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On proper 2-labellings distinguishing by sums, multisets or products
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aUniversité Côte d’Azur, CNRS, Inria, I3S, France

Abstract

Given a graph G, a k-labelling ` of G is an assignment ` : E(G) → {1, . . . , k} of labels from
{1, . . . , k} to the edges. We say that ` is s-proper, m-proper or p-proper, if no two adjacent vertices
of G are incident to the same sum, multiset or product, respectively, of labels.

Proper labellings are part of the field of distinguishing labellings, and have been receiving
quite some attention over the last decades, in particular in the context of the well-known 1-2-3
Conjecture. In recent years, quite some progress was made towards the main questions of the field,
with, notably, the analogues of the 1-2-3 Conjecture for m-proper and p-proper labellings being
solved. This followed mainly from a better global understanding of these types of labellings.

In this note, we focus on a question raised by Paramaguru and Sampathkumar, who asked
whether graphs with m-proper 2-labellings always admit s-proper 2-labellings. A negative answer
to this question was recently given by Luiz, who provided infinite families of counterexamples. We
give a more general result, showing that recognising graphs with m-proper 2-labellings but no s-
proper 2-labellings is an NP-hard problem. We also prove a similar result for m-proper 2-labellings
and p-proper 2-labellings, and raise a few directions for further work on the topic.

Keywords: proper labelling; sum of labels; multiset of labels; product of labels.

1. Introduction

Let G be a graph. By a labelling ` of G, we mean an assignment of labels (numbers) from a
given set to the edges of G. For a set S of labels, ` is called an S-labelling if it assigns labels from
S, while, if S = {1, . . . , k} for some k ≥ 1, then we call ` a k-labelling. In so-called distinguishing
labellings, we are interested in designing labellings that permit to distinguish certain pairs of
vertices accordingly to some function inferred by the assigned labels. As attested by the survey [12]
by Gallian, this general definition is very flexible, and it gave birth, throughout the years, to a
tremendous number of such distinguishing labelling notions.

In this work, we are interested in a subset of distinguishing labellings, called proper labellings.
In proper labellings, the pairs of vertices that are required to be distinguished are the pairs of
adjacent vertices. Regarding the distiguishing function, there are again many possibilities. We are
here interested in three such functions, being the sums, multisets and products of labels incident to
the vertices. Formally, let us consider a graph G, together with a labelling `. For any vertex v of G,
we denote by σ(v) the sum of labels assigned by ` to the edges incident to v. Similarly, we denote
by µ(v) and ρ(v) the multiset and product, respectively, of these incident labels. Now, we say that
` is s-proper if no two adjacent vertices u and v of G are incident to the same sum of labels, i.e., if
σ(u) 6= σ(v) for every edge uv ∈ E(G). Similarly, we say that ` is m-proper and p-proper if every
two adjacent vertices are distinguished through the functions µ and ρ, respectively.

In proper labellings, the goal is generally to design labellings that are not only proper, but also
k-labellings for k as small as possible. This leads to the definition of three parameters, denoted
χS(G), χM(G) and χP(G) for a given graph G, which denote the smallest k ≥ 1 such that s-proper,
m-proper and p-proper, respectively, k-labellings of G exist. It is worth pointing out now that
these three parameters are not defined for all graphs G, as it can easily be observed that K2, the
complete graph on 2 vertices, admits no proper labellings at all. However, greedy arguments can be
employed to show that this is the only pathological connected graph. Consequently, the parameters
χS, χM and χP are more precisely studied in the context of nice graphs, which are those graphs
which do not have K2 as a connected component.



The notion of s-proper labellings emerged in the literature as a local version of the irregularity
strength of graphs, which was initially introduced, back in 1988, by Chartrand et al. [10]. Since
then, s-proper labellings have been studied for their own interest, and they have actually been
attracting a lot of attention due to the intriguing 1-2-3 Conjecture:

1-2-3 Conjecture (Karoński, Łuczak, Thomason [15]). If G is a nice graph, then χS(G) ≤ 3.

For details on the 1-2-3 Conjecture, we refer the interested reader to [19]. Let us just mention,
for now, that this conjecture has been proven to be quite challenging. To date, the best result
towards the conjecture is that χS(G) ≤ 5 for every nice graph G (see [14]). The conjecture was
proven to hold for 3-colourable graphs [15], and simple graph classes such as complete graphs [9],
for which, already, all of the labels 1, 2, 3 are required.

The general hardness behind the 1-2-3 Conjecture is one of the main reasons that led people to
consider m-proper labellings instead, as it can be observed that an s-proper labelling is always m-
proper. This observation led the authors of [1] to consider a multiset version of the 1-2-3 Conjecture
(asking, naturally, whether χM(G) ≤ 3 for every nice graph G). Right away, this presumption that
distinguishing vertices via multisets is easier than distinguishing via sums was proven correct, as
the authors showed that χM(G) ≤ 4 for all nice graphs G. More recently, this was definitely
confirmed, with Vučković proving, in [22], the multiset version of the 1-2-3 Conjecture.

In parallel with these results, a product version of the 1-2-3 Conjecture, stating that χP(G) ≤ 3
for every nice graph G, was introduced by Skowronek-Kaziów in [20]. An interesting fact is that,
due to 2 and 3 being coprime, m-proper 3-labellings and p-proper 3-labellings are actually not so
distant objects (see [6] for more details), which sort of gave the impression that the product version
of the 1-2-3 Conjecture might be of intermediate difficulty, between the sum and multiset versions,
yet closer to the latter one. Again, this was confirmed recently in [7], by Bensmail, Hocquard,
Lajou and Sopena proving the product version of the 1-2-3 Conjecture in full.

We have thus reached a point of time where quite some progress towards the 1-2-3 Conjecture
has been recently made, through the upper bound, 5, being very close to what is conjectured
exactly, and two related conjectures, which for quite some time seemed of close hardness, being
proved. What made this recent progress possible, is definitely a better understanding over the
inherent behaviour of s-proper, m-proper and p-proper 3-labellings, which on themselves, gave
birth to interesting side investigations (see [4] and the references there for examples). As a matter
of fact, even if the 1-2-3 Conjecture turned out to be proven soon, there would still remain lots of
interesting questions to answer towards fully understanding proper labellings.

One of these questions, which is precisely the one we investigate throughout this note, is about
the real difference between s-proper, m-proper and p-proper labellings. As partly mentioned earlier,
s-properness and p-properness both imply m-properness, that is χM(G) ≤ min{χS(G), χP(G)} for
every nice graph G. This led, in particular, to the following question:

Question 1.1 (Paramaguru, Sampathkumar [18]). Does every nice graph G verify χM(G) =
χS(G)?

Note that χS(G) = 1 for a graph G if and only if G is locally irregular, i.e., does not have
adjacent vertices with the same degree [3], in which context also χM(G) = 1. Now, since the
multiset version of the 1-2-3 Conjecture holds [22], we have χM(G) ≤ 3 for every nice graph G. So
the natural question to ask in order to advance towards answering Question 1.1, is whether there
exist graphs G such that 2 ≤ χM(G) < χS(G). Now, if we assume that the 1-2-3 Conjecture holds
as well, then this question reduces to:

Question 1.2. Are there graphs G with χM(G) = 2 < 3 = χS(G)?

Infinitely many graphs having the properties described in Question 1.2 have actually been
exhibited recently by Luiz in [16]. For instance, any split graph obtained from a complete graph
on at least six vertices by attaching a pendant degree-1 vertex to any vertex has the desired
properties. This leads to the question of whether all graphs with the properties described in
Question 1.2 are always that easy to describe. In this work, we focus on that very question, and
prove that determining whether χS(G) = 3 for a given graph G with χM(G) = 2 is NP-hard. Thus,
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recognising graphs G with χM(G) = 2 < 3 = χS(G) cannot be done in polynomial time, unless
P=NP. We also prove that such a result holds for m-proper and p-proper labellings.

This note is organised as follows. We start, in Section 2, by recalling a few facts on s-proper,
m-proper and p-proper labellings. In Section 3, we give a first general result on m-proper and
p-proper labellings, from which we provide a first insight into our proof arguments. From these, we
then give our main result in Section 4, from which we deduce that many more diverse graphs with
the properties described in Question 1.2 exist. We conclude in Section 5 with a few more remarks
and questions related to our investigations.

2. General tools and previous results

We start by recalling a few facts on proper labellings, which were already observed in previous
works (such as [9]). We begin with the following, which is evident.

Observation 2.1. Let G be a nice graph, and ` be a k-labelling of G. If uv ∈ E(G) is an edge
with d(u) = 1 (and d(v) > 1 since G is nice), then σ(u) 6= σ(v).

Another obvious observation, is the fact that p-proper labellings cannot assign label 0. This is
because if we have `(uv) = 0 for an edge uv of a graph G by a labelling `, then ρ(u) = ρ(v) = 0. Due
to this property, whenever dealing with p-proper S-labelling throughout this note (in particular in
upcoming Observation 2.3 and Corollary 2.4), we implicitly assume that 0 6∈ S.

Observation 2.2. p-proper labellings cannot assign label 0.

The next result is another elementary one of the field. Yet, it has several interesting conse-
quences. Particularly, it gives contexts in which s-proper, m-proper and p-proper 2-labellings stand
as equivalent objects.

Observation 2.3. Let G be a nice graph, and ` be an {a, b}-labelling of G for any two distinct real
numbers a, b. For σ(u) 6= σ(v) to hold for some uv ∈ E(G) with d(u) = d(v), the number of edges
labelled a incident to u must be different from the number of edges labelled a incident to v (and
similarly for the numbers of edges incident to u and v labelled b). Consequently, if σ(u) 6= σ(v),
then also both µ(u) 6= µ(v) and ρ(u) 6= ρ(v).

Proof. If we denote by nx(u) and nx(v) the number of edges incident to u and v, respectively,
assigned some label x by `, then the facts that d(u) = d(v) and na(u) = na(v) imply that also
nb(u) = nb(v), and from that we deduce that σ(u) = σ(v), µ(u) = µ(v) and ρ(u) = ρ(v) (assuming
0 6∈ {a, b} in this last case, recall Observation 2.2). From these observations, we deduce that if uv
is an edge of G with d(u) = d(v), then, so that σ(u) 6= σ(v) by an {a, b}-labelling of G, it must be
that na(u) 6= na(v) and thus that nb(u) 6= nb(v). Under those assumptions, note that we also have
µ(u) 6= µ(v) and ρ(u) 6= ρ(v), as claimed.

Corollary 2.4. In regular graphs, finding an s-proper, m-proper or p-proper {a, b}-labelling for
some distinct real numbers a, b, is equivalent to finding an s-proper, m-proper or p-proper {a′, b′}-
labelling for any distinct a′, b′.

In the next sections, the main results we prove relate to the following decision problems:

S-proper 2-Labelling
Input: A graph G.
Question: Do we have χS(G) ≤ 2, i.e., does G admit s-proper 2-labellings?

P-proper 2-Labelling
Input: A graph G.
Question: Do we have χP(G) ≤ 2, i.e., does G admit p-proper 2-labellings?

Note that these problems are clearly in NP. They were also showed to be NP-hard in general, first
by Dudek and Wajc in [11] for general graphs. Later on, Ahadi, Dehghan and Sadeghi proved
in [2] that these problems remain NP-hard when restricted to cubic graphs. From Corollary 2.4,
this implies the following:

Theorem 2.5 (Ahadi, Dehghan, Sadeghi [2]). For any two distinct a, b, deciding whether a (cubic)
graph admits an s-proper, m-proper or p-proper {a, b}-labelling is NP-hard.
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3. Multisets versus products

The main result to be established in this section, relies on the following simple fact, already
established e.g. in [17].

Observation 3.1. Let G be a nice graph with a vertex v, and let H be obtained from G by attaching
a pendant path (v, a, b, c, d) of length 4 at v. If ` is a p-proper 2-labelling of H, then the restriction
of ` to G is also p-proper. Conversely, any p-proper 2-labelling of G can be extended to one of H.

Proof. Assume ` is a p-proper 2-labelling of H. So that ρ(c) 6= ρ(d), note that we must have
`(bc) = 2. From this, so that ρ(a) 6= ρ(b), we must have `(va) = 1, meaning that `(va) does not
contribute to ρ(v). We thus deduce that, for ` to be p-proper in H, the restriction of ` to the edges
of G must also be p-proper in G.

Regarding the last part of the statement, consider a p-proper 2-labelling ` of G. We extend
this labelling to a p-proper 2-labelling of H, by first setting `(va) = 1 and `(bc) = 2, and then
setting either `(ab) = 1 and `(cd) = 2 (if ρ(v) 6= 1) or `(ab) = 2 and `(cd) = 1 (otherwise). It can
be checked that this raises no conflict in both cases.

We now prove that P-proper 2-Labelling is NP-hard even when restricted to graphs G with
χM(G) = 2. So, assuming that P6=NP, not only does our result imply that there exist infinitely
many graphs G with χM(G) = 2 < 3 = χP(G), but also that recognising the graphs G that verify
χM(G) = χP(G) = 2 cannot be done in polynomial time.

Theorem 3.2. P-proper 2-Labelling is NP-hard for graphs G with χM(G) = 2.

Proof. The proof is by reduction from the P-proper 2-Labelling problem in cubic graphs, which
is NP-hard (recall Theorem 2.5). Let G be a cubic graph, an instance of P-proper 2-Labelling.
We can assume that G is connected. We can also assume that G is not K4 (since χP(K4) = 3,
see [9]), thus that its chromatic number is at most 3 by Brooks’ Theorem [8]. In other words, we
can assume we also have a proper vertex-colouring φ : V (G)→ {0, 1, 2} of G.

We construct a graph H verifying χM(H) = 2, and such that χP(H) = 2 if and only if
χP(G) = 2. For that, we start from G, consider every vertex v ∈ V (G) in turn, and attach
at v exactly φ(v) new disjoint pendant paths of length 4. Note that the construction of H is clearly
achieved in polynomial time.

The fact that χP(G) = 2 if and only if χP(H) = 2 follows mainly from Observation 3.1. That
is, a p-proper 2-labelling of H directly infers one of G, due to the fact that the paths of length 4
do not contribute to the products of the vertices in V (H) ∩ V (G). Regarding the other direction,
a p-proper 2-labelling of G can be extended to the pendant paths we have added to form H, by
repeated applications of the arguments in the proof of Observation 3.1. Thus, we have the desired
equivalence.

To see now that we always have χM(H) = 2 (regardless of G), it suffices to note that, for any
two vertices u and v, by any labelling of a graph, we have µ(u) 6= µ(v) whenever d(u) 6= d(v).
Now, for any vertex v ∈ V (H) ∩ V (G), note that dH(v) = dG(v) + φ(v). In particular, because
φ is a proper {0, 1, 2}-vertex-colouring of G, for every two adjacent vertices u, v ∈ V (H) ∩ V (G),
we have dH(u) 6= dH(v), for dH(u), dH(v) ∈ {3, 4, 5}, and thus µ(u) 6= µ(v) by any labelling of H.
Similarly, if a vertex v ∈ V (H)∩ V (G) is incident to a pendant path (added when constructing H
from G), and is thus adjacent to a degree-2 vertex u, then we have dH(v) ≥ 4 > 2 = dH(u), and
again µ(u) 6= µ(v) by any labelling. Thus, designing an m-proper 2-labelling of H falls down to
2-labelling the pendant paths in an m-proper way. From this, we deduce that assigning label 1 to
all edges of E(H)∩E(G), and, then, for every pendant path (v, a, b, c, d), where v ∈ V (H)∩ V (G)
(and thus dH(d) = 1), assigning label 2 to dc and cb and label 1 to ba and av, results in an m-proper
2-labelling of H.

4. Multisets versus sums

Before proving our main result, Theorem 4.3, we first need to introduce a few gadgets and
constructions, and to point out some of their properties.
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Figure 1: Gadgets used to prove Theorem 4.3.

The gadget D is depicted in Figure 1(a). Throughout this section, we deal with the vertices
and edges of D following the notation given in Figure 1. We call s and t the two ends of D, while
we say that edges sv1 and tv4 are its two outputs. This gadget D was already used in [2, 13], where
it was noticed it has the following labelling properties:

Theorem 4.1. D fulfils the following properties:

1. D admits s-proper 2-labellings ` where `(sv1) = 1;

2. D admits s-proper 2-labellings ` where `(sv1) = 2;

3. if ` is any s-proper 2-labelling of D, then:

(a) `(sv1) = `(tv4);

(b) σ(v1) = σ(v4) = 4 if `(sv1) = 1, and σ(v1) = σ(v4) = 5 otherwise.

Proof. The vertices of D being of degree 1 and 3 only, it can be observed (through Observations 2.1
and 2.3) that if we have an s-proper 2-labelling of D and reverse all labels (1’s become 2’s, and vice
versa) then what results is an s-proper 2-labelling of D. From this, we get that if Item 1. holds
then Item 2. holds. Similarly, if the first part of Item 3.(b) holds, then the second part holds.

Let ` be an s-proper 2-labelling of D. By the previous arguments, we can assume that `(v2v3) =
1. Assume first that `(v2v1) = `(v2v4) = 1. Then, σ(v2) = 3. So that σ(v2) 6= σ(v3), at least one
of `(v3v1) and `(v3v4) must be 2. There are two cases:

• Assume first that `(v3v1) 6= `(v3v4), say `(v3v1) = 1 and `(v3v4) = 2. Thus, σ(v3) = 4. Now
observe that, regardless of `(v1s), we must have σ(v1) ∈ {3, 4} = {σ(v2), σ(v3)}, resulting in
a conflict, thus a contradiction.

• Assume now that `(v3v1) = `(v3v4) = 2. Then, σ(v3) = 5. So that σ(v1), σ(v4) 6∈ {3, 5} =
{σ(v2), σ(v3)}, note that we must have `(v1s) = `(v4t) = 1, which indeed yields σ(v1) =
σ(v4) = 4, as claimed.
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If `(v2v1) = `(v2v4) = 2, then, so that σ(v2) 6= σ(v3), either `(v3v1) = `(v3v4) = 1, in which
case we fall into the previous case (up to renaming the vertices), or `(v3v1) 6= `(v3v4). In that last
case, if we have, say, `(v3v1) = 1 and `(v3v4) = 2, then {σ(v2), σ(v3)} = {4, 5}; note that, again,
regardless of `(v1s), we must have σ(v1) ∈ {4, 5} = {σ(v2), σ(v3)}, thus a conflict.

Lastly, if `(v2v1) 6= `(v2v4), then, so that σ(v2) 6= σ(v3), we must have `(v3v1) = `(v3v4). Up
to renaming the vertices of D, this is a case we have covered earlier.

Using copies of the gadget D, we can construct bigger gadgets. For any k ≥ 1, the k-necklace
Dk is obtained in the following way (see Figures 1(b) and (c) for examples):

• Start from k disjoint copies G0, . . . , Gk−1 of the gadget D. For every i ∈ {0, . . . , k − 1}, we
denote by xi and yi the ends of Gi.

• For every i ∈ {0, . . . , k − 1}, identify yi and x(i+1) mod k to connect the Gi’s in a cyclic
fashion. Note that all vertices have degree 3, except for exactly k of them, which we denote
by a1, . . . , ak, which result from the identifications.

• For every i ∈ {1, . . . , k}, attach a pendant vertex bi at ai.

We call the bi’s the ends of Dk, while we call the aibi’s its outputs. Labelling properties of the
gadget D actually infer labelling properties for necklaces; in particular:

Theorem 4.2. For any k ≥ 1, the k-necklace Dk fulfils the following properties:

1. by any s-proper 2-labelling of Dk, all outputs must be assigned the same label;

2. Dk admits s-proper 2-labellings assigning label 1 to the outputs;

3. Dk admits s-proper 2-labellings assigning label 2 to the outputs;

4. if ` is any s-proper 2-labelling of Dk, then σ(a1) = · · · = σ(ak) = 3 if `(a1b1) = 1, and
σ(a1) = · · · = σ(ak) = 6 otherwise.

Proof. Dk having vertices of degree 1 and 3 only, by Observations 2.1 and 2.3 we get that, upon
reversing labels by s-proper 2-labellings, Item 3. holds as soon as Items 1. and 2. hold.

Let ` be an s-proper 2-labelling of Dk. First off, we claim that, for each of the k copies
G0, . . . , Gk−1 of the gadget D forming Dk, its two outputs must be assigned the same label by `.
In other words, we claim that the 2k outputs of G0, . . . , Gk−1 must be assigned the same label.
Indeed, assume this is wrong. Recall that, by Item 3.(a) of Theorem 4.1, for any copy of D in Dk,
its two outputs must be assigned the same label by `. Now, by our hypothesis, there must be a
vertex ai in Dk resulting from the identification of two ends from two copies Gi−1 and Gi of D
such that, say, the outputs of Gi−1 are assigned label 1 by ` while the outputs of Gi are assigned
label 2. By Item 3.(b) of Theorem 4.1, this means that ai is adjacent to a vertex v of Gi−1 that
has sum 4 by `, and to a vertex u of Gi that has sum 5. Then, there is a conflict either between
ai and v (if `(aibi) = 1) or between ai and u (if `(aibi) = 2).

Thus, the 2k outputs of the copies of D in Dk must be assigned the same label by `. Assume
this label 1, and focus on any vertex ai resulting from the identification of two ends of Gi−1 and Gi,
being copies of D. Then the two neighbours of ai in Gi−1 and Gi, by Item 3.(b) of Theorem 4.1,
have sum 4 by `. So that there is no conflict between ai and these vertices, we must have `(aibi) = 1
so that σ(ai) = 3. Similar arguments show that we must have `(aibi) = 2 in case the other two
edges incident to ai are assigned label 2, in which case σ(ai) = 6.

We are now ready to prove our main result. Again, this result implies that there exist infinitely
many graphs G verifying χM(G) = 2 < 3 = χS(G). Even worse, recognising such graphs cannot be
done in polynomial time, unless P=NP.

Theorem 4.3. S-proper 2-Labelling is NP-hard for graphs G with χM(G) = 2.
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Proof. The proof starts similarly as that of Theorem 3.2, and is done by a reduction from the S-
proper 2-Labelling problem in cubic graphs. Let G be a connected cubic graph given together
with a proper vertex-colouring φ : V (G) → {0, 2, 4}, where G is an instance of S-proper 2-
Labelling. We construct, in polynomial time, a graph H with χM(H) = 2, and such that
χS(G) = 2 if and only if χS(H) = 2.

The construction ofH is mainly achieved by using an α-necklace with sufficiently many outputs,
connected to the rest of the graph in some fashion to guarantee that 1) any s-proper 2-labelling
must propagate in a very particular way, and that 2) some adjacent vertices have distinct degrees
so that they cannot be an obstacle to m-properness. We voluntarily avoid specifying the value of
α for now, and just assume it is sufficiently large so that we always have unused outputs in hands
whenever we need some. Let us just mention that α will be a linear function of |V (G)|.

Before describing the heart of the reduction, let us make some preparations. We start from A,
an α-necklace with α outputs. Recall that by any s-proper 2-labelling, all outputs of A must be
assigned the same label, and that this label can be 1 or 2 (recall Theorem 4.2). We first modify A,
to force this label on the outputs to be 1. For that, we first need to point out the following easy
observation:

Claim 1. Let u1v1, . . . , ukvk be k ≥ 1 pairwise distinct outputs of A, where the vi’s are the degree-1
vertices. For every i ∈ {1, . . . , k}, attach a pendant path (vi, xi, yi) of length 2 at v, resulting in a
new graph A′. Then:

1. every s-proper 2-labelling of A can be extended to one of A′;

2. if ` is any s-proper 2-labelling of A′, then, for every i ∈ {1, . . . , k}:

(a) `(uivi) 6= `(xiyi);

(b) σ(xi) = 3 if `(uivi) = 1, and σ(xi) can be anything in {2, 3} otherwise.

Proof of the claim. Item 2.(a) is necessary, as it is the only reason that guarantees σ(vi) 6= σ(xi).
To see now that Item 1. holds, consider an s-proper 2-labelling ` of A, and consider extending it
to the edges vixi and xiyi of A′, for some i ∈ {1, . . . , k}. If `(uivi) = 1, then recall that σ(ui) = 3
by Theorem 4.2. In that case, we must set `(vixi) = 1 and `(xiyi) = 2, which yields σ(vi) = 2,
σ(xi) = 3 and σ(yi) = 2, thus no conflicts. Now, if `(uivi) = 2, then, by Theorem 4.2, recall that
σ(ui) = 6. In that case, we can set e.g. `(vixi) = 1 (or `(vixi) = 2) and `(xiyi) = 1, which yields
σ(vi) = 3 (σ(vi) = 4, respectively), σ(xi) = 2 (σ(xi) = 3, respectively) and σ(yi) = 1, raising no
conflicts. From these arguments, ` can thus be extended to A′, and Items 1. and 2.(b) hold. �

In what is to come, we will need to “extend” some outputs of A as described in Claim 1. That
is, given an output uv of A where v is the degree-1 vertex, by extending uv we mean attaching a
pendant path (v, x, y) of length 2 at v. We regard the pendant edge xy as another output of the
resulting graph, its end being y. Conversely, uv is no longer regarded as an output of the resulting
graph. So, from A, by extending some outputs we get another graph A′ with α outputs which
can now be of two possible types: an output of A′ either is an extended output, resulting precisely
from an output extension, or is one of the initial outputs of A that was not extended, which we
call regular outputs from now on to avoid any confusion. Due to Claim 1, the main difference,
in brief, between regular and extended outputs, is that regular outputs should all be assigned the
same label by an s-proper 2-labelling, while all extended outputs must be assigned the other label.

We are now ready to modify A to force the label of its outputs by any s-proper 2-labelling. For
that, we proceed as follows. Take one output e with end u of A, and two more outputs f1, f2. Start
by extending f1, f2, resulting in two new extended outputs f ′1, f ′2. Calling v1 and v2, respectively,
their ends, we modify A by first identifying v1 and v2 to a new vertex v, and adding an edge
between u and v. This results in a new graph A′, in which we no longer regard e, f ′1, f ′2 as outputs,
and which thus has α− 3 outputs (all of which are regular). A′ also has the following properties:

Claim 2. A′ fulfils the following properties:

1. by any s-proper 2-labellings of A′, all (regular) outputs must be assigned label 1;

2. A′ admits s-proper 2-labellings.
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Proof of the claim. We start by proving the first item. Assume Item 1. is wrong, and that A′
admits s-proper 2-labellings ` where all outputs are assigned label 2. By Theorem 4.2, following
the terminology above, by the construction of A′ from A, the edge e must be assigned label 2 by
`, while f ′1, f ′2, being extensions of f1, f2, must be assigned label 1 (by Claim 1). This implies that
we must have σ(u) = σ(v) regardless of `(uv), a contradiction.

Assume now that ` is an s-proper 2-labelling of A where all outputs are assigned label 1 (which
exists by Theorem 4.2). We claim it can be extended to A′, thereby proving the second item of the
claim. By Claim 1, ` extends from f1, f2 to f ′1, f ′2, and it must be that `(f ′1) = `(f ′2) = 2, while the
ends of f ′1, f ′2 other than v have sum 3. By setting `(uv) = 1, we obtain σ(u) = 2 and σ(v) = 5,
thus raising no conflicts. In particular, recall that the neighbour of u different from v must have
sum 3 by Theorem 4.2. �

At this point, we know that A′ admits s-proper 2-labellings, all of which must assign label 1
to all of the α − 3 (regular) outputs. We now describe how to construct H from G and A′. Start
from G and A′. Consider then every vertex v of G in turn, and pick x = φ(v) new regular outputs
e1, . . . , ex of A′, as well as y = 4−φ(v)

2 other new regular outputs f1, . . . , fy. Start by extending
each of f1, . . . , fy, resulting in y extended outputs f ′1, . . . , f ′y. Note that x + y ∈ {2, 3, 4}. Now,
just identify v and each of the x + y ends of e1, . . . , ex, f ′1, . . . , f ′y. Once all vertices v of G have
been treated that way, the resulting graph is our H.

Before proceeding with proving the equivalence between G and H, let us first comment on α,
the number of outputs that A must have for the whole construction to be achieved. For a vertex
v ∈ V (H) ∩ V (G) with φ(v) = 0, we have attached two extended outputs at v (and no regular
outputs). If φ(v) = 2, then we have attached two regular outputs and one extended output at v.
Last, if φ(v) = 4, then we have attached four regular outputs (and no extended outputs). Thus,
the number of attached outputs (regardless of their type) of A′ is at most 4|V (G)|, and remember
that three additional outputs were necessary to go from A to A′. Thus it is sufficient to have α
linear in |V (G)|, and the construction of H from G and A′ is clearly achieved in polynomial time.

We now prove that we have the desired equivalence between G and H.

• Assume first that H admits an s-proper 2-labelling `. Recall that all regular outputs of A′
must be assigned label 1 by ` due to Claim 2, and that all extended outputs must be assigned
label 2 by Claim 1. By how H was constructed, in particular with respect to φ, note that,
for every vertex v ∈ V (H) ∩ V (G), the edges of E(A′) incident to v have their assigned
labels summing up to exactly 4. In particular, for every edge uv in E(H) ∩ E(G), we have
σ(u) 6= σ(v), and, thus, σ(u) − 4 6= σ(v) − 4. This implies that the restriction of ` to the
edges of G is also s-proper.

• Conversely, assume G admits an s-proper 2-labelling `. We claim that ` can be extended to
an s-proper 2-labelling of H. To see this is true, start from ` being a partial labelling of H
(following the labelling ` of G), and simply extend this ` to the edges of A′ by considering
an s-proper 2-labelling of A′ (such a labelling exists, by Claim 2). Let us denote by `′ the
resulting 2-labelling ofH. We claim `′ is s-proper. First off, for every vertex v ∈ V (H)∩V (G),
as mentioned earlier by `′ we have σ(v) = x + 4, where x is the value of σ(v) by `. Since `
is s-proper in G, this implies that, for every uv ∈ E(H) ∩ E(G), by `′ we have σ(u) 6= σ(v).
By how `′ was obtained, also σ(u) 6= σ(v) by `′ for every uv ∈ E(H) ∩ E(A′) such that
u, v 6∈ V (A′) ∩ V (G). It remains to prove that we also have σ(u) 6= σ(v) by `′ for every two
adjacent vertices u, v with uv ∈ E(H) ∩ E(A)′, u ∈ V (H) ∩ V (G) and v 6∈ V (H) ∩ V (G).
Due to the outputs of A′ attached at u, which, by `′, bring exactly 4 to σ(u), and dG(u) = 3,
note that σ(u) ≥ 7 by `′. On the other hand, v is either of degree 3 (case of a regular output
uv attached at u) or 2 (otherwise, case of an extended output uv), meaning that σ(v) ≤ 6
by `′. Thus, we always have σ(u) > σ(v), and `′ is thus s-proper.

We conclude the proof by showing that χM(H) = 2, regardless of G. This is by the following
arguments. For every vertex v ∈ V (H)∩ V (G), note that we have dH(v) = dG(v) + φ(v) + 4−φ(v)

2 .
Since G is cubic, we thus have dH(v) = 7 if φ(v) = 4, dH(v) = 6 if φ(v) = 2, and dH(v) = 5
otherwise, i.e., if φ(v) = 0. Since φ is proper, this means that, for every uv ∈ E(H) ∩ E(G),
we have dH(u) 6= dH(v), implying that µ(u) 6= µ(v) by any 2-labelling of H. Similarly, for every
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vertex v ∈ (V (H) ∩ V (A′)) \ V (G), we have dH(v) ≤ 3, implying that dH(u) 6= dH(v) for every
u ∈ V (H) ∩ V (G), thus µ(u) 6= µ(v) again by any 2-labelling of H. All these arguments imply
that if we just start from an s-proper 2-labelling of A′ (which exists by Claim 2), and extend it to
the whole of H by assigning arbitrary labels to the edges of E(H)∩E(G), then what results is an
m-proper 2-labelling of H. Thus, χM(H) = 2.

5. Discussion

Through Theorem 4.3, we have provided a positive answer to Question 1.2, thus a negative
answer to Question 1.1, going beyond the results of Luiz from [16]. A general way to pursue the
investigations on this topic, could be by wondering about classes of graphs for which Question 1.1
can be answered (positively or negatively), and similarly for its counterpart for p-proper labellings.
For instance:

• In the case of nice trees T , it has been known for long that χS(T ) ≤ 2 always holds (see [9]),
which yields a positive answer to Question 1.1 for trees. This is a neat difference with p-
proper labellings, as Szabo Lyngsie proved in [17] that there exist infinitely many trees T
with χP(T ) = 3, which, fortunately, can be recognised in polynomial time. Thus, for trees
T , we sometimes have χM(T ) = 2 < 3 = χP(T ), but such situations can be recognised easily.

• Regarding bipartite graphs, it was proved by Thomassen, Wu and Zhang [21] that bipartite
graphs G with χS(G) = 3 form exactly the class of the so-called odd multi-cacti, which can
be recognised in polynomial time. Looking at the structure of odd multi-cacti, it is not too
complicated to prove that each graph G that belongs to this class, also verifies χM(G) = 3
(refer e.g. to [5] for more insight in the structure of these graphs). In other words, the
answer to Question 1.1 is also yes for bipartite graphs. Regarding p-proper labellings, we
have already mentioned earlier that trees form a context in which we sometimes do not have
equality between the parameters χM and χP. Regarding the complexity of deciding whether
this is the case or not for a given bipartite graph, it is still unclear, as we still do not know
whether bipartite graphs G with χP(G) ≤ 2 can be recognised in polynomial time (see [17]
for partial results).

• Regarding graphs with bounded maximum degree, we note that our reduction in the proof of
Theorem 4.3 builds graphs of maximum degree at most 7. A question could thus be whether
Theorem 4.3 also holds for graphs with maximum degree less than 6.

Note that graphs G with maximum degree 2 are paths and cycles, for which it is not compli-
cated to prove, through Observations 2.1 and 2.3, that we always have χM(G) = χS(G) = 2.
We note also that for any ∆ ∈ {3, 4, 5, 6}, we can construct graphs with maximum degree ∆
that are counterexamples to Question 1.1. Let us give an example for ∆ = 3, which gener-
alises easily for any ∆ ∈ {4, 5, 6}. Reusing the terminology from the proof of Theorem 4.3,
start from a 6-necklace D6, with outputs e1, . . . , e6. Now extend e4, e5, e6 to new extended
outputs e′4, e′5, e′6. Denote by v1, . . . , v6 the ends of e1, e2, e3, e′4, e′5, e′6, respectively. Now iden-
tify v4 and v5 to a new vertex x, and similarly identify v2 and v3 to a new vertex y, and just
add the edges v1x and v6y, to obtain a graph G. It is not too hard to check that ∆(G) = 3,
and that χM(G) = 2 < 3 = χS(G), by similar arguments as in the proof of Theorem 4.3. In
particular, note that, just as in the proof with A′, the edge v1x forces all outputs of D6 to
be assigned label 1 by an s-proper 2-labelling of G, while the edge v6y, by similar arguments,
forces all outputs of D6 to be assigned label 2. It follows that χS(G) > 2. On the other hand,
due to the number of outputs of D6 we have identified, note that v1 and x, and similarly v6
and y, have different degrees and thus cannot be in conflict when considering multisets.

Regarding the same concerns for p-proper labellings, note that the reduction in the proof
of Theorem 3.2 provides graphs with maximum degree 5. Thus, a similar question as above
concerns the complexity of the same problem for graphs with maximum degree 3 or 4, given,
again, that some of these graphs G sometimes verify χM(G) = 2 < 3 = χP(G) (which can
be proved reusing the same ideas as above, but with the labelling ideas from the proof of
Theorem 3.2).
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