
HAL Id: hal-03536349
https://hal.science/hal-03536349

Submitted on 19 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Universality of the optical absorptance quantization in
two-dimensional group-IV, III-V, II-VI and IV-VI

semiconductors
Michel Lannoo, P Tim Prins, Zeger Hens, Daniel Vanmaekelbergh, Christophe

Delerue

To cite this version:
Michel Lannoo, P Tim Prins, Zeger Hens, Daniel Vanmaekelbergh, Christophe Delerue. Universality
of the optical absorptance quantization in two-dimensional group-IV, III-V, II-VI and IV-VI semicon-
ductors. Physical Review B, 2022, 105, pp.035421. �10.1103/PhysRevB.105.035421�. �hal-03536349�

https://hal.science/hal-03536349
https://hal.archives-ouvertes.fr


Universality of the optical absorptance quantization in two-dimensional group-IV,
III-V, II-VI and IV-VI semiconductors

Michel Lannoo,1 P. Tim Prins,2 Zeger Hens,3 Daniel Vanmaekelbergh,2 and Christophe Delerue4, ∗

1Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397, Marseille, France
2Debye Institute for Nanomaterials Science, University of Utrecht,

Princetonplein 1, 3584 CC Utrecht, The Netherlands
3Physics and Chemistry of Nanostructures (PCN), Ghent University, 9000 Gent, Belgium

4Université de Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France,
Junia, UMR 8520 - IEMN, F-59000 Lille, France

The optical absorptance of a single graphene layer over a wide range of wavelengths is known to be
remarkably constant at the universal value πα where α is the fine structure constant. Using atomistic
tight-binding calculations, we show that the absorptance spectra of nanometer-thin layers (quantum
wells) of group-IV, III-V, II-VI or IV-VI semiconductors are characterized by marked plateaus at
integer values of πα, in the absence of excitonic effects. In the case of InAs, the results obtained are
in excellent agreement with the currently available experimental data. By revisiting experimental
data on semiconductor superlattices, we show that πα is also a metric of their absorption when
normalized to a single period. We conclude that the πα quantization is universal in semiconductor
quantum wells provided that excitonic effects are weak, and is therefore not specific to the zero-gap
graphene case. The physical origin of this universality and its limits are discussed using analytical
models that capture the main underlying physics of the lowest optical transitions in III-V and II-VI
semiconductor quantum wells. These models show that the absorptance is ruled by πα independent
of the material characteristics because of the presence of a dominant term in the Hamiltonian, linear
in the wave vector k (∼ V · k), which couples the conduction band to the valence bands. However,
the prefactor in front of πα is not unity as in graphene due to the different nature of the electronic
states. In particular, the spin-orbit coupling plays an important role in bringing the absorptance
plateaus closer to integer values of πα. The case of IV-VI semiconductor (PbSe) quantum wells
characterized by a rocksalt lattice and multi-valley physics is very similar to that of graphene, with
the specification that a “massful gap” is formed around the Dirac points.

I. INTRODUCTION

The fine structure constant α, introduced by Arnold
Sommerfeld [1], characterizes the strength of the inter-
actions between charged particles and the electromag-
netic field [2]. In condensed matter physics, this con-
stant quantifies the response to electromagnetic excita-
tion of a large number of very different systems, such as
materials with topological phases [3] including the quan-
tum Hall effect [4], graphene [5–10], black phosphorus
multilayers [11] or plasmonic networks [12]. In partic-
ular, if an undoped graphene monolayer is irradiated,
the amount of absorbed light in a wide range of wave-
lengths is given by the universal constant πα ≈ 2.3%.
Remarkably, this same value appears in the quantiza-
tion of optical absorption through InAs nanometer thick
layers (hereinafter referred to as quantum wells) [13]. In
this case, after correction of local-field effects, the ab-
sorptance spectrum is characterized by a succession of
several plateaus whose respective heights are very close
to πα. Surprisingly, however, the case of quantum wells
of semiconductors other than InAs has not been studied
so far.

This quantization is not universal. For example, ultra-
fine monolayers obtained by exfoliation of van der Waals
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materials, such as transition metal dichalcogenides, often
show spectra of great richness, with bound exciton ab-
sorptances much higher than πα, especially under the ac-
tion of strong excitonic effects [14–19]. These effects are
also very strong in ultrathin (. 2 nm) layers of semicon-
ductors synthesized by colloidal chemistry, often called
nanoplatelets [20, 21].

These observations have inspired theoretical attempts
to identify the origin of the πα quantization and its in-
trinsic limits [22–28]. In the case of graphene, deviations
from πα appear when electrons lose their Dirac fermion
character as a non-zero mass, for example at high en-
ergy relative to the Dirac point [26–28]. The same effect
appears when a gap is opened at the Dirac point, for ex-
ample under the action of spin-orbit coupling (SOC), as
predicted in the case of silicene, germanene and stanene
[25], and as shown in Sect. S8 of the Supplemental Ma-
terial [29] (see, also, Refs. [30–33] therein).

All previous theoretical studies [22–28] were based on
two-band models from which it was concluded that the
πα quantization of the absorptance results from a nu-
merical compensation between the joint density-of-states
(JDOS) and the oscillator strength. However, this can-
cellation of terms is only perfect in the case of pristine
graphene, for which the Fermi velocity determines both
the band dispersion and the momentum matrix elements
over a large energy range [5–10, 28]. In the case of quan-
tum wells of zinc-blende semiconductors which are char-
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TABLE I. Summary of the results for the different types of materials considered in this work. CB and VB stand for conduction
and valence bands, respectively. The number of bands per valley must be multiplied by two if spin is taken into account. In
the case of Ge, we consider the direct bands at Γ. The integer n > 0 indicates that the absorptance present several plateaus,
multiple of πα or 2πα.

Material Lattice Valleys Number of bands Band dispersion SOC Absorptance Unit
per valley plateaus per valley

Graphene Honeycomb K (×2) CB:1 VB:1 Linear No πα πα/2

III-V or II-VI Zinc-blende Γ(×1) CB:1 VB:3 CB: Parabolic at the edge, Yes, sets VB ∼ nπα ∼ πα

semiconductor non-parabolic beyond SOC splitting
Ge Diamond Γ(×1) VB: Complex,

anisotropy, warping
IV-VI Rocksalt L (×4) CB:1 VB:1 Parabolic at edges, Yes, ∼ 2nπα ∼ πα/2

semiconductor almost linear beyond opens the gap

acterized by heavy, light and split-off hole bands with
marked anisotropies that couple under the effect of the
confinement, a two-band model is not justified [34]. Pre-
vious theoretical studies [13, 23, 24, 26] assumed a con-
stant JDOS, typical of two-dimensional (2D) materials
with parabolic bands. In reality, however, InAs is char-
acterized by marked non-parabolic effects due to a very
strong coupling between valence and conduction bands
[35–37]. As a result, the fundamental physical reasons for
the πα quantization of the absorptance in InAs quantum
wells remains largely to be revealed, and so does the uni-
versality of this characteristics. In this paper, we show
that absorptance quantization can be found in 2D mate-
rials characterized by very different band structures, such
as graphene, group-IV, III-V and II-VI semiconductors,
and even in IV-VI semiconductors with a rocksalt lattice.

In the following, we present detailed atomistic tight-
binding calculations of electronic structures and absorp-
tance spectra of semiconductor quantum wells. As sum-
marized in Table I, we predict that, despite band struc-
tures of great variety and complexity, quantum wells
of many semiconductors are characterized by simple ab-
sorptance spectra with marked plateaus, directly inter-
pretable in terms of the universal constant πα. We show
that InAs is not an singular example, but is on the con-
trary representative of other conventional semiconduc-
tors with weak excitonic effects, which is already the case
for InAs layers thicker than 3 nm [13]. These predictions
are reinforced by published absorption measurements in
semiconductor superlattices whose results we revisit [23].

We show that this universality of the absorptance
quantization has a common fundamental origin that we
are able to reveal through simple analytical models. The
nature of the electronic states involved in the optical
transitions plays essentially only on the prefactor in front
of πα, which differs according to the categories of mate-
rials. This universal behavior thus provides simple rules
for the design of photodetectors based on semiconductor
quantum wells. It creates an unexpected bridge with the
world of graphene, not by coincidence but due to very
fundamental reasons. Finally, we remark that reports

show that the fine structure constant also rules sponta-
neous emission and gain, a topic beyond the scope of the
present work [23].

II. METHODOLOGY

A. Expression for the absorptance

The absorptance A is the measure of the absorbed light
flux, such that R+A+ T = 1 where T is the transmit-
tance and R is the reflectance. In the case of a single
quantum well deposited on a transparent substrate, the
absorptance at photon energy ~ω can be written as

A(~ω) = F 2A0(~ω) (1)

where F is equal to 2/(ns+1) in which ns is the refractive
index of the substrate (assumed to be very thick). The
prefactor F 2, which is a local-field factor, describes the
fact that the quantum well experiences interfering inci-
dent and reflected electric fields. In the case of a sample
irradiated perpendicularly, a quantum well being a quasi-
2D system, the external electric field (plus its reflected
component) is unscreened (for wavelength ≫ thickness),
the polarization charges being repelled at the edges.

The rate for an optical transition between a valence
subband v and a conduction subband c at wavevector
k is determined by the oscillator strength fc,v(k) =

(2/m0) |⟨ c,k |p · e | v,k ⟩|2 /[Ec(k) − Ev(k)] where e is
the light polarization vector, p is the momentum oper-
ator, m0 is the free electron mass, Ec(k) [Ev(k)] is the
energy in the conduction [valence] subband. In absence
of excitonic effects, the bare absorptance of a quantum
well is given by [38, 39]

A0(~ω) =
π~e2

2m0cε0S

∑
c,v,k

fc,v(k)δ(~ω − Ec(k) + Ev(k))

(2)
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where S is the area of the sample on which we apply
periodic boundary conditions that define the components
of k. For numerical implementation, the number of k
vectors is increased until the results are converged, the
Dirac delta function δ(x) in Eq. (2) being replaced by
a Gaussian function exp

[
−x2/(2η2)

]
/(η

√
2π) where η

characterizes all sources of broadening. Unless otherwise
specified, η is fixed at 10 meV.

B. Tight-binding calculations of the absorptance

The electronic structure of (001) quantum wells is cal-
culated using an atomistic tight-binding method. Each
atom of the compound is described by a set of 20
atomic orbitals, sp3d5s∗ for each spin degree of free-
dom where s∗ represents a second s orbital. The dan-
gling bonds at quantum well surfaces are saturated with
pseudo-hydrogen atoms described by a single s orbital
[38], except for PbSe for which it is not necessary [40].
The Hamiltonian matrix elements are restricted to the
nearest-neighbor interactions and onsite terms. Spin-
orbit coupling is included. We used the tight-binding
model of Ref. 41 for InAs, Ref. 40 for PbSe, Ref. 42 for
(zinc-blende) CdSe, Ref. 43 for GaAs, Ref. 44 for Ge,
Ref. 45 for HgTe. We have verified that very similar re-
sults have been obtained with other sets of parameters
for PbSe [46] and for Ge [47].

Following a well-established recipe for the description
in tight-binding of the optical properties of semiconduc-
tors, [38, 48] the momentum matrix elements are deter-
mined by those of the Hamiltonian H(k),

⟨ c,k |p · e | v,k ⟩ → m0

~
⟨ c,k |∇H(k) · e | v,k ⟩ (3)

in which the gradient of H(k) is relative to k.

C. Condition for the existence of plateaus in the
absorptance

It is interesting to consider the case where the system is
isotropic, i.e., where all quantities depend only on k, the
modulus of k. As shown in Appendix A, and as already
found by Huang et al. [28], the bare absorptance can be
written from Eq. (A4) as

A0(~ω) = 2πα
∑
c,v

|⟨ c,k |∇H(k) | v,k ⟩|2

∂|Ev(k)− Ec(k)|2/∂(k2)
(4)

with k such that Ec(k)−Ev(k) = ~ω. ∇H, the gradient
of the Hamiltonian with respect to k, comes from the
expression of the momentum [Eq. (3)]. The numerator
and denominator of Eq. (4) have thus the same unit, i.e.,
(energy.length)2. Within one constant, the inverse of the
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FIG. 1. Crosses: Measured absorptance [13] for InAs quan-
tum wells of different thickness, 6.0 nm (red), 9.0 nm (blue),
14 nm (green), 19 nm (brown). Solid lines: absorptance
A(~ω) calculated for quantum wells with slightly smaller
thickness, 4.0 nm (red), 6.0 nm (blue), 12.5 nm (green),
17.5 nm (brown). Broadening: η = 20 meV.

numerator is equal to the joint density of states divided
by ~ω (Appendix A).

Equation (4) shows that, for the absorptance to be con-
stant, there must be compensation between the optical
matrix element |⟨ c,k |∇H(k) | v,k ⟩|2 and the denomi-
nator. As we show in the following, this is likely to occur
when a non-diagonal term of the Hamiltonian, linear in k
(∼ V ·k where V is a constant vector), coupling conduc-
tion and valence subbands, dominates. In this case, both
the numerator and denominator are proportional to |V|2
and A0(~ω) is a constant determined by the symmetry
of the electronic states.

III. RESULTS AND DISCUSSION

A. InAs

Figure 1 presents the absorptance for InAs quantum
wells. The results of the calculations are compared with
the experimental data of Ref. 13. We have adjusted the
thickness of the quantum wells in order to obtain the cor-
rect optical threshold (gap) compared to experiments. A
reduction in thickness of the order of 2 nm is needed
(Fig. 1), which can be understood by band-bending ef-
fects which are well-known in the case of InAs surfaces,
due to the pinning of the Fermi level by surface states
[49].

The agreement between theory and experiments in
Fig. 1 is quite remarkable, showing that excitonic effects
which are not taken into account in our calculations are
weak in these InAs quantum wells. The absorptance is
characterized by very clear steps. Their position, their
amplitude, and even their shape when they exhibit fine
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FIG. 2. (a) Lowest conduction subbands and highest valence
subbands of a 4 nm thick InAs quantum well. (b) Zoom on
the highest valence subbands and, facing each other, (c) plot
of the bare absorptance calculated with a smaller broaden-
ing (η = 6 meV) than in Fig. 1 in such a way that each
absorptance plateau can be associated to a transition from a
valence subband (HH1, LH1, SO1) to the lowest conduction
subband (CB1). Red crosses: experiments [13] for a 6 nm
thick quantum well. High symmetry points of the Brillouin
zone: W = π/a[1, 1, 0], X = 2π/a[1, 0, 0], a being the bulk
lattice parameter.

structures are well described by the calculations. The
main plateaus in the spectra correspond to a πα quanti-
zation of the bare absorptance A0(~ω).

As shown in Fig. 2a for a 4 nm quantum well, the
band structure is composed of subbands due to the ver-
tical quantum confinement effect. The valence subbands
(Fig. 2b) exhibit a complex dispersion, due to the con-
tribution of the Heavy-Hole (HH), Light-Hole (LH) and
Split-Off (SO) bands [34]. In spite of this complexity, the
absorptance shown in Fig. 1 has relatively simple behav-
ior, with main plateaus of A0(~ω) at nπα with n ∈ N (for
additional results for a thickness of 12.5 nm, see Fig. S1
of Supplemental Material [29]).

Figure 2c presents the absorptance calculated using
a smaller broadening to reveal the details. This shows
that the first plateau is in fact composed of three steps
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FIG. 3. Bare absorptance A0(~ω) calculated for 6 nm thick
quantum wells of CdSe (brown dashed line), Ge (red dotted
line), GaAs (green dotted-dashed line), and for a 3.9 nm thick
quantum well of HgTe (blue solid line).

corresponding to the transitions from valence subbands
HH1, LH1 and SO1 to the lowest conduction subband
CB1 (Fig. 2a and Fig. 2b). Here the index 1 represents
the first quantum mode induced by the vertical confine-
ment in the quantum well. Similarly, a detailed analysis
shows that the plateau at nπα can be associated with
transitions (HH+LH+SO)n → CBn (Supplemental Ma-
terial [29], Fig. S1 in Sect. S1).

It is important to point out that the description of
the valence subbands in the form HHn, LHn and SOn is
only a simplified representation. Indeed, it is not easy
to follow the HH, LH, SO character of the subbands as
a function of k because of their non-parabolicity, their
warping, and their k-dependent mixing under quantum
confinement, which lead to complex dispersion including
band crossings and anti-crossings (Fig. 2b). However, as
shown in Appendix B and in the following sections, this
simple representation is justified by extracting a 2D k ·p
model from the atomistic tight-binding calculations. In
other words, this very common description [34] of the
bands in terms of HH, LH and SO is well justified as
long as we only want to describe the main optical transi-
tions which tend to hide the subtle features of the band
structure.

B. Other semiconductors

InAs is a semiconductor characterized by a small band
gap. It is therefore interesting to test the quantization of
absorption in the case of semiconductors with a higher
band gap. Fig. 3 shows that the absorptance spectra of
GaAs and CdSe quantum wells are also characterized by
several well-marked steps close to multiples of πα. The
deviations from πα are here larger than for InAs but
remain relatively modest.
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FIG. 4. Bare absorptance A0(~ω) calculated in tight-binding
for 6-nm-thick layers of InAs (red curves) or CdSe (blue
curves), with (solid lines) or without (dashed lines) SOC.

Remarkably, the first step of A0(~ω) at ≈ πα is also
clearly visible in the case of a Ge quantum well, yet an
indirect semiconductor. In fact, in bulk Ge, the minimum
of the conduction band at Γ is just above the minima
at L points, so the first step corresponds to the vertical
transitions in the vicinity of Γ. At higher energy, the
steps are less visible, due to the complex conduction band
structure of Ge in this region [50].

Another particularly interesting system is HgTe, a
semi-metal, which can be seen as an inverted band semi-
conductor due to the strong SOC. Under the effect of
a weak quantum confinement, a band gap opens, lead-
ing to the formation of a topological insulator as long
as band remains inverted [51–53]. When the thickness
of the layers is reduced, the band gap closes and then
opens again. In this case, the band order of a conven-
tional semiconductor is restored. Remarkably, a band
gap of the order of one electron-volt can even be obtained
in ultrathin layers, colloidal nano-platelets [54]. We have
therefore considered a 3.9 nm thick (001) HgTe quan-
tum well, characterized by a band gap of 0.19 eV, thin
enough to be in the non-inverted regime, thick enough to
minimize the excitonic effects. Figure 3 shows that the
absorptance spectrum is again characterized by a very
marked plateau at πα. However, this plateau is preceded
by several intermediate steps, which are relatively long,
but whose contributions converge towards πα. These
steps, as well as the sharp peaks visible at higher en-
ergy, are due to the complex energy dispersion of the
valence subbands with heavy-hole and light-hole compo-
nents (Supplemental Material [29], Fig. S2).

C. Role of spin-orbit coupling

Figure 4 illustrates the effect of the SOC. In the ab-
sence of SOC, A0(~ω) in InAs and CdSe quantum wells
is still quantized, but the height of the first plateau is

closer to 1.5πα than πα. This is also true for the fol-
lowing steps which are clearly larger than πα. When the
SOC is restored, the quantization in πα becomes remark-
able.

In the following, in order to understand these behav-
iors, we will work in two steps, first, by proposing an an-
alytical model of A0(~ω) in the absence of SOC, second,
by understanding the effect of SOC on the absorptance
step height.

IV. FUNDAMENTALS OF THE ABSORPTANCE
PLATEAUS

A. The prototypical model of graphene

To illustrate the compensation mechanism in Eq. (4),
it is interesting to return to the case of graphene to un-
derstand what is happening in semiconductor quantum
wells. In each valley K or K ′ of graphene, the Hamil-
tonian matrix near the Dirac point (zero of energy) can
be written, in the basis of the Bloch functions made of
pz orbitals on the two sublattices of the honeycomb, as
follows [55]

H =

[
0 V (kx + iky)

V ∗(kx − iky) 0

]
(5)

where V = ~vF is related to the Fermi velocity vF .
By defining bottom (Ψ−) and top (Ψ+) band states,

the numerator and the denominator of Eq. (4) are given
by

|⟨Ψ+ |∇H(k) |Ψ− ⟩|2 = |V |2 (6)
∂|E+(k)− E−(k)|2/∂k2 = 4|V |2 (7)

There is a total compensation between these two terms
in Eq. (4), so that |V |2 disappear [28]. The bare absorp-
tance per valley is therefore A0(~ω) = πα/2, independent
of V and any material characteritics [5–10].

This compensation is no longer effective in the case of
massive Dirac bands (Sect. S8 in Supplemental Material
[29] and Refs. [25–28]).

B. A prototypical analytical model for
semiconductor quantum wells

In this section, we present a three-band model based
on the Kane Hamiltonian [56] that provides the simplest
description of the absorptance in III-V or II-VI semicon-
ductor quantum wells, in absence of SOC. A0(~ω) is cal-
culated analytically as the sum of two components, the
first of which is equal to πα, the second depends only on
the quantum well gap energy and tends to zero at high
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energy. This model thus sheds light on the fundamen-
tal origins of the quantization of the absorptance and its
relative invariance from one semiconductor to another.

The model Hamiltonian H is defined in a basis of three
vectors, corresponding to the Bloch states at k = 0, one
of s character (| s ⟩) for the conduction band, two of p
character (|x ⟩, | y ⟩) for valence bands, translating the
2D character of the system. Keeping only the principal
coupling terms at the first-order in k (∝ P ), we write

H =

 Eg iPkx iPky
−iPkx 0 0

−iPky 0 0

 (8)

where Eg is the energy gap of the quantum well. Intro-
ducing two vectors,

| p∥ ⟩ =
kx|x ⟩+ ky| y ⟩

k
,

| p⊥ ⟩ = ky|x ⟩ − kx| y ⟩
k

, (9)

the Hamiltonian in the basis
{
| s ⟩, | p∥ ⟩, | p⊥ ⟩

}
becomes

H =

 Eg iPk 0

−iPk 0 0

0 0 0

 . (10)

The solutions are |Ψhh ⟩ = | p⊥ ⟩ of energy Ehh = 0
(flat band), and the states |Ψe ⟩ and |Ψlh ⟩ of energy

E e
lh
(k) =

(
Eg

2

)
±

√(
Eg

2

)2

+ P 2k2, (11)

respectively. Ee(k) is the energy of the conduction sub-
band. Ehh(k) and Elh(k) are the energies of HH and LH
subbands, respectively. Interestingly, the energy disper-
sions in this model are basically the same as for massive
Dirac fermions.

The absorptance coming from transitions |Ψhh ⟩ →
|Ψe ⟩ and |Ψlh ⟩ → |Ψe ⟩ is written as A0(~ω) =
Ahh−e(~ω)+Alh−e(~ω) and is calculated analytically us-
ing Eq. (4), replacing (| v,k ⟩, | c,k ⟩) by (|Ψhh ⟩, |Ψe ⟩) or
(|Ψlh ⟩, |Ψe ⟩), respectively. Details on the calculations
are given in Supplemental Material [29], Sect. S4.

1. Calculation of the absorptance for the heavy-hole
electron transition

For the transition Ψhh → Ψe at the energy ~ω =
Ee(k) − Ehh(k), the optical matrix element is given by
(Supplemental Material [29], Sect. S4.1)

|⟨Ψe |∇H(k) |Ψhh ⟩|2 =
P 2~ω

2~ω − Eg
(12)

and the denominator of Eq. (4) by

∂|Ee(k)− Ehh(k)|2

∂k2
=

2P 2~ω
2~ω − Eg

. (13)

We deduce the absorptance

Ahh−e(~ω) = πα θ(~ω − Eg) (14)

where θ(x) is the unit step function.
Remarkably, as in the case of graphene, there is a com-

plete compensation between the different terms so that
the absorptance is a constant, independent of P , Eg, and
~ω. This compensation takes place while the JDOS is not
constant (Supplemental Material [29], Sect. S4.1), unlike
the ideal case of 2D parabolic valence and conduction
bands.

2. Calculation of the absorptance for the light-hole electron
transition

For the transition Ψlh → Ψe at the energy ~ω =
Ee(k) − Elh(k), the optical matrix element is given by
(Supplemental Material [29], Sect. S4.2)

|⟨Ψe|∇H|Ψlh⟩|2 =

(
EgP

~ω

)2

(15)

and the denominator of Eq. (4) by

∂|Ee(k)− Elh(k)|2/∂k2 = 4P 2. (16)

The absorptance is thus given by

Alh−e(~ω) =
πα

2

(
Eg

~ω

)2

θ(~ω − Eg). (17)

Also remarkably, this contribution does not depend on
P , is equal to πα/2 when ~ω = Eg, and tends to 0 when
~ω ≫ Eg.

NB: This is at variance with graphene where the transi-
tion between the two band gives a plateau at πα/2. Note
that, as in the case of graphene, the JDOS is proportional
to ~ω [Eq. (S32) in Supplemental Material [29]]. The dif-
ference is therefore due to different local 2D symmetries,
i.e., to the different nature of the Bloch states.
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FIG. 5. Bare absorptance A0(~ω) for 4.2-nm-thick layer of
InAs calculated in tight-binding (TB, dashed curves) with
(red) or without (blue) SOC. The blue solid line shows A0(~ω)
given by the simple analytical model, Eq. (18) with Eg =
0.79 eV. For the sake of comparison, the tight-binding calcu-
lations were performed with a small broadening η of 2 meV.

3. Comparison to tight-binding calculations

The total absorptance in this simple model is therefore
given by

A0(~ω) = πα

[
1 +

1

2

(
Eg

~ω

)2
]
θ(~ω − Eg). (18)

Figure 5 shows that, despite its great simplicity, the
analytical model reproduces remarkably well the results
obtained by the tight-binding method, in the absence of
SOC. This model describes the essential characteristics
of the optical transitions from valence subbands to the
first conduction subband. It gives a simple explanation to
the quantization of the absorptance, and to its universal
character since the Eq. (18) only involves the energy gap
as a characteristic quantity of the semiconductor quan-
tum well. As in the case of graphene, πα is a metric of
the absorptance.

4. Justification of the simple analytical model

We have shown in the previous sections that the va-
lence band structure of III-V or II-VI semiconductor
quantum wells is in general of great complexity. In this
context, it is not obvious that a three-band model, in-
cluding one flat band and two fully symmetric bands is
representative of real systems.

The general justification of a 2D k · p model, starting
from a bulk Kane Hamiltonian, is presented in Supple-
mental Material [29], Sect. S3. We also present and jus-
tify in Appendix B a more elaborate (3×3) 2D k·p model

k

En
er

gy

   εe(k)

  εlh(k)

εhh(k)

  εso(k)
−Δ

Δ

εg

FIG. 6. Band structure in the analytical model including
SOC. The energies are noted by the Greek letter ε instead of
E to distinguish from the case without SOC.

whose parameters are directly deduced from tight bind-
ing calculations, following the methodology described in
Supplemental Material [29], Sect. S5. This model in-
cludes all matrix elements up to the second order in com-
ponents of k. We deduce from Appendix B that the sim-
ple analytical model described above is justified because
the terms of the form Pkx and Pky of the 2D k ·p Hamil-
tonian dominate in the expression of the different com-
ponents of the absorptance. The simple analytical model
is justified even more when the energy gap of the semi-
conductor is small. The deviations from the absorption
values predicted by Eq. (18) remain nevertheless small
even for large gap materials.

C. Influence of the SOC on the absorptance

We have seen in Fig. 4 and Fig. 5 that the SOC con-
tributes to bring the plateaus from about 1.5πα (at Eg)
to about πα. Here we discuss the reasons, on the one
hand with the help of a simplest-as-possible analytical
model describing the main underlying effects, on the
other hand by analyzing the results of the tight binding
calculations

1. A prototypical analytical model including SOC

We start from the Kane Hamiltonian [56] including
SOC in the basis of Bloch states | s ↑ ⟩, |x ↑ ⟩, | y ↑ ⟩,
| z ↑ ⟩, | s ↓ ⟩, |x ↓ ⟩, | y ↓ ⟩, | z ↓ ⟩, where Oz remains
perpendicular to the quantum well. We write the Hamil-
tonian as two identical 4× 4 blocks [34]

H =


εg i

√
2
3Pk − i√

3
Pk 0

−i
√

2
3Pk 0 0 0

i√
3
Pk 0 −∆ 0

0 0 0 0

 (19)
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for one block in the basis | s ↑ ⟩, | 3
2 ,

1
2 ⟩, |

1
2 ,

1
2 ⟩, |

3
2 ,

3
2 ⟩,

for the other one in the basis | s ↓ ⟩, | 3
2 ,−

1
2 ⟩, | 1

2 ,−
1
2 ⟩,

| 3
2 ,−

3
2 ⟩, eigenvectors of J and JZ with Z oriented along

k. εg is the gap in presence of SOC, and ∆ is the splitting
between J = 3/2 and J = 1/2 states due to the SOC. The
expression of the J = 3/2 and J = 1/2 states in terms of
|x ↑ ⟩ . . . | z ↓ ⟩ is given in Sect. S7 of the Supplemental
Material [29].

In the same spirit as before, following Sect. S3 of the
Supplemental Material [29], we treat the 2D problem
with kz = 0 (k ≡ k∥). The corresponding band structure
is shown schematically in Fig. 6. The heavy-hole band
is flat [εhh(k) = 0] and is degenerate at k = 0 with the
light-hole band [εlh(k)]. The electron band εe(k) starts
at εg at k = 0, the top of the split-off band εso(k) is at
−∆.

Therefore in this model, the absorptance spectrum ex-
hibits two steps, the first one at ~ω = εg that include
two contributions (heavy and light holes → electrons),
the second one at ~ω = εg + ∆ (split-off → electrons).
As described in Sect. S7 of the Supplemental Material
[29], the height of these steps can be calculated analyt-
ically at k∥ = 0, the energy dispersions of the different
bands being obtained by treating Pk terms within sec-
ond order perturbation theory (becomes unvalid when
∆ → 0). The height of the first and second steps is given
by

A0,1(εg) = πα

 3

4
(
1 +

εg
2(εg+∆)

) +
1

2
(
1 +

εg
4(εg+∆)

)
(20)

δA0,2(εg +∆) = πα

 1

2
(
1 +

εg+∆
εg

)
 (21)

where δA0,2 in the second equation means that it must
be added to the other contributions at ~ω = εg + ∆ to
get the total absorptance.

Using the data corresponding to the InAs quantum
well of 4.2 nm (Fig. 5), i.e., εg ≈ 0.7 eV and ∆ ≈ 0.4 eV,
the height of the first step [Eq. (20)] is about πα, and
the height of the second step [Eq. (21)] is about 0.2πα,
in excellent agreement with the tight binding results of
Fig. 5 and the experimental data of Ref. 13. Remarkably,
Eq. (20) and Eq. (21) only depend on x = εg/∆, and
A0(εg) is found to be very close to πα in a wide range of
values of x. Figure S5 of the Supplemental Material [29]
shows a deviation of Eq. (20) from πα below 10% for x
between 0.5 and 5. This explains the universality of the
πα quantization of the absorptance in presence of SOC.

2. Comparison to tight-binding calculations

Figure 5 allows to understand the effect of the SOC
on the absorptance spectrum calculated in tight-binding.
The first step found in absence of SOC transforms in

k

En
er
gy

(a)

 πα/2

πα/2

Graphene

k

(b)

∼ πα/2

×4
valley 

RS

k

En
er
gy

 ∼ πα
∼ πα/2

(c)
ZB without SOC

k

∼0.7πα
∼0.3πα

∼0.2πα

(d)
ZB with SOC

FIG. 7. Schematic representation of electronic bands and op-
tical transitions in graphene (a), in a rocksalt (RS) semicon-
ductor quantum well (b), in a zinc-blende (ZB) semiconductor
quantum well without (c) or with (d) SOC. The intensity at
the optical thresholds of the absorptance steps is indicated
(the values are indicative, they may slightly vary from one
material to another). The corresponding data are also sum-
marized in Table I.

three steps. A short plateau at about 0.7πα is followed,
after a small bump, by a long plateau close to πα. This
corresponds to transitions from HH and LH bands, re-
spectively, which were degenerate at k∥ = 0 by construc-
tion in the analytical model. Then, at higher energy
(∼ 1.1 eV), there is a third small step (split-off) such
that the absorptance finally reaches the value obtained
without SOC. Apart from the fact that it does not give a
splitting between LH and HH bands, the analytical model
accounts for this behavior very well.

Note that the respective weights of the steps from HH
and LH depend significantly on the nature of the semi-
conductor, the spin-orbit coupling and the vertical con-
finement.



9

3. Summary of our understanding

Figure 7 summarizes our understanding of the origin of
absorptance quantization in III-V or II-VI semiconductor
quantum wells and in graphene. This quantization comes
from the compensation between numerator and denomi-
nator in Eq. (4). In the case of graphene, this compen-
sation is exact which leads to an absorptance πα/2 for
each of the two K valleys.

In the case of a semiconductor quantum well, the sit-
uation seems at first sight very different because there
are optical transitions between valence bands mainly de-
rived from p orbitals and a conduction band of strong s
character. However, under strong vertical confinement,
in absence of SOC, the valence band can be described
by two bands coupled to the conduction band by terms
like Pkx and Pky. Transitions between the LH subband
and the conduction subband lead to an absorptance of
the order of πα/2 at the threshold, decreasing to zero
at higher energy. Transitions between the HH subband
and the conduction subband give a constant absorptance
at πα. In absence of SOC, the total absorptance is thus
characterized by a single step at ∼ 3πα/2 which decreases
to πα at higher energy (Fig. 5). This reasoning remains
correct as long as P 2/Eg is large compared to the other
terms of the k·p Hamiltonian (Appendix B), which is the
situation in many conventional semiconductors [34]. The
height of the different contributions of the absorptance
can vary from one compound to another, but the previ-
ous description remains nevertheless qualitatively correct
for all the studied zinc-blende materials, especially those
with a small bandgap.

When the SOC is switched on, the absorptance re-
mains quantized because of the compensation effect due
to the dominance of the coupling terms Pki. However,
the bands are split and a certain part of the oscillator
strength is transferred to the SO band which is lower in
energy. This leads to an absorptance ≈ 0.7πα for the
transitions from HH subband, ≈ 0.3πα for those from
LH subband, and ≈ 0.2πα for those from SO subband
[Fig. 7(d)]. The total contribution from transitions from
HH and LH subbands is thus close to πα, which explains
the wide plateau in Fig. 5. Of course, the πα quantization
of the absorptance is not exact, numbers slightly depend
on the nature of the semiconductor, the plateaus are not
totally flat because the compensation is not perfect, and
therefore do not form a standard for the fine structure
constant [24]. However, our calculations show that the
quantization is universal, provided that excitonic effects
can be neglected.

This quantification of the absorptance is visible as long
as the energy gap between the πα steps remains smaller
than the broadening factors. This gap becomes smaller
and smaller as the thickness of the quantum well de-
creases. In III-V and II-VI materials, this gap is es-
sentially determined by the quantum confinement in the
conduction band and thus varies approximately as the
inverse of the well thickness square.
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FIG. 8. Absorptance per period in HgTe/HgxCd1−xTe su-
perlattices deduced from the measurement of their absorption
coefficient (period = well thickness Lw plus barrier thickness
Lb). The vertical axis on the right gives the absorptance
multiplied by the sample refractive index n normalized by
πα. Red line: data of Ref. 57 for x = 0.05, Lw = 4.15 nm,
Lb = 8.95 nm. Brown line: data of Ref. 58 for x = 0.15,
Lw = 5.8 nm, Lb = 4.2 nm. Green line: data of Ref. 59 for
x = 0.37, Lw = 3.47 nm, Lb = 7.60 nm. Blue line: data of
Ref. 60 for x = 0.32, Lw = 3.4 nm, Lb = 7.70 nm.

V. REVISITING EXPERIMENTAL DATA ON
SUPERLATTICES

The physical effects explaining the quantization of ab-
sorption should be operative also in semiconductor su-
perlattices, provided that the barriers are high and the
couplings between quantum wells are weak (multilayers).
As already proposed in Ref. 23, this invites us to revisit
experimental results obtained on these systems. Typi-
cally, the experiments consist of measuring the transmis-
sion through relatively thick layers composed of a large
number (25-50) of periods, each formed by a quantum
well and a barrier. The absorption coefficient a(~ω) of
the medium, deduced from these measurements, is given
quite generally by

a(~ω) =
ω

cn
ε′′(~ω) (22)

where ε′′ is the imaginary part of the dielectric constant
and n is the refractive index of the medium. Conse-
quently, the absorptance of a single period can be defined
as

A(~ω) = a(~ω)Lp (23)

where Lp = Lw +Lb is the length of the period, Lw (Lb)
being the thickness of the quantum well (barrier). How-
ever, we can deduce from Eq. (22) and the theory that
we discussed above, that the quantity of interest, the one



10

0.0

0.5

1.0

1.5

2.0

2.5

Ab
so

rp
ta

nc
e×

n/
(π
α)

200 225 250 275 300 325 350 375
Energy (meV)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Ab

so
rp

ta
nc

e 
pe

r p
er

io
d 

(%
)

4.2K
160K
300K

FIG. 9. Absorptance per period in InSb/Al0.09In0.91Sb super-
lattices deduced from the measurement [61] of their absorp-
tion coefficient (well thickness = 22.5 nm, barrier thickness =
50 nm) at different temperatures, 4.2K (red line), 160K (green
line), or 300K (blue line). The right vertical axis gives the ab-
sorptance multiplied by the sample refractive index (n = 3.9)
normalized by πα. Spectra at 160K and 300K were measured
in a limited energy range [61].

to be quantized in units of πα, should be nA(~ω) [23]. In
the following, we revisit experimental results from the lit-
erature, deliberately presenting them by increasing width
of their band gap.

Figure 8 presents the absorptance per period which
was measured in HgTe/HgxCd1−xTe superlattices. The
spectra are characterized by a wide plateau for which
nA(~ω) is approximately equal to πα. Just at the op-
tical threshold, there is also a smaller step at approxi-
mately 3πα/4, which can be attributed to transitions to
the heavy-hole subband. Interestingly, the absorptance
spectrum that we predicted for a 3.9-nm-thick quan-
tum well of HgTe (Fig. 3) is close to that obtained for
HgTe/Hg0.37Cd0.63Te superlattices with Lw = 3.47 nm
and Lb = 7.60 nm. However, the experimental spectra
exhibit clear bumps at the step edges, which are absent in
calculated ones and can be attributed to excitonic effects.

The quantity nA(~ω) measured in InSb/Al0.09In0.91Sb
superlattices at 4.2K is also characterized by clear steps
at πα and 2πα (Fig. 9), plus marked peaks which were
attributed to excitonic effects [61]. These peaks tend to
decrease at higher temperature.

The πα quantization is also clearly visible in the case
of a Ga0.47In0.53As/Al0.48In0.52As superlattice (Fig. 10),
although the excitonic peaks become more prominent.

Figure 11 presents results for GaAs/AlAs superlat-
tices, deduced from measurements made at 2K [62]. The
average value of nA(~ω) is clearly above πα. Similar
values are obtained in GaAs/AlGaAs (not shown) [63].
These values higher than πα must be seen as a conse-
quence of strong excitonic effects. However, πα remains
a good metric of the absorptance.
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FIG. 10. Absorptance per period in a
Ga0.47In0.53As/Al0.48In0.52As superlattice deduced from
the measurement [34] of its absorption coefficient (well
thickness = 8.5 nm, barrier thickness = 8.5 nm) at 77K (red
line). The right vertical axis gives the absorptance multiplied
by the sample refractive index (n = 3.4) normalized by πα.
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FIG. 11. Absorptance per period in GaAs/AlAs superlattices
deduced from the measurement [62] at 2K of their absorption
coefficient (period = well thickness Lw plus barrier thickness
Lb). The right vertical axis gives the absorptance multiplied
by the sample refractive index n normalized by πα. Red line:
Lw = 4.3 nm, Lb = 6.2 nm. Blue line: Lw = 5.8 nm, Lb =
7.1 nm. Green line : Lw = 7.6 nm, Lb = 3.3 nm. Brown line
: Lw = 9.6 nm, Lb = 9.1 nm.

It is important to realize that deviations from πα are
expected to be stronger in materials characterized by a
wide band gap. On the one hand, P 2/Eg becomes less
dominant compared to the other components of the k ·p
Hamiltonian [the A, L and M terms in Eq. (B6) and
Eq. (B9) of Appendix B]. Larger deviations are clearly
visible in Fig. 3 and Fig. 4. On the other hand, the di-
electric constant is lower, the effective masses are usually
higher (especially in the conduction and light-hole bands
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FIG. 12. (a) Bare absorptance A0(~ω) calculated for a 6 nm
thick PbSe quantum wells for two values of the broadening,
η = 10 meV (blue solid line) or η = 1 meV (red dashed line).
(b) Zoom on the electron (Ei) and hole (Hi) subbands in the
vicinity of the gap. The red dotted lines show a linear varia-
tion of the subbands. The full band structure is presented in
Fig. S8, Sect. S9 of Supplemental Material [29].

where 1/me,lh ∝ P 2/Eg), which tends to increase the
excitonic effects.

VI. QUANTUM WELLS OF PbSe

By comparison with InAs and other III-V or II-VI
compounds, the case of PbSe (and other IV-VI semi-
conductors with rocksalt lattice) is interesting since the
bulk material is characterized in conduction and valence
bands by four nonequivalent valleys at the L point of the
Brillouin zone [40]. In absence of experimental data, we
have performed calculations of the absorptance for a 6 nm
thick (001) PbSe quantum well. The results, presented
in Fig. 12a, show that A0(~ω) is also characterized by
clear plateaus, but of height 2πα instead of πα.

Figure 12b shows the band structure of the quantum
well. Due to the quantum confinement, the energy spec-
trum is characterized by subbands which are (almost)
twofold degenerate, fourfold with spin degeneracy (there

is small splitting due to inter-valley coupling [40]). In
addition, there are two nonequivalent W (π/a[1, 1, 0])
valleys in the Brillouin zone of the 2D layer. This be-
havior can be understood by the projection of the four
nonequivalent L points (π/a[1, 1, 1]) of the bulk on the
2D Brillouin zone. The different absorption steps corre-
spond to the transitions allowed only between subbands
sharing the same quantum number associated with ver-
tical confinement, i.e., Hi → Ei (Fig. 12b).

Since there are four valleys, absorptance plateaus at
2πα mean πα/2 contributions from each valley. This be-
havior is attributed to quasi-linear dispersions of the con-
duction and valence subbands as one moves away from
the band gap (Fig. 12b), for reasons which are discussed
in Ref. 40. We then find the situation of graphene where
the absorptance per valley is πα/2. According to the
k·p theory, in each valley, subbands Hi and Ei can be de-
scribed by a 2×2 Hamiltonian in which the non-diagonal
coupling, of the form T · k where T is a 2D vector, be-
comes dominant when moving away from the edges of the
subbands. Our tight-binding calculations thus show that
the absorptance quantization in PbSe quantum wells has
a physical origin much closer to the case of graphene than
to the case of III-V or II-VI semiconductors [Fig. 7(b)].

However, the subbands are parabolic in the vicinity of
their edges (Fig. 12b). Consequently, if the broadening
η is reduced, the absorptance spectrum develops peaks
just above each optical threshold (Fig. 12a). We then re-
cover the situation of tight-binding models on honeycomb
lattices in which a band gap is opened under the effect
of SOC or an asymmetry between the two sublattices of
the honeycomb (see Sect. S8 in the Supplemental Mate-
rial [29]). The peaks followed by the plateaus reflect the
transformation from massive particles to massless parti-
cles [26–28].

VII. CONCLUSION

In conclusion, we have shown that the quantization of
the absorptance in semiconductor quantum wells in units
of πα is universal. It is predicted for a large number of
compounds, provided that the excitonic effects are small.
This behavior results from several factors, the main one
being the strong coupling of the form Pkx and Pky, be-
tween conduction and valence subbands. Using a mini-
mum model incorporating only these dominant terms in
the Hamiltonian, which nevertheless describes the main
underlying physics, the absorptance is found to be di-
rectly related to πα, independent of P , largely indepen-
dent of the physical quantities characterizing the semi-
conductor, as in graphene. The SOC also helps bring the
absorptance steps closer to integer values of πα, redis-
tributing the oscillator strengths. Experimental results
obtained on InAs layers, and on superlattices of other
materials, support these conclusions. The situation for
IV-VI semiconductors such as PbSe is extremely close
to that of graphene in the presence of a band gap. We
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believe that this work will provide a simplified view of op-
tical absorption phenomena in 2D or quasi-2D materials
for which excitonic effects are not too strong.

Appendix A: Alternative expression for the
absorptance

1. General case

Using Eq. (3), Eq. (2) can be rewritten in the following
form

A0(~ω) =
α

~ω
∑
c,v

∫
|⟨ c,k |∇H(k) | v,k ⟩|2

δ(~ω − Ec(k) + Ev(k))d
2k (A1)

where we are assuming that, in a cubic semiconductor,
the absorptance does not depend on the in-plane orien-
tation of the polarization vector, we can sum the contri-
butions for the two in-plane polarizations and divide by
2
(
|⟨|∇H(k) · x|⟩|2 + |⟨|∇H(k) · y|⟩|2 = |⟨|∇H(k)|⟩|2

)
.

For functions f and g defined over a n-dimensional
space, we have:

∫
(n)

f(x)δ(g(x))dx =

∫
(n−1)

f(x)

|∇g|
dσ(x) (A2)

where the second integral is on the (n − 1)-dimensional
surface defined by g(x) = 0. Equation A1 can be rewrit-
ten as

A0(~ω) =
α

~ω
∑
c,v

∫
Lvc

|⟨ c,k |∇H(k) | v,k ⟩|2

|∇(Ev(k)− Ec(k))|
dl (A3)

where Lvc is the path in k-space defined by ~ω−Ec(k)+
Ev(k) = 0.

2. Isotropic case

In the case where all terms only depend on k = |k|,
Eq. A3 becomes

A0(~ω) =
2παk

~ω
∑
c,v

|⟨ c,k |∇H(k) | v,k ⟩|2

∂|Ev(k)− Ec(k)|/∂k
(A4)

with k such that Ec(k) − Ev(k) = ~ω. This expression
can be rewritten in another form given in Eq. (4).

The JDOS per unit area can be calculated in a similar
way. For the pair of bands v and c, the JDOS is

Jc,v(~ω) =
1

S

∑
k

δ(~ω − Ec(k) + Ev(k)) (A5)

which, in the isotropic case, transforms into

Jc,v(~ω) =
1

π

k

∂|Ec(k)− Ev(k)|/∂k
. (A6)

The bare absorptance can be written as

A0(~ω) =
2π2α

~ω
∑
c,v

Jc,v(~ω) |⟨ c,k |∇H(k) | v,k ⟩|2

(A7)
with k such that Ec(k) − Ev(k) = ~ω.
|⟨ c,k |∇H(k) | v,k ⟩|2 /(~ω) is related to the oscil-
lator strength.

Appendix B: 2D k · p model deduced from
tight-binding

Section S3 of the Supplemental Material [29] gives the
rationale for describing, in quantum wells, the bands in
the vicinity of the band gap with a 2D k ·p model. Here
we describe how we deduce a k · p Hamiltonian directly
from tight binding calculations, without adjusting any
parameters. We also present calculations of the absorp-
tance in this model, to go beyond the approximations
made in the analytic model of Sect. IV B.

1. Derivation of the 2D model

We consider a InAs quantum well of thickness 4.2 nm,
chosen because it is characterized by two symmetric sur-
faces. The system is thus characterized by a perfect in-
plane square symmetry, which simplifies the derivation
of a 2D k · p model. Figure 13 shows that the band
structure calculated without SOC is again characterized
by many subbands, with complex dispersion in the va-
lence band. However, the absorptance spectrum exhibits
a simple behavior (Fig. 5). The analysis of the optical
matrix elements shows that the first plateau corresponds
to transitions from the two highest valence bands (heavy
hole and ligh hole), degenerate at k∥ = 0, to the lowest
conduction subband (Fig. S6 of the Supplemental Mate-
rial [29]).

Next, we deduce a 3 × 3 k · p matrix using the cal-
culation of the first-order and second-order derivatives
of the tight-binding Hamiltonian matrix with respect to
kx and ky, restricted to the lowest conduction subband
and the two highest valence subbands, but renormalizing
the k · p parameters to include the effects of the remote
bands (see Sect. S5 of the Supplemental Material [29] for
the methodology). We obtain

H̃ =

 Ec +Ak2 iPkx iPky
−iPkx Ev + Lk2x +Mk2y Nkxky
−iPky Nkxky Ev + Lk2y +Mk2x


(B1)
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FIG. 13. Comparison between tight-binding (red dashed
lines) and 2D k · p (blue solid lines) calculations for 4.2-nm-
thick InAs quantum well. SOC is not included. (a) Band
structure. (b) Bare absorptance A0(~ω).

in the basis of the three vectors | s ⟩, |x ⟩ and | y ⟩. The pa-
rameters directly derived from the tight-binding Hamil-
tonian are given by (in atomic units): A = 0.00242, P =
0.52684, Ec = 0.02288, Ev = −0.00604, L = 2.78493,
M = −0.81699, N = 2.71777. Ec and Ev differ from the
bulk values, since they include the effect of the confine-
ment along z (Ev = 0 in the bulk).

Figure 13 presents the comparison between tight-
binding and 2D k · p band structures, and the compari-
son between absorptance spectra. In spite of its apparent
simplicity, since it only describes two valence subbands
of the quantum well, the 2D k · p model gives a perfect
description of the first step of A0(~ω).

2. Simplified 2D k · p isotropic model

In order to obtain analytical expressions for the absorp-
tance, it is useful to derive a simpler 2D k · p isotropic
model. We use the two vectors | p∥ ⟩ and | p⊥ ⟩ previously
defined [Eq. (9)].

The Hamiltonian matrix element ⟨ p∥ |H | p⊥ ⟩ vanishes
when N = L−M . In the bulk, this takes place when the
Luttinger parameters γL

2 and γL
3 are equal, which corre-

sponds to the spherical symmetry [64]. In this condition,
the Hamiltonian written in | s ⟩, | p∥ ⟩ and | p⊥ ⟩ is simply

given by:

H =

 Es(k) iPk 0

−iPk E∥(k) 0

0 0 E⊥(k)

 (B2)

with

Es(k) = Ec+Ak2 E∥(k) = Ev+Lk2 E⊥(k) = Ev+Mk2

(B3)
The solutions are |Ψhh ⟩ = | p⊥ ⟩, |Ψe ⟩, |Ψlh ⟩ of en-

ergy Ehh(k) and

E e
lh
(k) =

(
Es(k) + E∥(k)

2

)
±

√(
Es(k)− E∥(k)

2

)2

+ P 2k2,

(B4)
respectively. Ee(k) is the energy of the conduction sub-
band. Ehh(k) and Elh(k) are the energies of the heavy
and light hole subbands, respectively.

3. Calculation of the absorptance

The absorptance A0(~ω) = Ahh−e(~ω) +Alh−e(~ω) is
calculated analytically using Eq. A4 of Appendix A. In
this isotropic approximation, we use the previous param-
eters for the 2D k·p model except that we set N = L−M .
After some algebra (Sect. S6 of the Supplemental Mate-
rial [29]), the different terms can be calculated to the
second order in k as

Ahh−e(~ω) = πα(C0 + C2k
2) +O

(
k3

)
(B5)

C0 =
P 2

(AEg − EgM + P 2)
(B6)

C2 = − U

Eg (A−M + U)
2 (B7)

×
(
A2 + 2AL− 4AM +AU − 2LM + 4LU + 3M2 − 5MU

)
with U = P 2/Eg and k is solution of Ee(k) − Ehh(k) =
~ω. Similarly, we obtain

Alh−e(~ω) = πα(D0 +D2k
2) +O

(
k3

)
(B8)

D0 =
P 2

AEg − EgL+ 2P 2
(B9)

D2 = −
U
(
5A2 − 10AL+ 12AU + 5L2 − 12LU + 8U2

)
Eg (A− L+ 2U)

2

(B10)

in which k is solution of Ee(k)− Elh(k) = ~ω.
With the parameters given above for the 4.2-nm-thick

InAs quantum well, C0 = 0.92, which is close to 1 because
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P 2/Eg ≫ A −M . Numerical evaluations show that the
variation with k and with ~ω is weak (Fig. S4 of the
Supplemental Material [29]), i.e., C2k

2 ≪ C0. It means
that Ahh−e(~ω) is very close to πα, but smaller.

With the same parameters, D0 = 0.58 is close to 1/2,
because the term 2P 2 is dominant in the denominator of
Eq. B9. Alh−e(~ω) is equal to 0.58πα at the energy gap
but it decreases at higher energy as D2k

2 becomes non
negligible compared to D0.

We conclude that the 2D k ·p model and its simplified
version under isotropic approximation explain very well
the absorptance spectrum calculated in tight-binding in
absence of SOC. This also completely justifies the simple
analytical model of Sect. IV B in which A,L,M,N = 0.

An additional discussion of compensation mechanisms
leading to absorptance quantization is presented in
Sect. S6.4 of the Supplemental Material [29].
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Figure S1: (a) Lowest conduction subbands and highest valence subbands of a 12.5 nm thick InAs quantum
well. (b) Bare absorptance calculated including all conduction subbands (blue solid line), only the first
conduction subband (red solid line, CB1), only the second one (green dashed line, CB2) or only the third one
(brown dotted line, CB3). Green crosses: experimental data divided by F2 for a quantum well thickness of
14 nm [1]. (c) Zoom on the highest valence subbands and, facing each other, (d) plot of the bare absorptance
presented in such a way that each absorptance plateau can be associated to a transition from valence subbands
to one of the conduction subbands, the first conduction subband (CB1, red solid line), the second one (CB2,
green dashed line), and the third one (CB3, brown dotted line). η = 6 meV.

S1 Results for a 12.5-nm-thick quantum well of InAs

Figure S1 present additional results of tight-binding calculations for a thick InAs quantum well (12.5 nm)
for which the absorptance was compared to experiments in Fig. 1 of the main document. The different
steps at ≈ nπα shown in Fig. S1b can be attributed to transitions (HH+LH+SO)i → CBi, where i denotes
the quantum number related to the vertical confinement effect (HH = heavy-hole, LH = light hole, SO =
split-off, CB = conduction). These results show that the absorptance contributions from the different sets of
transitions (i) all behave approximately the same and therefore can be described by the same model.
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Figure S2: Lowest conduction subbands and highest valence subbands of the HgTe quantum well (thickness
of 3.9 nm).

Figure S3: Band diagram for a superlattice along the z direction. We define ∆s = εb
s − εs > 0 and ∆p =

εb
p − εp < 0.

S2 Band structure of a quantum well of HgTe

The band structure of a HgTe quantum well is presented in Fig. S2. The corresponding absorptance spectrum
is shown in Fig. 3 of the main document.

S3 Justification of a 2D k ·p model from a 3D one

In this section, we provide a theoretical basis for the use of a 2D k ·p Kane model. We consider a periodic
system (superlattice) of width Lp (Fig. S3) where the quantum well is positioned at the center. We employ
the usual 4-band k ·p hamiltonian without Spin-Orbit Coupling (SOC) [2]. For simplicity, we work in the
spherical approximation (L−M = N) but extension to the more general case is straightforward. We expand
the envelope function along z into plane waves exp(ikz,nz)/

√
Lp where kz,n = 2nπ/Lp due to the periodicity.
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We thus write the hamiltonian into the basis set ul exp(ik∥ · r∥)exp(ikz,nz)/
√

Lp where ul are the periodic
Bloch functions at k = 0 [k∥ = (kx,ky)]. In this basis set, we assume the Kane matrix to be the same all along
z except for the discontinuities in conduction [εs(z)] and valence [εp(z)] band edges (Fig. S3). For a given
value of n, the 4×4 Kane matrix becomes

H̃0
n,n =


ε̄s V kx V ky V kz,n

V †kx ε̄p +Nk2
x +Mk2

n Nkxky Nkxkz,n

V †ky Nkxky ε̄p +Nk2
y +Mk2

n Nkykz,n

V †kz,n Nkxkz,n Nkykz,n ε̄p +Nk2
z,n +Mk2

n

 (S1)

where k2
n = k2

x + k2
y + k2

z,n. ε̄s and ε̄p are the average values of εs(z) and εp(z) over a period.
For a couple n,m, the only matrix element is due to the functions εs(z) and εp(z). We can write

(εs)n,m =
1

Lp

{∫ Lp
2

− Lp
2

εb
s ei(kz,m−kz,n)zdz+

∫ L
2

− L
2

(εs − εb
s )e

i(kz,m−kz,n)zdz

}
(S2)

= ε̄sδn,m − (1−δn,m)γs,n,m (S3)

with

γs,n,m = ∆s
sin[π(n−m)L/Lp]

π(n−m)
(S4)

This is also valid for p, i.e., (εp)n,m = ε̄pδn,m−(1−δn,m)γp,n,m. The 4×4 coupling matrix between states
n ̸= m is thus

H̃0
n,m =


γs,n,m 0 0 0

0 γp,n,m 0 0
0 0 γp,n,m 0
0 0 0 γp,n,m

 . (S5)

In the spirit of self-energy calculations, we write the effective Hamiltonian in the n,n subspace as H̃0
n,n +

δ H̃n,n with

δ H̃n,n = ∑
m ̸=n

H̃0
n,mg̃m,mH̃0

m,n (S6)

where g̃m,m is the Green’s functions
(
ε − H̃0

m,m
)−1.

S3.1 Eigenstates of H̃0
m,m

Starting from H̃0
m,m, this leads to the following equations

(ε − ε̄s)|s,m⟩=V km| p∥,m⟩ (S7)

(ε − ε̄p)|x,m⟩=V †kx|s,m⟩+(Nk2
x +Mk2

n)|x,m⟩+Nkx(ky|y,m⟩+ kz,m|z,m⟩)
(ε − ε̄p)|y,m⟩=V †ky|s,m⟩+(Nk2

y +Mk2
n)|y,m⟩+Nky(kx|x,m⟩+ kz,m|z,m⟩)

(ε − ε̄p)|z,m⟩=V †kz,m|s,m⟩+(Nk2
z,m +Mk2

n)|z,m⟩+Nkz,m(ky|y,m⟩+ kx|x,m⟩) (S8)
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with

| p∥,m⟩=
kx|x,m⟩+ ky|y,m⟩+ kz,m|z,m⟩

km
(S9)

From this, we can deduce an equation for | p∥,m⟩, taking L = M+N,

(ε − ε̄p −Lk2
m)| p∥,m⟩=V †km| p∥,m⟩ (S10)

This, with Eq. (S7), leads to two dispersive bands, for electrons and light holes:

ε±
m =

ε̄s + ε̄p +Lk2
m

2
±
√

∆2
m +V 2k2

m (S11)

with ∆m =
(
ε̄s − ε̄p −Lk2

m
)
/2. The eigenstates are

|+,m⟩= c+s,m|s,m⟩+ c+p∥,m| p∥,m⟩ (S12)

|−,m⟩= c+∗
p∥,m|s,m⟩− c+s,m| p∥,m⟩

with

c+s,m =
Dm√

D2
m +1

(S13)

c+p∥,m =
1√

D2
m +1

V †

|V |

Dm =
∆m +

√
∆2

m +V 2k2
m

|V |km

To this one can add the two pure p states, heavy holes, perpendicular to the previous two

| p⊥1,m⟩=
ky|x,m⟩− kx|y,m⟩

k∥
(S14)

| p⊥2,m⟩= kz,m

k∥

{
kx|x,m⟩+ ky|y,m⟩

km
−

k2
∥

kmkz,m
|z,m⟩

}
with energy

ε⊥1,m = ε⊥2,m = ε⊥,m = ε̄p +Mk2
m (S15)

S3.2 Calculation of the δ H̃n,n matrix

From Eq. (S5) and Eq. (S6) we get

δ H̃n,n = ∑
m ̸=n


γ2

s,n,mgsm,sm γs,n,mγp,n,mgsm,xm γs,n,mγp,n,mgsm,ym γs,n,mγp,n,mgsm,zm

γs,n,mγp,n,mgxm,sm γ2
p,n,mgxm,xm γ2

p,n,mgxm,ym γ2
p,n,mgxm,zm

γs,n,mγp,n,mgym,sm γ2
p,n,mgym,xm γ2

p,n,mgym,ym γ2
p,n,mgym,zm

γs,n,mγp,n,mgzm,sm γ2
p,n,mgzm,xm γ2

p,n,mgzm,ym γ2
p,n,mgzm,zm

 (S16)
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in which the terms gim, jm are matrix elements of g̃m,m.
The matrix δ H̃n,n contains terms like kx or kxky except for gsm,sm. To show this in detail, let us examine

the form of the g̃m,m matrix. We start from the general formula

gαm,βm = ∑
ϕm

⟨α |ϕm ⟩⟨ϕm |β ⟩
ε − εϕm

(S17)

where |ϕm ⟩ are the eigenstates given by Eq. (S12) and Eq. (S14) of energies given by Eq. (S11) and Eq. (S15).
We detail these for each different type of matrix element:

gsm,sm =
|c+s,m|2

ε − ε+
m
+

|c−s,m|2

ε − ε−
m

(S18)

gsm,xm =

(
c+s,mc+∗

p∥,m

ε − ε+
m

+
c−s,mc−∗

p∥,m

ε − ε−
m

)
kx

km
= ηsm,pm

kx

km
idem for kx and ky (S19)

gxm,ym =

(
|c+p∥,m|

2

ε − ε+
m

+
|c−p∥,m|

2

ε − ε−
m

− 1
ε − ε⊥,m

)
kxky

k2
m

= ηxm,ym
kxky

k2
m

(S20)

gxm,xm =

(
|c+p∥,m|

2

ε − ε+
m

+
|c−p∥,m|

2

ε − ε−
m

)
k2

x

k2
m
+

k2
y + k2

z,m

k2
m(ε − ε⊥,m)

= η(1)
xm,xm

k2
x

k2
m
+η(2)

xm,xm
k2

y + k2
z,m

k2
m

(S21)

idem for permutations of x,y,z with kz = kz,m.
Conclusion: This directly shows that gαm,βm and thus δ H̃n,n has the same form as the Kane matrix and

will thus provide renormalized parameters.

S3.3 Application to the lowest transitions

We start from H̃0
0,0 given by Eq. (S1) for which kz,0 = 0 which splits in a 3×3 2D matrix plus one heavy hole

p state. The renormalized matrix to consider is thus H̃0,0 = H̃0
0,0 +δ H̃0,0 in which δ H̃0,0 is given by the sum

in Eq. (S16). In that summation, all terms linear in kz,n will vanish since kz,−n =−kz,−n. This corresponds to
the lowest symmetrical state in the potential well. This gives

H̃0
n,n =


ε̄s V kx V ky 0

V †kx ε̄p +Lk2
x +Mk2

y Nkxky 0
V †ky Nkxky ε̄p +Lk2

y +Mk2
x 0

0 0 0 ε̄p +Mk2
∥

+ ∑
m>0

(S22)


2γ2

s,0,mgsm,sm 2γs,0,mγp,0,mηsm,pm
kx
km

2γs,0,mγp,0,mηsm,pm
ky
km

0

2γs,0,mγp,0,mη∗
sm,pm

kx
km

2γ2
p,0,m

(
η(1)

xm,xm
k2

x
k2

m
+η(2)

xm,xm
k2

y+k2
z,m

k2
m

)
2γ2

p,0,mηxm,ym
kxky
k2

m
0

2γs,0,mγp,0,mη∗
sm,pm

ky
km

2γ2
p,0,mη∗

xm,ym
kxky
k2

m
2γ2

p,0,m

(
η(1)

xm,xm
k2

y
k2

m
+η(2)

xm,xm
k2

x+k2
z,m

k2
m

)
0

0 0 0 2γ2
p,0,mgzm,zm


For optical transitions with polarization vector perpendicular to Oz only the 3× 3 submatrix will be

involved which justifies the use of a 2D 3×3 Kane matrix with renormalized parameters.
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S4 Details on the simple analytical model without SOC

We consider the simplest 2D model described in Section IV.B of the main document. The Hamiltonian is

H =

 Eg iPkx iPky

−iPkx 0 0
−iPky 0 0

 (S23)

where Eg is the gap of the quantum well.

S4.1 Calculation of the absorptance for the first transition Ψhh → Ψe

Transition energy:

Ee(k)−Ehh(k) =
Eg

2
+

√
E2

g +4P2k2

2
(S24)

Optical matrix element:

|⟨Ψe |∇H(k) |Ψhh ⟩|2 =
4P4k2

4P2k2 +
(

Eg −
√

E2
g +4P2k2

)2 =
P2h̄ω

2h̄ω −Eg
(S25)

Derivative of energy:
1
k

∂ (Ee(k)−Ehh(k))
∂k

=
2P2√

E2
g +4P2k2

(S26)

The JDOS including spin degeneracy is (inverse of previous equation / π):

Jhh−e(h̄ω) =
2h̄ω −Eg

4πP2 (S27)

The denominator of Eq. (4) of the main document is given by

∂ |Ee(k)−Ehh(k)|2

∂k2 =
P2h̄ω√

(Eg/2)2 +P2k2
=

2P2h̄ω
2h̄ω −Eg

(S28)

S4.2 Calculation of the absorptance for the second transition Ψlh → Ψe

Transition energy:

h̄ω = Ee(k)−Elh(k) = 2

√
E2

g

4
+P2k2 (S29)

Optical matrix element:

|⟨Ψe|∇H|Ψlh⟩|2 =
E2

g P2

E2
g +4P2k2 =

(
EgP
h̄ω

)2

(S30)

Derivative of energy:
1
k

∂ (Ee(k)−Elh(k))
∂k

=
4P2√

E2
g +4P2k2

(S31)
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The JDOS including spin degeneracy is (inverse of previous equation / π):

Jlh−e(h̄ω) =
h̄ω

4πP2 (S32)

S5 Derivation of a 2D k ·p model from tight-binding calculations

In this section, we present the method used to derive the k ·p matrix directly from tight-binding calculations
for a quantum well. First, the tight-binding Hamiltonian H for the quantum well is written in the basis of
Bloch functions as function of kx and ky. Second, H is diagonalized at k = 0. The eigenvectors form a
complete basis of the 2D system. Third, we write H in this basis up to the second order in k,

H = H(0)+H(1)+H(2)

H(1) = ∑
i=x,y

(
dH
dki

)
ki (S33)

H(2) =
1
2 ∑

i, j=x,y

(
d2H

dkidk j

)
kik j

in which the derivatives are calculated numerically at k = 0.
Fourth, we define the subset of the basis in which the k ·p model will be defined (in our case, the lowest

conduction state and the two highest valence states). We represent the states of the subspace by upper case
letters, e.g., I of energy EI , and the other states of the basis by lower case ones, e.g., n of energy En.

Fifth, we use the Luttinger-Kohn theory of perturbation [3]. If we write H as H +V where H contains
just the terms restricted to the subspace and V the others, the renormalized Hamiltonian H̃ in the subspace is
given to the second order in V by

H̃IJ = HIJ +
1
2 ∑

n
VInVnJ

(
1

EIn
+

1
EJn

)
(S34)

If we use for H its expression given in Eq. (S33), the k ·p Hamiltonian restricted to second order terms
in k is given by

H̃IJ = H(0)
IJ +H(1)

IJ +H(2)
IJ +

1
2 ∑

n
H(1)

In H(1)
nJ

(
1

EIn
+

1
EJn

)
(S35)

Therefore, the computation of the matrices of the first and second derivatives of H allows to completely
define the k ·p Hamiltonian, without adjustable parameters. The last term of Eq. (S35) describes the effect
of remote bands that lead to a renormalization of the k ·p parameters.

S6 2D k ·p model derived from tight binding

In this section, we provide details on the calculations presented in Appendix B of the main document.
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S6.1 Hamiltonian and eigenstates

We give details on 2D k ·p model and its transformation in the isotropic approximation. We have introduced
two vectors:

| p∥ ⟩=
kx|x⟩+ ky|y⟩

k
(S36)

| p⊥ ⟩=
ky|x⟩− kx|y⟩

k
(S37)

(S38)

The matrix element (see definition of H̃ in Eq. (B1) of the main document)

⟨ p∥ | H̃ | p⊥ ⟩=
kxky

k2 (k2
x − k2

y)(L−M−N) (S39)

vanishes when N = L−M. In this condition corresponding to the isotropic approximation, the Hamiltonian
written in |s⟩, | p∥ ⟩ and | p⊥ ⟩ is simply given by:

H =

 Es(k) iPk 0
−iPk E∥(k) 0

0 0 E⊥(k)

 (S40)

with

Es(k) = Ec +Ak2 E∥(k) = Ev +Lk2 E⊥(k) = Ev +Mk2 (S41)

The solutions are

|Ψe ⟩= γ|s⟩− iβ | p∥ ⟩ (S42)

|Ψlh ⟩=−iβ |s⟩+ γ| p∥ ⟩ (S43)

|Ψhh ⟩= | p⊥ ⟩ (S44)

with

γ =
Pk√

(Es(k)−Ee(k))2 +P2k2
(S45)

β =
Ee(k)−Es(k)√

(Es(k)−Ee(k))2 +P2k2
(S46)

and

E e
lh
(k) =

(
Es(k)+E∥(k)

2

)
±

√(
Es(k)−E∥(k)

2

)2

+P2k2 (S47)
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S6.2 Effective masses

From the previous equations, we can derive the effective masses for electron (me), heavy hole (mhh) and
light hole (mlh) bands. We have:

h̄2

2me
= A+U

h̄2

2mlh
=−L+U

h̄2

2mhh
=−M (S48)

with U = P2/Eg.

S6.3 Calculation of the absorptance

The absorption comes from transitions |Ψlh ⟩ → |Ψe ⟩ and |Ψhh ⟩ → |Ψe ⟩. The absorptance is calculated
analytically using Eq. (A4) of the Appendix A of the main document.

S6.3.1 Transitions |Ψhh ⟩ → |Ψe ⟩

We consider k for which Ee(k)−Ehh(k) = h̄ω and we calculate the different contributions to the expression
of the absorptance. After some algebra, we obtain:

|⟨Ψe |∇H(k) |Ψhh ⟩|2 = (γP+βNk)2

=

k2
(

2P2 +(L−M)

(
Ak2 +Eg −Lk2 −

√
4P2k2 +(Ak2 +Eg −Lk2)2

))2

4P2k2 +

(
Ak2 +Eg −Lk2 −

√
4P2k2 +(Ak2 +Eg −Lk2)2

)2 (S49)

1
k

∂ (Ee(k)−Ehh(k))
∂k

= A+L−2M+
(A−L)

(
Es(k)−E∥(k)

2

)
+P2k2√(

Es(k)−E∥(k)
2

)2
+P2k2

(S50)

Ahh−e(h̄ω) =
2παk

Ee(k)−Ehh(k)
|⟨Ψe |∇H(k) |Ψhh ⟩|2

|∂ (Ee(k)−Ehh(k))/∂k|
(S51)

For simplification, it is interesting to perform a second order expansion of the different terms with respect
to k:

|⟨Ψe |∇H(k) |Ψhh ⟩|2 =−P4k2

E2
g

+
2MP2k2

Eg
− 2LP2k2

Eg
+P2 +O

(
k3) (S52)

1
k

∂ (Ee(k)−Ehh(k))
∂k

=−4P4k2

E3
g

+
4LP2k2

E2
g

+
2P2

Eg
−2M− 4AP2k2

E2
g

+2A+O
(
k3) (S53)
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Ee(k)−Ehh(k) =
P2k2

Eg
−Mk2 +Eg +Ak2 +O

(
k3) (S54)

We deduce the absorptance to the second order in k:

Ahh−e(h̄ω) = πα(C0 +C2k2)+O
(
k3) (S55)

C0 =
U

(A−M+U)
(S56)

C2 =−
U
(
A2 +2AL−4AM+AU −2LM+4LU +3M2 −5MU

)
Eg (A−M+U)2 (S57)

S6.3.2 Transitions |Ψlh ⟩ → |Ψe ⟩

The contribution of |Ψlh ⟩ → |Ψe ⟩ transitions to the absorptance can be calculated similarly. Using the
different contributions

h̄ω = Ee(k)−Elh(k) = 2

√
P2k2 +

(Ak2 +Eg −Lk2)2

4
(S58)

|⟨Ψe|∇H|Ψlh⟩|2 (S59)

=
(
P(2γ2 −1)−2γβk[A−L]

)2

=
P2
(
A2k4 −2AEgk2 −2ALk4 +E2

g +2EgLk2 +L2k4
)

A2k4 +2AEgk2 −2ALk4 +E2
g −2EgLk2 +L2k4 +4P2k2

=
E2

g P2 +4EgP2k2 (−A+L)−4P4k2

E2
g

+O
(
k3)

1
k

∂ (Ee(k)−Elh(k))
∂k

=
2
(
2P2 +(A−L)

(
Ak2 +Eg −Lk2

))√
4P2k2 +(Ak2 +Eg −Lk2)2

(S60)

we obtain Alh−e(h̄ω) to the second order in k:

Alh−e(h̄ω) = πα × (D0 +D2k2) (S61)

D0 =
U

A−L+2U
(S62)

D2 =−
U
(
5A2 −10AL+12AU +5L2 −12LU +8U2

)
Eg (A−L+2U)2 (S63)

S6.3.3 Comparison with tight-binding calculations

Figure S4 shows that the total absorptance A0(h̄ω) calculated under the isotropic approximation is in excel-
lent agreement with A0(h̄ω) calculated numerically using the 2D k ·p model originally deduced from the
tight-binding Hamiltonian, which itself is in excellent agreement with tight-binding calculations. It demon-
strates the validity of the isotropic approximation.
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Figure S4: Comparison between different calculations of the absorptance spectrum for a 4.2-nm-thick InAs
quantum well. Blue solid line: 2D k ·p model (no SOC) directly deduced from the tight-binding Hamiltonian,
calculated using a fully numerical approach (η = 1 meV). Black dashed line: Same but with the analytical
2D k ·p model under isotropic approximation. The contributions coming from |Ψhh ⟩ → |Ψe ⟩ (HH → CB)
and |Ψlh ⟩ → |Ψe ⟩ (LH → CB) transitions are shown with red and green solid lines, respectively. Magenta
dotted solid line: Tight-binding calculations with SOC.

S6.4 Importance of the term P2/Eg on the πα quantization

Equations (S56) and (S62) show that C0 ≈ 1 and D0 ≈ 1/2 when P2/Eg ≫ A, |L|, |M|, which leads to the πα
quantization of the absorptance after inclusion of the spin-orbit coupling. However, Eq. (S48) shows that we
could have the same effective masses with a much lower value of U = P2/Eg, compensating via A and L.
In that case, the effective masses would be mainly determined by the couplings with the bands outside the
subspace. Interestingly, C0 and D0 can be rewritten as

C0 =
U

h̄2

2

(
1

me
+ 1

mhh

) (S64)

D0 =
U

h̄2

2

(
1

me
+ 1

mlh

) (S65)

A compensation between numerator and denominator is done when U ≫ A, |L|, |M|, i.e., when h̄2/(2me)
and h̄2/(2mlh) are approximately equal to U [Eq. (S48)]. But, if we decrease U while keeping the effective
masses constant, C0 and D0 become very small compared to 1 and 1/2, the absorptance is then no longer
quantized in units of πα , but can take any (smaller) value depending on U .

Therefore, we deduce that the compensation in A0(h̄ω) between the joint density of states and the optical
matrix elements comes mainly from the combination of three effects. First, the dispersion of the electron and
light-hole bands is mainly governed by couplings of type Pk between them. Second, P also determines the
optical matrix elements between valence and conduction bands. Third, the valence band whose dispersion
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does not depend on the Pk coupling is characterized by a heavy effective mass (M ≪U,me ≪ mhh).
Since U is equal to P2/Eg, and P is known to be rather constant in different types of III-V and II-VI

semiconductors, we expect that the absorptance quantization will be less accurate in semiconductors with a
large gap Eg. This is what we found with tight-binding calculations (see main document).

S7 Analytical model with SOC

S7.1 Details on the analytical calculations

As discussed in Sect. IV.C of the main document, the Kane Hamiltonian is written in the basis of the eigen-
states of J2 and JZ where Z is defined along the k vector, i.e., |Z ↑⟩ ∝ kx|x ↑⟩+ ky|y ↑⟩+ kz|z ↑⟩ (idem for
↓).

In the case of a quantum well, we reduce it to a 2D problem with kz = 0 (k = k∥), i.e.,

|Z ↑⟩=
kx|x ↑⟩+ ky|y ↑⟩

k∥
. (S66)

We define the two orthogonal states

|X ↑⟩=
ky|x ↑⟩− kx|y ↑⟩

k∥
, (S67)

|Y ↑⟩= |z ↑⟩, (S68)

with similar expressions for spin down states.
The eigenstates of J2 and JZ are given by [4]

| 3
2
,
1
2
⟩=−

√
2
3
|Z ↑⟩+ 1√

6
|X + iY,↓⟩ (S69)

| 1
2
,
1
2
⟩= 1√

3
|Z ↑⟩+ 1√

3
|X + iY,↓⟩ (S70)

| 3
2
,−1

2
⟩=−

√
2
3
|Z ↓⟩− 1√

6
|X − iY,↑⟩ (S71)

| 1
2
,−1

2
⟩= 1√

3
|Z ↓⟩− 1√

3
|X − iY,↑⟩ (S72)

| 3
2
,
3
2
⟩= 1√

2
|X + iY,↑⟩ (S73)

| 3
2
,−3

2
⟩= 1√

2
|X − iY,↓⟩. (S74)

The Hamiltonian is given by two blocks like Eq. (19) of the main document.
By treating Pk within second order perturbation theory, the energy dispersion with respect to k = 0 is

given by
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εe(k) = εg +
2
3

P2k2

εg
+

1
3

P2k2

εg +∆
(S75)

εhh(k) = 0 (S76)

εlh(k) =−2
3

P2k2

εg
(S77)

εso(k) =−∆− 1
3

P2k2

εg +∆
. (S78)

This gives at k = 0

∂ (εe(k)− εlh(k))2

∂k2 =
8P2

3

(
1+

εg

4(εg +∆)

)
, (S79)

∂ (εe(k)− εso(k))2

∂k2 =
4P2

3

(
1+

εg +∆
εg

)
, (S80)

∂ (εe(k)− εhh(k))2

∂k2 =
4P2

3

(
1+

εg

2(εg +∆)

)
. (S81)

The optical matrix elements at k = 0 are:

∣∣∣∣⟨s ↑ |∇H(k) | 3
2
,
1
2
⟩
∣∣∣∣2 = 2P2

3
, (S82)∣∣∣∣⟨s ↑ |∇H(k) | 1

2
,
1
2
⟩
∣∣∣∣2 = P2

3
, (S83)∣∣∣∣⟨s ↑ |∇H(k) | 3

2
,
3
2
⟩
∣∣∣∣2 = P2

2
. (S84)

From this, we could calculate the absorptance using Eq. (4) of the main document.

S7.2 Step heights versus semiconductor characteristics

Figure S5 presents the step height calculated using Eq. (20) [A0(εg)] and Eq. (21) [δA0(εg +∆)] of the main
document, versus x = εg/∆.

The development in series with respect to x = 1 of Eq. (20) of the main document gives

πα
{

1.225−0.341x+0.241x2 −0.098x3 +0.017x4 +O
(
(x−1)5 ;x → 1

)}
. (S85)

The term in braces is close to unity. A0(εg) remains close to πα , within ±10% for x varying from 0.5 to
5.

S7.3 Effect of the SOC from tight binding calculations

Figure S6 presents the variation of the valence subband energies and optical matrix elements at k = 0 when
we vary the strength of the SOC. First, the SOC splits the two highest degenerate energy subbands. Second,
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Figure S5: Height of the steps in unit of πα calculated using the analytical model including SOC versus
εg/∆ (b). Red solid line: first step, A0(εg). Blue dashed line: second step, δA0(εg +∆).

it couples the lowest of these two subbands to a third subband located at lower energy (∼ −0.3 eV), which
leads to a redistribution of the optical oscillator strengths, their sum remaining approximately constant. At
increasing SOC, this leads to the conventional picture of three valence subbands derived from heavy-hole,
light-hole, and split-off bands. [4]

S8 Absorptance spectra in tight-binding models on a honeycomb lattice

S8.1 Model Hamiltonians

As already demonstrated in Ref. [5], the case of Hamiltonians on the honeycomb lattice is particularly
interesting since it allows to study the effect on the absorptance spectrum of the transition from massless
particles to massive ones. In this appendix, we illustrate different physical effects that induce the opening
of a band gap at the Dirac point of a graphene band structure. These effects are, the asymmetry between
sublattices A and B of the honeycomb, the intrinsic Spin-Orbit Coupling (SOC), and the Rashba SOC. We
start from the tight-binding model that describes the π bands of graphene [6], with one orbital on each lattice
site (two including spin). The Hamiltonian is written as H =H0+HNN+HISO+HRSO. Here, H0 incorporates
the on-site energies EA and EB on sublattice A and B, respectively. The term

HNN = t ∑
⟨i, j⟩

∑
α

c†
i,αc j,α , (S86)

includes hopping terms, where ⟨i, j⟩ denotes nearest-neighbor (NN) sites, α denotes spin, and t = −2.8 eV
is the hopping parameter typically used for graphene [7].

The intrinsic SOC term HISO couples the electron orbital momentum L and spin S. There is no on-site
term because the orbital momentum is frozen. However, as shown by Kane and Mele [8], the intrinsic SOC
can introduce a next-nearest-neighbour (NNN) hopping term, which is written as
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Figure S6: Evolution of the energy levels in a 4.2-nm-thick InAs layer, at k = 0 in the valence band when
the SOC is scaled by a factor varying from 0.0 to 1.0. The vertical axis indicates the optical matrix element
|⟨c,0 |∇H(k) |v,0⟩|2 for the transition to the lowest conduction subband (same scale for all figures).

HISO = iλ ∑
⟨⟨i, j⟩⟩

∑
α

c†
i,αSz

αανi jc j,α . (S87)

Here, the summation is over NNNs, and νi j = ±1, with the sign depending on the outer product of the
two NN vectors that connect sites i and j. The Rashba SOC term is written as a NN-hopping term

HRSO = iγ ∑
⟨i, j⟩

∑
α,β

c†
i,α [ẑ · (S× ri j)]αβ c j,β (S88)

λ and γ are coupling constants that we adjust to open a visible gap. In any case, we set the Fermi level
at the zero of energy, i.e., at the Dirac point of graphene.
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Figure S7: Band structures (x1) and absorptance spectra (x2) calculated in the following configurations.
(a1,a2) Model of graphene, no lattice asymmetry (EA = EB = 0), and no SOC. The red points represent the
experimental data of Ref. [9]. (b1,b2) Same but with a sublattice asymmetry, EA = 0.2 eV and EB =−0.2 eV.
(c1,c2) No asymmetry (EA = EB = 0) but intrinsic SOC (λ = 0.1 eV). (d1,d2) No asymmetry but intrinsic
SOC (λ = 0.16 eV) and Rashba SOC (γ = 0.16 eV). The red dashed lines in (b2,c2,d2) reproduce the
absorptance spectrum (a2) of graphene, for comparison.

S8.2 Results

The results of Fig. S7(a1,a2) concerning graphene have already been the subject of much work[10, 11, 12,
9, 13, 14, 15]. The absorptance is equal to πα over a wide energy range, as long as the bands involved in the
optical transitions keep a linear dispersion. The other figures show that the opening of a band gap, whether
due to the asymmetry of the honeycomb sublattices [Fig. S7(b1,b2)] or to the intrinsic SOC [Fig. S7(c1,c2)],
induces just above the optical threshold the appearance of a peak reflecting an absorptance considerably
greater than πα . This is attributed to the non-zero mass that appears at the edges of the bands, in the
vicinity of the band gap [5]. When both charge carriers transform from massless to massive quasiparticles,
the absorptance per valley is evolving as πα/2 → πα . This transformation, predicted in the case of 2D
group-IV honeycomb crystals [16], is partial in the case where the massive character of the bands disappears
very quickly as soon as we deviate in energy from the band edges. The same effect occurs in the case of
PbSe quantum wells (Sect. VI of the main document).

When the spin degeneracy is lifted under the effect of Rashba SOC coupling, the peak reflecting the
massive character splits into two peaks [Fig. S7(d1,d2)]. In any case, by moving towards the highest energies,
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Figure S9: (a) Bare absorptance spectra calculated for (001) quantum wells of PbS (red solid line: thickness
= 8 nm; blue dashed line: 6 nm). (b) Lowest conduction subbands and highest valence subbands in a 8 nm
quantum well of PbS. The steps in the absorptance are associated with the transitions Hi → Ei.

the absorptance reaches the graphene reference value.

S9 Additional results for quantum wells of rocksalt IV-VI semiconductors

S9.1 Band structure of the PbSe quantum well

The band structure of the quantum well of PbSe discussed in the main document is presented in Fig. S8.
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S9.2 Absorptance spectrum of a PbS quantum well

The calculated band structure and absorptance spectra of PbS quantum wells are presented in Fig. S9. The
first absorptance plateau is close to 2πα , like in PbSe (main document). The height of the next plateaus is
smaller than 2πα , which could be due to the strongly anisotropic dispersion of higher subbands (Fig. S9b).
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