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Given a graph G, a k-labelling of G is an assignment : E(G) → {1, . . . , k} of labels from {1, . . . , k} to the edges. We say that is s-proper, m-proper or p-proper, if no two adjacent vertices of G are incident to the same sum, multiset or product, respectively, of labels.

Proper labellings are part of the field of distinguishing labellings, and have been receiving quite some attention over the last decades, in particular in the context of the well-known 1-2-3 Conjecture. In recent years, quite some progress was made towards the main questions of the field, with, notably, the analogues of the 1-2-3 Conjecture for m-proper and p-proper labellings being solved. This followed mainly from a better global understanding of these types of labellings.

In this note, we focus on a question raised by Paramaguru and Sampathkumar, who asked whether graphs with m-proper 2-labellings always admit s-proper 2-labellings. A negative answer to this question was recently given by Luiz, who provided infinite families of counterexamples. We give a more general result, showing that recognising graphs with m-proper 2-labellings but no sproper 2-labellings is an NP-hard problem. We also prove a similar result for m-proper 2-labellings and p-proper 2-labellings, and raise a few directions for further work on the topic.

Introduction

Let G be a graph. By a labelling of G, we mean an assignment of labels (numbers) from a given set to the edges of G. For a set S of labels, is called an S-labelling if it assigns labels from S, while, if S = {1, . . . , k} for some k ≥ 1, then we call a k-labelling. In so-called distinguishing labellings, we are interested in designing labellings that permit to distinguish certain pairs of vertices accordingly to some function inferred by the assigned labels. As attested by the survey [START_REF] Gallian | A dynamic survey of graph labeling[END_REF] by Gallian, this general definition is very flexible, and it gave birth, throughout the years, to a tremendous number of such distinguishing labelling notions.

In this work, we are interested in a subset of distinguishing labellings, called proper labellings. In proper labellings, the pairs of vertices that are required to be distinguished are the pairs of adjacent vertices. Regarding the distiguishing function, there are again many possibilities. We are here interested in three such functions, being the sums, multisets and products of labels incident to the vertices. Formally, let us consider a graph G, together with a labelling . For any vertex v of G, we denote by σ(v) the sum of labels assigned by to the edges incident to v. Similarly, we denote by µ(v) and ρ(v) the multiset and product, respectively, of these incident labels. Now, we say that is s-proper if no two adjacent vertices u and v of G are incident to the same sum of labels, i.e., if σ(u) = σ(v) for every edge uv ∈ E(G). Similarly, we say that is m-proper and p-proper if every two adjacent vertices are distinguished through the functions µ and ρ, respectively.

In proper labellings, the goal is generally to design labellings that are not only proper, but also k-labellings for k as small as possible. This leads to the definition of three parameters, denoted χ S (G), χ M (G) and χ P (G) for a given graph G, which denote the smallest k ≥ 1 such that s-proper, m-proper and p-proper, respectively, k-labellings of G exist. It is worth pointing out now that these three parameters are not defined for all graphs G, as it can easily be observed that K 2 , the complete graph on 2 vertices, admits no proper labellings at all. However, greedy arguments can be employed to show that this is the only pathological connected graph. Consequently, the parameters χ S , χ M and χ P are more precisely studied in the context of nice graphs, which are those graphs which do not have K 2 as a connected component. The notion of s-proper labellings emerged in the literature as a local version of the irregularity strength of graphs, which was initially introduced, back in 1988, by Chartrand et al. [START_REF] Chartrand | Irregular networks[END_REF]. Since then, s-proper labellings have been studied for their own interest, and they have actually been attracting a lot of attention due to the intriguing 1-2-3 Conjecture:

1-2-3 Conjecture (Karoński, Łuczak, Thomason [START_REF] Karoński | Edge weights and vertex colours[END_REF]). If G is a nice graph, then χ S (G) ≤ 3.

For details on the 1-2-3 Conjecture, we refer the interested reader to [START_REF] Seamone | The 1-2-3 Conjecture and related problems: a survey[END_REF]. Let us just mention, for now, that this conjecture has been proven to be quite challenging. To date, the best result towards the conjecture is that χ S (G) ≤ 5 for every nice graph G (see [START_REF] Kalkowski | Vertex-coloring edge-weightings: towards the 1-2-3 Conjecture[END_REF]). The conjecture was proven to hold for 3-colourable graphs [START_REF] Karoński | Edge weights and vertex colours[END_REF], and simple graph classes such as complete graphs [START_REF] Chang | Vertex-coloring edge-weightings of graphs[END_REF], for which, already, all of the labels 1, 2, 3 are required.

The general hardness behind the 1-2-3 Conjecture is one of the main reasons that led people to consider m-proper labellings instead, as it can be observed that an s-proper labelling is always mproper. This observation led the authors of [START_REF] Addario-Berry | Vertex colouring edge partitions[END_REF] to consider a multiset version of the 1-2-3 Conjecture (asking, naturally, whether χ M (G) ≤ 3 for every nice graph G). Right away, this presumption that distinguishing vertices via multisets is easier than distinguishing via sums was proven correct, as the authors showed that χ M (G) ≤ 4 for all nice graphs G. More recently, this was definitely confirmed, with Vučković proving, in [START_REF] Vučković | Multi-set neighbor distinguishing 3-edge coloring[END_REF], the multiset version of the 1-2-3 Conjecture.

In parallel with these results, a product version of the 1-2-3 Conjecture, stating that χ P (G) ≤ 3 for every nice graph G, was introduced by Skowronek-Kaziów in [START_REF] Skowronek-Kaziów | Multiplicative vertex-colouring weightings of graphs[END_REF]. An interesting fact is that, due to 2 and 3 being coprime, m-proper 3-labellings and p-proper 3-labellings are actually not so distant objects (see [START_REF] Bensmail | Further Evidence Towards the Multiplicative 1-2-3 Conjecture[END_REF] for more details), which sort of gave the impression that the product version of the 1-2-3 Conjecture might be of intermediate difficulty, between the sum and multiset versions, yet closer to the latter one. Again, this was confirmed recently in [START_REF] Bensmail | A proof of the Multiplicative 1-2-3 Conjecture[END_REF], by Bensmail, Hocquard, Lajou and Sopena proving the product version of the 1-2-3 Conjecture in full.

We have thus reached a point of time where quite some progress towards the 1-2-3 Conjecture has been recently made, through the upper bound, 5, being very close to what is conjectured exactly, and two related conjectures, which for quite some time seemed of close hardness, being proved. What made this recent progress possible, is definitely a better understanding over the inherent behaviour of s-proper, m-proper and p-proper 3-labellings, which on themselves, gave birth to interesting side investigations (see [START_REF] Bensmail | On the Role of 3s for the 1-2-3 Conjecture[END_REF] and the references there for examples). As a matter of fact, even if the 1-2-3 Conjecture turned out to be proven soon, there would still remain lots of interesting questions to answer towards fully understanding proper labellings.

One of these questions, which is precisely the one we investigate throughout this note, is about the real difference between s-proper, m-proper and p-proper labellings. As partly mentioned earlier, s-properness and p-properness both imply m-properness, that is χ M (G) ≤ min{χ S (G), χ P (G)} for every nice graph G. This led, in particular, to the following question: Question 1.1 (Paramaguru, Sampathkumar [START_REF] Paramaguru | Graphs with vertex-coloring and detectable 2-edgeweighting[END_REF]). Does every nice graph G verify χ M (G) = χ S (G)?

Note that χ S (G) = 1 for a graph G if and only if G is locally irregular, i.e., does not have adjacent vertices with the same degree [START_REF] Baudon | On decomposing regular graphs into locally irregular subgraphs[END_REF], in which context also χ M (G) = 1. Now, since the multiset version of the 1-2-3 Conjecture holds [START_REF] Vučković | Multi-set neighbor distinguishing 3-edge coloring[END_REF], we have χ M (G) ≤ 3 for every nice graph G. So the natural question to ask in order to advance towards answering Question 1.1, is whether there exist graphs G such that 2 ≤ χ M (G) < χ S (G). Now, if we assume that the 1-2-3 Conjecture holds as well, then this question reduces to: Question 1.2. Are there graphs G with χ M (G) = 2 < 3 = χ S (G)?

Infinitely many graphs having the properties described in Question 1.2 have actually been exhibited recently by Luiz in [START_REF] Luiz | Graceful labellings and neighbour-distinguishing labellings of graphs[END_REF]. For instance, any split graph obtained from a complete graph on at least six vertices by attaching a pendant degree-1 vertex to any vertex has the desired properties. This leads to the question of whether all graphs with the properties described in Question 1.2 are always that easy to describe. In this work, we focus on that very question, and prove that determining whether χ S (G) = 3 for a given graph G with χ M (G) = 2 is NP-hard. Thus, recognising graphs G with χ M (G) = 2 < 3 = χ S (G) cannot be done in polynomial time, unless P=NP. We also prove that such a result holds for m-proper and p-proper labellings.

This note is organised as follows. We start, in Section 2, by recalling a few facts on s-proper, m-proper and p-proper labellings. In Section 3, we give a first general result on m-proper and p-proper labellings, from which we provide a first insight into our proof arguments. From these, we then give our main result in Section 4, from which we deduce that many more diverse graphs with the properties described in Question 1.2 exist. We conclude in Section 5 with a few more remarks and questions related to our investigations.

General tools and previous results

We start by recalling a few facts on proper labellings, which were already observed in previous works (such as [START_REF] Chang | Vertex-coloring edge-weightings of graphs[END_REF]). We begin with the following, which is evident.

Observation 2.1. Let G be a nice graph, and be a k-labelling of G.

If uv ∈ E(G) is an edge with d(u) = 1 (and d(v) > 1 since G is nice), then σ(u) = σ(v).
Another obvious observation, is the fact that p-proper labellings cannot assign label 0. This is because if we have (uv) = 0 for an edge uv of a graph G by a labelling , then ρ(u) = ρ(v) = 0. Due to this property, whenever dealing with p-proper S-labelling throughout this note (in particular in upcoming Observation 2.3 and Corollary 2.4), we implicitly assume that 0 ∈ S. Observation 2.2. p-proper labellings cannot assign label 0.

The next result is another elementary one of the field. Yet, it has several interesting consequences. Particularly, it gives contexts in which s-proper, m-proper and p-proper 2-labellings stand as equivalent objects.

Observation 2.3. Let G be a nice graph, and be an {a, b}-labelling of G for any two distinct real numbers a, b. For σ(u) = σ(v) to hold for some uv ∈ E(G) with d(u) = d(v), the number of edges labelled a incident to u must be different from the number of edges labelled a incident to v (and similarly for the numbers of edges incident to u and v labelled b). Consequently, if σ(u) = σ(v), then also both µ(u) = µ(v) and ρ(u) = ρ(v).

Proof. If we denote by n x (u) and n x (v) the number of edges incident to u and v, respectively, assigned some label x by , then the facts that d(u) = d(v) and n a (u) = n a (v) imply that also n b (u) = n b (v), and from that we deduce that σ(u) = σ(v), µ(u) = µ(v) and ρ(u) = ρ(v) (assuming 0 ∈ {a, b} in this last case, recall Observation 2.2). From these observations, we deduce that if uv is an edge of G with d(u) = d(v), then, so that σ(u) = σ(v) by an {a, b}-labelling of G, it must be that n a (u) = n a (v) and thus that n b (u) = n b (v). Under those assumptions, note that we also have µ(u) = µ(v) and ρ(u) = ρ(v), as claimed. Note that these problems are clearly in NP. They were also showed to be NP-hard in general, first by Dudek and Wajc in [START_REF] Dudek | On the complexity of vertex-coloring edge-weightings[END_REF] for general graphs. Later on, Ahadi, Dehghan and Sadeghi proved in [START_REF] Ahadi | Algorithmic complexity of proper labeling problems[END_REF] that these problems remain NP-hard when restricted to cubic graphs. From Corollary 2.4, this implies the following: Theorem 2.5 (Ahadi, Dehghan, Sadeghi [START_REF] Ahadi | Algorithmic complexity of proper labeling problems[END_REF]). For any two distinct a, b, deciding whether a (cubic) graph admits an s-proper, m-proper or p-proper {a, b}-labelling is NP-hard.

Multisets versus products

The main result to be established in this section, relies on the following simple fact, already established e.g. in [START_REF] Szabo Lyngsie | On neighbour sum-distinguishing {0, 1}-edge-weightings of bipartite graphs[END_REF].

Observation 3.1. Let G be a nice graph with a vertex v, and let H be obtained from G by attaching a pendant path (v, a, b, c, d) of length 4 at v. If is a p-proper 2-labelling of H, then the restriction of to G is also p-proper. Conversely, any p-proper 2-labelling of G can be extended to one of H.

Proof. Assume is a p-proper 2-labelling of H. So that ρ(c) = ρ(d), note that we must have (bc) = 2. From this, so that ρ(a) = ρ(b), we must have (va) = 1, meaning that (va) does not contribute to ρ(v). We thus deduce that, for to be p-proper in H, the restriction of to the edges of G must also be p-proper in G.

Regarding the last part of the statement, consider a p-proper 2-labelling of G. We extend this labelling to a p-proper 2-labelling of H, by first setting (va) = 1 and (bc) = 2, and then setting either (ab) = 1 and (cd) = 2 (if ρ(v) = 1) or (ab) = 2 and (cd) = 1 (otherwise). It can be checked that this raises no conflict in both cases.

We now prove that P-proper 2-Labelling is NP-hard even when restricted to graphs G with χ M (G) = 2. So, assuming that P =NP, not only does our result imply that there exist infinitely many graphs G with χ M (G) = 2 < 3 = χ P (G), but also that recognising the graphs G that verify χ M (G) = χ P (G) = 2 cannot be done in polynomial time.

Theorem 3.2. P-proper 2-Labelling is NP-hard for graphs G with χ M (G) = 2.
Proof. The proof is by reduction from the P-proper 2-Labelling problem in cubic graphs, which is NP-hard (recall Theorem 2.5). Let G be a cubic graph, an instance of P-proper 2-Labelling. We can assume that G is connected. We can also assume that G is not K 4 (since χ P (K 4 ) = 3, see [START_REF] Chang | Vertex-coloring edge-weightings of graphs[END_REF]), thus that its chromatic number is at most 3 by Brooks' Theorem [START_REF] Brooks | On colouring the nodes of a network[END_REF]. In other words, we can assume we also have a proper vertex-colouring φ :

V (G) → {0, 1, 2} of G.
We construct a graph H verifying χ M (H) = 2, and such that χ P (H) = 2 if and only if χ P (G) = 2. For that, we start from G, consider every vertex v ∈ V (G) in turn, and attach at v exactly φ(v) new disjoint pendant paths of length 4. Note that the construction of H is clearly achieved in polynomial time.

The fact that χ P (G) = 2 if and only if χ P (H) = 2 follows mainly from Observation 3.1. That is, a p-proper 2-labelling of H directly infers one of G, due to the fact that the paths of length 4 do not contribute to the products of the vertices in V (H) ∩ V (G). Regarding the other direction, a p-proper 2-labelling of G can be extended to the pendant paths we have added to form H, by repeated applications of the arguments in the proof of Observation 3.1. Thus, we have the desired equivalence.

To see now that we always have χ M (H) = 2 (regardless of G), it suffices to note that, for any two vertices u and v, by any labelling of a graph, we have 

µ(u) = µ(v) whenever d(u) = d(v). Now, for any vertex v ∈ V (H) ∩ V (G), note that d H (v) = d G (v) + φ(v). In particular, because φ is a proper {0, 1, 2}-vertex-colouring of G, for every two adjacent vertices u, v ∈ V (H) ∩ V (G), we have d H (u) = d H (v), for d H (u), d H (v) ∈ {3, 4, 5}, and thus µ(u) = µ(v) by any labelling of H. Similarly, if a vertex v ∈ V (H) ∩ V (G) is incident to a pendant path (added when constructing H from G),

Multisets versus sums

Before proving our main result, Theorem 4.3, we first need to introduce a few gadgets and constructions, and to point out some of their properties. The gadget D is depicted in Figure 1(a). Throughout this section, we deal with the vertices and edges of D following the notation given in Figure 1. We call s and t the two ends of D, while we say that edges sv 1 and tv 4 are its two outputs. This gadget D was already used in [START_REF] Ahadi | Algorithmic complexity of proper labeling problems[END_REF][START_REF] Havet | Detection number of bipartite graphs and cubic graphs[END_REF], where it was noticed it has the following labelling properties: Let be an s-proper 2-labelling of D. By the previous arguments, we can assume that (v

2 v 3 ) = 1. Assume first that (v 2 v 1 ) = (v 2 v 4 ) = 1. Then, σ(v 2 ) = 3. So that σ(v 2 ) = σ(v 3
), at least one of (v 3 v 1 ) and (v 3 v 4 ) must be 2. There are two cases:

• Assume first that (v 3 v 1 ) = (v 3 v 4 ), say (v 3 v 1 ) = 1 and (v 3 v 4 ) = 2. Thus, σ(v 3 ) = 4. Now
observe that, regardless of (v 1 s), we must have σ(v 1 ) ∈ {3, 4} = {σ(v 2 ), σ(v 3 )}, resulting in a conflict, thus a contradiction.

• Assume now that (v

3 v 1 ) = (v 3 v 4 ) = 2. Then, σ(v 3 ) = 5. So that σ(v 1 ), σ(v 4 ) ∈ {3, 5} = {σ(v 2 ), σ(v 3 )}, note that we must have (v 1 s) = (v 4 t) = 1, which indeed yields σ(v 1 ) = σ(v 4 ) = 4, as claimed. If (v 2 v 1 ) = (v 2 v 4 ) = 2, then, so that σ(v 2 ) = σ(v 3 ), either (v 3 v 1 ) = (v 3 v 4 ) = 1
, in which case we fall into the previous case (up to renaming the vertices), or (v 3 v 1 ) = (v 3 v 4 ). In that last case, if we have, say, (v 3 v 1 ) = 1 and (v 3 v 4 ) = 2, then {σ(v 2 ), σ(v 3 )} = {4, 5}; note that, again, regardless of (v 1 s), we must have σ(v 1 ) ∈ {4, 5} = {σ(v 2 ), σ(v 3 )}, thus a conflict.

Lastly, if (v 2 v 1 ) = (v 2 v 4 ), then, so that σ(v 2 ) = σ(v 3 ), we must have (v 3 v 1 ) = (v 3 v 4 ). Up to renaming the vertices of D, this is a case we have covered earlier.

Using copies of the gadget D, we can construct bigger gadgets. For any k ≥ 1, the k-necklace D k is obtained in the following way (see Figures 1(b) and(c) for examples):

• Start from k disjoint copies G 0 , . . . , G k-1 of the gadget D. For every i ∈ {0, . . . , k -1}, we denote by x i and y i the ends of G i .

• For every i ∈ {0, . . . , k -1}, identify y i and x (i+1) mod k to connect the G i 's in a cyclic fashion. Note that all vertices have degree 3, except for exactly k of them, which we denote by a 1 , . . . a k , which result from the identifications.

• For every i ∈ {1, . . . , k}, attach a pendant vertex b i at a i .

We call the b i 's the ends of D k , while we call the a i b i 's its outputs. Labelling properties of the gadget D actually infer labelling properties for necklaces; in particular: Proof. D k having vertices of degree 1 and 3 only, by Observations 2.1 and 2.3 we get that, upon reversing labels by s-proper 2-labellings, Item 3. holds as soon as Items 1. and 2. hold. Let be an s-proper 2-labelling of D k . First off, we claim that, for each of the k copies G 0 , . . . , G k-1 of the gadget D forming D k , its two outputs must be assigned the same label by . In other words, we claim that the 2k outputs of G 0 , . . . , G k-1 must be assigned the same label. Indeed, assume this is wrong. Recall that, by Item 3.(a) of Theorem 4.1, for any copy of D in D k , its two outputs must be assigned the same label by . Now, by our hypothesis, there must be a vertex a i in D k resulting from the identification of two ends from two copies G i-1 and G i of D such that, say, the outputs of G i-1 are assigned label 1 by while the outputs of G i are assigned label 2. By Item 3.(b) of Theorem 4.1, this means that a i is adjacent to a vertex v of G i-1 that has sum 4 by , and to a vertex u of G i that has sum 5. Then, there is a conflict either between a i and v (if (a i b i ) = 1) or between a i and u (if

(a i b i ) = 2).
Thus, the 2k outputs of the copies of D in D k must be assigned the same label by . Assume this label 1, and focus on any vertex a i resulting from the identification of two ends of G i-1 and G i , being copies of D. Then the two neighbours of a i in G i-1 and G i , by Item 3.(b) of Theorem 4.1, have sum 4 by . So that there is no conflict between a i and these vertices, we must have (a i b i ) = 1 so that σ(a i ) = 3. Similar arguments show that we must have (a i b i ) = 2 in case the other two edges incident to a i are assigned label 2, in which case σ(a i ) = 6.

We are now ready to prove our main result. Again, this result implies that there exist infinitely many graphs G verifying χ M (G) = 2 < 3 = χ S (G). Even worse, recognising such graphs cannot be done in polynomial time, unless P=NP. Proof. The proof starts similarly as that of Theorem 3.2, and is done by a reduction from the Sproper 2-Labelling problem in cubic graphs. Let G be a connected cubic graph given together with a proper vertex-colouring φ : V (G) → {0, 2, 4}, where G is an instance of S-proper 2-Labelling. We construct, in polynomial time, a graph H with χ M (H) = 2, and such that χ S (G) = 2 if and only if χ S (H) = 2.

The construction of H is mainly achieved by using an α-necklace with sufficiently many outputs, connected to the rest of the graph in some fashion to guarantee that 1) any s-proper 2-labelling must propagate in a very particular way, and that 2) some adjacent vertices have distinct degrees so that they cannot be an obstacle to m-properness. We voluntarily avoid specifying the value of α for now, and just assume it is sufficiently large so that we always have unused outputs in hands whenever we need some. Let us just mention that α will be a linear function of |V (G)|.

Before describing the heart of the reduction, let us make some preparations. We start from A, an α-necklace with α outputs. Recall that by any s-proper 2-labelling, all outputs of A must be assigned the same label, and that this label can be 1 or 2 (recall Theorem 4.2). We first modify A, to force this label on the outputs to be 1. For that, we first need to point out the following easy observation:

Claim 1. Let u 1 v 1 , . . . , u k v k be k ≥ 1 pairwise distinct outputs of A,
where the v i 's are the degree-1 vertices. For every i ∈ {1, . . . , k}, attach a pendant path (v i , x i , y i ) of length 2 at v, resulting in a new graph A . Then: 1. every s-proper 2-labelling of A can be extended to one of A ; 2. if is any s-proper 2-labelling of A , then, for every i ∈ {1, . . . , k}: andσ(x i ) can be anything in {2, 3} otherwise.

(a) (u i v i ) = (x i y i ); (b) σ(x i ) = 3 if (u i v i ) = 1,
Proof of the claim. Item 2.(a) is necessary, as it is the only reason that guarantees σ(v i ) = σ(x i ).

To see now that Item 1. holds, consider an s-proper 2-labelling of A, and consider extending it to the edges v i x i and x i y i of A , for some i ∈ {1, . . . , k}. If (u i v i ) = 1, then recall that σ(u i ) = 3 by Theorem 4.2. In that case, we must set (v i x i ) = 1 and (x i y i ) = 2, which yields σ(v i ) = 2, σ(x i ) = 3 and σ(y i ) = 2, thus no conflicts. Now, if (u i v i ) = 2, then, by Theorem 4.2, recall that σ(u i ) = 6. In that case, we can set e.g. In what is to come, we will need to "extend" some outputs of A as described in Claim 1. That is, given an output uv of A where v is the degree-1 vertex, by extending uv we mean attaching a pendant path (v, x, y) of length 2 at v. We regard the pendant edge xy as another output of the resulting graph, its end being y. Conversely, uv is no longer regarded as an output of the resulting graph. So, from A, by extending some outputs we get another graph A with α outputs which can now be of two possible types: an output of A either is an extended output, resulting precisely from an output extension, or is one of the initial outputs of A that was not extended, which we call regular outputs from now on to avoid any confusion. Due to Claim 1, the main difference, in brief, between regular and extended outputs, is that regular outputs should all be assigned the same label by an s-proper 2-labelling, while all extended outputs must be assigned the other label.

(v i x i ) = 1 (or (v i x i ) = 2) and (x i y i ) = 1, which yields σ(v i ) = 3 (σ(v i ) = 4, respectively), σ(x i ) = 2 (σ(x i ) = 3,
We are now ready to modify A to force the label of its outputs by any s-proper 2-labelling. For that, we proceed as follows. Take one output e with end u of A, and two more outputs f 1 , f 2 . Start by extending f 1 , f 2 , resulting in two new extended outputs f 1 , f 2 . Calling v 1 and v 2 , respectively, their ends, we modify A by first identifying v 1 and v 2 to a new vertex v, and adding an edge between u and v. This results in a new graph A , in which we no longer regard e, f 1 , f 2 as outputs, and which thus has α -3 outputs (all of which are regular). A also has the following properties: Claim 2. A fulfils the following properties:

1. by any s-proper 2-labellings of A , all (regular) outputs must be assigned label 1;

A admits s-proper 2-labellings.

Proof of the claim. We start by proving the first item. Assume Item 1. is wrong, and that A admits s-proper 2-labellings where all outputs are assigned label 2. By Theorem 4.2, following the terminology above, by the construction of A from A, the edge e must be assigned label 2 by , while f 1 , f 2 , being extensions of f 1 , f 2 , must be assigned label 1 (by Claim 1). This implies that we must have σ(u) = σ(v) regardless of (uv), a contradiction. Assume now that is an s-proper 2-labelling of A where all outputs are assigned label 1 (which exists by Theorem 4.2). We claim it can be extended to A , thereby proving the second item of the claim. By Claim 1, extends from f 1 , f 2 to f 1 , f 2 , and it must be that (f 1 ) = (f 2 ) = 2, while the ends of f 1 , f 2 other than v have sum 3. By setting (uv) = 1, we obtain σ(u) = 2 and σ(v) = 5, thus raising no conflicts. In particular, recall that the neighbour of u different from v must have sum 3 by Theorem 4.2.

At this point, we know that A admits s-proper 2-labellings, all of which must assign label 1 to all of the α -3 (regular) outputs. We now describe how to construct H from G and A . Start from G and A . Consider then every vertex v of G in turn, and pick x = φ(v) new regular outputs e 1 , . . . , e x of A , as well as y = 4-φ(v) 2 other new regular outputs f 1 , . . . , f y . Start by extending each of f 1 , . . . , f y , resulting in y extended outputs f 1 , . . . , f y . Note that x + y ∈ {2, 3, 4}. Now, just identify v and each of the x + y ends of e 1 , . . . , e x , f 1 , . . . , f y . Once all vertices v of G have been treated that way, the resulting graph is our H.

Before proceeding with proving the equivalence between G and H, let us first comment on α, the number of outputs that A must have for the whole construction to be achieved. For a vertex v ∈ V (H) ∩ V (G) with φ(v) = 0, we have attached two extended outputs at v (and no regular outputs). If φ(v) = 2, then we have attached two regular outputs and one extended output at v. Last, if φ(v) = 4, then we have attached four regular outputs (and no extended outputs). Thus, the number of attached outputs (regardless of their type) of A is at most 4|V (G)|, and remember that three additional outputs were necessary to go from A to A . Thus it is sufficient to have α linear in |V (G)|, and the construction of H from G and A is clearly achieved in polynomial time.

We now prove that we have the desired equivalence between G and H.

• Assume first that H admits an s-proper 2-labelling . Recall that all regular outputs of A must be assigned label 1 by due to Claim 2, and that all extended outputs must be assigned label 2 by Claim 1. By how H was constructed, in particular with respect to φ, note that, for every vertex v ∈ V (H) ∩ V (G), the edges of E(A ) incident to v have their assigned labels summing up to exactly 4. In particular, for every edge uv in E(H) ∩ E(G), we have σ(u) = σ(v), and, thus, σ(u) -4 = σ(v) -4. This implies that the restriction of to the edges of G is also s-proper.

• Conversely, assume G admits an s-proper 2-labelling . We claim that can be extended to an s-proper 2-labelling of H. 

(u) = σ(v) by for every uv ∈ E(H) ∩ E(A ) such that u, v ∈ V (A ) ∩ V (G). It remains to prove that we also have σ(u) = σ(v) by for every two adjacent vertices u, v with uv ∈ E(H) ∩ E(A) , u ∈ V (H) ∩ V (G) and v ∈ V (H) ∩ V (G).
Due to the outputs of A attached at u, which, by , bring exactly 4 to σ(u), and d G (u) = 3, note that σ(u) ≥ 7 by . On the other hand, v is either of degree 3 (case of a regular output uv attached at u) or 2 (otherwise, case of an extended output uv), meaning that σ(v) ≤ 6 by . Thus, we always have σ(u) > σ(v), and is thus s-proper.

We conclude the proof by showing that χ M (H) = 2, regardless of G. This is by the following arguments. For every vertex

v ∈ V (H) ∩ V (G), note that we have d H (v) = d G (v) + φ(v) + 4-φ(v) 2 . Since G is cubic, we thus have d H (v) = 7 if φ(v) = 4, d H (v) = 6 if φ(v) = 2, and d H (v) = 5 otherwise, i.e., if φ(v) = 0. Since φ is proper, this means that, for every uv ∈ E(H) ∩ E(G), we have d H (u) = d H (v), implying that µ(u) = µ(v) by any 2-labelling of H. Similarly, for every vertex v ∈ (V (H) ∩ V (A )) \ V (G), we have d H (v) ≤ 3, implying that d H (u) = d H (v) for every u ∈ V (H) ∩ V (G), thus µ(u) = µ(v)
again by any 2-labelling of H. All these arguments imply that if we just start from an s-proper 2-labelling of A (which exists by Claim 2), and extend it to the whole of H by assigning arbitrary labels to the edges of E(H) ∩ E(G), then what results is an m-proper 2-labelling of H. Thus, χ M (H) = 2.

Discussion

Through Theorem 4.3, we have provided a positive answer to Question 1.2, thus a negative answer to Question 1.1, going beyond the results of Luiz from [START_REF] Luiz | Graceful labellings and neighbour-distinguishing labellings of graphs[END_REF]. A general way to pursue the investigations on this topic, could be by wondering about classes of graphs for which Question 1.1 can be answered (positively or negatively), and similarly for its counterpart for p-proper labellings. For instance:

• In the case of nice trees T , it has been known for long that χ S (T ) ≤ 2 always holds (see [START_REF] Chang | Vertex-coloring edge-weightings of graphs[END_REF]), which yields a positive answer to Question 1.1 for trees. This is a neat difference with pproper labellings, as Szabo Lyngsie proved in [START_REF] Szabo Lyngsie | On neighbour sum-distinguishing {0, 1}-edge-weightings of bipartite graphs[END_REF] that there exist infinitely many trees T with χ P (T ) = 3, which, fortunately, can be recognised in polynomial time. Thus, for trees T , we sometimes have χ M (T ) = 2 < 3 = χ P (T ), but such situations can be recognised easily.

• Regarding bipartite graphs, it was proved by Thomassen, Wu and Zhang [START_REF] Thomassen | The 3-flow conjecture, factors modulo k, and the 1-2-3conjecture[END_REF] that bipartite graphs G with χ S (G) = 3 form exactly the class of the so-called odd multi-cacti, which can be recognised in polynomial time. Looking at the structure of odd multi-cacti, it is not too complicated to prove that each graph G that belongs to this class, also verifies χ M (G) = 3 (refer e.g. to [START_REF] Bensmail | Further Results on an Equitable 1-2-3 Conjecture[END_REF] for more insight in the structure of these graphs). In other words, the answer to Question 1.1 is also yes for bipartite graphs. Regarding p-proper labellings, we have already mentioned earlier that trees form a context in which we sometimes do not have equality between the parameters χ M and χ P . Regarding the complexity of deciding whether this is the case or not for a given bipartite graph, it is still unclear, as we still do not know whether bipartite graphs G with χ P (G) ≤ 2 can be recognised in polynomial time (see [START_REF] Szabo Lyngsie | On neighbour sum-distinguishing {0, 1}-edge-weightings of bipartite graphs[END_REF] for partial results).

• Regarding graphs with bounded maximum degree, we note that our reduction in the proof of Theorem 4.3 builds graphs of maximum degree at most 7. A question could thus be whether Theorem 4.3 also holds for graphs with maximum degree less than 6.

Note that graphs G with maximum degree 2 are paths and cycles, for which it is not complicated to prove, through Observations 2.1 and 2.3, that we always have χ M (G) = χ S (G) = 2. We note also that for any ∆ ∈ {3, 4, 5, 6}, we can construct graphs with maximum degree ∆ that are counterexamples to Question 1.1. Let us give an example for ∆ = 3, which generalises easily for any ∆ ∈ {4, 5, 6}. Reusing the terminology from the proof of Theorem 4.3, start from a 6-necklace D 6 , with outputs e 1 , . . . , e 6 . Now extend e 4 , e 5 , e 6 to new extended outputs e 4 , e 5 , e 6 . Denote by v 1 , . . . , v 6 the ends of e 1 , e 2 , e 3 , e 4 , e 5 , e 6 , respectively. Now identify v 4 and v 5 to a new vertex x, and similarly identify v 2 and v 3 to a new vertex y, and just add the edges v 1 x and v 6 y, to obtain a graph G. It is not too hard to check that ∆(G) = 3, and that χ M (G) = 2 < 3 = χ S (G), by similar arguments as in the proof of Theorem 4.3. In particular, note that, just as in the proof with A , the edge v 1 x forces all outputs of D 6 to be assigned label 1 by an s-proper 2-labelling of G, while the edge v 6 y, by similar arguments, forces all outputs of D 6 to be assigned label 2. It follows that χ S (G) > 2. On the other hand, due to the number of outputs of D 6 we have identified, note that v 1 and x, and similarly v 6 and y, have different degrees and thus cannot be in conflict when considering multisets.

Regarding the same concerns for p-proper labellings, note that the reduction in the proof of Theorem 3.2 provides graphs with maximum degree 5. Thus, a similar question as above concerns the complexity of the same problem for graphs with maximum degree 3 or 4, given, again, that some of these graphs G sometimes verify χ M (G) = 2 < 3 = χ P (G) (which can be proved reusing the same ideas as above, but with the labelling ideas from the proof of Theorem 3.2).

Corollary 2 . 4 .

 24 In regular graphs, finding an s-proper, m-proper or p-proper {a, b}-labelling for some distinct real numbers a, b, is equivalent to finding an s-proper, m-proper or p-proper {a , b }labelling for any distinct a , b . In the next sections, the main results we prove relate to the following decision problems: S-proper 2-Labelling Input: A graph G. Question: Do we have χ S (G) ≤ 2, i.e., does G admit s-proper 2-labellings? P-proper 2-Labelling Input: A graph G. Question: Do we have χ P (G) ≤ 2, i.e., does G admit p-proper 2-labellings?

  and is thus adjacent to a degree-2 vertex u, then we have d H (v) ≥ 4 > 2 = d H (u), and again µ(u) = µ(v) by any labelling. Thus, designing an m-proper 2-labelling of H falls down to 2-labelling the pendant paths in an m-proper way. From this, we deduce that assigning label 1 to all edges of E(H) ∩ E(G), and, then, for every pendant path (v, a, b, c, d), where v ∈ V (H) ∩ V (G) (and thus d H (d) = 1), assigning label 2 to dc and cb and label 1 to ba and av, results in an m-proper 2-labelling of H.

  The 3-necklace D 3
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 1 Figure 1: Gadgets used to prove Theorem 4.3.
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 41 D fulfils the following properties:1. D admits s-proper 2-labellings where (sv 1 ) = 1;2. D admits s-proper 2-labellings where (sv 1 ) = 2;3. if is any s-proper 2-labelling of D, then: (a) (sv 1 ) = (tv 4 ); (b) σ(v 1 ) = σ(v 4 ) = 4 if (sv 1 ) = 1, and σ(v 1 ) = σ(v 4 ) = 5 otherwise.Proof. The vertices of D being of degree 1 and 3 only, it can be observed (through Observations 2.1 and 2.3) that if we have an s-proper 2-labelling of D and reverse all labels (1's become 2's, and vice versa) then what results is an s-proper 2-labelling of D. From this, we get that if Item 1. holds then Item 2. holds. Similarly, if the first part of Item 3.(b) holds, then the second part holds.
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 42 For any k ≥ 1, the k-necklace D k fulfils the following properties: 1. by any s-proper 2-labelling of D k , all outputs must be assigned the same label; 2. D k admits s-proper 2-labellings assigning label 1 to the outputs; 3. D k admits s-proper 2-labellings assigning label 2 to the outputs; 4. if is any s-proper 2-labelling of D k , then σ(a 1 ) = • • • = σ(a k ) = 3 if (a 1 b 1 ) = 1, and σ(a 1 ) = • • • = σ(a k ) = 6 otherwise.
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 43 S-proper 2-Labelling is NP-hard for graphs G with χ M (G) = 2.

  respectively) and σ(y i ) = 1, raising no conflicts. From these arguments, can thus be extended to A , and Items 1. and 2.(b) hold.

  To see this is true, start from being a partial labelling of H (following the labelling of G), and simply extend this to the edges of A by considering an s-proper 2-labelling of A (such a labelling exists, by Claim 2). Let us denote by the resulting 2-labelling of H. We claim is s-proper. First off, for every vertex v ∈ V (H)∩V (G), as mentioned earlier by we have σ(v) = x + 4, where x is the value of σ(v) by . Since is s-proper in G, this implies that, for every uv ∈ E(H) ∩ E(G), by we have σ(u) = σ(v).

	By how	was obtained, also σ