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2Univ. Grenoble-Alpes, CNRS, Grenoble INP>, GIPSA-Lab, 38000 Grenoble, France.
> Institute of Engineering, Univ. Grenoble-Alpes.

Model Predictive Control (MPC) algorithms have long been applied for nonlinear processes. In a quasi-Linear Parameter Varying
(qLPV) setting, nonlinearities are included into bounded scheduling parameters, which are given as a function of endogenous
variables; these scheduling parameters are a-priori unknown along a future prediction horizon, which complicates MPC design. To
address this problem, literature points out two options: robust MPC approaches, considering the scheduling to be uncertain; or
sub-optimal ones, that set values for these parameters along the horizon. With respect to the latter group, this paper proposes an
extrapolation algorithm that estimates the future values of the qLPV scheduling parameters for a fixed prediction horizon of N steps;
the method is based on a recursive procedure using simple Taylor expansions. Sufficient conditions for convergent extrapolation
are presented with regard to the form and class of the scheduling function and the robustness of the MPC. Different benchmark
examples from the literature are presented to illustrate the algorithm, which is also compared to state-of-the-art techniques.

Index Terms—Linear parameter-varying systems; NL predictive control; Estimation; Optimisation algorithms.

I. INTRODUCTION

MODEL Predictive Control (MPC) is a well-established
technique with many practical applications, for both

linear and nonlinear systems (NMPC) [1]. The conceptual idea
is to generate an optimal action at each sampling instant by
solving a constrained optimisation program. This optimisation
embeds performance goals, such as reference tracking or
disturbance rejection, and is written in terms of a process
prediction model. The MPC framework allows the designer
to explicitly include the effects of input and state constraints,
which is rather convenient.

For systems with Linear Time-Invariant (LTI) models, the
MPC optimisation is a Quadratic Program (QP), which can be
solved very fast by most modern solvers. When the model is
nonlinear, the procedure becomes a Nonlinear Program (NP),
being hard to solve in real-time. Nowadays, there exist some
efficient NMPC algorithms [2], based on real-time iterations
and gradient mappings (such as ACADO [3] and GRAMPC
[4], respectively). There are also sub-optimal NMPC solutions
with practical relevance [5], [6]. Despite these advances, most
NMPC schemes rely on solving NPs, which is usually not
possible for strict sampling periods. Thereby, the real-time
embedded NMPC applications have practical impediments, as
pointed out by all major systematic reviews on the topic [7].

During the last couple of years, an interesting alternative to
reduce the computational toughness of NMPC algorithms has
been developed, exploiting quasi-Linear Parameter Varying
(qLPV) embeddings to obtained linear predictions. The LPV
framework has become a very popular tool to model complex
processes [8], [9]. LPV systems are linear in the state space,
but nonlinear in the parameter space. Differently from LTI
models, the state transition map depends on scheduling pa-
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rameters (denoted ρ). These variables are bounded and known:
current values ρ(k) can be measured/estimated, whereas future
behaviours ρ(k + j) are generally not known.

As long as the Linear Differential Inclusion (LDI) property
is verified, nonlinear systems can be exactly described by
qLPV embeddings [10], [11]. Since many nonlinear processes
satisfy LDI, the study of NMPC procedures formally con-
ducted for qLPV models has been investigated since the late
00’s [12]. A through survey of MPC methods applied to
nonlinear systems represented through qLPV/LPV1 models
has been recently presented by the Authors [13].

The core concept of NMPC algorithms through qLPV
embeddings is very pragmatic. Since qLPV models retain the
linearity property from inputs to outputs, it becomes possible
to formulate computationally-efficient design procedures. This
means that the drawbacks of “full-blown” NMPC algorithms
can be avoided, enabling possible real-time applications. But
then, in order to solve the resulting optimisation procedure,
the availability of the scheduling law becomes a crucial issue,
since its evolution along the prediction horizon is unknown. In
order to address this issue, literature points out to two possible
routes:

(i) Robustifying the MPC, assuming that ρ is an uncertain
variable along the prediction horizon, and thus solving the
optimisation with respect to the worst-case performances
implied by the bounds on ρ. This approach is generally
referred to as worst-case, “min-max” algorithms. Yet

1There is a slight difference between proper LPV models and quasi-LPV
(qLPV) ones. For the first group, the scheduling parameters are exogenous,
as in the case of external activation signals. In the qLPV case, the scheduling
parameters are available online as a static and possibly nonlinear map of the
system variables. As a results, considering MPC design, stability is typically
dealt with a robust worst-case problem for the LPV case, while rendered as
a NP for qLPV conditions. In this work, we consider ρ(k) = F(x(k)).
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robust, this procedure somehow looses the “essence” of
LPV design, since the scheduling parameter is simply
treated as an unmeasured variable. Min-Max LPV MPC
has both “online-only” implementations [14], as well
as implementations with offline preparations [15], [16],
which solve the scheduling uncertainty problem via Lin-
ear Matrix Inequalities (LMIs).

(ii) Then, there are methods which neglect the actual trajec-
tory for ρ along the horizon and replace it by a trajectory
guess, converting the min-max QPs or the NLs into a
single QP, see [5]. The scheduling trajectory guess can
be considered as if ρ was kept constant along the horizon
[17], [18] or found by iterative guessing mechanisms.
With respect to these, we stress that the current state-
of-the-art consists in Least Squares (LS) identification
tools [19] and in sequential operations of the optimisation
problem, using the future state predictions to compute the
scheduling guess [20], [21]. The main advantage of these
sub-optimal techniques is that the resulting optimisation
is a QP or an SQP, which are simple enough to run online
for many fast applications.

The main advantage of the robust solutions is that they
are able to provide “performance certificates” for all possible
values of the scheduling parameters. Nonetheless, even the
“online-only” formulations often demand high computational
power, thus complicating real-time applications. While possi-
bly providing degraded performances with respect to the robust
MPCs, the sub-optimal algorithms have been brought to focus
since the simplicity of the resulting program enables their
application for a wider variety of systems, such as embedded
vehicle suspensions that operate under 5 ms samples [18].

The motivation of this paper lies within the range respectful
to these sub-optimal MPC techniques. Specifically, we inves-
tigate how can the scheduling trajectory guesses be efficiently
formulated and what are the conditions for their convergence?
Regarding this thread, our contributions are:

1) A novel method for extrapolating qLPV scheduling pa-
rameters trajectories along a prediction horizon is pro-
posed.

2) Sufficient conditions for the convergence of this recursive
method are derived.

3) Illustrative examples, considering qLPV benchmark mod-
els from the literature, are presented to demonstrate the
effectiveness and simplicity of the method. Comparisons
to state-of-the-art methods are also included.

Paper organisation: The problem of recursively extrapolating
the trajectory of qLPV scheduling parameters along a fixed
prediction horizon is analytically formulated in Sec. II. The
proposed algorithm is formulated in Sec. III. Sufficient con-
ditions for convergence are demonstrated in Sec. IV. Several
benchmark examples are provided in Sec. V. A final discussion
and concluding remarks are put forth in Sec. VI.
Notation: In this work, the set of nonnegative real number
is denoted by R+, whist the set of nonnegative integers
including zero is denoted by N. The index set N[a,b] represents
{i ∈ N | a ≤ i ≤ b}, with 0 ≤ a ≤ b. The identity
matrix of size j is denoted as Ij ; its i-th row is denoted Ij,{i}.

The convolution product c(z) between two z-domain transfers
b(z) and a(z) is denoted as follows: c(z) := b(z) ~ a(z).
Considering a vector v ∈ Rnv , vj denotes its j-th entry, with
j ∈ N[1,nv ]. For a given sequence of scheduling parameters
Pk := col{ρ(k + j)},∀j ∈ N[0,N−1], Pk{j} denotes the
(j − 1)-th entry of this column vector, i.e. ρ(k + j).

Definition 1: Little-o notation
A given function f(k) can be expressed as f(k) = o(g(k)) as
k → ∞ if, for every positive constant ε, there exists another
constant β such that: |f(k)| ≤ εg(k) for all k ≥ β.

II. PROBLEM STATEMENT

We consider the class of discrete-time qLPV systems:

x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) , (1)
ρ(k) = F (x(k)) , (2)

where x ∈ Rnx , u ∈ Rnu , ρ ∈ Rnρ and A : Rnρ →
Rnx × Rnx , B : Rnρ → Rnx × Rnu are continuous maps.
It is implied that F : Rnx → Rnρ is a continuous map and
that ρ(k) ∈ P ∀k ≥ 0, being P ⊆ Rnρ a known set. The
states are measurable for all sampling instants.

Set of Assumptions 1:
• The model matrices are affine on ρ, which means that:
A(ρ) := A0+

∑nρ
j=1Ajρj and B(ρ) := B0+

∑nρ
j=1Bjρj .

• The system is stable in closed-loop;
• The contraints on states, inputs and scheduling parameters

are given by known compact sets:

X :=
{
x ∈ Rnx |xj ≤ xj ≤ xj , ∀j ∈ N[1,nx]

}
,

U :=
{
u ∈ Rnu |uj ≤ uj ≤ uj , ∀j ∈ N[1,nu]

}
.

P :=
{
ρ ∈ Rnρ | ρ

j
≤ ρj ≤ ρj , ∀j ∈ N[1,nρ]

}
.

• The qLPV scheduling map holds F(X ) ⊆ P .
• The variation rate of the scheduling parameters

(ρ(k + 1)− ρ(k)) is bounded.

Remark 1: The necessity of closed-loop stability is standard.
For such, there must exist a feedback u := κ(·)x ∈ Rnx such
that x+ = (A(ρ) +B(ρ)κ(·))x is exponentially stable for all
ρ ∈ P . The feedback gain κ(·) could be either parameter-
dependent (i.e. κ(ρ)) or constant (i.e. κ), depending on the
control synthesis. For generality, we henceforth consider the
MPC state-feedback as a parameter-dependent gain κ(ρ). We
also stress that, in some cases, one can only ensure that the
MPC provides a closed-loop asymptotically stable system if
the model is open-loop controllable. These issues should be
taken into account in the control design step, which are not the
focus of this paper. Refer to [13], [22] for further details on
the synthesis of stable closed-loops for qLPV systems under
MPC algorithms.

Remark 2: Vectors x, u and ρ are component-wise energy-
bounded, in the sense of the induced L2 norm. It follows that
||x||2 ≤ xmax, ||u||2 ≤ umax and ||ρ||2 ≤ ρmax.
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Lemma 1: Assume the constraints on states, inputs and
scheduling parameters (x(k) ∈ X , u(k) ∈ U , and ρ(k) ∈ P ,
respectively) are known and valid for all sampling instants.
Thus, the state deviation variable ∆x(k) := (x(k+1)−x(k))
is also bounded to a compact set ∆X .

Proof 1: Take ∆x(k) := (x(k + 1) − x(k)) =
(A(ρ(k))− Inx)x(k) + B(ρ(k))u(k). Since (x, u, ρ) ∈
(X × U × P) for all instants k, it follows that
∆X :=

{
∆x ∈ Rnx |∆xj ≤ ∆xj ≤ ∆xj , ∀j ∈ N[1,nx]

}
.

The component-wise bounds (∆xj , ∆xj) can be determined
either by interval arithmetics or optimisation. �

Regarding MPC, we consider a finite-horizon cost function:

Jk =

 N∑
j=1

(`(x(k + j), u(k + j − 1)))

+ V (x(k +N))

where `(·, ·) is the main cost (quadratic) and V (·) is a terminal
offset cost. This function is formalised according to traditional
tuning mechanisms, as in [21], [19]. We proceed with:

` (x, u) = xTQx+ uTRu , (3)
V (x) = xTTx , (4)

being T , Q and R positive-definite weighting matrices. In
some cases, the terminal weight is parameter-dependent, i.e.
T = T (ρ), as in [21]. For the application of the MPC scheme,
the following optimisation problem is solved online, at each
sampling instant k:

min
Uk

Jk (5)

subject to Process Model, Eq. (1) ,
x(k + j) ∈ X ∀ j ∈ N[1,N ] ,
u(k + j − 1) ∈ U ∀ j ∈ N[1,N ] ,
ρ(k + j) = Pk{j} ∀ j ∈ N[0,N−1] ,

where Uk stands for the vector of control efforts inside the
prediction horizon and Pk for the trajectory of the scheduling
parameters along the horizon:

Uk =
[
u(k) u(k + 1) . . . u(k +N − 1)

]T
, (6)

Pk =
[
ρ(k) ρ(k + 1) . . . ρ(k +N − 1)

]T
. (7)

Due to the qLPV model in Eq. (1), the values of the
scheduling parameters along the horizon, ρ(k + j) for j =
0 , . . . , N − 1, are needed to describe the future state be-
haviour. Note that if Eq. (2) is plugged into the optimisation,
it is rendered as an NP. Nevertheless, if a guess for the values
of ρ(k + j) is used to replace these unknown values, the
optimisation is rendered as a QP, which can be solved rapidly
by standard solvers.

In previous works [13], [21], it is shown how a regular
quadratically weighted cost function Jk can be rewritten in
terms of Pk, and so can the predicted state trajectory Xk, as
follows:

Xk = H(Pk)x(k) + S(Pk)Uk , (8)

where H(Pk) ∈ R(nx×N)×nx and S(Pk) ∈ R(nx×N)×(nu×N)

are analytically presented in [21]. This means that the state

predictions computed through Eq. (1) are dependent on Pk,
which is the vector of the concatenated known scheduling
parameters and future parameters along the horizon.

We note that the control policy found through the solution
of the constrained program in Eq. (5) is conceived under a
paradigm of a moving-window horizon, which slides along k
as time evolves. The size of this horizon is fixed as of N
samples ahead of k. This means that, at instant k, the control
sequence Uk is computed considering the performances of the
next N steps, and u(k) is applied; at instant k+1, the problem
min Jk+1 is solved considering the performances from N
samples ahead of k+ 1, computing Uk+1 and the new control
input u(k+ 1) is applied. Moreover, the policy at each instant
is formulated as a regular state-feedback: u(k) = κ(ρ)x(k).

Problem Statement: Based on the previous discussion and
assumptions, the problem investigated here becomes clear: to
find a recursive law of the following fashion:

Pk = Φ (Pk−1, ρ(k), x(k)) , (9)

and to demonstrate that it converges to the correct scheduling
trajectory values in a finite amount of samples.

The procedure in Eq. (9) generates a new extrapolation for
the scheduling trajectories Pk, at instant k, based on the prior
extrapolation and the new data set available (ρ(k) and x(k)).
For simplicity, we henceforth name Pk as the “scheduling
sequence”.

Regarding the Problem Statement, we present the novel
extrapolation algorithm (in the form of Eq. (9)) in Sec. III
and provide the theoretical proofs of convergence in Sec. IV.

Remark 3: The interaction between the recursive parameter
trajectory estimation process (Eq. (9)) and the MPC algorithm
(determining Uk by solving the optimisation program from
Eq. (5) and applying u(k) to the process) is as follows: (i)
firstly, the current state and scheduling variables x(k) and ρ(k)
are measured; (ii) then, the parameter trajectory is estimated
through Eq. (9); (iii) the process model is used to compute
the state predictions on the basis of Pk (using Eq. (8)); (iv)
the optimisation procedure is solved and from its solution U?k ,
the first entry u?(k) is applied to the plant. We discuss the
initialisation of the algorithm in the following Section.

III. RECURSIVE EXTRAPOLATION ALGORITHM

Assumption 1: The static map F(x) can be approximated
by the following first order Taylor expansion around x:

F(x) ≈ F(x)|x +
∂F
∂x

∣∣∣∣
x

(x− x) , (10)

being x an arbitrary linearisation point. The actual function can
be analytically expressed by the sum of this approximation to
a residual signal wf , which inherits the discrepancy between
the real static map and its Taylor approximate:

F(x) = F(x)|x +
∂F
∂x

∣∣∣∣
x

(x− x) + wf , (11)

Consider Assumption 1 holds. Then, the following expres-
sion is valid, considering the linearisation at a given instant
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k + j − 1 and the increment along x to the following instant
k + j, namely ∆x(k + j − 1):

F(x(k + j)) = F(x(k + j − 1)) + wf (k + j − 1)(12)

+
∂F
∂x

∣∣∣∣
x(k+j−1)

∆x(k + j − 1) .

We henceforth denote σk+j−1 = ∂F
∂x

∣∣
x(k+j−1)

. Expanding
the expression in Eq. (12) along the fixed prediction horizon
of N steps and embedding it to Eq. (2) yields:

ρ(k + 1) = ρ(k) + σk∆x(k) + wf (k) ,
...

ρ(k +N − 1) = ρ(k +N − 2)

+ σk+N−2∆x(k +N − 2)

+ wf (k +N − 2) .

As of Eqs. (1)-(2), ρ(k) and ∆x(k) are known, whereas σk
can be numerically evaluated on the basis of the current state
measurement x(k). Nevertheless, in practice, σk+j for j ∈
N[1,N−2] is unknown, which requires a second assumption:

Assumption 2: For simplicity, at each sampling instant k, it
is assumed that the partial derivative σk stays constant along
the prediction horizon, i.e. σk+j = σk , ∀ j ∈ N[1,N−2].

The partial derivatives terms σk+j could be computed on
the basis of the state trajectory prediction Xk (generated by
the MPC algorithm). Nevertheless, this is numerically costly.
Thus, we exploit Assumption 2 in order make our extrap-
olation procedure fast and numerically cheap, thus taking
σk+j = σk. In the sequel, we show that even by using such
approximation, convergence is still ensured.

Note that the expansions along the prediction horizon can
be given in terms of the previous scheduling parameter value
and a correction term, as follows:

ρ(k+ j) = ρ(k+ j−1) +σk∆x(k+ j−1) +wf (k+ j−1) ,

where ρ(k + j − 1) can be retrieved from the previous
estimation. Therefore, it holds that:

Pk = P ?k−1 + σk∆X?
k +Wk , (13)

which is a recursive estimation law of the fashion in Eq. (9),
as aimed. Notice that P ?k−1 stands for the previous scheduling
trajectory estimation with the first term corrected with the
known value ρ(k) (known data), while ∆X?

k represents the
state deviations along the horizon (also corrected with the
known value ∆x(k)). Since ∆X?

k represents the difference of
the states over time k, this vector is computed by adapting Eq.
(8). For such, we shift the control sequence Uk−1 as a basis
for Uk, with the last entry kept constant. This is, we take Ŭk =
[u(k|k−1) . . . u(k+N−2|k−1)u(k+N−2|k−1)]Tnu×N . Ac-
cordingly, we obtain ∆Xk = H(P ?k−1)∆x(k) +S(P ?k−1)Ŭk.
Lastly, we stress that Wk is a bias residual vector, which
“corrupts” the extrapolation. Since this vector is unknown,
we disregard it in the recursive estimation procedure, which
means that Eq. (13) becomes an approximation. Nevertheless,
we stress that this equation remains exact for non-null (or
vanishing) residuals Wk.

Fig. 1. Vector Shifting

Figure 1 illustrates the concept behing Eq. (13) and how
the scheduling trajectory estimate from the last sample Pk−1

can be updated in order to generate the current estimate Pk.
The corrections on Pk−1 and ∆Xk are given by:

P ?k−1 = λPk−1 + νρ(k) , (14)
∆X?

k = λ∆Xk + ν∆x(k) , (15)

with λ =
[

0 I . . . I
]

and ν =
[
I 0 . . . 0

]
.

Remark 4: The dimensions of λ and ν in Eqs. (14)-(15)
should be in accordance with nρ and nx. We note that
recursive extrapolation mechanism from Eq. (13) is not able
to ensure that each entry of the scheduling trajectory estimate
vector (i.e. ρ(k+ j) , ∀j ∈ N[1,nρ]) abides to the admissibility
constraints (each ρ(k+j) ∈ P). Therefore, in order to provide
“coherent” extrapolated parameters ρ(k+ j), given within the
scheduling set P , the extrapolation vector Pk is “clipped”.

Remark 5: An additional forgetting factor can be included
to Eqs. (14)-(15), replacing the identity matrices in λ by
exponentially decaying terms, such as Ie−k/kmax . This term
would attenuate the amount of mistaken information passed
from one estimate Pk to the following Pk+1.

Note that Assumption 2 is an approximation while the
convergence property of the extrapolation mechanism has
not yet been established (further details in Lemma 3), since
σk+j 6= σk. Nevertheless, as the system stabilizes and the
extrapolation converges, it follows that σk+j ≈ σk becomes
a very reasonable approximation. This approximation may
be violated more easily with larger horizons N , since the
discrepancies between ρ(k + j) and ρ̂(k + j) grow along
j ∈ N[1,N−2]. Yet, the sliding-horizon mechanism of the MPC
ensures that this imprecision has minor effects on the closed-
loop performances, as illustrated by the simulation results
presented in Section V.

The complete recursive estimation algorithm for qLPV
scheduling trajectories is synthesised as follows:

Remark 6: The initialisation of the scheduling trajectory
guess P0 is of particular interest. At the initial point, only
x(0) and ρ(0) are known; assumably, no control input has yet
been generated, since u(0) is computed on the basis of the
optimisation, which requires P0. Therefore, since the MPC is
ensured to stabilize the system for all ρ ∈ P (Lemma 2), we
simply use P0 = col{ρ(k)} (N repeated entries of ρ(k)). This
is “the best possible candidate” for the scheduling trajectory
at the initial sampling instant, and it is refined progressively
as the recursive extrapolation convergences.
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Recursive Extrapolation Algorithm
For every sampling instant k, loop:
→ Measure the system states x(k);
→ Get ρ(k) with Eq. (2);
→ Get x(k) with Eq. (1) and compute ∆x(k);
→ Correct Pk−1 → P ?k−1 with Eq. (14);
→ Compute the state deviations ∆Xk based on P ?k−1 and Ŭk;
→ Correct these deviations ∆Xk → ∆X?

k with Eq. (15);
→ Compute the derivative σk;
→ Compute Pk using Eq. (13) with Wk = 0;
→ Clip each entry of the extrapolation Pk, i.e. each ρ(k+ j)
is replaced by max(ρ , min(ρ(k + j) , ρ)).

IV. SUFFICIENT CONDITIONS FOR CONVERGENCE

With respect to the extrapolation algorithm, we now present
sufficient conditions for its convergence. For such, the fol-
lowing rationale is used: if the MPC controller, based on
an approximated scheduling sequence estimation, still ensures
closed-loop stability, then the extrapolation Pk will converge.
In the sequel, we provide a Lemma regarding the MPC state-
feedback gain, and another Lemma which gives five sufficient
conditions for convergence.

Lemma 2: The state-feedback MPC policy can be scheduled
with respect to ρ(k) in the form u(k) = κ(ρ(k))x(k). Further-
more, there exists an upper gain κ∞ such that ‖κ(ρ(k))‖∞ ≤
κ∞,∀ρ(k) ∈ P .

Proof 2: Consider an MPC application for a process with
constant time-invariant parameters (LTI), i.e. x(k + 1) =
Ax(k) + Bu(k). In this case, it is trivial to show that the
resulting predictive control law can be given as u(k) = κx(k),
where the state-feedback gain depends on the system model
parameters (A,B), tuning weights (T,Q,R), and prediction
horizon size N . The closed-loop stability can be shown
through classical Lyapunov arguments, which generate a nom-
inal explicit feedback gain κ. Since in our study we consider
a time-varying system expressed through the qLPV model
in Eq. (1), the MPC can be scheduled with respect to the
known scheduling parameters at each instant, i.e. ρ(k), since
the model matrices are dependent on this variable. Therefore,
the resulting state-feedback predictive control law has also
the form of u(k) = κ(ρ(k))x(k), where the feedback gain is
parameter dependent, as shown in [21]. Since the parameters
are expressed within a bounded set P , we can benefit from
the polytopic representation of Eq. (1) to determine a state-
feedback gain κ∞ ≥ ‖κ(ρ)‖∞,∀ρ ∈ P by evaluating κ(ρ) at
the vertices of the embedding polytope.

We note that the nominal state-feedback gain κ(ρ(k)) can
be explicitly computed. Assume there exist a stage cost `(x, u)
and a terminal V (x), as in Eqs. (3)-(4), with positive-definite
weights T (ρ), Q, and R. Let Y (ρ) = (T (ρ))−1 and take
κ(ρ) = W (ρ)Y (ρ). Assume the closed-loop is stable and the
MPC is recursively feasible. Then, it follows that a Lyapunov
argument holds for the system, meaning that the finite-horizon
MPC cost is decreasing, i.e. Jk+1 − Jk ≤ 0,∀k. As detailed

in [15], [16], and [21], this inequality implies in:

V ((A(ρ) +B(ρ)κ(ρ))x)− V (x) ≤ `(x, κ(ρ)x) ,∀x ∈ X .

The above inequality can be re-stated in a parameter-
dependent LMI form (see [21, Theorem 2] and Appendix A of
this paper), which is solvable in a grid of points over ρ ∈ P .
This LMI solution provides the parameter-dependent matrices
T (ρ) and W (ρ), which are used to generate the feedback gain
κ(ρ). This ends the proof. �

Remark 7: In order for the MPC to be robustly stable,
despite the model-process uncertainties derived using all pos-
sible “wrong” (non-ideal) scheduling sequences P̆k, constraint
tightening and robust invariant terminal set tools can be
used. As in any control method, robustness comes at the
expense of performance deterioration. Note, anyhow, that the
proposed method provides scheduling estimates much more
accurate than P̆k, which means less conservative performances
are enable, with comparable computational load. Note that
the proposed method consists basically of linear vector-wise
operations, which is computationally simple. The issue of
closed-loop performances of “frozen” qLPV MPC algorithms
are not the focus of this paper, whereas discussed in [23].

Lemma 3: If the following Sufficient Conditions are satisfied
• (C1) The static map F(·) is, at least, class C1, i.e. first-

order differentiable with respect to x, for all x ∈ X ;
• (C2) The differentiation function σk is energy-bounded

(induced L2 sense) for all k;
• (C3) The state deviation term ∆x(k + j) is energy-

bounded (induced L2 sense) for all k;
• (C4) The qLPV system is stable in closed-loop;
• (C5) The nominal closed-loop system tolerates a predic-

tion uncertainty wf (k + j − 1) with an L2 norm bound
wmax ≤ ∆xmax;

then, the recursively proposed extrapolation tool in Eq. (13)
with Wk = 0 is convergent.

Proof 3: We proceed by detailing each of these five Suf-
ficient Conditions individually: (C1): F(·) must be at least
class C1, so that its derivative σk exists for all x(k+ j) ∈ X .
The derivative term is necessary in order for the Taylor
approximation of Eq. (11) to be valid.

(C2) and (C3): Since, for simplification purposes, the recur-
sive extrapolation is computed as if σk+j remained constant
as σk through the prediction horizon, from the viewpoint of
each sampling instant k, it must hold that ||σk||2 ≤ σmax
for Pk in Eq. (13) to exist. Moreover, to construct Pk, ∆X?

k

must be energy-bounded, which conversely means that each
||∆x(k+ j)||2 ≤ ∆xmax. This condition is also necessary for
Lemma 2 to hold.

(C4): For the MPC to stabilize the system, there must
exist a nominal feedback u = κ(ρ)x such that the closed-
loop dynamics are exponentially stable for all ρ ∈ P , as
argued in Remark 1. This is ensured if Lyapunov conditions
are satisfied through adequate terminal ingredients of the
MPC optimisation, computed offline, as those presented in
[21]. We stress that robustness arguments against prediction
uncertainties can be included through constraint tightening.
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(C5): From the definition of a Taylor expansion, it follows
that wf (k + j − 1) = hw(x(k + j − 1))∆x(k + j − 1). This
function can be expressed through the little-o notation, using
k + j − 1 = k̆: wf (k̆) = o

(
||∆x(k̆)||2

)
, which translates

to ||wf (k + j − 1)||2 ≤ ε||∆x(k + j − 1)||2, holding after a
natural number of discrete-time steps k̆ ≥ β and a positive
real constant ε. Since the derivative term σk is energy-bounded
by σmax, it always holds that for any arbitrary interval on the x-
plane given by

(
x(k̆)−∆xmax, x(k̆) + ∆xmax

)
, ||wf (k̆)||2 ≤

∆xmax, with β = 1 (one-sample deviation). Accordingly, we
have wmax ≤ ∆xmax.

Next, we verify that the qLPV system when controlled
through an LTI-based prediction model MPC maintains stabil-
ity despite the variations caused by the scheduling parameter
and the Taylor expansion error wf . We must ensure, thus, that
an M − ∆ robust stability condition is verified with respect
to the bound on the uncertainties implied by wf .

For such, we consider that there exists a specific form on
how to describe the LPV matrices: the system is assumed
affine (refer to Set of Assumptions 1). At any given instant, we
can freeze qLPV system as a perturbed LTI model, computed
upon the instantaneous ρ(k) and uncertainty upon it, denoted
wf (k). This is, using the uncertainty inputs:

u∆x
(z) =

∆x(z)x(z)︷ ︸︸ ︷
(A1wf (z))~ x(z) ,

u∆u(z) = (B1wf (z))~ u(z)︸ ︷︷ ︸
∆u(z)u(z)

,

we are able to obtain the following state-space description:

x(k + 1) = Anx(k) +Bnu(k) +

u∆(k)︷ ︸︸ ︷
(u∆x(k) + u∆u(k)) ,

An = A0 +A1ρ(k) , Bn = B0 +B1ρ(k) .

Consider two “uncertainty outputs”: y∆x
(k) = x(k) and

y∆u
(k) = u(k), being y∆(k) = diag{y∆x

(k) , y∆u
(k)}.

The corresponding “frozen” LTI model is expressed in the
z-domain as follows:

x(z) = Gn(z)u(z) +G∆(z) (u∆x(z) + u∆u(z)) ,
Gn(z) = (zInx −An)

−1
Bn , G∆(z) = (zInx −An)

−1 .

Then, we use Lemma 2 to state the control policy and add
a fictive input r(z) to the control input so that input-output
stability can be verified:

‖x(z)‖∞ ≤ ‖

Tn(z)︷ ︸︸ ︷
(Inx −Gn(z)κ∞)

−1
Gn(z)κ∞ r(z)

+ (Inx −Gn(z)κ∞)
−1
G∆(z)u∆x

(z)

+ (Inx −Gn(z)κ∞)
−1
G∆(z)︸ ︷︷ ︸

T∆(z)

u∆u(z)‖∞ ,

The Linear Fractional Transformation (LFT) of this frozen
system is, for N := F`(P, κ∞):∥∥∥∥[ y∆(z)

x(z)

]∥∥∥∥
∞
≤ ‖N(z)‖∞

∥∥∥∥[ u∆(z)
r(z)

]∥∥∥∥
∞

.

N(z) =
M(z)︷ ︸︸ ︷(

T∆(z) T∆(z)
T∆(z)κ∞ T∆(z)κ∞

) (
Tn(z)

κ∞ + Tn(z)κ∞

)
(
T∆(z) T∆(z)

)
Tn(z)

 .

Finally, we can write u∆(k) = ∆(·)y∆(k), with:

||∆x(·)||∞ =
||A1wf ~ x||∞

xmax
,

||∆u(·)||∞ =
||B1wf ~ u||∞

umax
.

Due to the definition of the Taylor expansion and, as
constructed, due to the fact that ||wf (k+j−1)||2 ≤ ∆xmax ≤
ε||∆x(k + j − 1)||2, holding for all k + j − 1 ≥ 1 and every
positive real constant ε, the convolution products are upper
bounded as follows:

||wf ~ x|| ≤ ∆xmaxxmax , ||wf ~ u|| ≤ ∆xmaxumax .

Due to this fact, it follows that:

||∆(·)||∞ =

∥∥∥∥ ∆x(·) 0
0 ∆u(·)

∥∥∥∥
∞

≤
∥∥∥∥ A1 0

0 B1

∥∥∥∥
∞

[
||wf~x||2
xmax

0

0
||wf~u||2
umax

]

≤
∥∥∥∥ A1 0

0 B1

∥∥∥∥
∞

∆xmax .

Note that, ||M(z)||∞ ≤ ||κ∞T∆(z)||∞, which means that
||M(z)||∞ ≤ ||κ∞(Inx − Gn(z)κ∞)−1G∆(z)||∞. Thence,
the stability condition is very direct: simply checking the
following inequality, for all ρ ∈ P and x ∈ X (where κ∞ is
determined according to Lemma 2):

||κ∞T∆(z)||∞ ≤ 1

||∆(·)||∞
. (16)

This concludes the proof. �

Remark 8: Condition (C5) in Lemma 3 is essential. As long
as the closed-loop system is robustly stable despite the residual
term wf , we can demonstrate the convergence property by
showing that limk→+∞ wf (k + j) → 0 and that σk+j =
σk , ∀j ∈ N[1,N−2]. Assume the process is stable in closed-
loop. Thus, it holds that limk→∞ x(k + j) = x(k + j − 1).
Then, take wf (k + j − 1) = F(x(k + j)) − F(x(k + j −
1)) − σk+j−1∆x(k + j − 1). It directly follows from (C5)
that σk+j−1 = σk , ∀j ∈ N[1,N−2]. Thus, limk→∞ F(x(k +
1)) = limk→∞ F(x(k)) and limk→∞∆x(k) = 0. Finally,
limk→∞ wf (k) = − limk→∞ σk∆x(k) → 0, which con-
versely ensures that the scheduling sequence extrapolation Pk
indeed converges to the real scheduling sequence.

Remark 9: In order to verify that the proposed method en-
sures a convergent extrapolation, (C5) can be checked through
the following Algorithm, used to verify inequality (16). We
note that the computation of the compact set ∆X from
Lemma 1 requires optimisation or interval arithmetics, while
the feedback gain κ∞ is derived using LMIs (as provided in
Lemma 2 and also expressed in [24].
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Checking Sufficient Condition (C5)
For every ρ ∈ P:
→ Compute the feedback gain κ∞ via Lemma 2, solving the
optimisation for each x(k) ∈ X and each ρ(k) ∈ P;
→ Compute the nominal matrices An and Bn;
→ Compute the closed-loop nominal model T∆(z);
→ Compute the uncertainty bound ||∆(·)||∞;
→ Compute ||κ∞T∆(z)||∞ and verify inequality (16).

V. ILLUSTRATIVE SIMULATIONS

In this Section, we provide application results of the pro-
posed recursive extrapolation tool. Three different case studies
are considered: a numeric example, a semi-active suspension
system and a pendubot system. All results were obtained with
the aid of Matlab, Yalmip and Gurobi solver, performed on
a 2.4 GHz, 8 GB RAM Macintosh computer. Through the
first two examples in the sequel, the state-feedback MPCs in
the form of u = κ(ρ)x are synthesised with identity Q and
R weights and a parameter-dependent T (ρ) derived from the
solution of the LMIs in [21, Theorem 2].

The first case study is chosen because it exhibits a time-
varying derivative σk+j−1. Therefore, it serves to demonstrate
that even if Assumption 2 is violated, if the five conditions
from Lemma 3 are satisfied, the algorithm still ensures con-
vergence.

The second and third case studies are chosen from the
literature because LPV MPC techniques have considered these
models (see [19] and [20], respectively). The second case
presents some load disturbances which meddle with the stabil-
isation of the process, while the third has a larger number of
states (six). Moreover, both these cases have constant or null
derivative terms σk+j , differing from the first.

In order to illustrate the advantages of the proposed mecha-
nism, we also include comparisons of our method in Examples
A and B, considering the state-of-the-art technique of iterative
SQPs from [21] and the simplified gain-scheduled/ “frozen-
guess” MPC approach from [23].

Note that all the following curves are of discrete-time
systems. For simplicity, nevertheless, we opt to exhibit the
discrete time sample as line curves generated by the linear
interpolation between these samples.

A. Numeric Example

Consider a qLPV system operating at a sampling rate of
1000 Hz. It is controlled by an MPC loop which operates
within 1 ms. The system model is x(k+ 1) = A(ρ(k))x(k) +
B(ρ(k))u(k), with:

A(ρ(k)) =

[
−0.5(1 + ρ(k)) 0

0 −0.3(1 + ρ(k))

]
B(ρ(k)) =

[
(1 + ρ(k))
2(1 + ρ(k))

]
ρ(k) = F(x(k)) = sin

([
1 1

]
x(k)

)
,

σk+j−1 =
[

1 1
]

cos
([

1 1
]
x(k + j − 1)

)
.

This system has box-type constraints as are those in the Set
of Assumptions 1, with: x = −[0.5 0.3]T , x = [0.5 0.4]T , u =

−0.025, u = 0.025, ρ = −1, ρ = 1. Both state deviation and
scheduling parameter deviation variables are energy-bounded.

With respect to the five sufficient conditions given in Section
IV, they are all verified:

1) A sine function is class C∞ w.r.t. its domain;
2) A cosine is always energy-bounded;
3) Due to the box-type constraints on x, ||∆x(·)|| ≤ 0.8;
4) Indeed, the closed-loop qLPV system is stable under the

corresponding MPC algorithm;
5) Algorithm IV verifies the inequality from (C5) for all

ρ ∈ P: it holds that supρ(k)∈P ||κ∞T∆(z)||∞ = 0.1651,
while (||∆(·)||∞)−1 = 0.6667.

The simulation results are presented in the sequel, which
show that the recursive extrapolation converges within roughly
5 samples, i.e. 5 ms. The control horizon is taken as N = 30
samples. The total simulation run comprises 0.2 s; the system
is perturbed by a disturbance signal at t = 0.1 s. Fig. 2 shows
the stabilisation of the states and the predictive control policy.
Most importantly, Fig. 3 shows the extrapolation of Pk at
different instants and the actual qLPV scheduling trajectories,
demonstrating that convergence of Pk is indeed verified.
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Fig. 2. Numerical Example: State Stabilisation (black line) and Control Signal
(red line).

For illustration purposes, the proposed method is compared
to the two other qLPV MPC approaches widely used in the
literature. The first is the simplistic “frozen-guess” method
[23], for which P̆k = ρ(k)11×N . The second is the iterative
QP from [21], for which the MPC QP is solved multiple times,
with Pk is iteratively taken as fρ (Xk). The latter also has
convergence guarantees, while requiring the solution of several
QPs per sampling period, as well as the application of a vector-
wise nonlinear proxy fρ(·).

These MPC methods are synthesised with the same tuning
weights. We compare the obtained performances in terms of
normalised RMS (NRMS) indexes for each state trajectory
xj(k), which are presented in Table I. As it can be seen, the
resulting closed-loop performances are very similar with the
proposed method and the one by [21], both slightly superior
than the frozen guess method (baseline indexes). Nevertheless,
we must stress that the MPC with the proposed extrapolation
mechanism can operate four times faster than the state-of-
the-art SQP scheme, since it does not require to evaluate any
nonlinear vector-wise operation online, neither multiple QPs.

In order to further illustrate the convergence of the schedul-
ing sequence estimates, Fig. 4 compares the extrapolations
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Fig. 3. Numerical Example: Scheduling Trajectory Extrapolation and Convergence. The real scheduling parameter trajectory is presented in bold black line.
The coloured lines represent the extrapolated scheduling sequence at different time instants.

derived with the proposed method against the estimated with
the iterative mechanism of [21]. In this Fig., Pk (real trajec-
tory) and P̂k (estimate) are given for the first six simulation
samples. Note that P̂0 is an initial guess. Clearly, both meth-
ods converge in roughly the same number of samples. The
discrepancy between P̂5 and P5 are slightly smaller with the
approach from [21], but this advantage comes at the expense
of more computational cost. Nevertheless, we note that these
discrepancies can be reduced with adequate forgetting factors
(see Remark 5), such that the prior estimate data Pk−1 have
less effects on the following estimate Pk.

Table I evidences an important feature of the proposed
method, which we highlight. The additional computational
time tc required to solve the recursive extrapolation mech-
anism is of 0.01 ms (on average), with respect to the “frozen
guess” MPC. Even with such minor additional computa-
tional load (of roughly 8%, in this case), the closed-loop
performances are much enhanced. We stress that the total
computational load of an MPC scheme operating together
with the proposed extrapolation algorithm is very close to
that of a QP. This is due to the fact that the operation
of Eq. (13) consists only of linear vector-wise operations,
whose numerical toughness depends linearly on the size of
the prediction horizon N and on the number of number of
scheduling parameters nρ.

In the case of systems with a higher number of states, the
numerical load required by proposed estimation law will repre-
sent an even smaller ration w.r.t. the load required by the MPC
QP, which grows exponentially with nx. This is a very relevant
advantage of the proposed method, since the state-of-the-art
iterative SQP mechanism from [21] grows exponentially with
nx and with N , while also being proportional to niter, which
is the average number of iterations of the QPs, per sampling

period. Thereby, for systems with an elevated number of states,
the iterative SQP framework from [21] may easily violate the
sampling period threshold of real-time applications (tc < Ts),
while the proposed scheme may not, since it will require,
basically, the computational time needed for a single QP.

TABLE I
NUMERICAL EXAMPLE: PERFORMANCE EVALUATION.

Method NRMS{x1} NRMS{x2} tc
Frozen Guess [23] 100% 100,% 0.124 ms
Iterative SQPs [21] 84.62% 89.86% 0.632 ms

Proposed 83.84% 89.86% 0.134 ms

B. Semi-Active Suspension System

As a second study case, we consider a semi-active suspen-
sion system, represented by a quarter-car qLPV benchmark
model from the literature [23]. The dynamics comprise the
displacements and velocities of a car’s chassis and wheel
(four states). The scheduling parameter is the suspension
deflection velocity. This system operates with a 5 ms sampling
period, and is disrupted by road bumping (load disturbances).
The MPC horizon is of N = 10; the system has box-type
constraints on states and inputs.

The model is x(k + 1) = A(ρ(k))x(k) + B1(ρ(k))u(k) +
B2w(k), where w(k) are the road disturbances and ρ(k) =
(x2(k)− x4(k)). Further details are given in references [23],
[25].

All sufficient conditions from Lemma 3 are satisfied:
1) The difference (x2(k)− x4(k)) is a linear operator and

thus class C∞;
2) σk = [0 1 0 − 1] is energy-bounded;
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Fig. 4. Numerical Example: Scheduling Trajectory Estimation Convergence - Proposed Method and [21]. The real scheduling parameter trajectory is presented
in bold black lines, the estimates with the proposed method in dotted blue lines, and the estimates with the method from [21] in dashed blue lines.

3) The box-type constraints ensure energy bounds on ∆x;
4) The qLPV model is stable in closed-loop;
5) Algorithm IV verifies the inequality from (C5) for all

ρ ∈ P: it holds that supρ(k)∈P ||κ∞T∆(z)||∞ = 15.54,
while (||∆(·)||∞)−1 = 66.73.

We consider a simulation scenario of 10 s with ± 5 mm
bump-like road disturbances at three different instants. The
extrapolation algorithm converges within 25 samples, i.e.
0.125 ms. The average computational stress is of 0.048 ms,
on average. Fig. 5 shows the stabilisation of the states to the
origin, the predictive control policy and the road profile dis-
turbances, while Fig. 6 shows the real scheduling trajectories
Pk and the corresponding recursive extrapolation estimates P̂k
at different sampling instantes over the simulation run.
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Fig. 5. Vehicle Suspension Example: State Stabilisation (bold, black and
dashed, light blue lines), Control (bold, red line), and Road Disturbances
(bold, blue line).

In order to corroborate the comparison discussions from the
first example, the proposed method is once again tested against
the qLPV MPC approaches from [21] (iterative SQPs) and
[23] (gain-scheduled/“frozen-guess” method). The MPCs are

synthesised with the same tuning weights. In this example,
due to larger number of states (nx = 4) than the prior, we
compare the obtained performances in terms of the normalised
RMS index for the stage cost trajectory `(x(k), u(k)), which
are presented in Table II. Firstly, we stress that the frozen-
guess mechanism already obtains good driving performances
by itself, as argued in [23]. Nevertheless, as show in Table
II, the resulting closed-loop performances are enhanced with
the proposed method as with the method by [21], both with
superior indexes than the gain-scheduled baseline result. As
indicated in previous discussions, the proposed extrapolation
mechanism yield almost negligible computational time with
respect to the time required by the QP. Furthermore, the
iterative SQPs approach almost violates the sampling time
constraint of 5 ms, taking over ten times more than the MPC
coupled with the proposed estimation procedure (on average).
This occurs singe the QPs grow exponentially with the number
of states, while the extrapolation does not.

TABLE II
SEMI-ACTIVE SUSPENSION EXAMPLE: PERFORMANCE EVALUATION.

Method NRMS{`(x, u)} tc
Frozen Guess [23] 100% 0.370 ms
Iterative SQPs [21] 56.85% 3.795 ms

Proposed 68.06% 0.377 ms

C. Pendubot

A final example is provided. Consider the six-states pen-
dubot benchmark system from [20]. This inverted pendulum
has two arms at rotating angles measured with respect to the
vertical axis. A motor is connected to the first arm and acts
as the actuator in this system. The control goal is to stabilize
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Fig. 6. Vehicle Suspension Example: Scheduling Trajectory Extrapolation. The real scheduling parameter trajectory is presented in bold black line. The
coloured lines represent the extrapolated scheduling sequence at different time instants.

the system at a vertical up-up equilibrium (origin). The dy-
namics of this system may be disturbed by the occurrence of
unexpected torques against the rotating arms.

This pendubot is represented by a discrete-time qLPV
model in the form of Eq. (1), with an additional w(k) term
summed to the state transition map, which represents the
torque disturbance. The system operates under a sampling
period Ts of 10 ms. The model exhibits two state-related
scheduling parameters: ρ(k) = [x1(k) , x3(k)]T . This system
is controlled by a sub-optimal MPC algorithm with horizon
N = 40 steps. All matrices, parameters and MPC weights
(T , Q, and R) are given in [20]. Once again, all five suf-
ficient conditions from Lemma 3 are satisfied. It holds that
supρ(k)∈P ||κ∞T∆(z)||∞ = 0.0845, while (||∆(·)||∞)−1 =
0.2140.

In order to illustrate this the closed-loop behaviour of this
process under the action of an MPC algorithm based on the
proposed recursive extrapolation procedure, we consider a
simulation run of 3 s. In this scenario, the initial conditions
are non-null and a load disturbance torque that occurs at
t = 2 s, which requires the controller to stabilise the pendubot
at the up-up equilibrium (steering the state trajectories to
the origin) twice. In Figure 7, we show the trajectories of
this system, considering the stabilisation of the first four
states (positions and velocities, accelerations are suppressed
for simplicity), as well as the generated predictive control
policy. Complementary, Figure 8 presents the extrapolation of
the scheduling trajectory2, which clearly convergences rapidly.

The average computational time required to evaluate the
recursive extrapolation mechanism is of 2 ms. As of this, the

2Only one of the scheduling parameters is shown, for simplicity; similar
results were obtained for the other parameter.

total control law (extrapolation and QP solution) is evaluated
within the 10 ms sampling period threshold. We also note that
the extrapolation convergence is achieved within 0.5 ms (both
due to initial conditions and due to the torque disturbance).
The obtained performances are coherent with those presented
in [20]. Evidently, the proposed solution enables a wide variety
of applications.
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Fig. 7. Pendubot Example: State Stabilisation (black, light blue, light purple,
and gray lines) and Control Signal (red line).

D. Discussion

As evidenced by these previous results, it is clear that if
the five sufficient conditions from Lemma 3 are satisfied, the
proposed recursive extrapolation algorithm indeed converges.
Furthermore, the proposed method is able to enhanced MPC
performances with respect to a gain-scheduled/“frozen guess”
approach, while maintaining computational load close to that
of a single QP. The recursive extrapolation mechanism resides
on simple linear operators, with numerical toughness growing
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Fig. 8. Pendubot Example: Scheduling Trajectory Extrapolation. The real
scheduling parameter trajectory is presented in bold black line. The coloured
lines represent the extrapolated scheduling sequence at different time instants.

linearly with the prediction horizon size N and the number of
scheduling variables nρ. The state-of-the-art SQP mechanism
from [21] also provides convergence guarantees, while with
a numerical toughness that grows exponentially with N and
with the number of system states nx. Therefore, for larger
order real-time systems, the proposed method may be much
more suitable, since it requires much less computational load.

We stress that the proposed tool was analysed for a given
class of qLPV systems, with affine parameter dependency.
Nonetheless, other classes could also be considered, such as
polynomial forms A(ρ(k)) = A0 +A1ρ(k)+A2ρ

2(k)+ . . . or
LFT forms. The only difference would be the computation of
the u∆(k) terms in the fifth sufficient condition (C5), which
must embed the uncertainty term on the scheduling parameter
caused by some bad estimation at a given instant. For the
second-order polynomial case, we would have:

u∆x
(k) = A1wf (k) +A2(wf (k) + 2ρ(k)wf (k))wf (k) .

VI. CONCLUSIONS AND PERSPECTIVES

This paper presented a new method on how to extrapolate
the scheduling parameters of qLPV systems along a fixed
prediction horizon, for MPC purposes. The method resides
in a simple and fast recursive law, which only needs the
evaluation of a partial derivative computation at each sampling
instant. Furthermore, five simple-to-verify sufficient conditions
are presented for the convergence of the proposed method.
Finally, the algorithm is validated with three different qLPV
benchmark tests, via simulation, demonstrating both effective-
ness and convergence properties. The proposed method is com-
pared to the state-of-the mechanism of estimating scheduling
parameters through SQPs (looping the MPC multiple times),
showing equivalent estimates and similar convergence rate.

The proposed tool can certainly serve for the design of fast
qLPV MPC loops, which can be based on a single constrained
QPs derived on the basis of the extrapolation guesses for the
scheduling trajectories. By doing so, the nonlinearities from
the model prediction contraints are removed. Accordingly, the
generated MPC enable the application for fast systems, with
strict sampling periods, which is impossible for robust min-
max MPCs due to their excessive computational load demand.

We also note that the obtained closed-loop performances are
enhanced with the proposed mechanism, in comparison to a

gain-scheduled (“frozen guess”) approach and to the state-of-
the-art SQP method. For further works, the Authors plan on
providing necessary conditions of the algorithm’s convergence
with respect to the class (affine, polytopic, LFT, etc.) of the
LPV model. Furthermore, the validity of Assumption 2 will
be assessed in the sense of the Lebesgue size of the domain
of attraction of the MPC.
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APPENDIX A
PARAMETER-DEPENDENT STATE-FEEDBACK MPC

The following Theorems are provided in order to comple-
ment Lemma 2. They are carefully demonstrated in [21].

Theorem 1 (Terminal Ingredients): Suppose the MPC law is
given by u = K(ρ)x, considering a terminal state set given
by Xf (ρ) and a terminal cost V (x, ρ). Then, input-to-state
stability is ensured if the following conditions hold ∀ρ ∈ P:
(C1) The origin lies in the interior of Xf (ρ);
(C2) Any consecutive state to x, in closed-loop given by
(A(ρ) +B(ρ)K(ρ))x lies within Xf (ρ);
(C3) The discrete Lyapunov equation is verified within this
invariant set, this is, ∀x ∈ Xf (ρ) and ∀ ρ ∈ P and
∀ δρ ∈ δP: V ((A(ρ+B(ρ)K(ρ))x, ρ+ δρ) − V (x, ρ) ≤
−xTQx− xT (K(ρ)TRK(ρ)x.
(C4) The image of the nominal feedback lies within the
admissible control domain: K(ρ)x ∈ U , ∀ρ ∈ P .
(C5) The terminal set Xf (ρ) is a subset of X . Assuming that
the initial solution of the MPC problem is feasible, then, the
MPC is recursively feasible, stabilising the state origin.

Theorem 2 (Parameter-dependent Terminal Ingredients):
Conditions (C1)-(C5) of Theorem 1 are satisfied if there
exist a symmetric parameter-dependent positive definite ma-
trix T (ρ) : Rnp → Rnx×nx and a parameter-dependent
rectangular matrix W (ρ) : Rnp → Rnu×nx , with Y (ρ) =
(T (ρ))−1 > 0 and W (ρ) = K(ρ)Y (ρ), such that LMIs
(17)-(19) hold for all ρ ∈ P and δρ ∈ δP , with i ∈ N[1,nu]

and j ∈ N[1,nx], under the minimisation of log det{Y (ρ)}.
Y (ρ) ? ? ?
Aπ(ρ) Y (ρ+ δρ) ? ?
Y (ρ) 0 Q−1 ?
W (ρ) 0 0 R−1

 ≥ 0 , (17)

[
u2
i Inu,{i}W (ρ)
? Y (ρ)

]
≥ 0 , (18)[

x2
j Inx,{j}Y (ρ)

ITnx,{j}Y
T (ρ) Y (ρ)

]
≥ 0 , (19)

Aπ(ρ) = (A(ρ)Y (ρ) +B(ρ)W (ρ)) . (20)
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The proof of the prior is based on Schur complements
and on the positive-definiteness of T , Q and R. Matrices
Y (ρ) and W (ρ) are generated, which are used to compute the
MPC terminal ingredients V (·) and Xf such that input-to-state
stability and recursively feasibility properties are guaranteed.

REFERENCES

[1] E. F. Camacho and C. Bordons, Model predictive control. Springer
Science & Business Media, 2013.

[2] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From
linear to nonlinear MPC: bridging the gap via the real-time iteration,”
International Journal of Control, vol. 93, no. 1, pp. 62–80, 2020.

[3] R. Quirynen, M. Vukov, M. Zanon, and M. Diehl, “Autogenerating
microsecond solvers for nonlinear MPC: a tutorial using ACADO
integrators,” Optimal Control Applications and Methods, vol. 36, no. 5,
pp. 685–704, 2015.

[4] T. Englert, A. Völz, F. Mesmer, S. Rhein, and K. Graichen, “A
software framework for embedded nonlinear model predictive control
using a gradient-based augmented lagrangian approach (GRAMPC),”
Optimization and Engineering, vol. 20, no. 3, pp. 769–809, 2019.

[5] Y. Zhang, S. Li, and L. Liao, “Near-optimal control of nonlinear
dynamical systems: A brief survey,” Annual Reviews in Control, vol. 47,
pp. 71–80, 2019.

[6] K. M. M. Rathai, M. Alamir, O. Sename, and R. Tang, “A parameterized
NMPC scheme for embedded control of semi-active suspension system,”
IFAC-PapersOnLine, vol. 51, no. 20, pp. 301–306, 2018.
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