabilities for
controlling spins and interactions more exquisitely. The
prospect of realising topological quantum states is one of
many central aims.

Highly versatile trap geometries will also play a role
and provide new prospects for exploring the interplay
between the anisotropic and long-range character of the
DDI and the geometry of the system. Other ingredients,
such as disorder and frustration could also be added to
the systems. The mixture of different magnetic and non-
magnetic species will reveal new physics, and in particu-
lar, could provide access to dipolar physics with an inter-
nal degree of freedom and distinct dipolar moments but
without dipolar relaxation. Mass imbalance effects could
also be explored. This opens new avenues toward ex-
otic few-body as well as many-body phenomena, includ-
ing Efimov states, p-wave superfluidity, and other exotic
states of matter. One cannot capture all the possible
new directions enabled by highly magnetic atoms, but
undoubtedly, brand-new physics will arrive in the next
years, and we hope for new surprises to match those this
review has presented.
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