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Abstract—Manipulated images and videos, i.e., deepfakes
have become increasingly realistic due to the tremendous
progress of deep learning methods. However, such manipulation
has triggered social concerns, necessitating the introduction of
robust and reliable methods for deepfake detection. In this
work, we explore a set of attention mechanisms and adapt
them for the task of deepfake detection. Generally, attention
mechanisms in videos modulate the representation learned by
a convolutional neural network (CNN) by focusing on the
salient regions across space-time. In our scenario, we aim
at learning discriminative features to take into account the
temporal evolution of faces to spot manipulations. To this end,
we address the two research questions ‘How to use attention
mechanisms?’, and ‘What type of attention is effective for
the task of deepfake detection?’ Towards answering these
questions, we provide a detailed study and experiments on
videos tampered by four manipulation techniques, as included
in the FaceForensics++ dataset. We investigate three scenarios,
where the networks are trained to detect (a) all manipulated
videos, (b) each manipulation technique individually, as well as
(c) the veracity of videos pertaining to manipulation techniques
not included in the train set.

I. Introduction

Manipulated images and videos have become increasingly
realistic and hence can pose serious security concerns and
threats. Given that our society relies heavily on the ability
to produce and exchange legitimate and trustworthy doc-
uments, forged images in driver’s licences and passports
can imply serious and far-reaching negative consequences
on businesses, individuals, and political entities. While in
the past multimedia manipulation was time consuming and
costly, deep learning has well reduced costs, time and skill
needed for realistic manipulation.

In the context of computer vision, creating deepfakes is an
intriguing novel area of research [49], [47], [50]. However,
deepfakes entail a number of challenges and threats, given
that such manipulations can fabricate animations of subjects
involved in actions that have not taken place, and such
manipulated data can be spread rapidly via social media.
Particularly, we cannot trust anymore, what we see or hear
on video, as deepfakes betray sight and sound, the two
predominantly trusted human innate senses [37].

We can foresee deepfakes entailing the premise to inflict
severe damage. Social threats [10], [16] can affect domains

such as journalism and news media journalists1234. In this
context, we have two cases of concern. The first being
deepfakes being considered as real, and the second relating
to real videos being considered as fake.

Recent research on deepfake generation is able to forge
short videos [42], [27], as well as to generate videos from
a single ID photo [5]. In addition, fully synthesized audio-
video images are able to replicate synchronous speech and
lip movement [40] of a target person. Several deepfake-
schemes have evolved till date. Head puppetry where the
dynamics of a head from a source person are synthesized
in a target person and face swapping where the whole face
of a target person is swapped with that of a source person.
Lip syncing the lip region of the target person is reenacted
by the lip region of a source person are also performed
in the first category. Currently such manipulations include
subtle imperfections that can be detected by humans and,
if trained well, by computer vision algorithms [30], [29],
[3]. Towards detecting such attacks a number of multimedia
forensics based detection strategies have been proposed [3],
[36], [4], [14]. We note that such techniques have not been
generalizable, i.e., were not able to provide a comprehensive
solution against unseen manipulation techniques.

Therefore, generalizable deepfake detection remains a
challenge. Existing detection methods [43], [53] have ex-
plored video classification in this context. Specifically, state-
of-the-art networks successful in action recognition [51] such
as I3D [9], 3D ResNet and 3D ResNext [20]. However, brute-
force convolutional operations across space and time do not
provide an optimal solution for deepfake detection, as 3D
convolutions are too rigid to capture the subtle variations
among original and generated fake videos. Therefore, an
intuitive direction of research is towards applying atten-
tion mechanisms on top of aforementioned convolutional
networks, as investigated in [35]. This raises a number of
open questions related to attention mechanism for deepfake
detection. Motivated by the above, in this paper we focus on
attention mechanisms and related exploitation for deepfake
detection. In particular, we investigate the following.
• What type of attention mechanism is adequate in deep-
fake detection?

1https://edition.cnn.com/interactive/2019/01/business/
pentagons-race-against-deepfakes/

2https://www.nytimes.com/2019/11/24/technology/
tech-companies-deepfakes.html

3https://www.theguardian.com/commentisfree/2018/jul/22/
deep-fake-news-donald-trump-vladimir-putin

4https://www.cnbc.com/2019/10/14/
what-is-deepfake-and-how-it-might-be-dangerous.html



• How should we exploit attention for deepfake detection?
To be specific, where in the convolutional neural net-
work the attention layers should be applied?

• As deepfake detection constitutes a video classification
problem, how should we handle space and time, with
respect to attention? Do we need to impose both spatial
and temporal attention for deepfake detection? If so,
then the next question is, should the network learn joint
or dissociated spatio-temporal attention?

To answer the above questions, we revisit the popular deep-
fake detection methods, mostly inspired from the action
recognition domain. Empirically, we find that spatio-temporal
attention is ornamental for the task of deepfake detection.
However, the next question is which type of attention is
pertinent for this problem? To this end, our experimental
analysis shows that self-attention mechanism when applied
to all the convolutional layers is more effective in contrast
to attention layers applied on top of the last convolutional
layer. Interestingly, this observation is contradictory to the
trends observed in action classification models. This suggests
that deepfake detection is inherently different from classical
action recognition and, hence requires specific approaches.
Finally, we also introspect this binary classification problem
through vision transformers. This is mostly inspired from the
chronology of experiments performed to answer the above
questions. We see that vision transformers, unlike for action
classification fail to outperform the convolutional counterpart
for deepfake detection. But interestingly, the transformers
even with small amount of training examples and no pre-
training on a large dataset generalize over the training distri-
bution rather than over-fitting as in convolutional networks
in this domain.
Thus, in this paper, we discuss the best strategies to learn
attention for detecting deepfakes. Through our extensive
experiments, we show different settings for which a 3D
convolutional network can be best exploited for deepfake
detection. We also provide the end users a series of choices
of networks (including vision transformers) for deepfake
detection depending on their constraints. We believe that this
experimental study will not only provide solution to best
exploit the available resources for deepfake detection, but
also shows potential research direction in this domain.

II. Related Work
Recent overview articles revisit the deepfake detec-

tion landscape [43], [53]. Generative adversarial networks
(GANs) [18] have put on a direction for face manipulations
including identity [24], [32], facial attributes [52], as well as
facial expressions [31], [23], [48], [49], [50].

In the context of detecting such deepfakes a number of
approaches were based on image-analysis [1], [34], video
analysis [30], [3], [36] or jointly on audio and video anal-
ysis [28]. It is worth mentioning that some video analysis
based manipulation approaches perform better than image-
based ones, however such approaches are only applicable
to particular kinds of attacks. For instance, many of them
[30], [3] may fail, if the quality of the eye area is not

sufficiently good or the synchronization between video and
audio is not sufficiently natural [29]. Image-based approaches
consists of general-purpose detectors, such as algorithm
proposed by Fridrich and Kodovsky [17] and are hence
applicable to both, steganalysis and facial reenactment video
detection. Rahmouni et al. [33] presented an algorithm to
detect computer-generated images, which was extended to
detecting computer-manipulated images.

Agarwal et al. employed both, facial identity as well as
behavioural biometrics information to produce the temporal
component of videos to classify a video as real or fake [2].
Cozzolino et al. used temporal facial features to learn be-
haviour of a person [13]. Guarnera et al. argued that deepfake
videos contain a forensic trait pertaining to the generative
model used to create them. Specifically, they showed that
convolutional traces are instrumental in detecting deepfakes
[19]. Khalid and Woo [26] posed deepfake detection as an
anomaly detection problem and used variational autoencoder
for detecting deepfakes. Montserra et al. proposed a network
that exploits the advantages of both, convolutional, as well
as recurrent network to classify the integrity of a video.
Hernandez-Ortega [21] proposed a deepfake detection frame-
work based on physiological measurement, namely heart rate
using remote photoplethysmography (rPPG). Trinh et al. [45]
utilized dynamic representations (i.e., prototypes) to explain
deepfake temporal artifacts. Sun et al. [39] attempted to
generalize forgery face detection by proposing a framework
based on meta-learning.

Rössler et al. [34] presented a comparison of existing
handcrafted, as well as deep neural networks (DNNs), which
analyzed the FaceForensics++ dataset and proceeded to
detect adversarial examples in an image-based manner.

III. Background: Existing Attention Mechanisms
In this section, we review attention mechanisms deemed

relevant for deepfake detection. Attention mechanisms are
generally designed to identify and focus on salient infor-
mation to capture fine-grained information. Deepfake videos
being accurate, possess subtle changes with respect to real
videos. Therefore, attention mechanisms are instrumental in
facilitating improved classification accuracy of a deepfake
detector by enabling the model to focus on discriminative
information. Firstly, we discuss attentional layers placed on
top of convolutional networks. We begin by assuming that a
video clip +2 ∈ R3×�×, is sampled from the original video.

a) Squeeze and Excitation block: The Squeeze and
Excitation (SE) block [22] boosts the representational power
of a CNN by modelling inter-dependencies between channels
of the features learnt by it. The SE block comprises of two
operators: squeeze and excitation. While the squeeze opera-
tion aggregates features across spatial dimensions and creates
a global distribution of channel-level feature response, the
excitation operation is a self-gating mechanism that generates
a vector of per-channel re-calibration weights. We proceed
to define both operations.

Squeeze Operation Let us assume a feature from a set
of convolutional blocks - ∈ '"×#×� is represented as



-=[G1, G2, ....G� ], where G8 ∈ '"×# . The squeeze operation
exploits global spatial information by squeezing - through
global average pooling and creating a channel descriptor,
I ∈ '� where 8Cℎ element of I is calculated as

I8 = �B@ (G8) =
1

" × #

"∑
9=1

#∑
:=1

G8 ( 9 , :). (1)

Excitation Operation exploits information acquired
through squeeze operation to model dependency among
channels through gating with sigmoid activation. Formally,
squeeze operation is defined the following.

0 = �4G (I, F1, F2) = f(F2X(F1I)), (2)

where F1 ∈ '
�
A
×� , F2 ∈ '�×

�
A . In this context 0 denotes

the modulation weights per channel and X denotes ReLU.
The recalibrated feature is then computed as

G̃8 = �B20;4 (G8 , 08) = 08G8
-̃ = [G̃1, G̃2, ....G̃� ] .

(3)

b) Self-attention Block: In contrast to Squeeze-
Excitation operation, self-attention block is characterized by
computing the response at a position as a weighted sum
of features at all positions in the input feature maps. The
learning mechanism of attention weights for a space-time
volume allow for modelling of long-term relationships.

Self-attention enables CNNs to capture long-range de-
pendencies by activating relevant space-time pixels in the
latent space through its own embeddings. Formally, in the
context of CNNs, a self-attention operation in this scenario
implemented via non-local block [46] is defined as

>8 =
1

� (G)
∑
∀ 9
?(G8 , G 9 ) A (G 9 ), (4)

where G and > denote the input and output features, re-
spectively. ? represents a pairwise function that computes a
relationship (e.g., affinity) between pixels 8 and 9 . A signifies
a unary function, which computes a representation of input
feature at pixel 9 . � (G) is a normalization factor and is set
as � (G) = ∑

∀ 9 ?(G8 , G 9 ).
In this chapter, the default choices of ? and A are used.

6 is a linear embedding and is defined as 6(G) = ,6 G 9 .
Pairwise function is defined as

?(G8 , G 9 ) = 4U(G8)
) V (G 9 ) , (5)

where U(G8) = ,UG8 and V(G 9 ) = ,VG 9 are the associated
embeddings. This pairwise function is called embedded
Gaussian and primarily computes dot-product similarity in
the embedding space.

c) Visual Transformer:: Self-attention mechanisms
aimed at learning attention weights for a convolutional
feature map are now being replaced with fully attentional
networks. Therefore, we discuss and explore vision trans-
former [15], [44], [38] in our context. Deviating from former
two attention mechanisms, we here aim at exploiting the
texture of deepfake videos through vision transformers. We

(a) (b) (c) (d) (e)

Fig. 1. A sample frame from the FaceForensics++. From left to right:
original source and target (small) images, deepfakes, face2face, faceswap,
neuraltextures.

are particularly interested in video transformers, and thus
focus on a state-of-the-art method, namely TimeSformer [7],
which inputs patches (described as tokens) from a video clip.
The patches of dimension %×% which are sub-parts of images
are stacked across space and time. These patches while
mapping into vectors are fed to a linear embedding to encode
them into tokens. Then, these tokens are processed with self-
attentional operations by projecting each of them into Keys
( ∈ RD), Queries (& ∈ RD), and Values (+ ∈ RD). Finally,
the modulated feature vector F is obtained by

� = B> 5 C<0G(& ×  
)

√
�
) ×+. (6)

This recombination of tokens in � indicates highlighting
the pertinent tokens within a frame (for spatial attention),
highlighting the pertinent temporal frame within a video
clip (for temporal attention), and both (for spatio-temporal
attention). The type of attention is implemented by invoking
the above operation across the desired dimension. In our
experiments, we explore both, joint spatio-temporal attention
and dissociated spatial and temporal attention for detecting
deepfakes. Note that dissociated spatial and temporal atten-
tion is implemented by applying temporal and then spatial
attention, respectively.

IV. Dataset
The FaceForensics++ dataset [34] comprises of 1000 talk-

ing subjects, represented in 1000 real videos. Further, based
on these 1000 real videos, 4×1000 adversarial examples have
been generated by following four manipulation schemes.

1) Face-swap represents a graphic approach transferring
a full face region from a source video to a target video.
Using facial landmarks, a 3D template model employs
blend-shapes to fit the transferred face. FaceSwap5.

2) Deepfakes has become the synonym for all face ma-
nipulations of all kind, it origins to FakeApp6 and
faceswap github7.

3) Face2face [42] is a facial reenactment system that
transfers the expressions of a source video to a target
video, while maintaining the identity of the target
person. Based on an identity reconstruction, the whole

5https://github.com/MarekKowalski/FaceSwap/
6https://www.fakeapp.com
7https://github.com/deepfakes/faceswap



video is being tracked to compute per frame the
expression, rigid pose, and lighting parameters.

4) Neuraltextures [41] incorporates facial reenactment
as an example for a NeuralTextures-based rendering
approach. It uses the original video data to learn a
neural texture of the target person, including a render-
ing network that has been trained with a photometric
reconstruction loss in combination with an adversarial
loss. Only the facial expression corresponding to the
mouth region is being modified, i.e., the eye region
stays unchanged.

V. Experiments

We select one state of the art 3D CNN method, namely
3D ResNet [20] as base network, which has excelled in
action recognition. After each ResNet block we include above
mentioned attention, in order to perform our experiments.
The networks have been pre-trained on the large-scale human
action dataset Kinetics-400 [25]. We inherit the weights in
the neural network models and further fine-tune the networks
on the FaceForensics++ dataset in all our experiments. We
detect and crop the face region based on facial landmarks,
which we detect in each frame using the method from Bulat
and Tzimiropoulos [8]. Next, we enlarge the detected region
by a factor of 1.3, in order to include pixels around the face
region.

We conduct experiments on the manipulation techniques
listed above: (a) all manipulation techniques, (b) each
manipulation technique separately, as well as (c) cross-
manipulation techniques. Towards this, we split train, test
and validation sets according to the protocol provided in the
FaceForensics++ dataset.

A. Implementation details

We use PyTorch to implement our models. The three entire
networks are trained end-to-end on 4 NVIDIA V100 GPUs.
We set the learning rates to 14−3. The size of input for
3D ResNet are 16 frames of spatial resolution 112 × 112.
For testing, we split each video into short trunks, each of
temporal size of 250 frames. The final score assigned to each
test video is the average value of the scores of all trunks. For
training TimeSformer, we use clips +2 of size 8×3×224×224,
with frames sampled at a rate of 1/32. The patch size is 16
× 16 pixels. During inference, we sample a single temporal
clip in the middle of the video. We use 3 spatial crops (top-
left, center, bottom-right) from the temporal clip and obtain
the final prediction by averaging the scores for these 3 crops.
We note that the difference in the training/testing mechanism
for 3D ResNet and TimeSformer but this is owing to their
configuration for achieving the best performance. We report
in all experiments the true classification rates (TCR).

B. All Manipulations Experiments

We evaluate the performance of 3D ResNet with or without
attention, and also the recently popular visual transformers
for the task of deepfake detection.

TABLE I
Detection of all four manipulation methods, LQ. TCR = True

classification rate, DF = deepfakes, F2F = face2face, FS = face-swap,
NT = neuraltextures.

Algorithm Train and Test TCR
Steg. Features + SVM [17] FS, DF, F2F, NT 55.98

Cozzolino et al. [12] FS, DF, F2F, NT 58.69
Bayar and Stamm [6] FS, DF, F2F, NT 66.84
Rahmouni et al. [33] FS, DF, F2F, NT 61.18

MesoNet [1] FS, DF, F2F, NT 70.47
XceptionNet [11] FS, DF, F2F, NT 81.0

3D ResNet FS, DF, F2F, NT 83.86
3D ResNet (with SE) FS, DF, F2F, NT 80.0

3D ResNet (non-local 1,2,4) FS, DF, F2F, NT 85.85
3D ResNet (non-local 4,4) FS, DF, F2F, NT 81.79

3D ResNet (non-local 1,2,3,4) FS, DF, F2F, NT 86.72
TimeSformer FS, DF, F2F, NT 82.3

One of the challenges in deepfake detection is that the
dataset is unbalanced i.e. the number of fake videos being
nearly four times the number of real videos. To handle this
issue, we use weighted cross-entropy loss to negate the biased
scenario. The results are provided in Table I. We compare the
results with image-forgery detection algorithms and the state-
of-the-art such as XceptionNet [34], learning-based methods
used in the forensic community for generic manipulation
detection [12], [6], computer-generated vs. natural image
detection [33] and face tampering detection [1].

After observing the experimental results, we conclude that
the video-based algorithms perform similar to the image-
based algorithm XceptionNet. This may be due to the smaller
size of the training data. We employ different attention
mechanism on 3D ResNet discussed in section III. We
employ, SE based attention, non-local block on top of
3D convolutional network and finally also TimeSformer (a
transformer type network). Further, we note that non-local
attentional layers when placed on top of each block of 3D
ResNet, outperform the pre-trained 3D ResNet, Transformer
and the 3D ResNet with SE attention. We also note that
Kinetics-based pretraining significantly boosts the detection
performance.

We note that tampering of videos in the FaceForensics++
dataset is done either by replacing the largest facial region
in the target image and advanced blending and color correc-
tion algorithms, or by learning-based manipulation models.
Hence, seamlessly superimposing source onto target videos
poses an inherent dissimilarity. Hence, capturing long-range
dependencies as in the proposed non-local combination is
highly beneficial in video processing for this scenario rather
than previous settings proposed in [46]. However, it should
be considered that the proposed setting is computationally
expensive, as attention is employed at the lower layers, where
the feature size is larger.

C. Single Manipulation Experiments
In this section, we investigate the performances of all

baselines when trained and tested on single manipulation



TABLE II
Ablation study, showcasing the effectiveness of the non-local
blocks based on its position. (Non-local 4,4 implies 4 non-local

blocks after 4th Resnet block, Non-local 1,2 implies 1 non-local
block after 1st and 2nd Resnet block)

Network Attention DF F2F FS NT
3D ResNet Non-local 1,2 90.45 86.64 90.52 75.09
3D ResNet Non-local 3,4 90.48 87.11 89.19 75.91
3D ResNet Non-local 1,2,3 91.71 88.09 90,01 75.13
3D ResNet Non-local 4,4 91.11 88.27 90.04 77.05
3D ResNet Non-local 1,2,4 94.67 89.20 92.13 76.00
3D ResNet Non-local 1,2,3,4 95.16 91.25 94.11 78.29

TABLE III
Ablation study, determining the effectiveness of different

attention types (joint or dissociated spatial and temporal) for
deepfake detection.

Network Attention DF F2F FS NT
TimeSformer Joint 90.7 73.9 82.1 67.5
TimeSformer Dissociated 87.9 72.9 80.1 69.3

techniques. We report the TCRs in Table IV. The pattern of
the results found to be very similar to the above discussed,
where training and testing was performed on all manipulation
techniques.

Our results suggest that the most challenging manipulation
approach is the GAN-based neuraltextures-approach. It is to
be noted that neuraltextures trains a unique model for each
video, which results in a higher variation of possible artifacts,
which can be reason for the low detection rates. We note that
attention is beneficial also in this setting. In particular, while
applying non-local based attention after each 3D ResNet
block accounts for nearly 5% better detection rates. While
deepfakes similarly train one model per video, a fixed post-
processing pipeline is used, which is similar to the computer-
based manipulation methods and thus has consistent artifacts
that can be instrumental for deepfake detection.

We perform ablation studies, in order (i) to determine the
optimal position of the non-local block, and (ii) for the best
employment of TimeSformer attention for the problem in
hand, which is summarised in Table II and Table III, respec-
tively. It can be concluded from Table II that in deepfake
scenarios non-local block when employed as in the original
paper[46] (i.e. 4 non-local blocks after the last ResNet block)
under-performs compared to other presented configurations.
We note that employing a single non-local block after each
ResNet block outperforms all other representative baselines.
Results of our ablation study, showing the importance of
utilizing pre-trained weight is presented is Table V.

We proceed to tackle the question of handling space and
time with respect to attention for deep fake. In SE a disso-
ciated approach is followed, as squeeze aggregates features
across spatial dimensions and creates a global distribution of
channel-level feature response, the excitation operation is a
self-gating mechanism that generates a vector of per-channel

TABLE IV
Detection of each manipulation method individually, LQ. TCR =
True classification rate, DF = deepfakes, F2F = face2face, FS =

face-swap, NT = neuraltextures.

Algorithm DF F2F FS NT
Steg. Features + SVM [17] 73.64 73.72 68.93 63.33

Cozzolino et al. [12] 85.45 67.88 73.79 78.00
Bayar and Stamm [6] 84.55 73.72 82.52 70.67
Rahmouni et al. [33] 85.45 64.23 56.31 60.07

MesoNet [1] 87.27 56.20 61.17 40.67
XceptionNet [11] 96.36 86.86 90.29 80.67

3D ResNet 91.81 89.6 88.75 73.5
3D ResNet (SE) 81.70 77.00 75.90 66.25

3D ResNet (non-local 1,2,3,4) 95.16 91.25 94.11 78.29
TimeSformer 90.7 73.9 82.1 67.5

TABLE V
Ablation study, indicating the pertinence of Kinetics pretraining

on deepfake detection. att indicates attention.

Network Pre-train DF F2F FS NT
3D ResNet × 58.80 73.60 59.20 56.50
3D ResNet X 91.81 89.6 88.75 73.5

3D ResNet (with att) X 95.16 91.25 94.11 78.29
TimeSformer × 88.6 74.6 77.9 66.8
TimeSformer X 90.7 73.9 82.1 67.5

re-calibration weights. In Non-local with our setting, it is
clear that the non-local blocks can capture long range spatial-
temporal features, when trained jointly. For the experiments
on TimeSformer based on joint and dissociated learning, we
find that joint learning outperforms all scenarios except for
neuraltextures, which is the most challenging. Therefore, it is
clear that joint spatial-temporal attention mechanism is most
effective in detecting deepfakes.

D. Cross-manipulation experiments
In our third set of experiments, we train our baselines and

attention-empowered models with videos manipulated by 3
techniques, as well as with original videos and proceed to test
on the remaining manipulation technique and original videos.
We present related results in Table VI. We note that cross-
manipulation constitutes the most challenging experiment
setting. At the same time it is the scenario, which we can
expect to encounter in practice, as it is unlikely that we will
have knowledge of a possible manipulated technique.

For the detection algorithms, one of the more challenging
settings in this experiment is when faceswap is the manipu-
lation technique to be detected. We note that 3D ResNet with
non-local block outperforms all other networks in this setting.
Among all manipulation techniques, face2face and faceswap
represent graphics-based approaches, whereas deepfakes and
neuraltextures are learning-based approaches. We have that in
faceswap the full facial region in the target image is replaced
by the source face image and involves advanced blending
and color correction to accurately superimpose source onto
target. Hence in this context the challenge is due to the



inherent dissimilarity of faceswap and the other manipulation
techniques.

We note that humans can easily detect manipulations af-
fected by faceswap and deepfakes and were more challenged
by face2face and ultimately by neuraltextures [34]. This is
also reflected in the performance of 3D ResNet with non-
local block, which is mostly challenged by videos manip-
ulated by neuraltextures. However, we have that in most
scenarios, employment of attention mechanism is effective.

VI. Conclusions
In this work, we study attention mechanisms in the context

of deepfake detection. Our results suggest that the incor-
poration of attention mechanisms improves the detection
accuracy of deepfakes by placing the focus on artefacts in
forged videos. We note that attention capturing long-term
dependencies, namely self-attention via non-local blocks is
best in our setting, when utilized in our proposed config-
uration. We conduct experiments in a cross-manipulation
scenario, which remains the most challenging detection sce-
nario with respect to detection rates. Specifically, reduced
detection rates are more prominent for learned manipulation
techniques such as neuraltextures, when not included in the
training set. This suggests that current deepfake detection
approaches lack in adapting to a distribution different from
the training distribution, hence posses low generalization
capabilities. While attention mechanism reduce the gap to
some extent, generalizable deepfake detection remains an
open challenge. Future work will involve blending different
attention mechanisms to obtain more robust representation
for deepfake detection.
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