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In geomechanical modeling, it is a central task to predict the distribution of rock porosity throughout the burial history of a given sedimentary basin. In the upper layers, the evolution of porosity is mainly driven by the mechanical compaction resulting from sediment deposition on the top and from horizontal tectonic loading, so that compaction is indeed three-dimensional. Nevertheless, for simplicity, it is classical in basin simulators to assume oedometric conditions, that is, to neglect the lateral deformations, and thus to describe compaction as a one-dimensional phenomenon by relying on a vertical porositystress law. In this paper, we introduce a simple model which includes lateral deformations and whose goal is to improve the results obtained with oedometric modeling without losing much computational time. The model is based on a modified vertical porositystress law in which horizontal strains are inserted and on an elastic stress-strain law with stress-dependent Young modulus. This gives rise to a simplified geomechanical model, as opposed to a full-dimensional, elastoplastic model. Still, we manage to validate the model on a geometrically and lithologically complex test case by comparing our results with those obtained on the same case using a three-dimensional finite-element simulator. We conclude that our model offers a significant improvement in accuracy compared to an oedometric model, especially in the undrained, deeper layers of the basin, without much loss in computational time. In this respect, the model provides a useful tool to users who might need a first, quick insight into results before engaging in longer and more accurate simulations.

Introduction

When modeling the evolution of a sedimentary basin, one is often interested in determining the changes in rock porosity and permeability taking place over stress law, so that our approach is by no means intended to reach the accuracy of any full-dimensional, elastoplastic model such as presented in [START_REF] Guy | Coupled modeling of sedimentary basin and geomechanics: A modified Drucker-Prager cap model to describe rock compaction in tectonic context[END_REF]. Furthermore, we neglect the effects of the lateral deformations on the temperature; see for example [START_REF] Brüch | A thermo-poromechanical constitutive and numerical model for deformation in sedimentary basins[END_REF] for a complete thermal model. Rather, we expect our model to be useful to users who might need a first, quick idea of the basin's porosity distribution before deciding whether to pursue more accurate and longer simulations. Our model is integrated entirely in ArcTem.

In Section 2, we recall the standard equations underlying the fluid and solid mechanics of a sedimentary basin; we place ourselves in the setting of a singlephase water flow. This section can be skipped by the experienced geomechanist and can be referred to only for notation. We then discuss in details mechanical compaction (simply referred to as compaction in the sequel) and present our simplified geomechanical model in Section 3. Then, Section 4 is dedicated to the numerical results obtained with our model coded in ArcTem and applied to a large test case modeling the Vaca Muerta formation of the Neuquén basin in Argentina. This test case covers a surface of about 35 000 km 2 and spans a time interval of 10 My. Our results under both oedometric and non-oedometric conditions are compared with those obtained using A 2 in [START_REF] Berthelon | Impact of tectonic shortening on fluid overpressure in petroleum system modelling: Insights from the Neuquén basin, argentina[END_REF] with the model derived in [START_REF] Guy | Coupled modeling of sedimentary basin and geomechanics: A modified Drucker-Prager cap model to describe rock compaction in tectonic context[END_REF]. Furthermore, CPU times are given for various strain configurations. Finally, we summarize our results and give an outlook in Section 5.

Standard porous medium model

We briefly discuss the standard equations that we use to model the flow and mechanical equilibrium in our porous medium, i.e., our sedimentary basin. We also give the corresponding boundary and initial conditions.

Model equations

We write φ the Eulerian porosity of the medium and V α the velocity field associated with phase α ∈ {s, w} (solid or water). We write ρ α the density of phase α and ρs = ρ s (1φ) and ρw = ρ w φ the effective densities. The medium is assumed to be fully saturated with water.

By convention, we orient the orthonormal basis (x, y, z) anticlockwise so that z points upwards and gravity reads g = (0, 0, -g) with g > 0. The origin of the corresponding axis triplet (x, y, z) is situated at the present sea level so that z = 0 at the sea surface and the basin can have either negative or positive z-coordinates.

Flow

We give here the equations on water and solid flow. Conservation of mass. For any phase α ∈ {s, w} we have conservation of mass:

∂ ρα ∂t + div(ρ α V α ) = q α , (2.1) 
where q α is the rate of deposit of phase α due to sedimentation at the top of the basin and V α is the velocity of phase α.

Darcy's law. The filtration, or mean percolation, velocity U w := φ(V w -V s ) is assumed to be small enough to follow Darcy's law, that is,

U w = η w K(-∇p w + ρw g), (2.2) 
where η w is the water mobility, K the permeability tensor and p w the water, or pore, pressure.

Densities. The solid density is assumed to be constant and the water density to follow a law which is linear in pressure p w and temperature T :

ρ s = ρ s,0 and ρ w = ρ w,0 (1 + α w (T -T 0 ) + β w (p w -p 0 )), (2.3) 
where T 0 and p 0 are reference values for the temperature and water pressure, ρ s,0 and ρ w,0 are reference densities, α w is the water thermal expansion and β w is the water compressibility. These laws are justified as long as the solid phase is incompressible and thermally unexpansible and the water phase is weakly compressible and weakly thermally expansible.

Water mobility. The water mobility is assumed to be temperature-dependent. Specifically,

η w = a w T + b w + T 2 -c w , (2.4) 
where a w , b w and c w are fitting parameters. If the basin is supposed to be isothermal, then the water mobility in (2.4) is constant and the water density in (2.3) only depends on temperature.

Permeability. The permeability tensor K is given by

K = K(φ)A, (2.5) 
where A is an anisotropy tensor and K follows the Kozeny-Carman law [START_REF] Carman | Fluid flow through granular beds[END_REF][START_REF] Carman | Flow of Gases through Porous Media[END_REF][START_REF] Kozeny | Über kapillare Leitung des Wassers im Boden[END_REF]:

K(φ) =        k 1 φ n 1 S 2 0 (1 -φ) m 1 if φ φ 0 , k 2 φ n 2 S 2 0 (1 -φ) m 2 if φ > φ 0 ,
where S 0 is the specific surface area of the porous medium and k 1 , k 2 , n 1 , n 2 , m 1 , m 2 and φ 0 are constants related to lithology. To ensure the continuity of K at φ 0 , we impose the following relation on the parameters:

φ n 2 -n 1 0 (1 -φ 0 ) m 2 -m 1 = k 1 k 2 .

Temperature and mechanical equilibrium

We now discuss the equations for temperature distribution and mechanical equilibrium in the basin.

Temperature. We suppose that the temperature of the basin obeys a very simple vertical model, namely,

∂T ∂z = G, (2.6) 
where G is a known temperature gradient, sometimes referred to as geothermal gradient, which may depend on position and time. We refer the reader to [START_REF] Brüch | A thermo-poromechanical constitutive and numerical model for deformation in sedimentary basins[END_REF] for an example of geomechanical model including the effects of large strains on the temperature, which we do not consider here. Mechanical equilibrium. We denote by σ the Cauchy stress tensor. This tensor includes both water and solid stresses and is therefore sometimes referred to as total stress tensor. We write

σ =   σ x σ xy σ xz σ xy σ y σ yz σ xz σ yz σ z   , (2.7) 
where σ i and σ ij are the normal and shear stresses for all i, j ∈ {x, y, z} with j = i. We use the sign convention according to which a normal stress is positive when there is compression in its direction. By Cauchy's momentum equation, mechanical equilibrium is given by

div σ = ρg + f , (2.8) 
where ρ := ρw + ρs is the homogenized density and f := (f x , f y , f z ) is the vector containing the volumic external forces other than gravity. where we make the assumption that

∂σ xz ∂x + ∂σ yz ∂y = 0.
This assumption allows us to compute σ z from (2.9) by simply imposing a Dirichlet condition on it at the basin's top (cf. Section 2.2.1).

Remark 2.1. As is usual in poroelastic basins, we assume that the shear stresses within the water phase and between the water and solid phases are negligible with respect to those within the skeleton. Thus, in (2.7), the terms σ yz , σ xz and σ xy are in fact the skeleton's shear stresses. This is not true of the normal stresses since the water pressure needs to be taken into account (cf. Section 3.1.1).

Porosity

At this stage, we do not have an expression for the porosity φ, although it intervenes in many of the model equations, namely, (2.1), (2.2), (2.5) and (2.8).

In a standard model for porous media, one could assume φ to be constant, which would close our model already. However, because of compaction, this is not satisfactory here. We derive a model for compaction, and thus φ, in Section 3.4.

Boundary and initial conditions

We suppose that the sedimentary top is given by the graph of a function s, that is, for all (x, y) the value s(x, y) gives the vertical position of the top right above point (x, y, z), for any z ≤ s(x, y). Recall that the z-axis is directed upwards.

Boundary conditions

Integrating the third equation in (2.9) and (2.6) tells us to impose a total vertical stress and a temperature at the sedimentary top. Denoting by Ω the basin and by ∂Ω top its top, i.e., ∂Ω top = {(x, y, z) ∈ Ω | z = s(x, y)}, we impose

σ z (x, y, z) = p sup (x, y) T (x, y, z) = T sup (x, y)
for all (x, y, z) ∈ ∂Ω top at all times.

(2.10)

Here, p sup is the pressure stemming from the weight of sea water and atmosphere lying above the basin. On the rest of the boundary ∂Ω, we impose zero-flux conditions, i.e.,

V w • ν = 0 on ∂Ω \ ∂Ω top at all times,
where ν is the outward unit normal of Ω.

Regarding stresses, note from (2.9) that these boundary conditions only close the problem for the vertical stress σ z . Indeed, they do not give us the horizontal stresses σ x and σ y , nor do they give us the shear stresses σ yz , σ xz and σ xy . Nevertheless, the horizontal stresses can be recovered from the vertical one whenever the horizontal strains are known and a constitutive stress-strain law is imposed (cf. Section 3.4.1). As to the shear stresses, they are not of interest to us in this paper since we suppose that they do not impact porosity (cf. Section 3.2.1); we therefore do not worry about closing the problem for them.

Initial conditions

The history of the basin is split into a sequence of geological episodes, called events, during which either a new layer of sediments is deposited or an old layer is eroded. We generically write t 0 the initial time of any deposit event.

Because each simulation starts at the beginning of a deposit event and layers are added to the top only, the initial conditions are already determined by the top boundary conditions given in (2.10):

σ z (t 0 ) = p sup (t 0 ) T (t 0 ) = T sup (t 0 )
in new layer.

Compaction

For the sake of presentation, we consider only one sedimentary layer starting from its initial time t 0 of deposition and eventually ending when fully eroded. Modeling the complete basin can then be achieved by applying the single-layer model in each layer.

As discussed in the introduction, we wish to integrate horizontal strains in a vertical porosity-stress law to account for horizontal compaction when oedometric conditions are not verified. We consider that the horizontal strains are known time-dependent parameters. The resulting model is what we refer to as simplified geomechanical model.

Relevant stress and strain tensors

We treat our basin as an isotropic, poroelastic material, thus undergoing small deformations. In this framework, the stress and strain quantities of relevance are the effective stress tensor and the skeleton's infinitesimal strain tensor.

Effective stress

Biot's theory [START_REF] Biot | General theory of three-dimensional consolidation[END_REF] for consolidation couples fluid flow with rock deformation and introduces the effective stress tensor σ , which is defined as

σ = σ -p w b,
where b is Biot's tensor. In [START_REF] Biot | The elastic coefficients of the theory of consolidation[END_REF], the authors link Biot's tensor to the compressibility of the medium according to

b = 1 - K s K I =: bI,
with K s and K the moduli of compressibility of the solid phase and the skeleton, respectively, and I the identity matrix. Biot's coefficient b satisfies b 1 for a weakly compressible solid phase and a highly compressible skeleton, in which case we recover Terzaghi's theory for soil deformation [START_REF] Terzaghi | Die Berechnung der Durchlassigkeitsziffer des Tones aus dem Verlauf der Hidrodynamichen Spannungserscheinungen[END_REF]. For explicit expressions of b depending on porosity, we refer the reader to [START_REF] Boutéca | Rock mechanics contribution to the determination of fluid flow properties[END_REF][START_REF] Brüch | A thermo-poromechanical constitutive and numerical model for deformation in sedimentary basins[END_REF][START_REF] Maghous | Twodimensional finite element analysis of gravitational and lateral-driven deformation in sedimentary basins[END_REF][START_REF] Schneider | Mechanical and chemical compaction model for sedimentary basin simulators[END_REF]. The effective stress tensor reads

σ =   σ x σ xy σ xz σ xy σ y σ yz σ xz σ yz σ z   ,
where σ i = σ ip w b for all i ∈ {x, y, z}. The tensor σ is in fact the skeleton's stress tensor (cf. Remark 2.1). Note that, by equilibrium with the sea water and the atmosphere, we have p w = p sup , that is, σ z = σ zp w b = (1b)p sup on the top boundary ∂Ω top ; in particular, σ z = 0 on ∂Ω top when b = 1. Equivalently, we have

σ z (t 0 ) = (1 -b)p sup (t 0 ); (3.1)
in particular, σ z (t 0 ) = 0 when b = 1.

Skeleton's infinitesimal strain

We denote by ε the skeleton's infinitesimal strain, or deformation, tensor. (In the following, we omit the term "infinitesimal" when referring to ε.) Because the basin is assumed to be elastic, ε coincides in fact with the elastic strain tensor and satisfies |ε| 1. We use the following notation:

ε =   ε x ε xy ε xz ε xy ε y ε yz ε xz ε yz ε z   ,
where ε i and ε ij are the normal and shear strains for all i, j ∈ {x, y, z} with i = j. In agreement with our stress convention, any positive normal strain corresponds to a compression.

General compaction law

Given any differentiable time-dependent function f , we write . f its time derivative, which we also refer to as the rate of f .

Generic formula

Compaction is characterized by a change in porosity under a change in compression. Supposing that the porosity rate does not depend on shear stresses (cf. Remark 2.1), we may let the porosity and effective stress tensor follow a law of the form

. φ = F (φ, σ n ) • . σ n , (3.2) 
where F is a continuous, vector-valued function, σ n := (σ x , σ y , σ z ) is the diagonal vector of σ and • stands for the Euclidean inner product. Following [START_REF] Schneider | Mechanical and chemical compaction model for sedimentary basin simulators[END_REF], we sometimes refer to F as the elastoplastic function, which, in particular, needs to keep the porosity between 0 and 1. If we were to treat chemical compaction in addition to mechanical compaction, then we would need to add a term of the form G(φ, σ n ) • σ n to the right-hand side of (3.2) to account for viscoplastic effects [START_REF] Schneider | Compaction Model for Quartzose Sandstones -Application to the Garn Formation, Haltenbanken, Mid-Norwegian Continental Shelf -Part I -Theory[END_REF][START_REF] Schneider | Modèle de compaction élastoplastique et viscoplastique pour simulation de bassins sédimentaires[END_REF][START_REF] Schneider | Mechanical and chemical compaction model for sedimentary basin simulators[END_REF]. Although the terminology just introduced involves the term "plastic", let us reiteratre that we do not consider plasticity in our model.

Porosity-free elastoplastic function

For simplicity, we assume that F only depends on effective stress:

. φ = F (σ n ) • . σ n . (3.3) 
We call (3.3) the compaction law, which is eventually nonlinear. We can retrieve an expression for φ by integrating it between the initial time t 0 and a time t > t 0 :

φ(t) = φ(t 0 ) + t t 0 F (σ n (s)) • . σ n (s) ds. (3.4) 
This completes our standard basin model given in Section 2 provided we find an appropriate elastoplastic function F . We first discuss the oedometric case and then generalize it to give our simplified geomechanical model.

Oedometric model

Assume in this section that we are within the oedometric hypothesis, that is, the strains satisfy

ε x = ε y = ε yz = ε xz = ε xy = 0. (3.5)

Vertical compaction law

Horizontal effects on porosity being negligible in this case, we choose F in (3.3) to depend exclusively on the vertical stress σ z :

F (σ n ) = (0, 0, -β(σ z )), (3.6) 
where β is a function determined by lithology, so that (3.3) becomes

. φ = -β(σ z ) . σ z . (3.7)
This law is one-dimensional in that it only takes vertical stress into account.

Schneider's law

We choose Schneider's function for β [START_REF] Schneider | Modèle de compaction élastoplastique et viscoplastique pour simulation de bassins sédimentaires[END_REF]:

β(s) = φ 1 σ 1 e -s/σ 1 + φ 2 σ 2 e -s/σ 2 , (3.8) 
where φ 1 , φ 2 0 (porosities) and σ 1 , σ 2 > 0 (stresses) are known parameters depending on lithology. The compaction law (3.7) is thus referred to as Schneider's law. Let α be a primitive of -β, that is,

α(s) = φ r + φ 1 e -s/σ 1 + φ 2 e -s/σ 2 , (3.9) 
for some additional parameter φ r called the residual porosity. At t 0 , we impose

φ(t 0 ) = α(σ z (t 0 )) = φ r + φ 1 e -(1-b)psup(t 0 )/σ 1 + φ 2 e -(1-b)psup(t 0 )/σ 2 , (3.10) 
where we refer the reader to (3.1); this becomes φ(t

0 ) = φ r + φ 1 + φ 2 if b = 1. Then, (3.4) yields φ = α(σ z ). (3.11)
When positive, the residual porosity helps numerically avoid the porosity to become negative as vertical effective stress increases. Schneider's law is empirical and the parameters need to be found by experimental fitting; the double exponential formulation allows for a better fit at both upper and lower sediment layers. This is in contrast with the single-exponential law proposed by Athy [START_REF] Athy | Density, porosity, and compaction of sedimentary rocks[END_REF], which is recovered when φ 2 = φ r = 0 in (3.8) and (3.9):

β(s) = φ 1 σ 1 e -s/σ 1 and α(s) = φ 1 e -s/σ 1 .
We refer the reader to [START_REF] Gutierrez | Modeling of compaction and overpressuring in sedimentary basins[END_REF] for an equivalent reformulation of Athy's law on permeability rather than porosity. Also, it is a fact that Athy's law can be derived as a solution to a partial differential equation when compaction happens fast [START_REF] Fowler | Fast and slow compaction in sedimentary basins[END_REF].

Erosion

Schneider's law is adequate to describe compaction in oedometric conditions. It is less so if erosion is involved, i.e., if decompaction, eventually followed by recompaction, occurs. During erosion, the law in (3.8) can be adjusted to include decompaction and recompaction as elastic phenomena [START_REF] Schneider | Modèle de compaction élastoplastique et viscoplastique pour simulation de bassins sédimentaires[END_REF][START_REF] Schneider | Mechanical and chemical compaction model for sedimentary basin simulators[END_REF]. We do not discuss this issue further and simply assume that (3.8) still holds for erosion.

Simplified geomechanical model

We now derive the compaction model to handle non-oedometric conditions. As already mentioned, we suppose that the horizontal strains ε x and ε y (and thus their rates . ε x and . ε y ) are known time-dependent functions.

Stress-strain constitutive law

We start by discussing the relationship between effective stress and strain (in fact, bewteen their rates).

Generic formula. We suppose that σ and ε verify

. σ = G(σ , ε): . ε,
where G is a continuous function with fourth-order tensor values, called the stiffness tensor. This relation would need to be corrected according to finite strain theory using the spin tensor if we were to consider eventually large plastic strains [START_REF] Brüch | A thermo-poromechanical constitutive and numerical model for deformation in sedimentary basins[END_REF][START_REF] Dormieux | Poroelasticity and poroplasticity at large strains[END_REF][START_REF] Maghous | Twodimensional finite element analysis of gravitational and lateral-driven deformation in sedimentary basins[END_REF]. Note that in classical infinitesimal elastic theory, G only depends on ε and so, by time integration, σ is an explicit function of ε; when furthermore the elasticity is linear, G is in fact independent of both σ and ε and Hooke's law applies.

Strain-free stiffness tensor. Compaction impacts the form of the stiffness tensor G. Indeed, as shown later (cf. (3.24)), assuming a compaction law of the form (3.3) requires G to depend on σ . In fact, in contrast with classical elasticity, we drop the dependence on ε and only keep that on σ :

. σ = G(σ ) : . ε.

(3.12)

Equivalently, writing

H(σ ) = G(σ ) -1 , we have . ε = H(σ ) : . σ , (3.13) 
We call (3.12) and (3.13) the stress-strain constitutive law. Hooke-type law. We choose Hooke's elastic law with stress-dependent Young modulus for the stiffness tensor, that is, we rewrite (3.12) as

. σ = E(σ ) 1 + ν . ε + νE(σ ) (1 + ν)(1 -2ν) tr( . ε)I, (3.14) 
where ν ∈ [0, 0.5) is Poisson's coefficient and E > 0 is Young's stress-dependent modulus. Equivalently, we rewrite (3.13) as

.

ε = 1 + ν E(σ ) . σ - ν E(σ ) tr( . σ )I, (3.15) 
For simplicity, we refer to both (3.14) and (3.15) as Hooke's law.

As a direct consequence of (3.15), we have tr( .

ε) = 1 -2ν E(σ ) tr( . σ ). (3.16) 
The trace of .

ε is the dilatation or relative volume change of the skeleton. Also, from the first two equations in (3.15), we establish .

σ x = ν 1 -ν . σ z + E(σ ) 1 -ν 2 ( . ε x + ν . ε y ),
.

σ y = ν 1 -ν . σ z + E(σ ) 1 -ν 2 ( . ε y + ν . ε x ), (3.17) 
and so, summing these two equations and adding .

σ z , we get tr( .

σ ) = 1 + ν 1 -ν . σ z + E(σ ) 1 -ν ( . ε x + . ε y ). (3.18)
Initially, recalling (3.1), we impose

σ x (t 0 ) = σ y (t 0 ) = ν 1 -ν σ z (t 0 ) = ν 1 -ν (1 -b)p sup (t 0 ), (3.19) 
which becomes σ x (t 0 ) = σ y (t 0 ) = 0 when b = 1. Oedometric case. We briefly return to the oedometric case (cf. (3.5)).

Stress and strain tensors.-Both equations in (3.17) and (3.18) imply

.

σ x = . σ y = ν 1 -ν . σ z and tr( . σ ) = 1 + ν 1 -ν . σ z . (3.20)
Thus, (3.16) gives

. ε z = tr( . ε) = (1 + ν)(1 -2ν) (1 -ν)E(σ )
.

σ z . (3.21)
Then, the oedometric rates of effective stress and strain tensors read as

. σ =   ν 1-ν 0 0 0 ν 1-ν 0 0 0 1   . σ z and . ε =    0 0 0 0 0 0 0 0 (1+ν)(1-2ν) (1-ν)E(σ )    . σ z . (3.22)
Young's modulus.-To find an expression for Young's modulus, we use Schneider's law. Let us first note that, by solid incompressibility (cf. [START_REF] Schneider | Modelling overpressures by effectivestress/porosity relationships in low-permeability rocks: Empirical artifice or physical reality[END_REF] for example),

. φ = -(1 -φ) tr( . ε) = -(1 -φ) . ε z . (3.23) 
Then, using (3.7), (3.11) and (3.21), we get

E(σ ) = (1 + ν)(1 -2ν) 1 -ν 1 -α(σ z ) β(σ z ) . (3.24)
Thus, we see a posteriori, given the form of Schneider's function (3.8) and its primitive (3.11), that E must indeed depend on effective stress (specifically, on the vertical effective stress σ z ), even under oedometric conditions. Note also that the choice of taking Young's modulus as stress-dependent over Poisson's coefficient in (3.14) and (3.15) is arbitrary and is only motivated by the fact (3.24) is a simpler expression than its equivalent for ν.

Approximated problem

To determine the porosity, we introduce an approximated problem for the strains for which the oedometric hypothesis (3.5) holds and therefore Schneider's vertical law (3.7)-(3.8) is applicable.

More precisely, we take a stress-strain pair (σ * , ε * ) whose components verify

ε * x = ε * y = ε * yz = ε * xz = ε * xy = 0 (3.25) and σ * i (t 0 ) = σ i (t 0 ) for all i ∈ {x, y, z}, (3.26) 
where we refer the reader to (3.1) and (3.19).

Approximated porosity. Because of the oedometric hypothesis (3.25) being satisfied by the approximated strain tensor, Section 3.3 motivates the use of the following compaction law to define an approximated porosity φ * :

.

φ * = -β(σ * z ) . σ * z , (3.27) 
where β is given by Schneider's function (3.8). We further require that

φ * (t 0 ) = φ(t 0 ), (3.28) 
with φ(t 0 ) given in (3.10). Approximated tensors. We let σ * and ε * satisfy the constitutive relation

. ε * = H(σ * ) : . σ * ,
where we recall that H is given by (3.15). We directly get the analogue of (3.16):

tr( .

ε * ) = 1 -2ν E(σ * ) tr( . σ * ).
Also, following the computations in Section 3.4.1, we yield

. σ * x = . σ * y = ν 1 -ν . σ * z , (3.29) 
and tr( .

σ * ) = 1 + ν 1 -ν . σ * z , (3.30) 
in agreement with the oedometric forms given in (3.20).

Approximating assumption. The assumption we wish to make is that the approximated porosity φ * is close to the actual porosity φ, that is,

φ * -φ 1, (3.31) 
so that φ can be replaced by φ * wherever needed. Thanks to (3.28), this is equivalent to

δ := . φ * - . φ 1. (3.32) 
For this approximation to be justified given (3.7) and (3.27), we still need to choose an appropriate vertical approximated stress σ * z . Vertical approximated stress. To account for the horizontal effects of compaction, σ * z must include the horizontal deformations ε x and ε y . Moreover, for consistency, it should coincide with σ z in oedometric conditions. Convex combination.-We ask for a convex combination of rates of horizontal stresses to be preserved, that is, for some λ ∈ [0, 1] we let

(1 -λ) . σ * x + λ . σ * y = (1 -λ) . σ x + λ . σ y . (3.33) 
Given (3.17) and (3.29), this yields

ν 1 -ν . σ * z = ν 1 -ν . σ z + E(σ ) 1 -ν 2 (((1 -λ) + νλ) . ε x + (λ + ν(1 -λ)) . ε y )) ,
where we recall that E(σ ) is Young's stress-dependent modulus. Then, .

σ * z = .

σ z + E(σ ) ν(1 + ν) ( . ε x + . ε y -(1 -ν)(λ . ε x + (1 -λ) . ε y )) . (3.34)
The choice for the parameter λ is arbitrary at this point. We impose that only the rate of x-stress should be preserved (i.e., λ = 0) if only the rate of x-strain is nonzero and vice-versa (i.e., λ = 1) if only the rate of y-strain is nonzero. Therefore, we choose .

λ = . ε y . ε x + .
σ * z = . Other possible choices.-There are various viable conditions to impose other than (3.33). For example, we could preserve the stress trace:

σ z + E(σ ) ν(1 + ν)      . ε x + . ε y - 2(1 -ν) . ε x . ε y . ε x + . ε y if . ε x . ε y > 0, ( . ε x + . ε y ) if . ε x . ε y 0.
tr( . σ * ) = tr( . σ ), (3.36) 
which, thanks to (3.18) and (3.30), would lead to .

σ * z = .

σ z + E(σ ) 1 + ν ( . ε x + . ε y ).
This relation, as opposed to our choice (3.35), disregards completely the relative magnitude of the horizontal-strain rates. Interestingly, though, thanks to (3.30) and (3.36), we have E(σ ) tr(ε) = E(σ * ) tr(ε * ), where tr(ε) and tr(ε * ) are the relative volume changes for the actual and approximated problems, respectively. In view of the above discussion, we note that a general expression for the rate of vertical approximated stress is the following additive adjustment of the rate of vertical effective stress:

. σ * z = . σ z + ζ( . ε x , . ε y )E(σ ), (3.37) 
for some strain-dependent, continuous function ζ such that ζ(0, 0) = 0. For instance, in our case (cf. (3.35)), we have

ζ( . ε x , . ε y ) = 1 ν(1 + ν)      . ε x + . ε y - 2(1 -ν) . ε x . ε y . ε x + . ε y if . ε x . ε y > 0, ( . ε x + . ε y ) if . ε x . ε y 0. (3.38)
One could also integrate geometrical constraints related to the basin's shape into the function ζ. We leave the detailed study of the many possible choices of ζ to a future work.

Young's modulus. To close our approximated problem, and therefore our simplified geomechanical model given by (3.27)-(3.31)-(3.35), we need to determine an expression for Young's stress-dependent modulus. To this end, we split oedometric and non-oedometric contributions in porosity, effective stress and strain. Porosity.-We split the elastoplastic function F in the compaction law (3.3) according to

F = F o + F no , (3.39) 
where F o follows the oedometric formulation given in (3.6), that is,

F o (σ n ) = (0, 0, -β(σ z )). (3.40) 
This leads to a decomposition of the porosity as

φ = φ o + φ no , (3.41) 
where φ o and φ no satisfy

.

φ o = F o (σ n ) • . σ n and . φ no = F no (σ n ) • .
σ n and are the oedometric and non-oedometric contributions to the porosity change . φ; in particular, there holds

. φ o = -β(σ z ) . σ z ,
where β is Schneider's function (3.8). Effective stress and strain.-Similarly as for the porosity, we split the effective stress and strain tensors as

σ = σ o + σ no and ε = ε o + ε no ,
where, according to the stress-strain constitutive law (3.13), we have . ε o = H(σ ) : . σ o and . ε no = H(σ ) : .

σ no , (3.42) 
with H given in (3.15). From (3.17 .

σ o =   ν 1-ν 0 0 0 ν 1-ν 0 0 0 1   . σ z . (3.43) 
From (3.42) and (3.43), we get tr( .

ε o ) = (1 + ν)(1 -2ν) (1 -ν)E(σ ) . σ z . ( 3 

.44)

Stress-dependent modulus.-From (3.23), there holds

. φ = -(1 -φ) tr( . ε) = -(1 -φ) tr( . ε o ) -(1 -φ) tr( . ε no ).
By identification with (3.41), we therefore find that . φ o and tr( .

ε o ) satisfy . φ o = -(1 -φ) tr( . ε o ). (3.45)
Then, (3.44) and (3.45) lead to .

E(σ ) = (1 + ν)(1 -2ν) 1 -ν 1 -φ β(σ z ) . ( 3 
                       φ = φ * , . φ * = -β(σ * z ) . σ * z , . σ * z = . σ z + E(σ ) ν(1 + ν)      . ε x + . ε y - 2(1 -ν) . ε x . ε y . ε x + . ε y if . ε x . ε y > 0, ( . ε x + . ε y ) if . ε x . ε y 0, E(σ ) = (1 + ν)(1 -2ν) 1 -ν 1 -φ β(σ z ) .
φ and so δ = 0 (cf. (3.32)). However, we would like to quantify how small . ε x and .

ε y need to be for δ to be reasonably small and thus our model to be valid. Answering this question requires the use of advanced analytical tools, which is out of the scope of this paper. Instead, we validate our model numerically on a complex test case in Section 4.

Still, to give an idea on how to answer the question analytically, we give a formal computation in this direction. We have ε y |. The first term, however, depends on the non-oedometric contribution to the porosity, on which we do not have any information. Hence, for the moment, this analysis is inconclusive.

δ = F (σ n ) • . σ n + β(σ * z ) . σ * z (F no (σ n ) + (0, 0, β(σ * z ) -β(σ z ))) • . σ n + β(σ * z ) . σ * z -. σ z F no (σ n ) • . σ n + β(σ * z ) -β(σ z ) . σ z + β(σ * z )E(σ ) |ζ( . ε x , . ε y )| F no (σ n ) • . σ n + β(σ * z ) -β(σ z ) . σ z + (1 + ν)(1 -2ν) 1 -ν β(σ * z ) β(σ z ) |ζ( . ε x , .

Simulations

We now discuss the numerical results obtained with our simplified geomechanical model (3.47) for compaction coded entirely in ArcTem.

Neuquén basin

We test our model on the Vaca Muerta formation of the Neuquén basin in Argentina. Its geological history involves many episodes of tectonic and sedimentary deformation, which makes it an attractive site to test compaction models.

We subdivide the basin's history into 30 events starting at -200 My and ending at the present day. These events include the deposition of sediments such as sandstone and carbonates over the first 20 events and their erosion at the top of the basin in the last 10 events. We use the same geometrical, lithological and mechanical parameters as in [START_REF] Berthelon | Impact of tectonic shortening on fluid overpressure in petroleum system modelling: Insights from the Neuquén basin, argentina[END_REF] and validate our results by comparison with those obtained there using the code A 2 in combination with the compaction model derived in [START_REF] Guy | Coupled modeling of sedimentary basin and geomechanics: A modified Drucker-Prager cap model to describe rock compaction in tectonic context[END_REF]. We refer the reader to [START_REF] Berthelon | Impact of tectonic shortening on fluid overpressure in petroleum system modelling: Insights from the Neuquén basin, argentina[END_REF] for a detailed account of the basin's history and sediments' properties; importantly, the basin shows drained conditions with hydrostatic pressure in the upper layers, in contrast with the lower layers.

The main characteristics of the basin, summarized in Figure 1, are as follows:

• In the coupled simulation, tectonic loading is applied along the E-W direction on the lateral surface of the model starting from the Late Miocene, simultaneously to model exhumation. As we assume it is the main event deforming the foreland (Zamora-Valcarce et al., 2009;Rojas Vera et al., 2015), only this shortening period is considered in the model of the tectonic scenario. The shortening direction is inferred from the broadly N-S fold axis in the adjacent FTB (Fig. 1a), from shortening vectors given by GPS measurements (Klotz et al., 1999) and from the first-order E-W direction of the maximum horizontal stress measured in wells (Guzman et al., 2007). Shortening is applied in two sequences during exhumation. Shortening rates and timing are the parameters mainly used to calibrate model pressure and porosity:

-From 10My to 8My, 4% of shortening is prescribed to model the main Andean deformation phase during the Miocene. -From 8My to present-day, 2% of shortening is prescribed, accord- In the coupled simulation, tectonic loading is applied along the E-W direction on the lateral surface of the model starting from the Late Miocene, simultaneously to model exhumation. As we assume it is the main event deforming the foreland (Zamora-Valcarce et al., 2009; Rojas Vera et al., 2015), only this shortening period is considered in the model of the tectonic scenario. The shortening direction is inferred from the broadly N-S fold axis in the adjacent FTB (Fig. 1a), from shortening vectors given by GPS measurements (Klotz et al., 1999) and from the first-order E-W direction of the maximum horizontal stress measured in wells (Guzman et al., 2007). Shortening is applied in two sequences 

Parameters

We give in Table 1 the parameters chosen for our simulations and involved in the model equations given through Sections 2 and 3. As already mentioned, these parameters coincide with those used in [START_REF] Berthelon | Impact of tectonic shortening on fluid overpressure in petroleum system modelling: Insights from the Neuquén basin, argentina[END_REF].

parameter value (or interval of ) unit densities ρ s,0 [2645, 2710] kg • m -3 ρ w,0 3620 kg • m -3 α w 3.9 × 10 -4 • C -1 β w 4.5 × 10 -4 MPa -1 T 0 15 • C P 0 0.1 MPa water mobility a w 21.5 Pa • s • • C -1 b w 8078 • C 2 c w 1200 • C permeability S 0 [1.7 × 10 12 , 5 × 10 7 ] m 2 φ 0 0.1 % k 1 20 - k 2 0.2 - n 1 5 - n 2 3 - m 1 , m 2 2 - geothermal gradient G [0.046, 0.068] • C • m -1 external force f (0, 0, 0) kg • m -2 • s -2
boundary conditions

p sup 0.1 MPa T sup [18, 26] • C Biot's coefficient b 1 - Schneider's law φ r [0.01, 0.04] % φ 1 [0.29, 0.56] % φ 2 0 % σ 1 [1.6, 40] MPa σ 2 10 MPa Poisson's coefficient ν 0.24 - Table 1:
Chosen parameters of the model equations

In addition, the horizontal strain rates, measured in s -1 , are of the form .

ε i =      0, t < -10 My, α i , -10 My t < -8 My, β i , -8 My t,
where, for i ∈ {x, y}, the parameters α i and β i are selected from the list below:

(zero) α x = β x = α y = β y = 0.
(ref ) α x = 0.02, β x = 0.0025 and α y = β y = 0.

(dble) α x = 0.04, β x = 0.005 and α y = β y = 0.

(xy) α x = α y = 0.01 and β x = β y = 0.00125.

(neg) α x = -0.0025, β x = -0.0003125 and α y = β y = 0.

Choice (zero) refers to oedometric conditions, where lateral deformations are neglected. Choice (ref ) corresponds to that in [START_REF] Berthelon | Impact of tectonic shortening on fluid overpressure in petroleum system modelling: Insights from the Neuquén basin, argentina[END_REF] and to experimentally observed data (cf. Section 4.1), and thus gives us a reference point for our simulations.

Results

We first compare the results of our simulations with those given in [START_REF] Berthelon | Impact of tectonic shortening on fluid overpressure in petroleum system modelling: Insights from the Neuquén basin, argentina[END_REF] using A 2 , where we make use of (zero), (ref ) and (dble). Then, we show additional results where the horizontal strains follow (xy) and (neg). All the results are given at the present day, i.e., at the end of the simulations. Finally, we give the CPU time for each simulation.

Comparison with [3]

Figure 2 compares our results with [START_REF] Berthelon | Impact of tectonic shortening on fluid overpressure in petroleum system modelling: Insights from the Neuquén basin, argentina[END_REF] (A 2 ) under the reference strains (ref ) along Well 10 (W10); there, we display the horizontal total stresses, the water pressure and the porosity. We also show experimental data points for the pressure and the porosity under this same condition (ref ) and give the respective results when no horizontal strains are imposed, i.e., when the oedometric condition (zero) holds. We see that our porosity stays very close in the lower layers to that obtained with A 2 . In the upper layers, the porosities diverge slightly but both stay within the data cloud. The results are not as positive for the horizontal stresses and the pressure; indeed, although the trends are very similar to those with A 2 , the values gradually separate as depth increases. Still, there is a significant improvement when switching from (zero) to (ref ), in particular for the porosity, which shows that our simplified model does account for horizontal effects and is an improvement compared to an oedometric model, as desired, albeit underestimating the horizontal stresses and the pressure. Because our model seems to underestimate horizontal stresses and pressure, we present in Figure 3 our results along W10 when the strain condition (dble) holds, i.e., when the horizontal strains are doubled with respect to the reference ones (ref ). The results are still showing underestimated values of the horizontal stresses and the pressure, although less significantly and in deeper layers (compare Figures 2 and3). There is also a compelling improvement for the porosity, which is now closer to the A 2 result and more centered within the data points.

In Figure 4, we reproduce the profile obtained in [START_REF] Berthelon | Impact of tectonic shortening on fluid overpressure in petroleum system modelling: Insights from the Neuquén basin, argentina[END_REF] of the overpressure (i.e., the difference between the water pressure and the hydrostatic pressure) at the bottom of the basin and over a cross-section at the center of the basin. It shows both results when no horizontal deformations and when reference horizontal deformations are applied. Figure 5 presents our results for comparison with Figure 4. Again, in accordance with Figures 2 and3, we see that we underestimate the overpressure under the strain condition (ref ) and get much closer to the A 2 results when (dble) holds instead.

The noted underestimating behavior should not diminish the fact that the results given under (ref ) and (dble) still show great improvement compared to the oedometric simulation (zero), in particular for the overpressure, pressure and porosity in the undrained region of the basin, i.e., in the deep layers.

Additional results

To illustrate the flexibility of our simplified model, Figure 6 shows the horizontal stresses, the pressure and the porosity along W10 when the horizontal strains are spread evenly in the xand y-directions (cf. (xy)) and when negative horizontal strains are applied (cf. (neg)), i.e., when there is a horizontal extension rather than a compression. As expected, the condition (xy) yields higher horizontal stresses and pressure and lower porosity than (zero), whereas the condition (neg) yields similar horizontal stresses and pressure and higher porosity. Note that, although the total horizontal strain in (xy) is the same as in (ref ), the results are different (compare Figures 2 and6); this illustrates that our simplified model takes the direction of the strains into account when they are positive (cf. (3.35)).

When running simulations with (neg), we identified a limitation of our approach. Namely, when the horizontal extension is large, the pressure locally becomes very small while the porosity becomes very large, which prevents the simulation from converging. We were not able to impose any extension stronger than that given in (neg).

CPU times

Table 2 lists the CPU times required to run our simulations. We note that the difference in CPU time between a purely vertical model (i.e., an oedometric model, where no horizontal deformations are taken into account) and our simplified model goes from 24.9 % to 61.6 %, depending on the magnitude of the horizontal strains. This is a very attractive feature given that for a full-dimensional, finiteelement approach, as used in [START_REF] Berthelon | Impact of tectonic shortening on fluid overpressure in petroleum system modelling: Insights from the Neuquén basin, argentina[END_REF], the computational time loss in comparison to an oedometric model is much higher. 

Conclusion and outlook

The model proposed in this paper to describe mechanical compaction is based on an alteration of Schneider's vertical porosity-stress law and an elastic stress-strain constitutive law involving a stress-dependent Young modulus. It coincides with classical modeling in oedometric conditions and provides a computation of porosity in non-oedometric conditions which is simpler, although not as accurate, compared to a full-dimensional, elastoplastic model. On the test case given by the Neuquén basin, our simplified model, coded in the finite-volume simulator ArcTem, shows reasonable accuracy in pressure, porosity and vertical stress along a drilling well, as well as in overpressure at the bottom and over a vertical cross-section at the center of the basin. Overall, our model tends to underestimate the horizontal stresses, the pressure and the overpressure. Still, it shows significant improvement compared to an oedometric model, in particular in the lower, undrained compartment of the basin, and it produces very advantageous computational times. Therefore, it may offer a quick way to get pre-validating results before spending the time and computational resources required by a three-dimensional, finite-element simulator.

Although the model shows promising first results, it would still benefit from further numerical validation by comparing results on different wells, cross-sections and test cases altogether. From the modeling and analytical point of view, other choices of approximated stresses need to be investigated, i.e., other functions ζ in (3.37) need to be tested; also, the analytical validation of the model requires additional work to show that the approximated porosity is indeed close to the actual one for a given range of horizontal stresses and strains (cf. the computation at the end of Section 3.4.2). The coupled simulation shows a different pressure evolution during this last phase because tectonic loading is now taken into account. For the three reference cells, the first shortening phase starts with a sudden pressure increase exceeding 40 MPa for cells (a) and (b) in response to the prescribed lateral loading, shortly followed by a pressure stabilization or even decrease. During the second shortening phase, pressure first accelerates and than tends to rise again after 2-3 My until it reaches its present-day value. In the coupled simulation, the combination of erosion, uplift and shortening triggers multiple interacting geomechanic and hydrodynamic phenomena, making the interpretation of the multiphysics coupling difficult to decipher. Still, three phenomena predominate, each having contrasting effects:

-Erosion decreases the vertical load (i.e. lithostatic stress), leading to pressure decrease. -Uplift modifies the air-water surface, which in turn modifies the model hydrodynamism, leading fluids to flow outward the most uplifted regions. -Shortening tends to compact the rock materials, leading in return to strong overpressure increase where low permeability keeps the fluid from escaping rock porosity.

The evolution of pore pressure during shortening suggests that tec-pressure rebalancing between the different layers of the Vaca-Muerta Fm makes overpressure to increase again.

Fracturing assessment of the Vaca-Muerta Fm seal

Prediction of natural fracturing in classic PSM is quite limited because the full 3D stress tensor remains unknown. Fractures are assumed tensile and are supposed to develop when pore pressure exceeds an unknown minimum horizontal stress, which is defined as a given fraction of the vertical lithostatic stress (e.g. Tuncay and Ortoleva, 2004). No fracture is likely to develop in the Neuquén basin according to this hypothesis, because of the large difference between pore pressure and lithostatic stress during the basin evolution (Fig. 11), which is contradictory with the numerous fracture observations in the basin (Branellec et al., 2015;Ukar et al., 2017;Larmier, 2020).

By contrast, the 3D geomechanical approach calculates the minimum horizontal stress instead of relying on a first-order approximation for its value. In addition, this approach makes it possible to analyze the risk of shear fracturing. With the constitutive model used in our approach, a preliminary criterion to predict the possibility of shear-induced fractures is given by the change in the plastic regime from ductile failure at the right side (compaction) to brittle failure at the left side (dilation) of the CamClay yield surface (Bemer et al., 2004), the two domains being separated by the Critical State Line (CSL) (Fig. 12b). We also use the equivalent Von Mises strain (a measure of distortion) to quantify the amount of shear deformation that occurs in the dilatant side of the plastic model. In the following discussion, this indicator of 
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 335 Remark 3.1. In oedometric conditions, we note that .σ * z = .

  σ z and, thanks to (3.26), that σ * z = σ z ; furthermore, (3.7) and (3.27) give φ * = φ.

  ) and(3.22), we choose

(3. 47 )

 47 Validity of the model. Let us come back to the question of the validity of the assumption that φ * = φ (cf. (3.31) and (3.32)). When there are no horizontal strains, we already know from Remark 3.1 that our model is such that . φ * =

ε 1 .

 1 y )| , where the first line comes from (3.3) and (3.27), the second line from (3.39) and (3.40), the third line from (3.37) and the fourth line from (3.46) and the fact that φ < Recall that ζ is given by (3.38) in our case. We thus see that if we have a control on how close β(σ * z ) is to β(σ z ), then the second and third terms in the right-hand side of the last inequality can be bounded by | . σ z |, | . ε x | and | .

  Spatial dimensions: 195 km East-West and 180 km North-South • Spatial discretization: 100 620 finite-volume cells • Sediments: 7 groups of different materials • East-West strain: 4 % from -10 My to -8 My (2 events) and 2 % from -8 My to present day (8 events) Marine and Petroleum Geology 127 (2021) 104933 thickness of the Malargue and Neuquén Fm deduced from 1D calibration in wells from both sonic log and vitrinite dataset is consistent with the published results of Zamora-Valcarce et al. (2009) at the hinge of the Chihuidos Anticline. Erosion ranges from 500 m to 2080 m, with an increasing trend towards the southwest part of the model. The hinge of the Chihuidos Anticline records the most important values, which follow the NW-SE axis of the fold. Simultaneously with erosion, the sedimentary layers are uplifted to their current topography, while the Chihuidos Anticline development leads to the folding of the sedimentary layers. 4.4. Mechanical properties and boundary conditions adopted in the PSM and coupled simulation No-fluid flow conditions are prescribed on the lateral and bottom surfaces of the model, while the piezometric surface is set to the surface topography. Similarly, no-flux thermal conditions are imposed on the lateral surfaces, and the top surface temperature is prescribed. Basal lithosphere is set to 1333 • C (e.g. Hantschel et al., 2009).

Fig. 6 .Fig. 7 .

 67 Fig. 6. Architecture of the 3D geological model localized in Fig. 1a. (a) Representation of the model mesh, with a X5 vertical exaggeration. (b) Several longitudinal and transversal sections of the model, colored by lithology. The lateral variation of thickness of the Vaca-Muerta shale is shown in green at the center of the stratigraphy, pinching out at the eastern and southern edge of the model. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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 671 Fig. 6. Architecture of the 3D geological model localized in Fig. 1a. (a) Representation of the model mesh, with a X5 vertical exaggeration. (b) Several longitudinal and transversal sections of the model, colored by lithology. The lateral variation of thickness of the Vaca-Muerta shale is shown in green at the center of the stratigraphy, pinching out at the eastern and southern edge of the model. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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 2 Figure 2: Comparison with A 2 under the strain condition (ref ) and results under (zero) along W10 (data points and A 2 results from [3])

Figure 3 :

 3 Figure 3: Results under the strain condition (dble) along W10 and comparison with A 2 (data points and A 2 results from [3])

Fig. 9 .

 9 Fig. 9. Present-day overpressure distribution resulting from the PSM and the coupled simulation, in the base layer of the Vaca-Muerta Fm and in a section crossing the Chihuidos Anticline. Well position is reported. Cells a, b and c highlight the position of the cells displayed in Fig. 11. (a) Result of the PSM. (b) Result of the coupled simulation.
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 4 Figure 4: A 2 overpressure at bottom and over central cross-section under no horizontal strains (top) and reference horizontal strains (bottom) (from [3])

Figure 5 :

 5 Figure 5: Overpressure at bottom and over central cross-section under the strain conditions (zero), (ref ) and (dble)

Figure 6 :

 6 Figure 6: Results along W10 under the strain conditions (zero), (xy) and (neg)

Table 2 :

 2 CPU time for each simulation run

		Time [min]
	(zero)	55.8
	(ref )	80.8
	(dble)	90.2
	(xy)	77.2
	(neg)	69.7
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