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Abstract
Given a boolean predicate Π on labeled networks (e.g., proper coloring, leader election, etc.), a

self-stabilizing algorithm for Π is a distributed algorithm that can start from any initial configuration
of the network (i.e., every node has an arbitrary value assigned to each of its variables), and
eventually converge to a configuration satisfying Π. It is known that leader election does not
have a deterministic self-stabilizing algorithm using a constant-size register at each node, i.e., for
some networks, some of their nodes must have registers whose sizes grow with the size n of the
networks. On the other hand, it is also known that leader election can be solved by a deterministic
self-stabilizing algorithm using registers of O(log log n) bits per node in any n-node bounded-degree
network. We show that this latter space complexity is optimal. Specifically, we prove that every
deterministic self-stabilizing algorithm solving leader election must use Ω(log log n)-bit per node
registers in some n-node networks. In addition, we show that our lower bounds go beyond leader
election, and apply to all problems that cannot be solved by anonymous algorithms.
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1 Introduction

1.1 Context
Self-stabilization is a paradigm suited to asynchronous distributed systems prone to transient
failures. The occurrence of such a failure (e.g., memory corruption) may move the system to
an arbitrary configuration, and an algorithm is self-stabilizing if it guarantees that whenever
the system is in a configuration that is illegal w.r.t. some given boolean predicate Π, the
system returns to a legal configuration in finite time (and remains in legal configuration as
long as no other failures occur). In this paper, we study self-stabilization in networks. The
network is modeled as a graph G = (V, E), and we consider predicates defined on labeled
graphs. For instance, in proper k-coloring, a configuration is legal if every node is labeled
by a color {1, . . . , k} that is different from the colors of all its neighbors. Given a boolean
predicate Π, a self-stabilizing algorithm for Π is a distributed algorithm enabling every node,
given any input state, to construct a label such that the resulting labeled graph satisfies Π.

During the execution of a self-stabilizing algorithm, the nodes exchange information along
the links of the network, and this information is stored locally at every node. Specifically,
processes in a distributed system have two types of memory: the persistent memory, and
the mutable memory. The persistent memory is used to store the identity of the process
(e.g., its IP address), its port numbers, and the code of the algorithm executed on the
process. Importantly, this section of the memory is not write enabled during the execution
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of the algorithm. As a consequence it is less likely to be corruptible, and most work in
self-stabilization assumes that this part of the memory is not subject to failures. The mutable
memory is used to store the variables used by the algorithm, and is subject to failures, that
is, to the corruption of these variables. The space complexity of a self-stabilizing algorithm
is the total size of all the variables used by the algorithm, including those used to encode the
output label of the node. For instance, the space complexity of the algorithm for k-coloring is
at least Ω(log k) bits per node, for encoding the colors in {1, . . . , k}. The question addressed
in this paper is: under which circumstances is it possible to reach a space complexity as
low as the size of the labels? And if not, what is the smallest space complexity that can be
achieved?

Preserving small space complexity is indeed very much desirable, for several reasons. First,
it is expected that self-stabilizing algorithms offer some form of universality, in the sense that
they are executable on several types of networks. Networks of sensors as used in IoT, as well
as networks of robots as used in swarm robotics, have the property to involve nodes with
limited memory capacity, and distributed algorithms of large space complexity may not be
executable on these types of networks. Second, a small space complexity is the guarantee to
consume a small bandwidth when nodes exchange information, thus reducing the overhead
due to link congestion [1]. In fact, a self-stabilizing algorithm is never terminating, in the
sense that it keeps running in the background in case a failure occurs, for helping the system to
return to a legal configuration. Therefore, nodes may be perpetually exchanging information,
even after stabilization, and even when no faults occur. Limiting the amount exchanged
information, and thus, in particular, the size of the variables, is therefore of the utmost
importance for optimizing time, and even energy. Last but not least, increasing robustness
against variable corruption can be achieved by data replication [17]. This is however doable
only if the variables are reasonably small. Said otherwise, for a given memory capacity, the
smaller the space complexity the larger the robustness thanks to data replication.

1.2 Contributions of the paper
In this paper, we focus on one of the arguably most important problems in the context of
distributed computing, namely leader election. The objective is to maintain a unique leader
in the network, and to enable the network to return to a configuration with a unique leader
in case there are either zero or more than one leaders. Interestingly, encoding legal states
consumes one single bit at each node. Indeed, in leader election, every node has a label
with value 0 or 1, and these labels form a legal configuration if there is one and only one
node with label 1. As a consequence, up to an additive constant, the space complexity is
exactly the space used to encode the variables of the algorithm (which is not the case for
other problems where the output itself uses some non-trivial space to be encoded).

We establish the lower bound of Ω(log log n) bits per node for the space complexity of
leader election. This improves the only lower bound known so far (see [3]), which states that
leader election has non-constant space complexity, i.e., complexity ω(1), where f = ω(g) if
g(n)/f(n) → 0 when n → ∞. More importantly, our bound matches the best known upper
bound on the space complexity of leader election, which is O(log log n) bits per node in
bounded degree networks [6], and in particular invalidates the folklore conjecture stating
that leader election is solvable using only O(log∗ n) bits of mutable memory per node.

We obtain our lower bound by establishing an interesting connection between self-
stabilizing algorithms with small space complexity, and self-stabilizing algorithms performing
in anonymous networks, that is, in networks in which nodes have no identifiers. (Recall
that space complexity counts solely the size of the mutable memory, and does not include
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the immutable persistent memory where the identifiers are stored). More specifically, the
technical ingredient used for establishing our results are the following. It is known that
many self-stabilization problems, including vertex coloring, leader election, spanning tree
construction, etc., require that the nodes are provided with identifiers, for breaking symmetry.
Indeed, no algorithm can solve these problems in anonymous networks (under a standard
distributed scheduler). We show that, for any self-stabilizing algorithm in a network with
node identifiers, if the space complexity of the algorithm is too small, then the algorithm
does not have more power than a self-stabilizing algorithm running in an anonymous network.
More precisely, let A be an algorithm in a network with node identifiers, and let us assume
that A has space complexity o(log log n) bits per node. Such a small space complexity does
not prevent A from exchanging identifiers between nodes, but they must be transferred as a
series of smaller pieces of information that are pipelined along a link, each of size o(log log n)
bits. On the other hand, a node cannot store the identifier of even just one of its neighbors.
We show that, with spacial complexity o(log log n) bits per node, there exist graphs and
assignments of identifiers to the nodes of these graphs such that, in these graphs and for
these ID-assignments, A has the same behavior as an algorithm executed in these graphs but
in the absence of IDs (i.e., in the anonymous version of these graphs). We then show that no
algorithms can solve leader election in these graphs in absence of IDs, from which it follows
that A cannot solve leader election in these graphs with IDs as long as its space complexity
is o(log log n) bits per node.

1.3 Related work
Space complexity of self-stabilizing algorithms has been extensively studied for silent algo-
rithms, that is, algorithms that guarantee that the content of the variables of every node does
not change once the algorithm has reached a legal configuration. For silent algorithms, Dolev
and al. [11], proved that finding the centers of a graph, electing a leader, and constructing a
spanning tree require registers of Ω(log n) bits per node. Silent algorithms have later been
related to a concept known as proof-labeling scheme (PLS) [23]. Any lower bound on the
size of the proofs in a PLS for a predicate Π on labeled graph implies a lower bound on
the size of the registers for silent self-stabilizing algorithms solving Π. A typical example is
the Ω(log2 n)-bit lower bound on the size of any PLS for minimum-weight spanning trees
(MST) [22] , which implies the same bound for constructing an MST in a silent self-stabilizing
manner [4]. Thanks to the tight connection between silent self-stabilizing algorithms and
proof-labeleing schemes, the space complexity of a vast collection of problems is known, for
silent algorithms. (See [14] for more information on proof-labeling schemes.)

On the other hand, to our knowledge, the only lower bound on the space complexity
of problems for general self-stabilizing algorithms (without the requirement of being silent)
that is corresponding to our setting has been established by Beauquier et al. [3] who proved
that registers of constant size are not sufficient for leader election algorithms. Interestingly,
the same paper paper also contains several other space complexity lower bounds for models
different from ours – e.g., anonymous networks, or harsher form of asynchrony.

The literature dealing with upper bounds is far richer. In particular, [5] recently presented
a self-stabilizing leader election algorithm using registers of O(log log n) bits per node in
n-node rings. This algorithm was later generalized to networks with maximum degree ∆,
using registers of O(log log n + log ∆) bits per node [6]. It is worth to notice that spanning
tree construction and (∆ + 1)-coloring have the same space complexity O(log log n + log ∆)
bits per node [6]. Prior to these work, the best upper bound was a space complexity
O(log n) bits per node [5], and it has then been conjectured that, by some iteration of
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the technique enabling to reduce the space complexity from O(log n) bits per node to
O(log log n) bits per node, one could go all the way down to a space complexity of O(log∗ n)
bits per node. Arguments in favor of this conjecture were that such successive exponential
improvements have been observed several times in distributed computing. A prominent
example is the time complexity of minimum spanning tree construction in the congested
clique model [15, 16, 21, 24]. Complexities O(log∗n) are not unknown in the self-stabilizing
framework [2], and it seemed at first that the technique in [11] could indeed be iterated (in a
similar fashion as in [7]). Our result shows that this is not the case, and kind of close the
question of the space complexity of leader election.

2 Model and definitions

In this paper, we are considering the state model for self-stabilization [9]. The asynchronous
network is modeled as a simple n-nodes graph G = (V, E), where the set of the nodes
V represents the processes, and the set of edges E represents pairs of processes that can
communicate directly with each other. Such pairs of processes are called neighbors. The
set of the neighbors of node v is denoted N(v). Each node has local variables and a local
algorithm. The variables of a node are stored in its mutable memory, also called register. In
the state model, each node v has read/write access to its register. Moreover, in one atomic
step, every node reads its own register and the registers of its neighbors, executes its local
algorithm and updates its own register if necessary. Note that the values of the variables of
one node v ∈ V are called the state of v, and denoted by S(v).

Each node v ∈ V has a distinct identity, denoted by ID(v) ∈ {1, . . . , nc} for some constant
c > 1. For each adjacent edge, each node has access to a locally unique port number. No
assumption is made on the consistency between port numbers on each node. The mutable
memory is the memory used to store the variables, while the immutable memory is used to
store the identifier, the port numbers, and the code of the protocol. As a consequence, the
identity and the port numbers are non corruptible constants, and only the mutable memory
is considered when computing the memory complexity because it corresponds to the memory
readable by the neighbors of the nodes, and thus correspond to the information transmitted
during the computation. More precisely, an algorithm may refer to the identity, or to the
port numbers, of the node, without the need to store them in the variables. If at least one
rule of an algorithm refers to the identity of the node, we call this algorithm an ID-based
algorithm. Otherwise, if the rules do not refer to the identity of the node we say it is an
anonymous algorithm.

The output of the algorithm for a problem is carried through local variables of each node.
The output of the problem may use all the local variables, or only a subset of them. Indeed,
the algorithm must have local variables that match the output of the problem, we call these
variables the specification variables. But the algorithm may also need some extra local
variables, that may be necessary to compute the specification variables. For example, if we
consider a silent BFS spanning tree construction, the specification variables are the variables
dedicated to pointing out the parent in the BFS. However, to respect the silent property, the
algorithm needs in each node a variable dedicated to the identity of the root of the spanning
tree and a variable dedicated to the distance from the root. As a consequence, we define
the specification of problem P as a description of the correct assignments of specification
variables, for this specific problem P .

A configuration is an assignment of values to all variables in the system, let us denote by Γ
the set of all the configurations. A legal configuration is a configuration γ in Γ that respects the
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specification of the problem, we denote by Γ∗ the set of legal configurations. A local algorithm
is a set of rules the node can apply, each rule is of the form <label>:<guard>→<command>.
A guard is a Boolean predicate that uses the local variables of the node and of its neighbors,
and a command is an assignment of variables. A node is said to be enabled if one of its guard
is true and disabled otherwise.

We consider an asynchronous network, the asynchrony of the system is modeled by an
adversary called scheduler or daemon. The scheduler chooses, at each step, which enabled
nodes will execute a rule. Several schedulers are proposed on the literature depending on
their characteristics. Dubois and al. in [12] presented a complete overview of these schedulers.
Since we are interested in showing a lower bound, we aim for the least challenging scheduler.
Our lower bound is established under the synchronous distributed scheduler, a strongly fair
distributed scheduler. The synchronous distributed scheduler activates, at each step, all the
enabled nodes. The synchronous distributed scheduler is captured by the weakly fair and
unfair distributed schedulers, but not by the central scheduler that activates only one at
each step.

A configuration γ ∈ Γ is a legal configuration for the leader election problem if one single
node is elected. More formally:

▶ Definition 1 (Leader election). Leader election in G = (V, E) is specified by a boolean
variable ℓv at each node v ∈ V . A configuration {(v, ℓv) : v ∈ V } is legal if there is a node
v ∈ V such that ℓv = true, and for every other node u ∈ V ∖ {v}, ℓu = false.

3 Formal Statement of the Results

3.1 Lower bounds
Our first result is an Ω(log log n) lower bound for leader election on the cycle.

▶ Theorem 2. Let c > 1. Every deterministic self-stabilizing algorithm solving leader election
in the state model under a strongly fair distributed scheduler requires registers on Ω(log log n)
bits per node in n-node graphs with unique identifiers in [1, nc].

This bound improves the only lower bound known so far [3], from Ω(1) to Ω(log log n),
and it is tight, as it matches the upper bound of [5]. In particular, it invalidates the
folklore conjecture stating that the aforementioned problems are solvable using only O(log∗n)
memory.

Optimality of the assumptions

Our lower bound is actually optimal not only in term of size, but also in terms of the
assumptions we make on the setting. More precisely, our theorem has three restrictions: it
works for deterministic algorithms only, with the distributed scheduler, and with identifiers
in a large enough range. We will now discuss why these limitations are actually necessary.

Randomization is a common tool for symmetry breaking, and our problem is one example.
Namely, [18] proved that using randomization, one can solve leader election using constant
memory, which implies that our result cannot be generalized in that direction.

An important aspect of the self-stabilizing setting is the scheduler, which is the adversary
that decides which nodes can take a step at each round. Different schedulers model different
assumptions on the asynchrony of the setting. For example, a fully adversarial scheduler
can take any decision, as long as at least one node can take a step at each round. Weaker
schedulers can delay arbitrarily the step of a node but are forced to eventually activate any



6 Optimal Space Lower Bound for Deterministic Self-Stabilizing Leader Election Algorithms

node, etc. Our lower bound is valid under a very weak scheduler, which means that we need
a weak assumption on the asynchrony, which in turn means that our result is strong on this
aspect. Precisely, what we need in our proof is that it is possible for the scheduler to activate
all the nodes at every round. One type of scheduler for which this property does not hold
is the so-called centralized scheduler, that activates exactly one node at every round. In
this context the symmetry is broken by the scheduler itself (if two nodes are in the same
situation, one will be activated first, and this breaks the symmetry). Although the proof
of Theorem 2 in Section 4 does not apply to the centralized scheduler, the more genereal
Theorem 3 will allow us to extend our result to the central daemon.

Finally, and this is probably more surprising, we need to consider identities between
1 and nc, for c > 1. In particular, our technique does not work if the identifiers are in
O(n). This is not an artifact of our proof: it is actually necessary for the result to hold.
Indeed, if the identifier range is [1, n], then an algorithm may use the node with identifier
1 as a designated node, and have a special code for it. Algorithms using such designated
nodes are called semi-uniform algorithms and they can achieve space complexity below our
lower bound [8, 20]. Even without the possibility of having a designated node, one can take
advantage of smaller identifier range: there actually exists an algorithm in constant memory
if the identities are in [1, n + k] for a constant k [3].

A general result on the power of the identifiers

Actually, our technique goes beyond the setting of Theorem 2. First, we do not need the
harshest aspects of the self-stabilizing model which is that the initial configuration can be
arbitrary. If we start from an empty configuration, our technique still holds. Second, the
technique works for basically any problem that requires minimal symmetry breaking, not
just leader election. Third, as hinted above the type of scheduler is not really important, as
long as it does not break symmetry. We prove the more general following theorem.

▶ Theorem 3. Let c > 1, and let ∆(n) ∈ o(log n). If there exists a deterministic self-
stabilizing algorithm A that solves a problem P in the state model and uses registers of size
o( log log n

∆ ), then there exists a deterministic self-stabilizing anonymous algorithm Aa that
solves P on every large-enough graph with maximum degree ∆(n).

What our paper is really about, is the power of IDs, in a scenario where very little
space/communication is used. Our core result is that below Θ(log log n), IDs are useless,
in the sense that in the worst-case the performance of an algorithm using these IDs is the
same as the performance of an anonymous algorithm. Remember that the Noar-Stockmeyer
order-invariance theorem [25], that states that in the LOCAL model, for local problems,
constant-time algorithms that use the exact values of the IDs are not more powerful than
the order-invariant algorithm that only use the relative ordering of the IDs. In some sense
our paper and [25] have the same take-home message, in two different contexts: if you do
not have enough resources, you cannot use the (full) power of the identifiers.

Theorem 3 establishes that proving a Ω(log log n) lower bounds in the ID-based setting
boils down to proving that anonymous algorithms cannot solve the problem. This is useful,
because indistinguishability arguments are easier to establish for anonymous algorithms than
for algorithms using IDs.

Finally, one aspect that is not explicit in the statement of the theorem but follows from
the proof, is that actually this result also holds if the nodes have inputs. In particular, our
result applies to the semi-uniform setting where exactly one node has a special input.
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About the port number model

Our general theorem, Theorem 3, holds in the model where a node knows its port-numbers
but not the ones of its neighbors. Intuitively, this implies that a node u cannot specify that
some piece of information is intended to the node of port number p, because that node does
not know it has been assigned port-number p.

In some graphs, the port number assignment can be chosen in such a way that knowing
the port-number assignment of the neighbors does not help. For example in the cycle of
Theorem 2, we can arrange the port numbers such that every edge is assigned port number 1
by one endpoint, and port number 2 by the other. This allows to generalize our first result
to the model where a node knows both port numbers on every adjacent edge.

Central scheduler

In a celebrated paper [10], Dijkstra established, among other things, that one cannot break
symmetry with anonymous algorithms in composite rings (that is, in rings whose size n is
not a prime number). This results holds under a central strongly fair scheduler. A central
scheduler is somehow the opposite of the distributed scheduler used in Theorem 2: it activates
one node at every round instead of activating all of them. Yet, we can generalize Dijkstra’s
result. Indeed, as highlighted before, the core of our proofs, and the statement of Theorem 3,
is about proving that an algorithm with too little memory cannot perform better than an
anonymous algorithm, and this does not depend on the scheduler. Therefore, by combining
Dijkstra’s result and Theorem 3, we directly get the following corollary, that complements
Theorem 2.

▶ Corollary 4. Let c > 1. Every deterministic self-stabilizing algorithm solving leader election
in the state model under a strongly fair central scheduler requires registers on Ω(log log n)
bits per node in n-node composite rings with unique identifiers in [1, nc].

Note that assuming that the ring is composite is essential, since [19] builds a constant
memory algorithm for leader election on anonymous prime rings, under a central scheduler.

3.2 Intuition of the proofs
Challenge of lower bounds for non-silent algorithms

Almost all lower bounds for self-stabilization are for silent algorithms, that are required to
stay in the same configuration once they have stabilized. These lower bounds are then about
a static data structure, the stabilized solution. The questions boils down to establishing how
much memory is needed to locally certify the global correctness of the solution, and this is
well-studied [13].

When we do not require that the algorithm should converge to one correct configuration,
and stay there, there is no static structure on which we can reason. It is then unclear how we
can establish lower bounds. One way is to think about invariants. Consider a property that
we can assume to hold in the initial configuration, and that is preserved by the computation
(if it follows some memory requirement hypothesis). If no correct output configuration has
this property, then we can never reach a correct output configuration.

In our proof, the property that will be preserved is that every node has the same state.
This can clearly be assumed for the original configuration, and we show that basically if the
memory is limited then this is preserved at each step. As the specification we use for leader
election is that the leader should output 1, and the other nodes should output 0, then it is
not possible that all nodes have the same state in a proper output configuration.
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Intuition on a toy problem

Let us now give some intuition about why we can replace ID-based algorithms by anonymous
ones. The code of an ID-based algorithm A may refer to the identifier of the node that is
running it. For example, a rule of the algorithm could be:

if the states of the current node and of its left and right neighbors are respectively x, y,
and z, then: if the identifier is odd the new state is a, otherwise it is b.

Now suppose you have fixed an identifier, and you look at the rules for this fixed identifier.
In our example, if the identifier is 7, the rule becomes:

if the states of the current node and of its left and right neighbors are respectively x, y,
and z, then: the new state is a.

This transformation can be done for any rule, thus, for an identifier i, we can get an
algorithm Ai specific to this identifier. When we run A on every node, we can consider that
every node, with some identifier i is running Ai. Note that Ai does not refer in its code to
the identifier.

The key observation is the following. If the amount of memory an algorithm can use
is very limited, then there is very limited number of different behaviors a node can have,
especially if the code does not refer to the ID. Let us illustrate this point by studying at an
extreme example: a ring on which states have only one bit. In this case the number of input
configurations for a node, is the set of views (x, y, z) as above, with x, y, z ∈ {0, 1}. That is
there are 23 = 8 different inputs, thus the algorithm can be described with 8 different rules.
Since the output of the function is the new state, the output is also a single bit. Therefore,
there are at most 28 = 256 different sets of rules, that is 256 different possible behavior for a
node. In the other words, in this extreme case, each specific algorithm Ai is equal to one of
the behaviors of this list of 256 elements. This implies that, if we take a ring with 257 nodes,
there exists two nodes with two distinct identifiers i and j, such that the specific algorithms
Ai and Aj are equal.

This toy example is not strong enough for our purpose, as we want to argue about
instances where all the nodes run the same code, and as we want non-constant memory. But
the idea above can be strengthen to get our theorem. The key is to use the hypothesis that
the identifiers are taken from a polynomially large range. As we have a pretty large palette
of identifiers, we can always find, not only 2, but n distinct identifiers in [1, nc], such that all
the specific algorithms Ai correspond to the exact same behavior. In this case it is as if the
algorithm were anonymous.

Note that the larger the memory is, the more different behaviors there are, and the
smaller the set of identical specific algorithms we can find. This trade-off implies that for
polynomial range, the construction works as long as the memory is in o(log log n).

4 Proof of Theorem 2

Consider a ring of size n, and an ID-based algorithm A using f(n) bits of memory per node
to solve leader election. An algorithm can be seen as the function that describes the behavior
of the algorithm. This function takes an identifier, a state for the node, a state for its left
neighbor and a state for its right neighbor, and gives the new state of the node. Formally:

A : [nc] × {0, 1}f(n) × {0, 1}f(n) × {0, 1}f(n) → {0, 1}f(n)

(ID , state , left-state , right-state) 7→ new-state

Note that in general, we consider non-directed rings thus the nodes do not have a global
consistent definition for right and left. As we are dealing with a lower bound with a worst-case
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on the port numbering, assuming such a consistent orientation only makes the result stronger.
Now we can consider that for every identifier i, we have an algorithm of the form:

Ai : {0, 1}f(n) × {0, 1}f(n) × {0, 1}f(n) → {0, 1}f(n)

(state , left-state , right-state) 7→ new-state

Thus a specific algorithm Ai boils down to a function of the form: {0, 1}3f(n) → {0, 1}f(n).
Let us call such a function a behaviour, and let Bn be the sets of all behaviours.

▶ Lemma 5. |Bn| = 2f(n)×23f(n)

Proof. The inputs are basically binary strings of length 3f(n), thus there are 23f(n) possi-
bilities for them. Similarly the number of possible outputs is 2f(n). Thus the number of
functions in |Bn| is

(
2f(n))23f(n)

= 2f(n)×23f(n) . ◀

Lemma 5 implies that the smaller f , the fewer different behaviors. Let us make this more
concrete with Lemma 6.

▶ Lemma 6. If f(n) ∈ o(log log n), then for every n large enough, nc−1 > |Bn|.

Proof. Consider the expression of nc−1 and |Bn| after applying the logarithm twice:

log log(nc−1) = log(c − 1) + log log n

∼ log log n

log log(|Bn|) = log log
(

2f(n)×23f(n)
)

= log
(
f(n) × 23f(n)) = log(f(n)) + 3f(n)

∼ 3f(n)

As the dominating term in the second expression is of order f(n) ∈ o(log log n), asymp-
totically the first expression is larger. As log log(·) is an increasing positive function for large
values, this implies that asymptotically nc−1 > |Bn|. ◀

The next lemma shows that if f(n) ∈ o(log log n), we can find a large number of identifiers
that have the same specific algorithm.

▶ Lemma 7. If nc−1 > |Bn|, then there exist a behavior function b, and a set S of n different
identifiers, such that: ∀i ∈ S, Ai = b.

Proof. Let the function φ : [nc] → Bn be the function that associates each ID to its
corresponding behavior function. Let S be the function that associates to each behavior b,
the set of IDs i such that φ(i) = b. Since φ is a function from [nc] to Bn, its inverse function S

satisfies: ∪b∈Bn
S(b) = [nc]. Thereby, the average size of a set S(b) is

1
|Bn|

∑
b∈Bn

|S(b)| = 1
|Bn|

· nc.

Because of Lemma 6, this quantity is strictly larger than n. Thus, the average of |S(b)|
among all b is larger than n, and there must exist at least one behavior b such that |S(b)| > n.
We take this b and S = S(b) for the lemma. ◀

Combining the three lemmas we get that, if f(n) ∈ o(log log n), then for any large
enough n we can find n different identifiers in [1, nc], such that the nodes have the exact
same behavior.
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Now, consider a large enough graph, with identifiers taken from the set S. As we are
in a self-stabilizing scenario, we can chose from which configuration we start. We actually
do not need intricate configuration: we start from a configuration where all states are the
same, say some string x. This cannot be a proper leader election output, because in leader
election (with our specification) a leader and a non leader have different output. Therefore,
at least one node is activable. Note that every node sees the same states x for itself, and its
two neighbors, and that by construction they have the same behavior. Therefore if one node
is activated, all nodes are activated. Now, the scheduler decides to activate all the nodes.
Necessarily, all the nodes take the exact same step, and end up in a configuration where
every node has the same state.

We can iterate this argument forever. In other other words, the network cannot escape the
set of configurations where all nodes have the same state (as long as the scheduler activates
all the nodes together, which is allowed). Therefore, the network will never reach a proper
leader election configuration configuration, and this proves Theorem 2.

5 Proof of Theorem 3

In this section, we prove our general results, that relates the ID-based algorithms with small
memory to anonymous algorithms. The proof of Theorem 3 follows the same idea as the
one of Theorem 2, but in a more general way. (The constants of the statement have not
been optimized.) Consider a graph G of maximum degree ∆(n) ∈ o(log n), and an ID-based
algorithm A using f(n) bits of memory per node to solve an arbitrary problem.

As before an algorithm can be seen as a function that maps the view of the node to an
output. But now as the degree is not the same for every node, we have one function for
every degree. This not very convenient for us, so take another point of view. We consider a
function that takes as input, its ID, its state, ∆ other states, and a number δ.

A : [nc] × {0, 1}f(n) ×
(
{0, 1}f(n))∆ × [∆] → {0, 1}f(n)

(ID , state , ∆ states , degree) 7→ new-state

The idea is that to get its output a node will first feed its own degree δ as the last input
of the function, and then feed its ID, its states, and the states of its δ first neighbors as the
δ + 2 first fields. The other fields are left blank. The output of the function is the output of
the algorithm.

Note that this corresponds to the single-port setting: in the function, each neighboring
state is identified. In particular, it is not a set of neighboring states. But it is not a
double-port setting: which port a neighbor assigns to a node is unknown.

Now if we fix the ID i, we get:

Ai : {0, 1}f(n) ×
(
{0, 1}f(n))∆ × [∆] → {0, 1}f(n)

(state , ∆ states , degree) 7→ new-state

Now the equivalent of Lemma 5 is that the number of such behaviors Ai is:

|Bn| =
(

2f(n)
)2(∆+1)f(n)∆
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We bound the double logarithm of this expression:

log log
[(

2f(n)
)2(∆+1)f(n)∆

]
= log

[
f(n)2(∆+1)f(n)∆

]
= (∆ + 1)f(n) + log f(n) + log ∆
∈ o(log log n)

We get that for any large enough n, nc−1 > |Bn|, and by Lemma 7, we directly get that
there exists an identifier assignment such that all nodes have the same behavior. In other
words, on this identifier assignment, the algorithm behaves like anonymous. As a consequence
any impossibility result for anonymous algorithms also holds here. This completes the proof
of Theorem 3.

6 Conclusion

In this paper, we have established a lower bound Ω(log log n) bits per node on the size of the
registers for self-stabilizing algorithms solving leader election in the state model. This bound
matches the upper bound O(log log n) bits per node for bounded-degree graphs [6]. The
same upper bound on the size of the registers is known to hold in bounded-degree graphs
for vertex coloring and spanning tree construction [6]. An interesting open problem is to
determine the space complexity of vertex coloring and spanning tree construction.
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