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Symbolic Dynamics 

Philippe LEMOINE1 and Wisama KHALIL2 

Synonyms Explicit dynamics 

Definition 

The terminology “Symbolic Dynamics” is used in robotics when the dynamics of 
robots is described by symbolic expressions using symbolic variables that do not 
have numerical values. The computation of these expressions must be done using 
specific software. The symbolic output can constitute a computation program to get 
the numerical solution after assigning the numerical values for the necessary con-
stants and variables of the problem. 

 

1. Overview 

The dynamics of robots involves the development of their equations of motion, 
which describe the relationship between the input joint efforts (forces or torques) 
and the output motion. In this entry, two basic models will be treated: the inverse 
dynamic model (IDM), and the Direct Dynamic Model (DDM). The IDM is used in 
control applications: It calculates the input joint efforts to achieve a set of prescribed 
joint accelerations. The DDM is used in simulation applications: It calculates the 
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joint accelerations resulting from a set of input joint efforts. The study is focused 
on tree-structure robots with rigid links. The generalization to robots with rigid links 
and flexible joints is straightforward using the same technique. 

As an application in this entry, the IDM of an RRP serial robot will be given. 

2. Dynamic Modeling Algorithms 

2.1. General Form of the Equations of Motion 

The general form of the dynamic equations of motion of tree structure robot with 𝑛𝑛 
joints can be written using Lagrange equations as follows (Angeles 2003; Khalil 
and Dombre 2002): 

 𝝉𝝉 = 𝑴𝑴(𝒒𝒒)�̈�𝒒 + 𝒄𝒄(𝒒𝒒, �̇�𝒒) (1) 

where 𝒒𝒒, �̇�𝒒, �̈�𝒒, 𝝉𝝉 are (n×1) vectors representing the joint positions, velocities and 
accelerations and input efforts respectively, 𝑴𝑴(𝒒𝒒) is the inertia matrix of the robot, 
the vector 𝒄𝒄(𝒒𝒒, �̇�𝒒) represents the Coriolis, centrifugal, and gravity efforts. 

The IDM can be obtained directly from Eq. (1). It will be denoted by: 

 𝝉𝝉 = 𝒊𝒊𝒊𝒊𝒊𝒊(𝒒𝒒, �̇�𝒒, �̈�𝒒) (2) 

The DDM is obtained from Eq. (1) by: 

 �̈�𝒒 = 𝑴𝑴−𝟏𝟏(𝒒𝒒)�𝝉𝝉 − 𝒄𝒄(𝒒𝒒, �̇�𝒒)� (3) 

It will be denoted by: 

 �̈�𝒒 = 𝒊𝒊𝒊𝒊𝒊𝒊(𝒒𝒒, �̇�𝒒, 𝝉𝝉) (4) 

2.2. Efficient Dynamic Modeling Algorithms 

The first works in robot dynamics computation used Lagrangian formulation 
(Uicker 1969; Kahn 1969), but the proposed model needed more than 100,000 
mathematical operations to calculate the IDM of a 6 degrees of freedom (dof) robot. 
To reduce this cost of calculation, three tools have been used: a) neglecting some 
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elements to obtain an approximated model, b) developing new efficient algorithms, 
and c) using symbolic software computation which can take into account the partic-
ular values of the robot parameters. 

A breakthrough result in the development of efficient algorithms for IDM com-
putation was reported by (Luh et al. 1980) who proposed a recursive Newton-Euler 
formulation for serial kinematic chains. The algorithm consists of two recursive 
equations: a forward one, starting from the base link toward the end-effector link, 
which computes the link kinematics, followed by a backward one, starting from the 
end-effector link toward the base link, which computes the joint generalized forces. 
The number of mathematical operations of this algorithm using numerical compu-
tations are 137𝑛𝑛–22 multiplications and 101𝑛𝑛–11 additions, which is linearly pro-
portional to the number of joints (𝑂𝑂(𝑛𝑛)). It gives the inverse dynamic model of a 6 
dof serial robot with 800 multiplications and 595 additions. To obtain the DDM, 
Walker and Orin (1982) proposed to use Eq. (3), after calculating the matrix 𝑴𝑴(𝒒𝒒) 
and the vector 𝒄𝒄(𝒒𝒒, �̇�𝒒) by the efficient inverse dynamic algorithm of Luh et al 
(1980). 

The calculation cost of 𝑴𝑴 can be considerably reduced by using the composite 
link inertia matrix, and taking into account the fact that 𝑴𝑴 is symmetric (Walker 
and Orin 1982). 

An efficient solution for the DDM for serial chain is proposed in (Featherstone 
1983). The cost of this algorithm using numerical computation is 𝑂𝑂(𝑛𝑛) and takes 
300𝑛𝑛–267 multiplications and 279𝑛𝑛–259 additions. For 𝑛𝑛=6, these figures yield 
1533 multiplications and 1415 additions. It provides the DDM without calculating 
the inverse inertia matrix. This algorithm is based also on Newton-Euler formula-
tion using three recursive equations. 

2.3. Generalization of Luh and Featherstone Works 

Based on the results of (Luh et al. 1980) and (Featherstone 1983), the following 
developments have been achieved: 

- Development of symbolic customized programs in order to take advantage 
of the special structure of each robot (Khalil and Kleinfinger 1987; Khosla 
1986). This leads to reduce the computational cost by a factor around 5. 

- Dynamics of tree-structure and closed-loop robots. This work is realized 
thanks to the proposition of a new method to describe the structure of these 
systems (Khalil and kleinfinger 1986). 

- Operational Space dynamics (Lilly and Orin 1990; Khatib 1987). 
- Hybrid dynamic models (Featherstone 2008), where the inverse and direct 

notions are defined on the joint level. The accelerations of some joints are 
supposed known, and their input efforts must be calculated (inverse prob-
lem), whereas the input efforts of the other joints are known and their output 
accelerations must be calculated (direct problem). 

- Dynamics of floating base systems (Featherstone 2008; Khalil et al. 2014). 
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- Dynamics of robots with flexible joints and flexible links, which is discussed 
in section 7.1. 

 
The next section is devoted to the symbolic generation of IDM of tree-structure 

systems. The other models and other system programing can be obtained easily us-
ing the same strategy. 

3. Automatic Generation of the Symbolic IDM of Tree-Structure 
Robots 

3.1. Introduction 

The automatic generation purpose is to develop a computer program that can pro-
vide the dynamic models of robots with efficient, accurate, and error-free results. 
Furthermore, if the model must be implemented on a real system for control purpose 
or to be called many times in an analysis application, the computational cost of the 
given model must be reduced. From the overview of the modeling algorithms pre-
sented in section 2, it can be deduced that efficient computational algorithms are 
now available for calculating IDM and DDM for robots with rigid or flexible links. 
Furthermore, they are purely algebraic and their computation is composed of matrix 
operations without differentiation. This section discusses how to use the algorithms 
mentioned in section 2 to obtain an optimized model. To facilitate the presentation, 
this section will be focused on the IDM of tree-structure robots with rigid links and 
fixed base. The tree-structure IDM can also be exploited in the modeling of closed-
loop robots, whose computation is based on modeling at first a virtual tree structure 
system (Khalil and Kleinfinger 1987; Nakamura and Ghodoussi 1988; Featherstone 
1983) which is then closed using loop-closure constraint equations that can be con-
sidered using either Lagrange multipliers or virtual power principle. 

3.2. Description of the Robot 

The tree structure rigid system is described using Khalil and Kleinfinger notations 
(Khalil and Kleinfinger 1986; Khalil and Dombre 2002). The structure is composed 
of 𝑛𝑛+1 links and 𝑛𝑛 joints. Link 𝑗𝑗 is articulated on joint 𝑗𝑗. The links and joints are 
numbered such that the numbers increase outward from the base. The topology of 
the system is defined by the (n×1) vector of precedent links, such that the elements 
𝑝𝑝(𝑗𝑗) defines the link precedent to link 𝑗𝑗. The type of the joint is defined by the 
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parameter 𝜎𝜎𝑗𝑗, which is equal to 0 if joint 𝑗𝑗 is revolute, and equal to 1 if joint 𝑗𝑗 is 
prismatic. We also have 𝜎𝜎𝑗𝑗=1–𝜎𝜎𝑗𝑗. A frame ℱ𝑗𝑗 is attached to each link 𝑗𝑗 such that: 

i- 𝒛𝒛𝑗𝑗 is along the axis of joint 𝑗𝑗; 
ii- 𝒙𝒙𝑗𝑗 is along the common normal between 𝒛𝒛𝑗𝑗 and one of the succeeding joint 

axes. The homogeneous transformation matrix 𝑻𝑻 𝑖𝑖 𝑗𝑗, defining frame ℱ𝑗𝑗 with 
respect to (wrt) frame ℱ𝑖𝑖, is obtained in general as a function of six geomet-
ric parameters 𝛾𝛾𝑗𝑗 , 𝑏𝑏𝑗𝑗 ,𝛼𝛼𝑗𝑗,𝑑𝑑𝑗𝑗 ,𝜃𝜃𝑗𝑗 , 𝑟𝑟𝑗𝑗 (Khalil and Dombre 2002). However, if 𝒙𝒙𝑖𝑖 
is along the common normal between 𝒛𝒛𝑖𝑖 and 𝒛𝒛𝑗𝑗, both 𝛾𝛾𝑗𝑗 and 𝑏𝑏𝑗𝑗 will be zero. 
The matrix 𝑻𝑻 𝑖𝑖 𝑗𝑗 will be denoted as: 

 𝑻𝑻 𝑖𝑖 𝑗𝑗 = � 𝑹𝑹 𝑖𝑖 𝑗𝑗 𝑷𝑷 𝑖𝑖 𝑗𝑗
𝟎𝟎1×3 1

� (5) 

where 𝑹𝑹 𝑖𝑖 𝑗𝑗 is the (3×3) rotation matrix and 𝑷𝑷 𝑖𝑖 𝑗𝑗 is the translation vector of frame 
𝑗𝑗 with respect to frame 𝑖𝑖. 

Note that the definition of ℱ𝑗𝑗 such that its 𝒛𝒛𝑗𝑗 axis is along the axis of joint 𝑗𝑗, leads 
to symbolic expressions which are simpler than those obtained using 𝒛𝒛𝑗𝑗 along the 
joint axis 𝑗𝑗+1. Taking 𝒛𝒛𝑗𝑗 along the joint axis 𝑗𝑗 allows also to calculate the minimum 
inertial parameters, using simple rules (Khalil et al. 1989; Gautier and Khalil 1990; 
Khalil and Bennis 1994). 

3.3. Newton-Euler Formulation 

 

 

Figure 1. Forces and moments acting on a link of a tree structure 
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The Newton-Euler formulation describes the dynamics of a body in terms of forces 
and moments acting on it. 

The resultant of total wrenches (forces and moments) on link 𝑗𝑗 can be deduced 
from Fig. 1, as: 

 𝑭𝑭𝑡𝑡𝑗𝑗 = 𝑭𝑭𝑗𝑗 − ∑ 𝑭𝑭𝑘𝑘𝑘𝑘 − 𝑭𝑭𝑒𝑒𝑒𝑒𝑗𝑗  (6) 

Where 𝑭𝑭𝑡𝑡𝑗𝑗 = �𝒇𝒇𝑡𝑡𝑗𝑗𝑇𝑇   𝒏𝒏𝑡𝑡𝑗𝑗𝑇𝑇 �
𝑇𝑇
 is the total wrench on the link 𝑗𝑗, composed of a force 

𝒇𝒇𝑡𝑡𝑗𝑗 and a moment 𝒏𝒏𝑡𝑡𝑗𝑗, 𝑭𝑭𝑗𝑗 is the reaction wrench on link 𝑗𝑗 due to its precedent link 
𝑖𝑖, where 𝑖𝑖=𝑝𝑝(𝑗𝑗), 𝑭𝑭𝑒𝑒𝑒𝑒𝑗𝑗  is the supposed known external wrench exerted by link 𝑗𝑗 on 
the environment, and 𝑭𝑭𝑘𝑘 is the reaction wrench of link 𝑗𝑗 on link 𝑘𝑘, with 𝑝𝑝(𝑘𝑘)=𝑗𝑗. If 
link 𝑗𝑗 is a terminal link, the wrench 𝑭𝑭𝑘𝑘 will be eliminated. 

3.4. Inverse Dynamic Model Algorithm 

We denote by �̇�𝑽𝑗𝑗 the acceleration of link 𝑗𝑗, which is composed of the linear accel-
eration of the origin of frame 𝑗𝑗, noted �̇�𝒗𝑗𝑗, and the angular acceleration of frame 𝑗𝑗, 
noted �̇�𝝎𝑗𝑗, such that �̇�𝑽𝑗𝑗 = ��̇�𝒗𝑗𝑗𝑇𝑇  �̇�𝝎𝑗𝑗

𝑇𝑇�𝑇𝑇. 
 

Recall that the inverse dynamic algorithm is composed of two recursive equations: 
 
i- The forward, for 𝑗𝑗=1 to 𝑛𝑛, calculates 𝑻𝑻 𝑖𝑖 𝑗𝑗 and 𝝎𝝎𝑗𝑗 

𝑗𝑗 , �̇�𝑽𝑗𝑗 
𝑗𝑗 , 𝑭𝑭 𝑗𝑗 𝑡𝑡𝑗𝑗 using the fol-

lowing equations (Khalil and Dombre 2002): 

 𝑖𝑖 = 𝑝𝑝(𝑗𝑗) 

 𝝎𝝎𝑗𝑗 
𝑗𝑗 = 𝑹𝑹 𝑗𝑗 𝑖𝑖 𝝎𝝎𝑖𝑖 

𝑖𝑖 + 𝜎𝜎𝑗𝑗 𝒂𝒂𝑗𝑗 
𝑗𝑗 �̇�𝑞𝑗𝑗 = 𝝎𝝎𝑖𝑖 

𝑗𝑗 + 𝜎𝜎𝑗𝑗 𝒂𝒂𝑗𝑗 
𝑗𝑗 �̇�𝑞𝑗𝑗 (7) 

 �̇�𝑽𝑗𝑗 
𝑗𝑗 = 𝑺𝑺𝑖𝑖 

𝑗𝑗 �̇�𝑽𝑖𝑖 
𝑖𝑖 + �̈�𝑞𝑗𝑗 𝒂𝒂 

𝑗𝑗
𝑗𝑗 + �

𝑹𝑹 𝑗𝑗 𝑖𝑖 � 𝝎𝝎𝑖𝑖 
𝑖𝑖 × � 𝝎𝝎𝑖𝑖 

𝑖𝑖 × 𝑷𝑷 𝑖𝑖 𝑗𝑗�� + 2𝜎𝜎𝑗𝑗� 𝝎𝝎𝑖𝑖 × �̇�𝑞𝑗𝑗 
𝑗𝑗 𝒂𝒂𝑗𝑗 

𝑗𝑗 �

𝜎𝜎𝑗𝑗� 𝝎𝝎𝑖𝑖 × �̇�𝑞𝑗𝑗 
𝑗𝑗 𝒂𝒂𝑗𝑗 

𝑗𝑗 �
� (8) 

 𝑭𝑭 𝑗𝑗 𝑡𝑡𝑗𝑗 = 𝑰𝑰𝑜𝑜𝑗𝑗 �̇�𝑽𝑗𝑗 
𝑗𝑗 + �

𝝎𝝎𝑗𝑗 
𝑗𝑗 × � 𝝎𝝎𝑗𝑗 

𝑗𝑗 × 𝒊𝒊𝒎𝒎𝑗𝑗�
𝝎𝝎𝑗𝑗 
𝑗𝑗 × �𝑰𝑰𝑜𝑜𝑗𝑗 𝝎𝝎𝑗𝑗 

𝑗𝑗 �
� (9) 

 
with: 
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𝒊𝒊𝒎𝒎𝑗𝑗 = �𝑚𝑚𝑚𝑚𝑗𝑗     𝑚𝑚𝑚𝑚𝑗𝑗     𝑚𝑚𝑚𝑚𝑗𝑗�
𝑇𝑇
  ,    𝑰𝑰𝑜𝑜𝑗𝑗 = �

𝑚𝑚𝑗𝑗𝟏𝟏3 −𝒊𝒊𝒎𝒎�𝑗𝑗
𝒊𝒊𝒎𝒎�𝑗𝑗 𝑰𝑰𝑜𝑜𝑗𝑗

�  ,  𝑰𝑰𝑜𝑜𝑗𝑗 = �
𝑚𝑚𝑚𝑚𝑗𝑗 𝑚𝑚𝑚𝑚𝑗𝑗 𝑚𝑚𝑚𝑚𝑗𝑗
𝑚𝑚𝑚𝑚𝑗𝑗 𝑚𝑚𝑚𝑚𝑗𝑗 𝑚𝑚𝑚𝑚𝑗𝑗
𝑚𝑚𝑚𝑚𝑗𝑗 𝑚𝑚𝑚𝑚𝑗𝑗 𝑚𝑚𝑚𝑚𝑗𝑗

�   

 
where: 
- The upper-left index on the foregoing vectors indicates the projection frame. 
- 𝑖𝑖= 𝑝𝑝(𝑗𝑗), indicates the link precedent to link 𝑗𝑗. 
- 𝒂𝒂𝑗𝑗 
𝑗𝑗 =[0  0  1]𝑇𝑇 is the (3×1) unit vector along the axis of joint 𝑗𝑗. 

- 𝑺𝑺𝑖𝑖 
𝑗𝑗  the (6×6) screw transformation matrix of frame 𝑖𝑖 wrt to frame 𝑗𝑗, its elements 

can be obtained from 𝑻𝑻 𝑖𝑖 𝑗𝑗 . 

 𝑺𝑺𝑖𝑖 
𝑗𝑗 = �

𝑹𝑹 𝑗𝑗 𝑖𝑖 − 𝑹𝑹 𝑗𝑗 𝑖𝑖 𝑷𝑷�𝑗𝑗 
𝑖𝑖

𝟎𝟎3𝑒𝑒3 𝑹𝑹 𝑗𝑗 𝑖𝑖
� (10) 

- 𝒂𝒂 
𝑗𝑗

𝑗𝑗  is the (6×1) vector given by: 

 𝒂𝒂 
𝑗𝑗

𝑗𝑗 = � 𝒂𝒂𝑗𝑗𝑇𝑇 
𝑗𝑗 𝜎𝜎𝑗𝑗     𝒂𝒂𝑗𝑗𝑇𝑇 

𝑗𝑗 𝜎𝜎𝑗𝑗�
𝑇𝑇 = �0 0 𝜎𝜎𝑗𝑗  0 0 𝜎𝜎𝑗𝑗�

𝑇𝑇
 (11) 

-  𝑰𝑰𝑜𝑜𝑗𝑗  is the (6×6) spatial inertia matrix of link 𝑗𝑗. The symbols 𝑚𝑚𝑗𝑗,𝒊𝒊𝒎𝒎𝑗𝑗 , 𝑰𝑰𝑜𝑜𝑗𝑗  denote 
respectively, the mass, the (3×1) first moments vector, and the (3×3) inertia matrix 
at the origin of the local frame ℱ𝑗𝑗 fixed with link 𝑗𝑗 (Khalil and Dombre 2002). Their 
10 components are called the standard inertial parameters of link 𝑗𝑗. 

- 𝒊𝒊𝒎𝒎�𝑗𝑗 defines the (3×3) skew matrix of the vector product associated with the 
vector 𝒊𝒊𝒎𝒎𝑗𝑗. 

- 𝟏𝟏3 is the (3×3) identity matrix. 
 
These equations are initialized by �̇�𝑽0 

0 = [− 𝒈𝒈𝑇𝑇 
0 𝟎𝟎1×3]𝑇𝑇. This permits to take 

into account the gravity forces on all the links. 
 
ii- The backward recursive equations calculate for 𝑗𝑗=𝑛𝑛 to 1 (Khalil and Dombre 

2002): 

 𝑖𝑖 = 𝑝𝑝(𝑗𝑗) 

 𝑭𝑭 𝑗𝑗 𝑗𝑗 = 𝑭𝑭 𝑗𝑗 𝑡𝑡𝑗𝑗 + 𝑭𝑭 𝑗𝑗 𝑒𝑒𝑒𝑒𝑗𝑗  (12) 

 𝝉𝝉𝑗𝑗 = 𝒂𝒂 
𝑗𝑗

𝑗𝑗

𝑇𝑇
 𝑭𝑭 𝑗𝑗 𝑗𝑗 (13) 

If 𝑖𝑖 not equal 0, then calculate: 
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 𝑭𝑭 𝑖𝑖 𝑒𝑒𝑒𝑒𝑖𝑖 = 𝑭𝑭 𝑖𝑖 𝑒𝑒𝑒𝑒𝑖𝑖 + 𝑺𝑺 𝑗𝑗 𝑖𝑖
𝑇𝑇 𝑭𝑭 𝑗𝑗 𝑗𝑗 (14) 

𝑭𝑭 𝑗𝑗 𝑗𝑗 is the reaction wrench on link 𝑗𝑗 by link 𝑖𝑖, 𝑭𝑭 𝑗𝑗 𝑒𝑒𝑒𝑒𝑗𝑗 is the external wrench applied 
by link 𝑗𝑗 on the environment, which is supposed to be known. 

It should be mentioned that 𝑭𝑭 𝑖𝑖 𝑒𝑒𝑒𝑒𝑖𝑖  is first initialized to the known external wrench 
applied by link 𝑖𝑖 on the environment. It is then modified by Eq. (14) to include the 
contribution of link 𝑗𝑗 and at last used in Eq. (12) to continue the process of compu-
tation. 

Note: Expressing the vectors of link 𝑗𝑗 in the local frame ℱ𝑗𝑗 reduces considerably 
the cost of the computation, in particular because the inertial parameters 𝒊𝒊𝒎𝒎𝑗𝑗 and 
𝑰𝑰𝑜𝑜𝑗𝑗 are constant wrt this frame, and the unit vector along the joint axis 𝑗𝑗 is 
𝒂𝒂 𝑗𝑗 𝑗𝑗
𝑇𝑇=[0 0 1]. 

3.5. Input Data 

In order to generate the IDM, the program requires an input file containing the in-
formation required to calculate the desired output model. 

 
An example of such a file describing an RRP serial robot is given in the section 

4. The data needed can be summarized as follows: 
a) The numerical values defining the structure: The number of joints is given 

by the parameter n. The type of joints and the topology of the system are 
given by the lists sigma and p, respectively, whose components correspond 
to the 𝜎𝜎𝑗𝑗 and 𝑝𝑝(𝑗𝑗) values as defined in the section 3.2. 

b) The geometric parameters 𝛾𝛾𝑗𝑗 , 𝑏𝑏𝑗𝑗 ,𝛼𝛼𝑗𝑗 ,𝑑𝑑𝑗𝑗 ,𝜃𝜃𝑗𝑗 , 𝑟𝑟𝑗𝑗 defining the local frames are 
represented by the lists gamma, b, alpha, d, theta, and r, respectively. 

c) The inertia parameters 𝑚𝑚𝑗𝑗,𝑚𝑚𝑚𝑚𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑗𝑗 , 𝑚𝑚𝑚𝑚𝑗𝑗 , 𝑚𝑚𝑚𝑚𝑗𝑗 , 𝑚𝑚𝑚𝑚𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑗𝑗 , 𝑚𝑚𝑚𝑚𝑗𝑗 are rep-
resented by the lists M, MX, MY, MZ, XX, XY, XZ, YY, YZ, and ZZ. 

d) The external efforts components 𝑓𝑓𝑚𝑚𝑗𝑗 , 𝑓𝑓𝑚𝑚𝑗𝑗 , 𝑓𝑓𝑚𝑚𝑗𝑗 ,𝑛𝑛𝑚𝑚𝑗𝑗 ,𝑛𝑛𝑚𝑚𝑗𝑗 ,𝑛𝑛𝑚𝑚𝑗𝑗 are given in the 
FX, FY, FZ, CX, CY, and CZ lists. 

e) The gravity vector 𝒈𝒈 = [𝑔𝑔𝑚𝑚0,𝑔𝑔𝑚𝑚0 ,𝑔𝑔𝑚𝑚0 ]𝑇𝑇 is given by the list G. 
f) The joint velocities and accelerations vectors �̇�𝒒, �̈�𝒒 are defined by the lists QP 

and QDP, respectively. 
 
In order to simplify the formulation, we do not consider here the rotor inertia of 

actuators and the friction torques/forces. The simplest way to take into account the 
inertia 𝐼𝐼𝑎𝑎𝑗𝑗  of the rotor and transmission system of actuator 𝑗𝑗 is to add it to the ele-
ment 𝑀𝑀𝑗𝑗𝑗𝑗 of the inertia matrix 𝑴𝑴 of Eq. (1). The friction torques/forces can be taken 
into account by adding their expression to the right-hand side of Eq. (1). 
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Note that some parameters are given symbolically, but some others can be given 
numerically. This helps in noticeably reducing the size of the final generated equa-
tions. For example, many geometric parameters have zero values, and many angles 
are typically 0 or ±π/2. 

3.6. Symbolic Computation 

Symbolic computation requires using a computer algebra system in order to obtain 
the model in terms of symbolic expressions. The symbolic output expressions can 
be generated automatically to constitute a customized numerical code such as 
Fortran, Mathematica, MATLAB, C, etc. This program can be used to find the nu-
merical solution of the problem. The input of the symbolic dynamic program of 
tree-structure robots has been presented in the section 3.5. The values of the number 
of joints n, the topology of the tree-structure defined by p, and the type of the joints 
sigma must be given numerically. All the other parameters can be given symboli-
cally (general), or numerically (customized). Some standard symbolic simplifica-
tion instructions can be added to simplify the expressions. Although the output takes 
advantage of the particular values of the robot parameters (such as 0 or ±π/2), the 
output-expanded expressions will be complicated such that the cost of using them 
in a numerical program will be considerably greater than using general numerical 
program. The use of intermediate variables and grouping some inertial parameters 
together permit to obtain an efficient symbolic program. 

 
The next section presents a simple solution for obtaining an optimized symbolic 

output. 

3.7. Symbolic Programing Using Intermediate Variables 
Technique 

In Robotran and ARM robotics software, the authors presented complicated meth-
ods to select the intermediate variables and to group some constant terms together. 
This section presents another systematic solution, which is based on the following 
strategy: 

i- Using geometric description method, where the transformation matri-
ces 𝑻𝑻 𝑖𝑖 𝑗𝑗  are calculated with 4 parameters in most cases, whereas the 6 
parameters will be exceptional. 

ii- Defining the local frame of link 𝑗𝑗 such that 𝒛𝒛𝑗𝑗  is along the joint axis 𝑗𝑗. 
iii- Using the base inertial parameters (minimum set of inertial parame-

ters), which are calculated from the standard inertial parameters by 
eliminating some parameters and grouping some others together. 
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iv- Eliminating redundant calculations appearing in the general algorithm 
(section 3.4). For instance, the upper parts of Eqs. (8) and (9), corre-
sponding to the calculation of �̇�𝑽𝑗𝑗 

𝑗𝑗  and 𝑭𝑭 𝑗𝑗 𝑡𝑡𝑗𝑗 , contain many redundant cal-
culations which can be eliminated by using the matrices 𝑼𝑼 𝑖𝑖 𝑖𝑖 and 𝑼𝑼 𝑗𝑗 𝑗𝑗  re-
spectively, where 𝑼𝑼 𝑖𝑖 𝑖𝑖 = �̇�𝝎� 𝑖𝑖 𝑖𝑖 + 𝝎𝝎� 𝑖𝑖 𝑖𝑖 𝝎𝝎� 𝑖𝑖 𝑖𝑖  should have been calculated 
during a previous iteration, and some elements needed to calculate 𝒏𝒏 𝑗𝑗 𝑗𝑗  
should have been calculated while computing 𝑼𝑼 𝑗𝑗 𝑗𝑗 . 

 
The use of Khalil and Kleinfinger notations verifies the first two conditions. 

These notations allow also the definition of the base parameters using closed-form 
rules. For instance, if joint 𝑗𝑗 is revolute, the parameters 𝑚𝑚𝑚𝑚𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑗𝑗  and 𝑚𝑚𝑗𝑗 can be 
grouped on the inertial parameters of link 𝑝𝑝(𝑗𝑗), whereas if joint 𝑗𝑗 is prismatic, the 
parameters 𝑚𝑚𝑚𝑚𝑗𝑗 , 𝑚𝑚𝑚𝑚𝑗𝑗 , 𝑚𝑚𝑚𝑚𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑗𝑗 , and 𝑚𝑚𝑚𝑚𝑗𝑗 can be grouped on the inertial parameters 
of link 𝑝𝑝(𝑗𝑗). The grouping relations are general and can be calculated using closed-
form relations (Gautier and Khalil 1990). 

The use of intermediate variables (Khosla 1986; Khalil and Kleinfinger 1985) is 
carried out after each computation step (matrix multiplication or addition) by re-
placing the expressions of the elements of a vector or a matrix by an intermediate 
variable when this element contains at least one mathematical operation, or com-
posed of sin or cos functions. The obtained vectors and matrices are propagated 
in the subsequent equations. This procedure saves the multiplications by one (and 
minus one) and zero, and additions with zero. At the end, the model is obtained as 
a set of intermediate variables without incorporating loop computations. The list of 
output variables is then inspected, and the variables that have no effect on the de-
sired output can be eliminated. 

The output list can be put in the form of any desired computer code such as 
MATLAB, Mathematica, Fortran, C, etc. 

The computation cost of the inverse dynamic model using this technique for a 
general robot, whose parameters are symbols without any particular values, is given 
by 92𝑛𝑛–127 multiplications and 81𝑛𝑛–117 additions, which represent about 55% the 
cost of a numerical program. This cost will be reduced considerably (to attain 20%) 
by increasing the number of robot parameters with particular numerical values. 
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4. Example of Application 

 
 
 

 

Figure 2. Example of an RRP serial robot 

 
 
 
Let us consider the calculation of the IDM of the RRP serial robot given in Fig. 2. 
The input data for the customized symbolic program is given in Fig. 3. Note that 
the geometric parameter corresponding to the joint variable 𝑗𝑗 (joint position) is de-
noted qj. This is the case for the parameter thetaj when 𝑗𝑗 is revolute (sigma=0), 
or for the parameter rj when 𝑗𝑗 is prismatic (sigma=1). 
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Figure 3. Example of symbolic input file for the RRP serial robot 

 
As already mentioned, in order to reduce the number of operations and improve 

the efficiency of the symbolic IDM output program, the determination of the base 
inertial parameters is carried out. The goal of this first step is to get the minimum 
set of inertial parameters not equal to zero and that are sufficient to calculate the 
dynamic model of the robot. They are obtained from the classical inertial parameters 
by eliminating those having no effect on the dynamic model and by regrouping 
some other parameters. The method that is used is described in (Gautier and Khalil 
1990) and (Khalil and Bennis 1994). It consists in applying simple rules that use 
closed-form relations function of the geometric parameters of the robot. The rules 
to apply depend on the type of the joints and the topology of the robot, so the base 
inertial parameters and the calculated grouping relations are specific to each type of 
robot. 
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Figure 4. Base inertial parameters and grouping relations of the RRP serial robot 

 
The result of this stage for the RRP serial robot example is given in the output 

file shown in Fig. 4, also containing the corresponding grouping relations. The 
standard inertial parameters that are eliminated or regrouped on other parameters 
are put to zero. The parameters on which other ones are regrouped have their name 
completed with the letter R. The grouping relations are used when replacing the 
symbolic value of these variables by their numerical value. 

 
A new symbolic input file using the base inertial parameters is also generated 

and is given in Fig. 5. This input file is then used to compute the robot IDM. 
 
A final step, called optimizer, is done after the generation of the symbolic IDM 

in order to reduce the number of calculations in the output program. At this time, 
one can select the list of the desired output variables (in the example, the joint tor-
ques are chosen) and the format of the output file (in the example, the MATLAB 
format is chosen). The output program is then inspected, and all the variables that 
are not involved in the computation of the selected output variables are eliminated, 
implying the elimination of their calculation. 
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Figure 5. Symbolic input file using the base inertial parameters of the RRP serial robot 

 
 
Figure 6 gives the symbolic IDM output file using the base inertial parameters. 
 
Here is the comparison of the calculation costs: 

- Numerical (Luh et al.): 101𝑛𝑛–11=292 additions and 137𝑛𝑛–22=389 multi-
plications. 

- Calculation cost using standard inertial parameters: 92 additions and 95 
multiplications after optimizer (152 additions and 173 multiplications be-
fore optimizer). 

- Calculation cost using base inertial parameters: 66 additions and 77 multi-
plications after optimizer (108 additions and 141 multiplications before 
optimizer). 
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The parameters that have been used to compute the IDM are recalled at the be-

ginning of the output file given in Fig. 6. 
 

 

Figure 6. Symbolic IDM output file of the RRP serial robot in MATLAB format 
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Figure 6. Symbolic IDM output file of the RRP serial robot in MATLAB format (continued) 
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Figure 6. Symbolic IDM output file of the RRP serial robot in MATLAB format (continued) 

5. Overview of Computer Algebra Systems for Symbolic 
Computation 

Many software of computer algebra systems are now available. Some systems are 
open source, and some others are commercial. They can handle expressions and can 
carry out matrix operations and trigonometric simplifications. Their use in program-
ing symbolic dynamics makes the programing procedure easy. Among the most 
cited computer algebra systems, we can mention: 
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Axiom open source http://axiom-developer.org 
DoCon open source http://www.botik.ru/pub/local/Mechveliani/docon/2.12 
Maxima  open source https://maxima.sourceforge.io 
Reduce open source https://reduce-algebra.sourceforge.io 
SymPy open source https://www.sympy.org 
Maple commercial https://www.maplesoft.com 
Mathematica commercial https://www.wolfram.com/mathematica 
MuPAD commercial https://www.mathworks.com/discovery/mupad.html 
 See also  https://www.mathworks.com/products/symbolic.html 
(MuPAD constitutes the Symbolic Math Toolbox of MATLAB since 2008) 

 
However, some software packages have been developed using general purpose 

programing languages such as Fortran or C++ after developing their own symbolic 
manipulation library. 

6. Overview of Software Packages for Dynamic Models 

The emergence of powerful processors and user-friendly languages and software 
led the scientific community to develop numerical programs able to cover a wide 
range of applications. Regarding multibody dynamics, several numerical packages 
were developed. Among those commonly cited are the following: Adams, Open 
Dynamics Engine, Simpack, PSpice, Mecano, etc. Each of them is described as a 
general-purpose code although, in reality, faced with the huge variety of applica-
tions, they all impose some restrictions on the modeling and analysis processes. The 
symbolic modeling is based on another concept where the generation of the equa-
tions is separated from the analysis process. Other than reducing the computational 
time, the symbolic models can be generated in different languages (Fortran, C, 
MATLAB, Mathematica...) and also for different environments for control optimi-
zation. They differ in their capabilities in a variety of ways including topologies 
(serial, tree, closed-loop, and mobile), joint models (one or more degrees of free-
dom, flexible), links model (rigid, flexible), input data, output models (kinematics, 
dynamics, identification, etc.), and underlying formalism (Newton-Euler, La-
grange), speed of calculation, accuracy, numerical integration routines, integration 
with other code, application support, user interface, graphics support, and cost. 
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Table 1 lists some of these software packages. 
 

Software Main characteristics 
Carsim Focuses on vehicle dynamics 

Maplesim 
Graphical modeling (Shi and McPhee 2000) 
Rigid and flexible multibody systems 

MOBILE 
Object-oriented approach (Kecskemethy 1993; Kecskemethy et al. 1997) 
Multibody mechatronic systems 

MotionGenesis Produces Fortran programs for simulation 

Neweul-M² 
Uses the MATLAB environment (Kurz et al. 2010) 
Mechanical multibody systems 

Robotran 
Generates kinematic and dynamic models of rigid and flexible multibody 
systems in MATLAB, Python, or C subroutines 

ROSAM II 
Uses the Maple environment (Kawasaki and Shimizu 1999) 
Generates kinematic and dynamic symbolic models and calculates the 
base parameters of serial, tree-structured, and closed-loop robots 

SD/FAST Provides symbolic equations as C or Fortran source code 

SYMORO+ 

Uses the (Khalil and Kleinfinger 1986) notations. Generates geometric, 
kinematic, and dynamic models. Calculates the base inertial parameters 
and generates dynamic identification models. Output models generated in 
MATLAB, Mathematica, Maple, Fortran, or C source code 

Table 1. Examples of software packages for symbolic dynamic models 

7. Conclusion and Further Reading 

This entry has presented the symbolic customized computation of the inverse dy-
namic model of an RRP serial robot. The model is expressed in terms of intermedi-
ate variables. 

Inverse and direct dynamic models represent the most important problems in ro-
botics dynamics; however, there are many topics in dynamics that have not been 
treated. For further reading, the following subjects are suggested: 

7.1. Flexible Links 

In this entry, the joints are supposed perfect and the links are supposed rigid. How-
ever, some structures may contain flexibility in the joints or the links that must be 
taken into account in order to obtain models with acceptable accuracy approaching 
the real response of the system. In general, the joint flexibility is modeled using 
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lumped elasticity (Khalil and Gautier 2000; Kruszewski et al. 1975; Wittbrodt et al. 
2006), i.e., using 1 dof springs. The link flexibility can be approximated by finite 
number of lumped springs, but to obtain a correct model accuracy, a higher number 
of elements is required, thus increasing the computational time. To have good ac-
curacy, the link-distributed flexibility is treated using finite elements. Some general 
methodologies based on the Lagrange principle that can be applied to any system 
are proposed (Book 1984). Some other approaches use the generalized Newton-
Euler equations that take into account the flexible variables (Shabana 1990; Sharf 
and Damaren 1992; Boyer and Khalil 1998). Hybrid dynamic models (inverse and 
direct problems) for structure with flexible links and joints are also proposed (Khalil 
et al. 2017). 

7.2. The Identification of the Dynamic Parameters 

To use the dynamic models in simulation or control, the numerical values of the 
inertial parameters of the links of the robot are needed. These values can be obtained 
by identification techniques using an identification model based in expressing the 
inverse dynamic model as a linear function of the inertial parameters. 

An important topic related to this model is the determination of the identifiable 
parameters. In fact, not all of the inertial parameters can be identified; some of them 
have no effect and can be eliminated, and some others must be grouped together. 

The symbolic form of this model is interesting since the identification must be 
carried out on a very big number of data. 

For more details about this topic, the reader can consult (Hollerbach et al. 2016; 
Khalil and Dombre 2002; Gautier 1991). 

Figures 

Figure 1. Forces and moments acting on a link of a tree structure 
Figure 2. Example of an RRP serial robot 
Figure 3. Example of symbolic input file for the RRP serial robot 
Figure 4. Base inertial parameters and grouping relations of the RRP serial robot 
Figure 5. Symbolic input file using the base inertial parameters of the RRP serial 

robot 
Figure 6. Symbolic IDM output file of the RRP serial robot in MATLAB format 
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