Design of Inhibitors of the Intrinsically Disordered Protein NUPR1: Balance between Drug Affinity and Target Function - Archive ouverte HAL Access content directly
Journal Articles Biomolecules Year : 2021

Design of Inhibitors of the Intrinsically Disordered Protein NUPR1: Balance between Drug Affinity and Target Function

Bruno Rizzuti
Wenjun Lan
  • Function : Author
Patricia Santofimia-Castaño
Zhengwei Zhou
  • Function : Author
Adrián Velázquez-Campoy
Olga Abián
José Neira
Yi Xia
Juan Iovanna

Abstract

Intrinsically disordered proteins (IDPs) are emerging as attractive drug targets by virtue of their physiological ubiquity and their prevalence in various diseases, including cancer. NUPR1 is an IDP that localizes throughout the whole cell, and is involved in the development and progression of several tumors. We have previously repurposed trifluoperazine (TFP) as a drug targeting NUPR1 and, by using a ligand-based approach, designed the drug ZZW-115 starting from the TFP scaffold. Such derivative compound hinders the development of pancreatic ductal adenocarcinoma (PDAC) in mice, by hampering nuclear translocation of NUPR1. Aiming to further improve the activity of ZZW-115, here we have used an indirect drug design approach to modify its chemical features, by changing the substituent attached to the piperazine ring. As a result, we have synthesized a series of compounds based on the same chemical scaffold. Isothermal titration calorimetry (ITC) showed that, with the exception of the compound preserving the same chemical moiety at the end of the alkyl chain as ZZW-115, an increase of the length by a single methylene group (i.e., ethyl to propyl) significantly decreased the affinity towards NUPR1 measured in vitro, whereas maintaining the same length of the alkyl chain and adding heterocycles favored the binding affinity. However, small improvements of the compound affinity towards NUPR1, as measured by ITC, did not result in a corresponding improvement in their inhibitory properties and in cellulo functions, as proved by measuring three different biological effects: hindrance of the nuclear translocation of the protein, sensitization of cells against DNA damage mediated by NUPR1, and prevention of cancer cell growth. Our findings suggest that a delicate compromise between favoring ligand affinity and controlling protein function may be required to successfully design drugs against NUPR1, and likely other IDPs.
Fichier principal
Vignette du fichier
biomolecules-11-01453.pdf (1.67 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive
Licence

Dates and versions

hal-03536609 , version 1 (21-06-2023)

Licence

Identifiers

Cite

Bruno Rizzuti, Wenjun Lan, Patricia Santofimia-Castaño, Zhengwei Zhou, Adrián Velázquez-Campoy, et al.. Design of Inhibitors of the Intrinsically Disordered Protein NUPR1: Balance between Drug Affinity and Target Function. Biomolecules, 2021, 11 (10), pp.1453. ⟨10.3390/biom11101453⟩. ⟨hal-03536609⟩
17 View
10 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More