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Large N limit of the Yang–Mills measure
on compact surfaces II:

Makeenko–Migdal equations and planar master field

Antoine Dahlqvist∗ Thibaut Lemoine†

January 19, 2022

Abstract

This paper considers the large N limit of Wilson loops for the two-dimensional
Euclidean Yang–Mills measure on all orientable compact surfaces of genus larger or
equal to 1, with a structure group given by a classical compact matrix Lie group.
Our main theorem shows the convergence of all Wilson loops in probability, given
that it holds true on a restricted class of loops, obtained as a modification of geodesic
paths. Combined with the result of [16], a corollary is the convergence of all Wilson
loops on the torus. Unlike the sphere case, we show that the limiting object is
remarkably expressed thanks to the master field on the plane defined in [3, 32] and
we conjecture that this phenomenon is also valid for all surfaces of higher genus.
We prove that this conjecture holds true whenever it does for the restricted class of
loops of the main theorem. Our result on the torus justifies the introduction of an
interpolation between free and classical convolution of probability measures, defined
with the free unitary Brownian motion but differing from t-freeness of [5] that was
defined in terms the liberation process of Voiculescu [55]. In contrast to [16], our
main tool is a fine use of Makeenko–Migdal equations, proving their uniqueness
under suitable assumptions, generalising the arguments of [17, 29].

1 Introduction
The two-dimensional Yang–Mills measure is a probability model originating from
Euclidean quantum field theory in the setting of pure gauge theory. It describes a
generalised random connection on a principle bundle over a two dimensional man-
ifold, with a compact Lie group as structure group, making rigorous the path
integral over connections for the so-called Yang–Mills action. Different equiva-
lent mathematical definitions have been given in two dimensions and are due to
[27, 19, 47, 28, 1, 2, 35, 11]. The work of [59] brought to light many special features
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of the Yang–Mills measure in two dimensions, including its partial integrability,
used as a way to perform exact volume computations for the Atiyah–Bott–Goldman
measure [4, 23] on the space of flat connections [39, 8, 48].

When a compact Lie group G and a surface Σ are given, the Yang–Mills measure
can be mathematically understood as a random matrix model which assigns to any
loop1 of the surface a random matrix so that concatenation and reversion of loops
are compatible with the group operations. In [32], it is shown that it gives rise to
a random homomorphism from the group of rectifiable reduced loops of the surface
to the chosen group G.

We consider here a compact, orientable surface Σ of genus g ≥ 1 and a group G
belonging to a series of classical compact matrix groups. We are primarily interested
in the traces of these matrices, called Wilson loops, when the rank of G goes to
infinity. We ask whether Wilson loops converge in probability under the Yang-Mills
measure, towards a deterministic function.

Let us try to give a brief historical account of this problem. In physics, a moti-
vation for the focus on Wilson loops is due to K. Wilson work [57] related to quarks
confinement. The introduction of the large rank regime in gauge theories, known
as large N limit, is due to t’Hooft’s work [53] on QCD. This lead to many articles
in theoretical physics in the 80’ studying the question in two dimensions, a partial
list being [30, 31, 42, 44, 58, 25, 24, 26]. In mathematics, this problem was ad-
vertised by I. Singer in [51] where the candidate limit of Wilson loops was called
master field, following the physics literature. The case of the plane and the sphere
have been proved in [60, 3, 32] and2 [17]. The case of compact surfaces has been
first investigated by [29] where loops contained in topological disc can be considered
whenever the convergence holds for simple loops. The study of similar questions
in the plane for analogs of the Yang–Mills measure has been investigated in [9]. In
higher dimension, an analog3 of this question for a lattice model has also been con-
sidered [10]. Very recently and independently from the current work, it was shown
in [41, 40] that under the Atiyah–Bott–Goldman measure, which can be understood
as the weak limit of the Yang–Mills measure when the area of the surface vanishes,
the expectation of Wilson loops converges and has a 1

N expansion when the group
belongs to the series of special unitary matrices and the surface is closed, orientable
and of genus g ≥ 2. For further details and references on the motivations of this
problem, we refer to [16, Sec. 1] and [37, Sec. 2.5.].

In this article, we give a complete answer in the case of the torus and a conjecture
and a partial result for all surfaces with genus g ≥ 2. It is the sequel of [16] where
we have shown the convergence for a large4 but incomplete class of loops. Let us
recall that in the case of the plane, the master field can be described thanks to free
probability and more specifically in terms of free unitary Brownian motion [3, 32].
The case of the sphere leads to the introduction of a different non-commutative
stochastic process called the free unitary Brownian bridge [17]. In contrast, for the

1with enough regularity.
2See also [29] where a conditional result was obtained implying the case of the sphere, given the

convergence for simple loops.
3though in this case, there is at the time of writing, no construction of the continuous Yang–Mills

measure in dimension 3 and higher is available.
4informally described as all simple loops or iteration of simple loops, and all loops which do not visit

one handle of the surface.
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torus, we show that after lifting loops to the universal cover, the master field is also
described by the planar master field and we conjecture that the same holds for any
surface of higher genus. In the torus case, the master field leads to an interpolation
parametrised by the total area of the torus, between the free and the classical con-
volution of two Haar unitaries built with the free unitary Brownian motion, which
differs from the t-freeness introduced by [5] using the liberation process of [55].

The aim of the current paper is to investigate the stability of Wilson loops
convergence under homotopy equivalences. To do so, we will use a set of recursive
equations named after Makeenko and Migdal [42]. When a loop is deformed in a
specific way – that we call a Makeenko–Migdal deformation – these equations relate
the differential of the expected Wilson loops with the expectation of a product of
Wilson loops having a smaller number of intersection points. These equations can be
understood as a remarkable analog of Schwinger–Dyson equations used in random
matrix theory and were first inferred heuristically in [42] as an integration by part for
the path integral over the space of connections. A first rigorous proof was given in
the case of the plane in5 [32] and was later remarkably simplified and generalised in
[22, 21] in a local way that applies to any surface. Makeenko–Migdal equations were
crucial to [17, 29] leading to an induction argument on the number of intersection
points that reduced the convergence of all Wilson loops on the sphere to the case
of simple loops. In the case of other surfaces, the very same strategy fails a priori,
as some loops cannot be deformed to simpler loops without raising the number
of intersection points, while some homotopy classes do not contain any loop for
which the convergence is known to hold. We show here that the first hurdle can be
overcome, allowing to reduce the problem, completely in the torus case and partially
when g ≥ 2, to the class of loops considered in [16]. We leave the completion of this
program for all compact surfaces to a future work.

The paper is organised as follows. The first four following sections of the intro-
duction give respectively an informal definition of the Yang–Mills measure and of the
main results, a discussion on the relation with the Atiyah–Bott–Goldman measure
and the work [40, 41], a consequence of the result on the torus in non-commutative
probability, and lastly, a sketch of the strategy of the main proofs. Section 2 recalls
and adapts some combinatorial notions of discrete homotopy of loops in embedded
graph instrumental to the proof. Section 3 gives the definition of the Yang–Mills
measure, a statement of the Makeenko–Migdal equations and states the main results
of the article. Section 4 consists in the proof of our main technical result, which
is Proposition 3.18. Section 5 describes the behaviour of Wilson loops when one
performs surgery on the underlying surface. Section 6 is finally discussing how the
master field on the torus is a new candidate for the interpolation between classical
and free convolution, different from Voiculescu’s liberation process. In an appendix,
for the sake of completeness, we recall and prove several results on Makeenko–Migdal
equations, that are quite standard in the literature for unitary groups but not nec-
essarily for all classical groups.

5See also [14, sect. 7] for a variation of this proof and [32, section 0] for the heuristics of the original
proof of [42] based on an integration by part in infinite dimension. See also [20] for a proof closer in
spirits to the original argument of [42].
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1.1 Yang–Mills measure and master field, statement of re-
sults
We shall first give an heuristic definition of the Yang–Mills measure in its geometric
setting and state informally the main results of the current article. Proper definitions
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Let Σ be either a compact, connected, closed orientable surface of the genus g ≥ 1
endowed with a Riemannian metric, or the Euclidean plane R2 with its standard
inner product. Let GN be a classical compact matrix Lie group of size N , i.e. viewed
compact subgroup of GLN (C). We assume that the Lie algebra gN of GN is endowed
with an Ad-invariant inner product 〈·, ·〉, as in section 3.1.

Given a GN -principal bundle (P, π,Σ), a connection is a one form ω onM valued
in adjoint fibre bundle ad(P ), its curvature is the two-form Ω = dω+ 1

2 [ω∧ω] valued
in ad(P ).

The Yang–Mills action of a connection ω on a GN -principal bundle (P, π,Σ) is
defined by

SYM(ω) =
1

2

∫
Σ

〈Ω ∧ ?Ω〉, (1)

where ? denotes the Hodge operator. An important feature of dimension 2 is that
whenever Ψ is a diffeomorphism of Σ preserving its volume form,

SYM(Ψ∗ω) = SYM(ω). (2)

The Euclidean Yang–Mills measure is the formal Gibbs measure

dµYM(ω)“ = ”
1

Z
e−SYM(ω)Dω, (3)

where Dω plays the role of a formal Lebesgue measure on the space of connections
over an arbitrary principal bundle6 and Z is a normalisation constant supposed to
ensure the total mass to be 1. We choose here not to include a parameter in front
of the action, as it can be included in the volume form of Σ.

The space A(P ) being infinite-dimensional, the latter equation has no mathe-
matical meaning. Though at first stance, as the Yang–Mills action of ω can be
seen as the L2-norm of the curvature Ω, an analogy with Gaussian measures can be
hoped. Though, when GN is not abelian, Ω depends non-linearly on ω which pre-
vents any direct construction of µYM using a Gaussian measure. In two dimensions,
this non-linearity can be compensated by the so-called gauge symmetry of SYM

which allows to bypass this problem. This lead to the constructions of [27, 19, 47]
based on stochastic calculus. See also [11] for an approach defining further a ran-
dom, distribution valued, connection on trivial bundles over the two dimensional
torus. We follow here instead the approach of [35] which focuses on the holonomy of
a connection, whose law can be directly defined using the heat kernel on GN . The
definition we are using is recalled in section 3.2, it agrees with the construction of
[27, 19, 47] thanks to the so-called Driver–Sengupta formula. An important feature
of this measure is suggested by (2). For any two dimensional Riemannian manifold
Σ′ diffeomorphic to Σ, and for any diffeomorphism Ψ : Σ→ Σ′, there is an induced
pushed forward measure Ψ∗(YMΣ) on connections of (P,Ψ ◦ π,Σ′). Whenever Ψ
maps the volume form of Σ to the one of Σ′,

Ψ∗(YMΣ) = YMΣ′ .

6There is here an apparant additional issue with this vague definition. A slightly less dubious state
space could be obtained by fixing a representant of each principle bundle equivalence class over Σ and
by considering instead the set of pairs of a principal bundle belonging to this family together with
a connection on it. When Σ is a contractible space or if GN is simply connected, there is only one
equivalence class of GN -principal bundles over Σ and this issue disappears. We shall not discuss further
the question of the type of the principal bundle under the Yang–Mills in this text. For more details and
rigorous results we refer to [33].
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We shall call this property the area-invariance of the Yang–Mills measure. Moreover,
for any relatively compact, contractible, open subset U of Σ, the restriction to U
induces a measure RU∗ (YMΣ) on connections of (π−1(U), π, U). When Σ is the
Euclidean plane R2 or the hyperbolic Poincaré unit disc Dh, with its usual metric,
it satisfies7 RU∗ (YMΣ) = YMU , where U is endowed with the metric of Σ.

If ω is a connection on a GN -principal bundle (P, π,Σ), and U is an open subset
of Σ where π : π−1(U)→ U can be8 trivialised. When such a trivialisation has been
fixed, its holonomy is a function γ 7→ hol(ω, γ) mapping paths9 γ : [0, 1] → U to
elements of the group GN such that

hol(ω, γ1γ2) = hol(ω, γ2)hol(ω, γ1)

for any paths γ1 and γ2 such that the endpoint of γ1 coincides with the starting
point of γ2, while for any path γ,

hol(ω, γ−1) = hol(ω, γ)−1,

where γ1γ2 and γ−1 denote the concatenation and reversion of the paths.
When GN is a group of matrices of size N and ` is a loop of U , the Wilson loop

associated to ` is the function

W`(ω) = tr(hol(ω, `)),

where tr = 1
NTr, with Tr the usual trace of matrices. This function can be shown to

be independent of the choice of local trivialisation of (P, π,Σ) and is therefore only
a function of ω and `.

Our primary source of interest is the study of the random variablesW` := W`(ω),
for loops of Σ, when ω is sampled according to YMΣ.We are interested in the largeN
limit of W`, when the scalar product 〈·, ·〉 is chosen as in section 3.1 and the volume
form of the surface is fixed. The paper [51] seems to be the first mathematical article
focusing on this question and motivates the following conjecture, also suggested by
[36, 21, 29].

Conjecture 1.1. Let GN be a classical compact matrix Lie group of size N , en-
dowed with the metric of section 3.1 and denote by Σ a two-dimensional compact
Riemannian manifold, the Euclidean plane R2 or the hyperbolic Poincaré disc Dh.
For any loop ` ∈ L(Σ), there is a constant ΦΣ(`) such that under YMΣ

W` → ΦΣ(`) in probability as N →∞. (4)

The functional ΦΣ is called the master field on Σ.

The works [60, 3] answered to this question in the plane for GN = U(N). In
[36], the above statement was proved simultaneously to [3] for all groups mentioned,
and for a large family of loops given by loops of finite length. Moreover, motivated
by the physics articles [42, 44, 31], [36] proved recursion relations giving a way to
compute explicitly ΦR2 for all loops with finitely many intersections.

7Compact surfaces do not have this property but there is still absolute continuity in place of continuity.
This was instrumental in [16].

8the tubular neighbourhood of a smooth loop or of an embedded graph could be such an open set.
9In this section the space of paths is not specified and could be taken as the space of piecewise smooth

paths with constant speed and transverse intersections.
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By area invariance and restriction property, the result on the hyperbolic plane
can be deduced directly from these latter works as follows. According to a theorem
of Moser [46], any relatively compact open disc U of Dh with hyperbolic volume t
can be mapped to the open Euclidean disc Dt of R2 centered at 0 and of area t,
by a diffeomorphism Ψ : U → Dt sending the restriction of the hyperbolic volume
form on U to the restriction of Euclidean volume form on Dt. By area-invariance,
RU∗ (YMDh

) = YMU = Ψ−1
∗ (YMDt

), so that the conjecture holds true for Dh with

ΦDh
(`) = ΦR2(Ψ ◦ `)

for any loop ` with range included in U.
The work [17] proved the conjecture for Σ = S2 and all loops of finite length when

GN = U(N), while [29], written simultaneously, gave a conditional result on S2 based
on an argument similar to [17], as well as a conditional result on other surfaces for
loops included in a topological disc, given convergence of for simple loops. In [16]
we gave an alternative argument proving a generalisation of the results of [29] on
compact surfaces without using the conditions [29], see section 1.4. The current
article was written with the aim to strengthen the argument common to [17] and
[29] to address the conjecture on all compact manifolds. This lead to the following
theorem and conjecture.

Theorem 1.2. When TT is a torus of volume T > 0, conjecture 1.1 is valid.
Moreover, considering TT as the quotient of the Euclidean plane R2 by

√
T .Z2,

ΦTT
(`) =

 ΦR2(˜̀) if ` is contractible,

0 otherwise,

where for any continuous loop ` in TT , ˜̀ is a lift of ` to R2, that is a smooth loop
of R2, whose projection to R2/

√
T .Z2 is `.

We discuss an interpretation of this result in terms of non-commutative proba-
bility in section 1.3. For compact surfaces of higher genus, a natural candidate is
given as follows. Recall that for any compact surface Σ of volume T > 0, there is a
covering map p : Dh → Σ mapping the hyperbolic metric of Dh to the metric of Σ.

Conjecture 1.3. For any two-dimensional compact manifold of genus g ≥ 2, with
universal cover p : Dh → Σ, the conjecture 1.1 is valid with

ΦΣ(`) =

 ΦDh
(˜̀) if ` is contractible,

0 otherwise.
(5)

This conjecture is also justified by the main result of [16] which leads to the
following. Recall that a simple loop γ of Σ is non-separating, if the set Σ \ γ, where
γ denote the range of γ, is connected.

Corollary 1.4. When g ≥ 2 and γ is a non-separating loop of Σ, then the conver-
gence (4) holds true with the limit (5), for all loops ` that do not intersect γ.

From this point of view, Theorem 1.2 and Conjecture 1.3 prove or claim the
following "asymptotic restriction property": for any closed surface Σ of genus g ≥ 1,
if Σb is a surface with boundary embedded in Σ preserving the volume form, for any
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loop ` included in Σb, W` converges in probability towards a constant both under
YMΣb

and YMΣ, and the two limits agree, being equal to ΦR2(˜̀),ΦDh
(˜̀) or 0. See

section 3.3 for a proper statement.
We obtained here two conditional results proving stability of the claimed con-

vergence.

Proposition 1.5. For any two-dimensional compact manifold of genus g ≥ 2, when
GN is a classical compact matrix group of size N , assume that for any geodesic loop
` of Σ with non-zero homology, under YMΣ,

W` → 0 in probability as N →∞. (6)

Then (6) also holds true for all loops with non-zero homology.

Assume g ≥ 2 and Γg is a discrete subgroup of isometry acting freely, properly on
Dh and that Dh/Γg is a compact surface of genus g with finite total volume T > 0.
Assume that there is a fundamental domain for this action given by a 4g hyperbolic
polygon D of volume T, centred at 0.

Let us say that a loop ` of Σ is a delayed geodesic if there is a lift ˜̀ of ` starting
from 0 such that ˜̀= γ1γ2 where γ2 is a geodesic and γ1 is smooth path included in
D, intersecting ∂D only once, transversally at its endpoint.

Theorem 1.6. The conjecture 1.3 holds true if (6) is true for all non contractible,
delayed geodesic loops.

Besides, the recent results of [41] are furthermore coherent with the above state-
ment as discussed in the next sub-section.

1.2 Atiyah–Bott–Goldman measure
Another measure on connections is due to [4, 23] when g ≥ 2. Recently, the limit of
Wilson loops under this measure has been investigated by [40, 41], we discuss the
relation with our result.

Let G be a compact connected semisimple10 Lie group G, g its Lie algebra,
endowed with an invariant inner product, and Z(G) its center. For any g ≥ 2, let
Kg : G2g → G be the product of commutators:

Kg(a1, b1, . . . , ag, bg) = [a1, b1] · · · [ag, bg].

The space
Mg = K−1

g (e)/G

is called the moduli space of flat G-connections over a compact surface of genus
g ≥ 2, where G acts by diagonal conjugation, as

h.(z1, . . . , z2g) = (hz1h
−1, . . . , hz2gh

−1),∀z ∈ G2g, g ∈ G.

For any z ∈ G2g, its isotropy group is Zz = {h ∈ G, h.z = z}. The setM0
g = {z ∈

G2g : Zz = Z(G)} can be shown to be a manifold [23, 49] of dimension 2g − 2,
endowed with a symplectic form ω with finite total volume. Besides, using the
holonomy map along a suitable 2g−tuple `1, . . . , `2g of loops,M0

g can be identified

10Mind that this excludes U(N).

8



with a subset of smooth connections ω on a G-principal bundle over Σ such that
SYM(ω) = 0. This subset is a manifold with a symplectic structure [4], equal to the
push forward of ω. The Atiyah–Bott–Goldman measure is the volume form onM0

g

associated to ω, given by

volg =
ω

1
2 dimM0

g

( 1
2 dimM0

g)!
. (7)

Let us denote by µABG,g the probability measure on M0
g obtained by normalising

volg. It appeared in [59], that integrating against the Yang–Mills measure on a
compact surface of total area T and letting T tend to 0, allows to obtain formulas
for integrals against volg. This convergence was proved rigorously by Sengupta in
[49]. Using the holonomy mapping of the Yang–Mills measure, the convergence can
be understood as follows. Consider a heat kernel (pt)t>0 on G, when its Lie algebra
g is endowed with its Killing form 〈·, ·〉.

Theorem 1.7 (Symplectic limit of Yang–Mills measure). Let f : G2g → C be a
continuous G-invariant function, and f̃ : M0

g → C be the induced function on the
moduli space. Then

lim
T↓0

∫
G2g

f(x)pT (Kg(x))dx =
vol(G)2−2g

|Z|

∫
M0

g

f̃dvolg. (8)

For any word w in the variables a1, . . . , bg and their inverse, setting

Ww(z) =
1

N
Tr(w(z1, z

−1
1 , . . . , z2g, z

−1
2g )),∀z ∈ G2g

defines also a function on M0
g. Denoting it also by Ww and considering the loop

`w obtained by the concatenation w(`1, `
−1
1 , . . . , `2g, `

−1
2g ), the last statement can be

reformulated as
lim
T↓0

EYMΣT
[W`w ] =

∫
M0

g

WwdµABG,g,

Consider the surface group

Γg = 〈a1, b1, . . . , ag, bg|[a1, b1] . . . [ag, bg]〉.

Consider the equivalence relation ∼ on the set of words with 2g letters and their
inverse, such that w ∼ w′ iff w(a1, . . . , bg) and w′(a1, . . . , bg) are equal in Γg. Thanks
to the defining relation of Mg, for any word w, the function Ww depends only on
the equivalence class of w. When γ ∈ Γg is the evaluation of w in Γg, denote this
function byWγ . In [41], Magee obtained the following analog of asymptotic freeness
of Haar unitary random matrices.

Theorem 1.8 ([41] Cor. 1.2). Consider the group G = SU(N). For any γ ∈ Γg,

lim
N→∞

EµABG,g
[Wγ ] =

 1 if γ = 1,

0 otherwise.

Since for any word with evaluation γ ∈ Γg, it can be shown that γ = 1 if and only
if the loop `w is contractible, the above statement can be understood as the T = 0
case of the conjecture 1.3, with a weaker convergence given in expectation instead

9



of in probability. In [40], it is also shown that EµABG,g
[W`] admits an asymptotic

expansion in powers of 1
N .

Our main arguments differ from the one of [41]; the one of [16] relies on the
Markovian property of the Yang-Mills measure, while the ones of this paper starts
from on the Makeenko–Migdal equations which allow to prove that convergence in
probability is stable under a large class of deformations, a problem which does not
occur in the zero volume case. Though, a common starting point to [16] and [40] is
the convergence of the partition function of the model.

Besides, on the one hand we did not investigate asymptotic expansion in 1
N

neither here nor in [16]. On the other hand, we prove a convergence in probability
instead of in expectation and work also with larger family of matrix groups.

Moreover, when g = 1, the construction and results mentioned within this sub-
section are not valid. Though, we are able to prove a result in this setting when
T > 0. It gives a matrix approximation result for an interpolation between classical
and free convolution.

1.3 Non-commutative distribution and master field on the
torus: an interpolation between free and classical convolution
We discuss here the non-commutative distribution associated to the master field on
the torus, leading to the corollary 1.11 below, obtained by specialising Theorem 1.2
to projection of loops restrained to the lattice

√
T .Z2.

1.3.1 Non-commutative probability and free independence

Let us give an extremely brief account of these notions. We refer to [56, 45] for more
details.

A non-commutative probability space11 is the data of a tuple (A, ∗, 1, τ) where
(A, ∗, 1) is a unital ∗-algebra over C, and τ is a positive, tracial state, that is a linear
map τ : A → C with

τ(aa∗) ≥ 0 and τ(ab) = τ(ba),∀a, b ∈ A,

with furthermore τ(1) = 1 and τ(a∗) = τ(a),∀a ∈ A.We shall often leave as implicit
the choice of unit and ∗, and denote a non-commutative probability space simply as
a pair (A, τ).

Example 1.9. For N ≥ 1, the tuple (MN (C), ∗, IdN , tr), where tr = 1
NTr, gives

such a space. Consider the group U(N) of unitary complex matrices of size N and a
group Γ with unit element 1. Let (C[Γ], ∗) be the group algebra of Γ endowed with the
skew-linear idempotent defined by γ∗ = γ−1,∀γ ∈ Γ. Then, whenever ρ : Γ→ UN (C)
is a unitary representation of Γ, setting τρ = tr◦ρ, the tuple (C[Γ], ∗, 1, τρ) is a non-
commutative probability space.

Let (A1,A2) be unital sub-algebras of a non-commutative probability space A1.

• They are classically independent if ∀a1, . . . , an ∈ A1, b1, . . . , bn ∈ A2,

τ(a1b1a2 . . . anbn) = τ(a1 . . . an)τ(b1 . . . bn).

11sometimes denoted NCPS
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• They are freely independent if for any n ∈ N, for any {i1, . . . , in} ∈ {1, 2}n
such that i1 6= i2, . . . , in−1 6= in and for any ak ∈ Aik ,

τ(ak) = 0, ∀1 ≤ k ≤ n =⇒ τ(a1 · · · an) = 0.

These definitions can be generalised to any number of sub-algebras, and a family
of elements (ai)i∈I of a non-commutative probability space (A, τ) is said to be
independent (resp. free) if the family (Ai)i∈I is independent (resp. free), where for
all i ∈ I, Ai is the subalgebra generated by ai and a∗i . We shall then say that (ai)i∈I
are resp. independent and free under τ.

When I is an arbitrary set, let us denote by C〈Xi, X
∗
i , i ∈ I〉 the unital ∗-algebra

of non-commutative polynomials in the variables Xi, X
∗
i ,∈ I, with ∗ mapping Xi

to X∗i for all i ∈ I. When (A, ∗, 1, τ) is a non-commutative probability space and
a = (ai)i∈I is a family of elements of A, its non-commutative distribution is the
positive, tracial, state on C〈Xi, X

∗
i , i ∈ I〉 given by

τa(P ) = τ(P (ai, i ∈ I)),∀P ∈ C〈Xi, X
∗
i , i ∈ I〉,

where P (ai, i ∈ I) ∈ A denotes the evaluation of P replacing Xi and X∗i by ai and
a∗i . Likewise, when A and B are sub-algebras of a same non-commutative probability
space (C, τ), we call the state τ〈A,B〉 on C〈Xa, Yb, a ∈ A, b ∈ B〉 given by

τ〈A,B〉(P (Xa, Yb; a ∈ A, b ∈ B)) = τ(P (a, b; a ∈ A, b ∈ B)),

the joint distribution of (A,B) in (C, τ).
When a, b are two elements of non-commutative probability spaces with respec-

tive non-commutative distribution τa and τb, there are unique states τa ? τb and
τa ∗c τb on C〈X,Y,X∗, Y ∗〉 such that τX = τa and τY = τb both under and τa ∗c τb
and τa ? τb, while the joint distribution (X,Y ) under τa ? τb and τa ∗c τb, are respec-
tively freely and classically independent. The states τa ? τb and τa ∗c τb are resp.
called the free and the classical convolution of τa and τb. We define likewise the free
and classical convolution of two states on τA, τB of NCPS (A, τA), (B, τB) as states
τA ? τB and τA ∗c τB on C〈Xa, Yb, a ∈ A, b ∈ B〉.

Let us recall the following result of asymptotic freeness due to Voiculescu [54],
and for the considered group series by [13], see also [36, Sect. I-3].

Theorem 1.10 ([54, 13, 36]). Let A and B be two deterministic matrices of size N
with respective non-commutative distribution satisfying for all fixed P ∈ C〈X,X∗〉,

τA(P )→ τa(P ), τB(P )→ τb(P ), as N →∞,

for some state τa, τb on C〈X,X∗〉. Consider U and V two independent Haar unitary
matrices on a group GN and ρN : C[F2]→ GN the associated unitary representation
of the free group of rank 2.

Then for any γ ∈ F2 and P ∈ C〈X,Y,X∗, Y ∗〉, the following limit holds in
probability as N →∞,

τρN (γ)→

 1 if γ = 1,

0 if γ ∈ F2 \ {1}
(9)

and
τA,UBU∗(P )→ τa ? τb(P ). (10)

11



On the one hand, the first convergence (9) can be proved to be a special case of
(10) when A and B are themselves independent Haar unitary random variables. On
the other hand, when A and B are unitary or Hermitian with uniformly bounded
spectrum, (10) can be deduced from (9) by functional calculus.

A motivation of the current article was to understand an analog of (9), when
(U, V ) are sampled according to a different law with correlation, as discussed in
section 1.3.3.

Let us first mention a family of states which arises when considering an analog
of (10), replacing the Haar measure by a Brownian motion on the group GN .

1.3.2 Free Unitary Brownian motion and t-freeness

We refer here to [6, 55, 5] for more details. Consider a non-commutative probability
space (A, τ, ∗, 1). An element u ∈ A is called unitary when uu∗ = u∗u = 1. It is
Haar unitary if for all integer n > 0, τ(un) = τ((u∗)n) = 0.

The free unitary Brownian motion on a ∗-probability space (A, τ, ∗, 1) is a family
(ut)t≥0 of unitary elements of A such that the increments ut1u∗0, . . . , utnu∗tn−1

are
free for all 0 ≤ t1 ≤ · · · ≤ tn, and for any k ∈ Z∗ and 0 < s < t,

τ((utu
∗
s)
k) = τ(ukt−s)

while τ(ukt ) = νt(|k|) is C1 with for all m ≥ 0,

d

dt
νt(m) = −m

2
νt(m)− m

2

m∑
l=1

νt(l)νt(m− l),∀t ≥ 0, , ν0(m) = 1. (11)

Let us set νt = τut . It follows from the above expression that as t tends respectively
to 0 and +∞, the distribution νt converges pointwise to the one of respectively 1
and a Haar unitary. In view of (10), it is also natural to introduce the following
deformation of free convolution.

Definition 1.1 ([55]). Let (A, τA) and (B, τB) be two non-commutative probability
spaces. Then there is a non-commutative probability space (C(t), τC(t)) such that

1. A and B can be identified with two independent sub-algebras of (C(t), τC(t))
with

τC(t)(a) = τA(a) and τC(t)(b) = τB(b),∀(a, b) ∈ A× B.
2. There is a unitary element ut ∈ C(t) free with the sub-algebra of C(t) generated

by A and B, such that ut has distribution νt.

The t-free convolution product of τA and τB is then the joint distribution τA ?t τB
of (A, utBu∗t ) in the non-commutative probability space (C(t), τC(t)). It does not
depend on the choice of (C(t), τC(t)) satisfying 1) and 2). The above construction
was introduced more generally 12 by Voiculescu [55] in his study of free entropy and
free Fisher information via the liberation process.

For any t > 0, two sub-algebras A and B of a same non-commutative probability
space (C, τ) with respective distribution τA and τB are said to be t-free, if their joint
distribution under τ is given by τA ?t τB. It can be shown ([55, 5]) that the following
limits hold pointwise,

lim
t↓0

τA ?t τB = τA ∗c τB and lim
t→+∞

τA ?t τB = τA ? τB.

12not necessarily with the assumption of classical independence for the initial state.
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1.3.3 A matrix approximation for another interpolation from clas-
sical to free convolution

Let us present an application of Theorem 1.2. Consider a heat kernel (pt)t>0 on
a classical compact matrix Lie group GN endowed with the metric considered in
section 3.1 and for any T > 0, define a probability measure setting

dµN,T (A,B) = Z−1
T pT ([A,B])dAdB (12)

onG2
N where dAdB denotes the Haar measure onG2

N and ZT =
∫
G2

N
pT ([A,B])dAdB.

As the limits limT↓0 pT (U)dU = δIdN
and limT→∞ pT (U)dU = dU hold weakly, we

can think about µT as a model of random matrices interpolating between commut-
ing and non-commuting settings. In [16, Thm 2.15], we have proved that though A
and B are not Haar distributed for N fixed, as N →∞, they converge individually
to Haar unitaries. Moreover, we also saw that under µN,T , [A,B] converges in non-
commutative distribution, with limit given by νT , a free unitary Brownian motion
at time T. In view of (9), it is then natural to investigate the possible limit of the
joint law, hoping for a non-trivial coupling of Haar unitaries. Note that analog mod-
els with potentials 13 have been investigated in [12]. A challenge appearing in the
setting of [12] is that these general results are limited to weak coupling regimes.14
A consequence of our work is that µN,T has a non-commutative limit for all T > 0,
leading to an interpolation between independent and free Haar unitaries. Denote by
τu the distribution of a Haar unitary.

Corollary 1.11. For any T > 0, there is a state ΦT on A = C〈X,X∗, Y, Y ∗〉, such
that for any P ∈ A, under µN,T ,

tr(P (A,B))→ ΦT (P ) in probability as N →∞

with
lim
T↓0

ΦT (P ) = τu ∗c τu(P ) and lim
T→+∞

ΦT (P ) = τu ? τu(P ).

Besides, for all T, t > 0,
ΦT 6= τu ?t τu, (13)

while
ΦT ((XYX∗Y ∗)n) = νT (n) = τu ?T

4
τu((XYX∗Y ∗)n),∀n ∈ Z∗.

We prove in section 6 the above corollary together with a few other properties of
ΦT . Let us mention that the interpolation provided by Corollary 1.11 is not the only
possible interpolation, even if we exclude the t-free convolution; for instance another
interpolation was proposed in [43] using rank one Harish–Chandra–Itzykson–Zuber
integrals.

1.4 Strategy of proof via Makeenko–Migdal deformations
An important property formally inferred by integration by part from (3) in [42] and
rigorously proved in [36] based on the Driver–Sengupta formula, are a family of

13Though the class of potentials considered in [12] do not cover the heat kernel.
14meaning that the parameter of the potential responsible for the non-independence of A and B needs

to be small enough.
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equations almost characterising the function ΦΣ when Σ is the plane. Other proofs
have been given in [14, 22]. The proofs of [22] were much shorter and local, and it
was possible to adapt them to all compact surfaces [21]. See also [20] for a different
approach using the construction of the Yang–Mills measure using the white noise.

These equations can be described informally as follows. Consider a smooth loop
` with a transverse intersection at a point v. Assume that (`ε)ε is a deformation of
` in a neighborhood of v such that the areas of the four corners adjacent to v are
modified as in Figure 1. Then the Makeenko–Migdal equation at v for a master field

`ε
+ε

+ε

−ε−ε

Figure 1: Makeenko–Migdal deformation near an intersection point.

ΦΣ is given by
d

dε

∣∣∣∣
ε=0

ΦΣ(`ε) = ΦΣ(`1)ΦΣ(`2) (14)

where `1, `2 are two loops obtained by de-singularising ` at v as on figure 2.

`

`1 `2

Figure 2: De-singularisation at a simple intersection point.

The works [36, 17, 29] can be understood as a study of existence and uniqueness
of variants of the equation (14). Our strategy here is to extendthese results to all
compact surfaces of genus g ≥ 1.

A motivation of [36] for proving these relations was to compute explicitly the
planar master field by induction on the number of intersections and to characterise
it through differential equations. It was realised there that for the plane there
is no uniqueness for the Makeenko–Migdal equations alone, but there is if they
are completed by an additional family of equations15. In [17, 29], the authors are
interested in a perturbation of (14) arising from finite N analogs of (14) in view of
proving the convergence of Wilson loops. The same lack of uniqueness occurs but is
dealt with differently, adding in some sense boundary conditions, specifying the value
of the master field16 for simple loops. With this boundary condition, both [17, 29] are

15associated to each face adjacent to an infinite face.
16or the convergence of Wilson loops
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able to deduce the convergence of Wilson loops17 on the sphere by induction on the
number of intersection points. To complete the proof of Wilson loops convergence, it
is then necessary to prove the convergence for boundary conditions via other means:
this was done in [17] using a representation through a discrete18 β-ensemble.

In [29], the author applied the same argument on all compact surfaces with a
boundary condition given by simple loops within a disc and a uniquess or convergence
result for loops within a disc. See the introduction of [16] for a more detailed
discussion. In [16] we were able, using an independent argument, to prove the same
result but without any boundary condition and making a relation with the planar
master field.

Theorem 1.12. Let ` be a loop in a compact Riemann surface Σ of genus g ≥ 1
with area measure vol.

1. If ` is topologically trivial and included in a disc U such that vol(U) < vol(Σ),
then as N tends to infinity, under µYM,

W` → Φ̃(ψ ◦ `) in probability,

where Φ̃ denotes the master field in the planar disc ψ(U) where ψ : U →
ψ(U) ⊂ R2 is an area-preserving diffeomorphism.

2. If ` is simple and non-contractible, then for any n ∈ Z∗, as N tends to infinity,

W`n → 0 in probability.

3. If γ is a separating loop of Σ and ` does not intersect γ, then W` converges in
probability towards a constant.

A first remark is that evaluating the planar master field at lift of contractible
loops to the universal cover of Σ, as in the conjecture 1.3, gives a solution to
Makeenko–Migdal equations. Our main focus will therefore be to study unique-
ness of the Makeenko-Migdal equations or its deformation arising for finite N .

The general strategy of this article is to use Theorem 1.12 as boundary condition
to prove Proposition 1.5 and Theorem 1.6. For the torus, any non-trivial closed
geodesic is whether simple or the iteration of a simple closed loop, Proposition 1.5
together with Theorem 1.6 yield Theorem 1.2. For surfaces of genus g ≥ 2, the
result of [16] do not cover delayed geodesic loops and there are then loops whose
homotopy class does not include any simple loop, or any loop obtained by iterating
a simple loop [7] (moreover most geodesics have intersection points).

Let us now discuss how this strategy is implemented here. When applying the
argument of [17] or [29], it is difficult to prove a result better than Theorem 1.12,
which, given point 1. of Theorem 1.12, makes the use of Makeenko–Migdal equations
pointless. A first obstacle being for instance a loop like in figure 3, where it does
not seem possible to apply Makeenko–Migdal equations at any vertex to deform the
loop into a simpler loop.

17This argument is valid for loops with finitely many transverse intersections. An additional step
which is not considered in [29] is to extend it to loops with finite length.

18as suggested in [29], another route here could be to relate Wilson loops for simple loops on the sphere
to the Dyson Brownian bridge on the unit circle, which has been studied recently at another scale in
[38].
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`

T

Figure 3: In this example, it is impossible to change the area around any intersection point,
respecting the constraint of Makeenko–Migdal given in figure 1, without raising the number of
intersection points.

To improve on [29], a first step is to understand exactly in the case of surfaces
of genus g ≥ 1, what family of deformations are allowed to use Makeenko–Migdal
equations.Viewing the evaluation at a regular loop of the master field as a function
of faces area, we wonder along which deformation of loops, the derivative of the
master field is a linear combination of area derivatives such as the one involved in
the left-hand-side of (14). This was understood first in the plane by [36]. This is
achieved here for surfaces in section 2.2 with the following conclusion. When a loop
has non-zero homology, then any reasonable deformation is allowed. When a loop
has zero homology, then it is possible to define the winding number and algebraic
area of the loop and a deformation is allowed if and only if it preserves the algebraic
area.

This observation allows to consider the simpler case of loops with non-zero ho-
mology separately. In this case, it is possible to argue as follows by induction,
showing at each step that the derivative along a suitable deformation is bounded by
induction assumption. First, considering the lift of a loop with non-zero homology
to the universal cover, by induction on the number of intersections, it is possible to
reduce the problem to loops with non-zero homology such that each strand of the lift
going through a fundamental region has19 no intersection point. Then Proposition
1.5 can be proved by induction on the number of fundamental domains visited. A
key remark in this case is that at each intersection point, the two loops obtained by
de-singularisation have both non-zero homology and visit strictly less fundamental
domains. This programme is carried out in section 4.1.

A second step is to overcome the difficulty met in Figure 3. This loop has
vanishing homology. The cause of the obstruction becomes clearer thanks to the
first step: it is not possible to decrease the area of the central face as it is a strict
maximum of the winding number function. An idea is then to first pull and twist the
loop in a face that we want to "inflate" so that the algebraic area remains preserved,
as suggested on the following figure.

An apparent issue with this argument is that the number of intersections of
the loops involved in the different steps may raise. It is therefore not possible a
priori to apply, as in [36, 17, 29], an induction on the number of intersections to
prove uniqueness. This suggests to use another form of complexity for loops and the
introduction of marked loops, with a main part and a "perturbed part" allowing to
keep the algebraic area constant. Despite that the number of intersection points may
raise along the deformation, the loops get closer at each step to the loops belonging

19We shall call below these loops proper loops
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`

T

T/2

T/2

T

T

Figure 4: Discrete homotopy towards a loop included in a disc preserving the algebraic area.
Faces are labeled by their area. Faces without label have area 0.

to the boundary condition. Defining a convenient notion20 of "distance" to the loops
of the boundary condition is the purpose of section 2.4. We choose a minimal class
of loops obtained as "perturbation part" that we introduce in section 2.5 and call
nested loops.

However, for any choice of complexity, if we allow the number of intersection
points to grow, proving the vanishing of the the right-hand side of Makeenko–Migdal
equations is not possible by direct induction. This issue also appears in the above
example. When going from the second to the third step in Figure 4, it is necessary to
apply the Makeenko–Migdal equation at the new intersection point of the blue curve.
By area invariance, the right-hand-side of the equation (14) contains a function of
the area which is identical to the initial function. To prove uniqueness, we cannot
anymore apply directly an induction argument to bound this derivative. Nonetheless
this case can be handled as follows. Setting the complexity as the number of crossings
of the square defining the torus, all loops obtained by de-singularisation of all other
points will have a complexity strictly smaller than the initial one. To conclude an
induction step, it is then enough to apply Grönwall’s lemma along a parametrisation
of the second deformation. This idea is implemented and generalised in Lemma 4.5
and is a key step in our argument.

Using the Lemma 4.5, the main induction for all loops is then carried out in
Proposition 4.6, which concludes the main part of the proof for loops with finitely
many transverse intersections.

Lastly it remains to extend our convergence result to a wider family of loops.
As explained in section 6, to prove corollary 1.11, it is indeed needed to consider
all loops within a lattice. We then use a property of uniform continuity for loops
with finitely many transverse intersections. Besides, by a more general argument
introduced in [9, 17] that built on the construction of [35], it is possible to consider
all loops with finite length.21

20We believe there is a lot of flexibility here in the argument. We choose here a combinatorial approach.
It would be interesting to use instead a continuous functional on loops.

21This second step is not needed to consider projection of loops on a lattice.
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2 Homology and homotopy on embedded graphs

2.1 Four equivalence relations on paths and loops on maps
We recall briefly here standard notions and define some notations of topological
discretisation of a surface.

In this text,22 a map G of genus g is the data of three finite sets (V,E, F ) in
bijection with the 0, 1 and 2 cells of a finite CW complex ΣG which is isomorphic to
a connected, closed, compact surface of genus g. Such complex is sometimes called
surface complex, see [52] for instance. We define a map with boundary as the data
of a map (V,E, F ) together with a proper subset B of F such that the closure of 2
cells associated to any pair of distinct elements of B do not intersect. We identify E
with the set of edges of the graph with vertices V , where a pair v, w ∈ V is adjacent
whenever it forms the boundary of an element of E. We denote by Eo and Fo the
set of oriented edges and faces. For any oriented edge e ∈ Eo, we write e and e for
its endpoint and starting point, e−1 for the edge with reverse orientation. A path
in G is whether a single vertex or a finite string of edges e1 . . . en with n ≥ 1 such
that for all k ∈ {1, . . . , n− 2}, ek+1 = ek. We say it is constant in the first case and
set |γ| = 0, while in the second, we denote by γ = en and γ = e1 its starting point
and endpoint and by |γ| = n its length. A loop of G is a path γ with γ = γ. A
loop l is based at a vertex v when l = v. We say it is simple when all vertices of l
occur only once l but l which occurs exactly twice. We write respectively P(G) and
L(G) for the set of paths and loops of G. The respective sets of paths starting from
a vertex v ∈ V are denoted by Pv(G) and Lv(G). Whenever α and β are two paths
with α = β, αβ denotes their concatenation, while α−1 is the path run in reverse
direction, with the convention that γ1αγ2 = α when γ1 and γ2 are constant paths
at α and α. We say that β is a subpath of δ ∈ P(G) and write β ≺ δ, if there are
paths α and γ with δ = αβγ.

Homeomorphic loops: When two maps G,G′ yields homeomorphic CW com-
plexes, it induces a bijection between cells of same dimension. Denote by Φ : E → E′

the associated bijection between edges of G and G′ and the associated bijection be-
tween P(G) and P(G′). Consider two paths α and β within maps Gα and Gβ . We
say that α and β are homeomorphic and write

α ∼Σ β

if there are maps G and G′ finer than respectively Gα and Gβ such that G and G′
have homeomorphic, with induced bijection Φ : P(G)→ P(G′) such that

Φ(α) = β.

Cyclically equivalent loops: We say that two loops are cyclically equivalent when
one can be obtained from the other by cyclically permuting its edges. By convention,
two constant loops are cyclically equivalent if they have equal base-point. This
defines an equivalence relation ∼c on L(G). An element of the quotient Lc(G) =
L(G)/ ∼c is called an unrooted loop.

Reduced loops: A path γ′ is obtained by insertion of an edge in a path γ, if
γ = γ1γ2 and γ′ = γ1ee

−1γ2 with γ1, γ2 two subpaths of γ and e an edge, satisfying
22We shall not consider here non-orientable surfaces.
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γ1 = e = γ2. Vice-versa, we say in this situation that γ is obtained by erasing of
an edge of γ′. Two paths are said to have the same reduction if a finite sequence
of erasures and insertions of edges transforms one into the other. This defines an
equivalence relation ∼r on P(G) and we write RP(G) = P(G)/ ∼r, RPv(G) =
P(G)/ ∼r and RLv(G) = Lv(G)/ ∼r for any v ∈ V . The reduction of a path
γ ∈ P(G) is the unique path of minimal length in its ∼r-equivalence class. We say
that two loops are ∼r,c-equivalent if one can be obtained from the other by iterated
cyclic permutations, insertions and erasures of edges.

Lassos and discrete homotopy: For any face f ∈ Fo, its boundary can be identi-
fied with an unrooted loop ∂f. When r ∈ V is a vertex of ∂f, we write ∂rf for the
loop in the ∼c-class of ∂f with ∂rf = r. When F∗ is a subset of F, a F∗-lasso is a
loop of the form α∂rfα

−1, where f is an oriented face belonging up to orientation
to F∗ and α ∈ P(G) is a path such that r = α is a vertex of ∂f. When γ ∈ P(G), γ′
is obtained by lasso insertion from γ if γ = γ1γ2 for some paths γ1, γ2 ∈ P(G) and
γ′ = γ1lγ2, where l is a lasso with γ1 = l = γ

2
. Conversely, γ′ is said to be obtained

from γ by lasso erasure. We say that two paths are discrete homotopic if there is
a finite sequence of lassos or edge erasures and insertions transforming one into the
other. This defines an equivalence relation ∼h on P(G) which is also well defined on
RP(G). Moreover, two paths of G are discrete homotopic if and only if their image
in ΣG are homotopic with fixed endpoints. For any v ∈ V, we denote the quotient
Pv(G)/ ∼h and Lv(G)/ ∼h by Ṽv and π1,v(G).When F∗ ⊂ F, we say that two paths
of G are F∗-homotopic if there is a finite sequence of F∗-lassos or edge erasures and
insertions transforming one into the other. This defines an equivalence relation on
P(G) denoted by ∼F∗ . When K is a closed, compact, contractible subset of ΣG
given by the closure of the union of images of F∗, for any pair of paths γ1, γ2 ∈ P(G)
whose image in ΣG is included in K and with same endpoints, γ1 ∼F∗ γ2.

The group of reduced loops and the fundamental group: For any vertex v ∈ V , we
define a group by endowing RLv(G) with the multiplication given by concatenation
and the inverse map given by reversing the orientation of loops. The group π1,v(G)
is the quotient of RLv(G) by the normal subgroup generated by lassos based at v.
Since two loops of G are discrete homotopic if and only if their image in ΣG are
homotopic, the group π1,v(G) is isomorphic to the fundamental group of the surface
ΣG. For any group G, let us write [a, b] = aba−1b−1, ∀a, b ∈ G. Then π1,v(G) is
isomorphic to the surface group

Γg = 〈x1, y1, . . . , xg, yg|[x1, y1] . . . [xg, yg]〉.

Lemma 2.1 ([35]). For any map G, the following assertions hold:

1. The group RLv(G) is free of rank #E −#V + 1 = #F + 2g − 1.

2. Assume that g ≥ 0 and #F = r. For any v ∈ V, there are lassos (li, 1 ≤ i ≤ r)
based at v, with faces in bijection with F , and loops a1, b1, . . . , ag, bg ∈ Lv(G)
such that the application

Γr,g = 〈z1, . . . , zr, x1, y1, . . . , xg, yg|z1 . . . zr = [x1, y1] . . . [xg, yg]〉 → RLv(G)

that sends zi on li for all 1 ≤ i ≤ r, xm (resp. ym) on am (resp. bm) for all
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1 ≤ m ≤ g is an isomorphism23. The diagram

1 → Γr,g → RLv(G) → 1
↓ ↓

1 → Γg → π1,v(G) → 1

is then commutative.

Dual map: WhenG = (V,E, F ) is a map of genus g with surface ΣG, (V
∗, E∗, F ∗) =

(F,E, V ) can also be endowed with a map structure G∗ such that ΣG∗ = ΣG while
two faces of G are adjacent in (V ∗, E∗) if and only if they share an edge.

Refining maps: When G′ = (V ′, E′, F ′) and G = (V,E, F ) are two maps, G′
is finer than G if (V,E) is a subgraph of (V ′, E′) and ΣG′ = ΣG, so that we can
identify V and E with subsets of respectively V ′ and P(G), while any face of G is
the union of faces of G′.

Cutting and gluing maps: When G = (V,E, F ) is a maps and l is a simple loop of
G, with dual edges E∗l , we say that l is separating if the graph (F,E∗\E∗l ) has exactly
two connected components (F1, E

∗
1 ) and (F2, E

∗
2 ). Let us denote by E1, E2 the edges

of G dual to E1 and E2 and by V1, V2 the vertices of G belonging the boundary of E1

and E2. Giving the new 2-cell the label f∞,1 and setting G1 = (V1, E1, F1t{f1,∞}).
We define likewise f2,∞ and a map G2 = (V2, E2, F2 t{f2,∞}). We say that the pair
of maps with boundary (G1, {f1,∞}), (G2, {f2,∞}) is the cut of G along l. We say
that the cut is essential if l is not contractible. A cut is essential if and only if the
maps G1 and G2 have genus larger or equal to 1.

2.2 Discrete homology, winding function andMakeenko–Migdal
vectors
We recall here an elementary definition of discrete homology and discuss its relation
to Makeenko–Migdal vectors introduced in [36, 17, 29].

Discrete homology: Consider a map G = (V,E, F ) without double edges, with
vertices V and oriented edges E and denote here by R the ring Z or R. For any
oriented edge e ∈ Eo, we denote by e−1 ∈ Eo its reverse, e ∈ V its source and e ∈ V
its target. Consider the R-module

Ω1(G, R) = {ω : Eo → R : ω(e−1) = −ω(e)}

of discrete one-forms. When e ∈ Eo, we write ωe ∈ Ω1(G, R) for the one-form such
that ωe(e) = 1, ωe(e

−1) = −1 and ωe(e′) = 0 for e′ 6∈ {e, e−1}.When l = (e1, . . . , en)
is a loop of G, we set

ωl =

n∑
i=1

ωei .

The discrete exterior derivative is defined by

d : Ω0(G, R) = RV → Ω1(G, R), f 7→ df : e 7→ f(e)− f(e). (15)

23denoting here abusively the ∼r class of a loop by the same symbol as the loop.
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Let
d∗ : Ω1(G, R)→ Ω0(G, R)

be the adjoint of d for the non-degenerate bilinear form on Ω0(G, R) and the one on
Ω1(G, R) defined by24

〈f, g〉 =
∑
v∈V

f(v)g(v) and 〈ω, ν〉 =
1

2

∑
e∈E

ω(e)ν(e),

for all f, g ∈ Ω0(G, R) and ω, ν ∈ Ω1(G, R). Denoting by ♦1 the module spanned
by the one-forms ωl where l is a loop of G and by F1 the image of d, we have that
♦1 ⊂ ker(d∗) and the orthogonal of ♦1 is included in F1, hence ♦1 = ker(d∗) and
the orthogonal decomposition

Ω1(G, R) = F1 ⊕♦1

into exact and co-closed one forms.
Let us define now the space of 2-forms Ω2(G, R) as the space of functions ϕ on

Fo with
ϕ(f ′) = −ϕ(f)

whenever f ′ and f are the same 2-cell with two different orientations. Set

∂ : Ω2(G, R)→ Ω1(G, R), ϕ 7→ 1

2

∑
f∈F

ϕ(f)ω∂f .

Endowing Ω2(G, R) with the non-degenerate bilinear form

〈ϕ,ψ〉 =
1

2

∑
f∈F

ϕ(f)ψ(f),

the adjoint of ∂ is given by

d : Ω1(G)→ Ω2(G), ω 7→

(
f 7→ 1

2

∑
e∈E

ω∂f (e)ω(e) = 〈ω∂f , ω〉

)
.

By construction

F∗1 := d∗(Ω2(G, R)) ⊂ ♦1 and F1 ⊂ ♦∗1 := ker(d : Ω1 → Ω2)

so that so that d ◦ d = 0, d∗ ◦ d∗ = 0 and

Ω2(G, R)
d∗→ Ω1(G, R)

d∗→ Ω0(G, R)

is a chain complex. The vector space

H1 = (F∗1)⊥ ∩ ♦1 = ker(d : Ω1 → Ω2) ∩ ker(d∗ : Ω1 → Ω0)

is isomorphic to the first homology group

H1(d∗, R) = ker(d∗ : Ω1 → Ω0)/d∗(Ω2).

24mind that fixing an orientation of edges, second expression is a sum in R
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Changing ring the two constructions are compatible with

H1(d∗,R) = R⊗Z H1(d∗,Z).

For any n ≥ 2, we set
H1(d∗,Zn) = Zn ⊗Z H1(d∗,Z).

Definition 2.1. When l is a loop of G, its R-homology [l]R is the image of the
element ωl inH1(d∗, R). For any n ≥ 2, its Zn-homology [l]Zn

is the element 1⊗[l]Z ∈
H1(d∗,Zn).

Lemma 2.2. Assume that G is embedded in an orientable surface of genus g.

1. H1(d∗, R) is free of rank 2g and there are 2g simple loops a1, b1, a2, b2, . . . , ag, bg
of G such that [a1]R, [b1]R, . . . , [ag]R, [bg]R is a free basis of H1(d∗, R).

2. When g ≥ 1 and v ∈ V, (li, 1 ≤ i ≤ r) and a1, b1, . . . , ag, bg ∈ Lv(G) are as in
Lemma 2.1, the map

Γg = 〈x1, y1, . . . , xg, yg|[x1, y1] . . . [xg, yg]〉 → H1(d∗,Z)

xm 7→ [am]Z, ym 7→ [bm]Z,∀1 ≤ m ≤ g

is a well defined onto morphism, with kernel given by the commutator group
[Γg,Γg].

3. Denoting by H̃ the R-span of ωa1
, . . . , ωbg

,

H̃ ⊕F∗1 = Ω1(G,R).

For any loop l of G, there is therefore a unique pair (nl, h̃) with nl ∈ Ω2(G, R)/Rµ∗
and h̃ ∈ H̃ such that

ωl = d∗nl + h̃l.

We call the two-form nl the H̃-winding function of l. When [l]R = 0, it does not
depend on H̃ and we call it simply the winding function of l. When furthermore
R = R, we shall identify nl with an element of {µ∗}⊥.

Makeenko–Migdal vectors for a regular loop: Let us first define a notion of loops
with transverse simple intersections.

Consider a loop of a topological map G = (V,E, F ) which uses each non-oriented
edge at most once and each vertex at most twice. We denote then by El the subset
of edges e ∈ E such that l runs through e or e−1.

Whenever a vertex v is visited twice, the four outgoing edges at v visited by l
can be ordered e1, e2, e3, e4 respecting the counterclockwise, cyclic ordering of the
orientation of the map, so that l is cyclically equivalent to a tame loop of the form
αe−1

1 e3βe
−1
2 e4γ, αe−1

1 e4βe
−1
3 e2γ, αe−1

1 e−1
4 βe−1

2 e3γ or αe−1
1 e4βe

−1
2 e3γ, these four

cases being exclusive. See Figure 6. We say that l is a tame loop if only the first
case occurs. The set Vl of vertices visited twice by l are then called the (transverse)
intersection points of l.

The Makeenko–Migdal vector at an intersection v ∈ Vl of a tame loop is then
the 2-form

µv = d(ωe1) + d(ωe3) = −d(ωe2)− d(ωe4). (16)

The vector space ml of Makeenko–Migdal vectors is the linear span of Makeenko–
Migdal vectors µv, v ∈ Vl and of the 2-forms dωe with e 6∈ El.
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Figure 5: A representant of the winding number function with c ∈ R, for a loop ` of null
homology, on a map of genus 2. The loop is drawn in green and the value on each positively
oriented face is displayed on each 2-cell.
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Figure 6: The four types of intersections at a vertex visited twice.

Lemma 2.3. Let l be a tame loop of a map G. Then

ml =

 {α ∈ Ω2(G,R) : 〈α, µ∗〉 = 0} if [l] 6= 0,

{α ∈ Ω2(G,R) : 〈α, µ∗〉 = 〈α, nl〉 = 0} if [l] = 0.

Proof. Let us first remark that the above construction is invariant by the following
appropriate subdivisions. Let us call subdivision of an oriented face f∗, the operation
of adding two new vertices on its boundary and adding an edge e connecting them;
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e1 e2

e3e4

Figure 7: A tame loop in a graph with one vertex and 2 faces. The value of µv is displayed on
each face in blue.

the new map G′ has 2 new vertices, 1 more edge and 1 more face, with in place of f∗,
two faces f1 and f2 with the same orientation induced from f∗, while any other face
is identified with a face of G. The map G′ being finer than G, l can be identified with
a tame loop G′ that we denote by the same letter. Denote respectively by m′l, µ

′
∗ and,

when [`] = 0, n′l, the space of Makeenko–Migdal vectors, the constant 2-form and the
winding function of l on G′. Consider the map P : Ω2(G′)→ Ω2(G) with P (ϕ)(f) =
ϕ(f ′) whenever a face f of G is identified with a face of G′ and ϕ(f1) +ϕ(f2) when
f = f∗. On the one hand, P (dωe) = 0 and P maps all other vectors of the defining
generating family of m′l to the generating family of ml. Therefore, P (m′l) = ml. As
P : {dωe}⊥ → Ω2(G) is an isometry, while dωe ∈ m′l ∩ ker(P ), P (m′l

⊥
) = m⊥l . On

the other hand, P (µ′∗) = µ∗ and when [l] = 0, P (n′l) = nl. We conclude that it is
enough to prove the claim for any subdivision of G.

Therefore, we can w.l.o.g. assume that l and the paths a1, b1, . . . , ag, bg of Lemma
2.2 do not share any edge in common. Under this assumption, let us set S =
{l, a1, b1, . . . , ag, bg}, denote by H̃ as in Lemma 2.2 and by T(S ) the set of oriented
edges e such that an element of S runs through e or e−1. Let η be the permutation
of the edges E such that η(e−1) = η(e)−1 for any edge e ∈ E, with 2+4g non-trivial
cycles associated to elements of S forgetting the base point. More precisely, for
each γ ∈ {l, a1, b1, . . . , ag, bg} with γ = e1 . . . en, (e1, . . . , en) and (e−1

1 , . . . , e−1
n ) are

cycles of η, whereas η(e) = e for any e 6∈ T(S ). For any ω ∈ Ω1(G), setting

η.ω = ω ◦ η−1

defines a one-form. We claim that for any oriented edge e ∈ T(S ),

αe = dωe − d(η.ωe) ∈ ml.

Indeed, it is non zero only when γ ∈ S runs through e or e−1, in which case, it
follows from (16) that αe is a Makeenko–Migdal vector at respectively e or e.

Let us now consider β ∈ m⊥l ∩ {µ∗}⊥. Then

〈β, αe〉 = 〈β, (d− d ◦ η)ωe〉 = 0,∀e ∈ T(S ), whereas 〈β, dωe〉 = 0,∀e 6∈ T(S ),

so that

d∗β = (d ◦ η)∗(β) = η−1 ◦ d∗β and 〈d∗β, ωe〉 = 0,∀e 6∈ T(S ).

It follows that

d∗β = cωl +

g∑
i=1

(aiωai
+ biωbi

), for some c, a1, b1, . . . , ag, bg ∈ R.
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Using the decomposition ♦1 = F∗1 ⊕ H̃, we find

d∗β = cd∗nl and ch̃l +

g∑
i=1

(aiωai
+ biωbi

) = 0.

Since β ∈ m̂⊥l , for any edge e such that e, e−1 do not belong to l, 〈d∗β, ωe〉 = 0.
In particular, ai = bi = 0 for all i and d∗β = cωl. Since β ∈ µ⊥∗ , it follows that
whether [l] = 0 and β = cnl or c = 0 and β = 0. We conclude that whether [l] = 0
and m⊥l ∩ {µ∗}⊥ = R.nl, or [l] 6= 0 and m⊥l ∩ {µ∗}⊥ = {0}.

2.3 Regular polygon tilings of the fundamental cover, tiling-
length of a tame loop and geodesic loops
To simplify the presentation, we shall work only with surfaces of genus g obtained
by a standard quotient of 4g polygons. We fix here notations and definitions relative
to the universal cover of such maps. We refer to [7] for more details.

Regular maps and regular loops: A 2g-bouquet map is a map (V,E, F ) with 1
vertex v, 1 face and 2g edges, so that for f ∈ Fo, there are 2g oriented edges
a1, b1, . . . , ag, bg ∈ Eo corresponding to distinct edges, with ∂vf = [a1, b1] . . . [ag, bg].
A 2g-bouquet map can be obtained by labelling the edges of a 4g-polygon counter-
clockwise and gluing the i+ 4k-th edge with the i+ 2 + 4k edge for all 0 ≤ k ≤ g− 1
i ∈ {1, 2}. A regular map is a pair given by a map G = (V,E, F ) and a 2g-bouquet
map Gg, such that G is finer than Gg. Each edge of Gg is uniquely decomposed as a
concatenation of edges of G. Let ∂E ⊂ E be the set of non-oriented edges appearing
in these concatenations. We then set ∂V the set of endpoints of edges of ∂E and
o

V = V \ ∂V. When (G,Gg) is a regular map, we refine the notion of tame loops
defined in the previous section as follows. A loop l ∈ L(G) is regular whenever it is

tame, none of its edges belong to ∂E and l ∈
o

V . In particular its intersection points

satisfy Vl ⊂
o

V .

Universal cover of a regular map and its tiling: Let (G,Gg) be a regular map with
G = (V,E, F ). When g = 1, consider the closed square P1 with vertices coordinates
in {− 1

2 ,
1
2} and the tiling of R2 by translation of P1 by Z2. When g ≥ 2, consider a

tiling of the Poincaré hyperbolic disc H by a family of closed regular 4g-polygons of
H whose sides do not intersect 0 and denote by P1 the polygon among them enclosing
0. The group Γg can be identified with Z2 when g = 1 and with a subgroup of Möbius
transformations that acts properly by isometry on H when g ≥ 2. The group Γg
acts freely on the set of tiles and for each h ∈ Γg, there is a unique tile Ph with g.0
belonging to the interior of Ph. Let us define Σ̃G as R2 when g = 1 and H when g ≥ 2.
The quotient of Σ̃G by Γg is homeomorphic to ΣG and we denote by p : Σ̃G → ΣG
the quotient mapping. There is a unique CW approximation of Σ̃G such that the
restriction of p to the interior of each cell in Σ̃G is an homeomorphism onto the
interior of a cell of ΣG labeled by an element of V,E or F . We denote a labelling of
the cells of this CW complex by G̃ = (Ṽ , Ẽ, F̃ ) and call G̃ a universal cover of G.
There is a natural map from Ṽ , Ẽ, F̃ to respectively V,E and F that we also denote
by p. As for maps, the pair (Ṽ , Ẽ) can be identified with a graph, and we denote by
P(G̃) its set of paths. For each path γ = e1 . . . en ∈ P(G) and ṽ ∈ p−1(v0), the lift
of γ from ṽ is the unique path γ̃ = (ẽ1, . . . , ẽn) ∈ P(G) with ṽ0 = ṽ and p(ẽk) = ek
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for all 1 ≤ k ≤ n. For all h ∈ Γg, we denote by Dh ⊂ Ṽ , D∗h ⊂ F̃ and
o

Dh ⊂ Ṽ

the subsets of vertices and faces of G, whose image in Σ̃G is included respectively in

Ph and its interior
o

Ph. The projection
o

D of
o

Dh does not depend on h ∈ Γ. When
U ⊂ F̃ and Ec ⊂ Ẽ, we denote by U \Ec the subgraph of the graph of G̃∗ where all
faces from F̃ \U and all edges dual to Ec are removed. Let us consider the oriented
graph with vertices Γg such that there is an edge between a and b if and only if
Pa and Pb share a side. The action of Γg on H induces a free, transitive, isometric
action on this graph and we denote by |h|Γg the distance between any h ∈ Γg and
1.

For any path γ ∈ P(G) with lift γ̃,

|γ|D = |γ| −# {0 ≤ i ≤ |γ| − 1 : ∃h ∈ Γg with {γ̃i, γ̃i+1} ⊂ Dh}

does not depend on the choice of starting point of γ̃, and we call it tiling length of
γ. The tile decomposition of l are the paths γ0, . . . , γ|l|D of G, with lifts γ̃0, . . . , γ̃|l|D ,

such that we can decompose l̃ as

l̃ = γ̃0 . . . γ̃|l|D (17)

where for all 0 ≤ k ≤ |l|D, there are h0, h1, . . . , h|l||D| ∈ Γg such that all vertices of
γ̃k belong to Dhk

, while lΓ = (h0, . . . , h|l|D ) is a path in Γg. We call lD = γ|l|Dγ0

the initial strand of l. We call lΓ the tiling path of l and set

|l|Γ = |h|l|D |Γ.

A loop l1 of (G,Gg) is called an inner loop of l if l1 is regular, included in
o

D and
l1 ≺ l. We then say that l1 is a contractible intersection point of l and denote by Vc,l
the set of such points. A proper loop is a regular loop l with #Vc,l = 0.

A path γ ∈ P(G) is said to be geodesic when the image in Σ̃G of its lift γ̃ ∈ P(G̃)
is the restriction of a line (resp. a circle orthogonal to the unit disc), when g = 1
(resp. g ≥ 2). A path in Γg is geodesic if it is the tiling path of a geodesic path of a
regular map.

2.4 Shortening homotopy sequence
We define here operations on regular loops allowing to decrease their tiling length.

We say that a sequence l1, . . . , ln is a shortening homotopy sequence from l1 to
ln if l1, . . . , ln are regular loops such that |l1|D ≥ . . . ≥ |ln|D and for all 1 ≤ l < n,

#Vc,l = #Vc,l+1 = 0 or #Vc,l > #Vc,l+1,

while there is a regular map (V,E, F ) with ll, ll+1 ∈ P(G) and a subset of faces
Kl ⊂
6=
F , with

ll ∼Kl
ll+1.

The aim of this section is to prove the following.

Proposition 2.4. For any proper loop l, there is a shortening homotopy sequence
l1, . . . , lm, a geodesic loop l′ and a path η within the same map G = (V,E, F ) as lm,
such that lm ∼K ηl′η−1 for some K ⊂ F with K 6= F. The path η can be chosen
simple, within a fundamental domain and crossing lm and l′ only at their endpoints.
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We need two additional notions for this proof.

Bulk of a loop: Consider a regular map (G,Gg) with G = (V,E, F ), and a
contractible loop l of G whose lift is a loop l̃ of G̃. Let Ec be the set of edges
used by l̃ and let Ol be the unbounded component of G̃∗ \Ec. The bulk of l is then
Kl = p(F̃ \ Ol). Since El is connected, the image of Ol in Σ̃G is a surface with one
boundary and the image X̃l of F̃ \Ol in Σ̃G is a contractible set. The image of l is
then contractible within Xl = p(X̃l) and

l ∼Kl
l∗

where l∗ is the constant loop at l.

Adding a rim to a regular map: When (G,Gg) is a regular map, let us define a
map Gr finer than G in the following way. First add exactly one vertex to each edge
of E \ ∂E with one endpoint in ∂V and exactly two when both endpoints belong to
∂V . Each new vertex is paired uniquely with a vertex of ∂V and their set inherit the
cyclic order of vertices of ∂V. Second add an edge for each consecutive new vertices.
We denote by Gr the new map defined thereby and call the set ∂rE of edges added
in the second step the rim of G. Each face of the new map, whose boundary has an
edge in ∂E has exactly four adjacent edges with exactly one in ∂Er. We denote this
set of faces by Fr,o. We denote all other faces of Gr by Fi. For any f ∈ F, whether
its boundary has no edge in ∂E and it is identified to a face of Fi, or it is the union
of faces of Gr with exactly one in Fi, that we abusively also denote by f . For any
oriented edge e of Gr belonging to ∂E, its right retract is the oriented edge of ∂Er
belonging to the face of Fr,o on the right of e. When γ is a path with edges in ∂E,
its right retraction is the concatenation of the right retraction of its edges. The left
retraction is defined likewise.

We can now prove the existence of shortening homotopy sequence starting from
any regular loop, using a 5 type of operations.

Step 1–Deleting contraction points: Consider a regular loop l with #Vc,l > 0 of
a regular map with faces set F . Any lift α̃ of an inner loop α ≺ l is a loop and we
can consider its bulk. Denote by K the union of bulks for all inner loops. Any face
bordering ∂E does not belong to K so that K & F while l is ∼K-equivalent to the
regular loop l′ with all inner loops erased.

Step 2–Backtrack erasure: Assume that l is a regular loop of a regular map
(G,Gg) such that there is 1 < i < |l|D with hi−1 = hi+1, where (h1, . . . , h|l|D ) is
the tiling path of l. Consider the decomposition of l̃ as in (17). Let G′ be the map
(G,Gg) with a rim added. Denote by ei and eo the last and first edge of γi−1 and
γi+1. Then ei and eo belong the same edge e of Gg. Let β′ ∈ P(G′) be the reduced
path using only edges of the rim with β′ = ei and β

′
= eo. Denote by γ′i−1 and γ′i+1

the reduction of γi−1e
−1
i and e−1

o γi+1. The backtrack erasure for the backtracking
(hi−1, hi, hi+1) of l is the regular loop

l′ = γ1 . . . γi−2γ
′
i−1β

′γ′i+1γi+2 . . . γ|l|D .

It can be obtained from l by the following discrete homotopy. Since a lift of the
paths β′ and eiγieo starting in Dhi−1 both ends in Dhi , the loop of eiγieoβ′

−1 is
contractible. Denote by Kbt its bulk. Then

l ∼Fbt
l′.
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Since γi only intersect the rim of G′ through the edge e, any face belonging to the
rim whose boundary intersects two different edges of Gb is not in Kbt. It follows that
Kbt 6= F ′.

Step 3-Vertex switch: Let l be a regular loop of a regular map (G,Gg) and
consider its decomposition as in (17). A half turn of l is a sequence γl, . . . , γl+k
such that 2g ≤ k ≤ 4g− 1, and Dhl

, Dhl+1
, . . . , Dhl+k

runs around a common vertex
v ∈ Gg. Consider such a long turn and let G′ = (V ′, E′, F ′) be the map obtained
from G by adding twice a rim as described in the last paragraph. See Figure 8 for
an example. Let ei and eo be respectively the last and the first edge of γl and γl+k
in G′. Besides, let βp ∈ P(G′∗) be the shortest reduced path from a face adjacent of
ei to a face adjacent of eo that crosses first ei and uses only faces of Fr,o so that its
lift starting from D∗hl

goes through D∗hl
∪D∗hl+k

and ends in D∗hl+k
. Let β′ ∈ P(G′)

be the reduced path from ei to eo, such that each edge of β′ is bordering a face of
βp. Denote by γ′l and γ

′
k+l the reduction of γle−1

i and e−1
o γk+l. The vertex switch

of l for the considered half turn is the regular loop

l′ = γ0γ1 . . . γl−1γ
′
lβ
′γ′k+lγk+l+1 . . . γ|l|D .

It can be obtained from l by the following discrete homotopy. Consider the loop
eiγl+1 . . . γl+k−1eoβ

′−1
. Since a lift of β′ starting in Dhl

ends in Dhl+k
it follows

that eiγl+1 . . . γl+k−1eoβ
′−1 is contractible. Denote by Ksw its bulk.

Then,
eiγl+1 . . . γl+k−1eo ∼Ksw

β′

and
l ∼Ksw

γ0 . . . γl−1γ
′
leiγl+1 . . . γl+k−1eoγk+l+1 . . . γ|l|D ∼Ksw

l′.

Besides, Fsw 6= F ′. Indeed, consider the map G1 obtained by adding a single rim
to G, so that G′ is finer than G1. Let Fcr, F̃cr be the set of of faces of G1 neighbouring
respectively p(v) and v. The restriction of p to F̃cr is a homeomorphism onto Fcr.
Since k < 4g, there is at least one face f̃cr of F̃cr that does not belong to p−1(Fsw).
Since β uses only faces of F ′r,o, any face of F ′ \ Fr,o included in fcr = p(f̃cr) does
not belong to Ksw.

The following lemma reformulates a result due to [7] relating |l|D to long turns
of l when g ≥ 2.

Lemma 2.5. Let l be a regular loop of a regular map (G,Gb). There is a finite se-
quence l1, . . . , ln or regular loops obtained by vertex switches or backtracking erasures
such that l1 = l, |l1|D ≥ |l2|D . . . ≥ |ln|D and

|ln|D = |l|Γg
.

Proof. The case g = 1 is elementary. An argument goes as follows. The path in
Γ1 = Z2 associated to l can be assumed up to axial symmetries that hl has non-
negative coordinates. A backtracking of lΓ can be erased by a backtracking erasure of
l. A path is geodesic if and only if all of its increments coordinates are non-negative.
There are two consecutive increments with a negative followed by a positive sign.
This pair corresponds to a backtrack or a half turn of l if one or two coordinates
change. Applying to a backtrack erasure or a switch at the half turn, the new loop
has one less pair of increments with coordinates changing sign.
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β

α

l̃

eo

ei

l̃′

Figure 8: Discrete homotopy at a left turn of l when g = 2 and k = 7. The latter vertex is shown
as a green dot, contracted faces are shown in green. The second rim is displayed with dotted
lines. A lift l̃ of the initial loop in displayed in plain orange line, while a lift l̃′ of the terminal
loop is displayed in dashed red line.

When g ≥ 2, the result follows from [7, Lemma 2.5]. In the setting of [7], a half
turn of l is a half cycle of the path in Γg associated to l. A switch at a half turn
corresponds to a replacement of a half cycle with its complementary. Moreover in
the setting of [7], replacing a long chain by its complementary chain can be obtained
by successively replacing a long cycle by its complementary cycle.

Step 4–From minimal tiling length to geodesic tiling paths: We say that a regular
path γ of a regular map has minimal tiling length when |γ|D = |γ|Γ. When g ≥ 2,
the following is a consequence of [7, Thm 2.8].

Lemma 2.6. If l is a regular loop of a regular map, there is a sequence of regular
loops l1, . . . , ln with minimal tiling length equal to |l1|Γ obtained by switches, such
that l1 = l while the tiling path of ln is geodesic.

Proof. When g ≥ 2, in the setting of [7], our condition for a tiling path to be geodesic
is equivalent for it to be a shortest path. Since switches at half turn imply switches
for half cycles of the tiliing path in the setting of [7], the result follows from point
(c) of [7, Thm 2.8].

When g ≥ 1, for any regular loop with minimal tiling length, we can assume
w.l.o.g. that both coordinates of the endpoint (a, b) of lΓ are non-negative. When
γ is a path of Z2 with only positive coordinates, a corner swap of γ is the path
obtained by replacing a sequence of the form (x, y), (x + 1, y), (x + 1, y + 1) with
(x, y), (x, y+1), (x+1, y+1) or vice-versa. Any other path of Z2 with same endpoints
can be obtained by corner swaps. Since a switch at a half turn of l implies a corner
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swap of its tiling path and that tiling paths with positive coordinates have minimal
length in Z2, the claim follows.

Step 5–From geodesic tiling paths to geodesic paths: Assume that l is a regular
loop such that lΓ is geodesic and set n = |l|D = |l|Γ. Let l(∗) be a geodesic loop with
l
(∗)
Γ = lΓ. Up to translation of the geodesic associated to l(∗), we can assume that
l(0) and l(∗) are regular paths of a same regular map (G(0),G(0)

g ). Let η ∈ P (G(0))

that does not cross the boundary of the polygon, while η = l and η = l(∗), without
using any edge of l(∗). Denote by (G,Gg) the regular map obtained by adding a
rim to (G(0),G(0)

g ). Using the same notation as in (17), consider the tile paths
decompositions of l and l(∗) adding an upper-script (∗) for the second decomposition.
For any 0 ≤ k ≤ n− 1, let ek and e(∗)

k be the last edges of respectively γk and γ(∗)
k ,

denote by βk the reduced path with edges in ∂Er from e
(∗)
k to ek and define l(k) as

the reduction of
ηγ

(∗)
0 . . . γ

(∗)
k e

(∗)
k

−1
βkekγk+1 . . . γn.

Let us set l(n) = ηl(∗)η−1 and l(−1) = l. Let αk be the reduction of the loop
η−1γ0e

−1
0 β−1

0 e
(∗)
0 γ

(∗)
0

−1
when k = 0, e

(∗)
k−1

−1
βk−1ek−1γkek

−1β−1
k γ

(∗)
k

−1
when 0 <

k < n and e(∗)
n−1

−1
βn−1ek−1γnηγ

(∗)
n

−1
when k = n. With this notation

l ∼r ηα0γ
∗
0α1γ

∗
1 . . . αkγ

(∗)
k e

(∗)
k

−1
βkekγk+1 . . . γn for 0 ≤ k < n

and
l ∼r ηα0γ

∗
0α1γ

∗
1 . . . αnγ

(∗)
n η−1.

Therefore, for all 0 ≤ k ≤ n

l(k−1) = αβ and l(k) = ααkβ (18)

for some paths α, β ∈ P(G). For all 0 ≤ k ≤ n, αk is contractible. Denoting by Kk

its associated bulk, (18) yields

l(k) ∼Kk
l(k−1) for all 0 ≤ k ≤ n.

Besides, since αk intersects at most two edges of Gg, any face within the rim f ∈ Fr,o,
which borders a different edge of Gg, does not belong to Kk. Therefore Kk 6= F.

Proof of Proposition 2.4. For any regular loop l, the claimed shortening homotopy
sequence can be obtained by applying first the deletion of contraction points, fol-
lowed by Lemma 2.5, 2.6 and lastly a shortening homotopy sequence from a loop
with geodesic tiling path to a loop conjugated to a geodesic loop.

The following lemma is not mandatory for our main argument and can be skipped
at first read. Let us note that it is also possible to do the vertex switch operation
(step 3) before deleting contraction points (Step 1) thanks to the following.

Lemma 2.7. Consider l is a regular loop within a regular map (G,Gg) with faces
set F . Denote respectively by K and Ein the union of bulks and the set of edges of
its initial strand lD. Then F \K is connected in G∗ \ (∂E ∪ Ein).
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Proof. Since l is regular, any edge crossing ∂E does not belong to Ein and faces
adjacent to ∂E belong to the same connected component X of F \K in G∗ \ (∂E ∪
Ein). Denote by X̃ the lift of X in D∗1 . Assume that F \ K is not connected in
G∗ \ (∂E ∪ Ein) and consider a connected component K ′ different from X. Then
all edges of ∂K ′ belong to Ein. Since the infinite connected component of G̃∗ \Ein
is given by F̃ \D∗ ∪X, the lift of K ′ in D∗1 is included in the bounded connected
component of G̃∗ \Ein, where we identified Ein with the set of edges of the lift of lD
starting from D1. It follows that K ′ is included in K, which is a contradiction.

2.5 Nested and marked loops
Nested loop: We say that a loop l with n transverse intersection points is nested if it is
regular and if there are sub-loops l1 ≺ l2 ≺ . . . ≺ ln such that |l1| < |l2| < . . . < |ln|.
By convention, a constant loop is a nested loop. A regular loop is nested if and
only if its transverse intersection points can be labeled v1, v2, . . . , vn so that it visits
them in the order (v1v2 . . . vn−1vnvnvn−1 . . . v2v1). See figure 9.

Figure 9: Left, a nested loop. Right, this is not a nested loop.

Remark. A nested loop is an example of a splittable loop as defined in [17, Section
6.5], originally introduced in [30] and called therein planar loops. Note that the
right example in figure 9 is splittable but not nested.

Marked loops: A marked loop is a couple (l, γnest) of a regular loop and a regular
path within a regular map such that

1. the first path γ1 of the tiling decomposition of l can be written γ1 = γnestγ
′,

for some path γ′.

2. when γnest is non-constant, it is of the form αlnestβ where lnest is a nested
loop and α, β are simple paths, such that the only intersection between α, β
and lnest are at α and β.

3. The path γnest does not intersect transversally the two components of the
initial strand lD, that is VlD ⊂ Vβα ∪ Vlnest

.

4. The path γnest does not intersect any inner loop of αβ.

We call the loop (l, γnest)
∧ = γ0αβγ1 and the path (l, γnest)

∧∗ = γ1γ0 the pruning
and the cut of (l, γnest). We shall often denote them abusively simply by l∧ and l∧∗ .
We say that (l, γnest) is non-overlapping if γnest does not intersect the path l∧∗ but
at its endpoints. For any marked loop (l, γnest), because of point 1., the loop lnest
is contractible and we denote by Fnest ⊂ F the associated bulk. A face of F \ Fnest
neighbouring Fnest is an outer face. When lnest is not constant, we call the simple
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sub-loop of l with length 1 the central loop of (l, γnest). Being a sub-loop of lnest, it
is contractible, faces belonging to its bulk are called central. A moving edge is an
edge e of l with the following property:

• When lnest is constant, e is any edge of γnest.

• Otherwise, e bounds a central face of lnest.

When γnest is constant, we say that γ
nest

is a moving vertex.

Figure 10: A marked loop. Its nested part is drawn in blue. There are exactly one central
face coloured in blue and one outer face filled with dashed green lines.

The following is then a simple variation of Proposition 2.4.

Lemma 2.8. For any marked loop (l, γnest) with l∧ proper, there is a shortening
homotopy sequence l1, . . . , lm such that

1. l1 ∼c l,
2. For all 1 ≤ k ≤ m, there is a nested sub-path γnest,k of lk, such that (lk, γnest,k)

is a marked loop and l∧k is proper for k ≥ 2.

3. There are proper faces subsets K1, . . . ,Km, such that l∧k ∼Kk
l∧k+1 for all 1 ≤

k < m.

4. There is a marked loop (l′, γ′nest) such that lm ∼Σ l′ and l′
∧ is geodesic.

2.6 Pull and twist moves
We introduce here two operations on loops in order to later modify shortening ho-
motopy sequences to satisfy the constraint imposed by Makeenko–Migdal equations,
namely to keep constant the algebraic area of loops introduced in section 2.2. This
type of operation shall be required only when considering loops with vanishing ho-
mology.

Pull move: Consider a non-constant marked loop (l, γnest) in a regular map
(G,Gg) with l∧ proper and a simple path γ∗ = (f1, . . . , fm) in the dual G∗ that
does not cross ∂E, such that the first edge of γ∗ crosses a moving edge e. Let us
define inductively a new map G′ finer than G, a new marked loop (l′, γ′nest), as well
as a subset Fstem of faces of G′. An example of the result in displayed in Figure 11.
Let us first set Fstem = ∅. Let k be the largest k < m such that (fk, fk+1) crosses
an edge of lD, setting k = 1 when γ∗ does not cross any edge of γ1.

1. Add first two new vertices to all edges crossed by α. Denote e = e0e1e2 the
edge decomposition of e in the new map.
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2. Cut all faces of α but α into three faces adding two non-crossing edges such
that endpoints of a new edge do not belong to the same initial edge. Add to
Fstem all new faces bounded by 2 new edges.

3. Cut the face α into two faces, adding an edge connecting the two new vertices
on ∂α∗. Add to Fstem the new face included in α whose boundary has only
two edges.

4. Denote by γ the simple path using only edges added in step 2 and 3 such that
γ = e1 and γ = e1. Transform l and γnest replacing the occurrence of the edge
e by γ.

5. When k = 1 stop the procedure. Otherwise, repeat this operation for the path
α′ = (fk′ , . . . , fm), where k′ is the largest k′ < k such that (fk, fk+1) crosses
an edge of γ1, setting k′ = 1 when this set is empty.

The last marked loop produced in step 4. is called the pull of (l, γnest) along γ∗.

Figure 11: Left: A marked loop with the nested part drawn in blue. New edges of the
modified regular map are drawn with dashed lines. The union of faces of Fstem is stroke
with dashed lines. Right: Pull of the left marked loop along the path of the dual drawn
in orange. The base point of the marked loops is displayed as a green cross.

Figure 12: Left: A marked loop with the nested part drawn in blue. The chosen moving
edge is drawn in orange. Right: n-twist of the left marked loop, with n = −2 and the
chosen moving edge. The new moving edge is displayed in orange.

Twist move: Consider a marked loop (l, γnest). If γnest is constant, let us refine
the map of G by adding a vertex to an edge er of lD that does belong to an inner
loop. We reroot then l at er and redefine γnest as the outgoing edge of lD at er. Let
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us now consider a marked loop with a moving edge e. Let us refine a regular and
marked loop as follows. Add a vertex to e and cut the face left of e into two faces,
adding an oriented edge e′ with both endpoints equal to the new vertex, such that
e′ is the boundary a positively oriented face. The initial moving edge reads e = e1e2

in the new map. The left twist of (l, γnest) is the marked loop obtained by replacing
the occurrence of e by e1e

′ee in both l and γnest. The new marked loop has then e′
has unique moving edge. We denote by Ftw the face bounded by e′. The right twist
of (l, γnest) is defined similarly considering the right face and a negative orientation.
When n is respectively positive or negative, the n-twist of a marked loop is obtained
by applying respectively n left twists or −n right-twists and denote then by Ftw the
|n| faces of the new map bounded solely by newly added edges. The set Ftw can be
alternatively characterised as the smallest subset of faces of the new map such that
the n-twist is ∼Ftw

-equivalent to l.

2.7 Vertex desingularisation
Consider a regular map G. Assume that l is a regular loop and v ∈ Vl is an inter-
section point. We denote by l1 and l2 the two sub-loops of l based at v such that
l ∼c l1l2. We then set

δvl = l1 ⊗ l2 ∈ C[Lc(G)]⊗2,

with the convention that l1 is left of l2 at v as displayed on Figure 2. By definition
of Makeenko-Migdal vectors given in section 2.2, there are25 linear forms (αv)v∈Vl

and (βe)e∈E\El
on ml such that

X =
∑
v∈Vl

αv(X)µv +
∑

e∈E\El

βe(X)dωe,∀X ∈ ml.

We then set
δX l =

∑
v∈Vl

αv(X)δvl.

Let us compare how this operation combines with the different functions and
moves on loops defined above.

Inner loops and tiling length: When v ∈ Vc,l is a contractible loop, one them say
l2 is an inner loop of l, while l1 is a regular loop with

#Vc,l1 < #Vc,l.

Otherwise, both l1 and l2 are regular loops both crossing ∂E at least twice so
that |l1|D, |l2|D > 0. Moreover

|l1|D + |l2|D = |l|D

since both count the number of edges of ∂E crossed by l. Therefore,

|l1|D, |l2|D < |l|D. (19)

Homology: Since ωl = ωl1 + ωl2 , [l] = [l1] + [l2]. In particular, if [l] 6= 0, [l1] 6= 0
or [l2] 6= 0.

25We fix them arbitrarily, for instance using the pseudo-inverse of the Gram matrix of the spanning
family (αv)v∈Vl and (βe)e∈E\El

.
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Pull and twist moves: Consider a marked loop (l(0), γ
(0)
nest). Assume that (l, γnest)

is a n-twist of a pull move of (l(0), γ0
nest) and v ∈ Vl be an intersection point of the

new loop l. Note that the tiling decomposition of l is identical to the one of l(0) but
with the first part modified so that |l|D = |l(0)|D. Also, by construction lnest does
not intersect the root strand γD and l∧ has as many contraction intersection points
as l(0)∧. We deduce the following.

If v 6∈ Vc,l, then by (19),

|l1|D, |l2|D < |l|D = |l(0)|D.

Since lnest is an inner loop of l, Vlnest
⊂ Vc,l. If v ∈ Vc,l \ Vlnest

, lnest is a sub-loop of
l1 or l2, say l1. Then (l1, lnest) is a marked loop and

#Vc,l∧1 ,#Vc,l2 < #Vc,l∧ = #Vc,l(0)∧ .

If v ∈ Vlnest
, l1 or l2, say l2, is a sub-loop of lnest. Then

#Vc,l∧1 = #Vc,l∧ = #Vc,l∧(0) and |l1|D = |l|D = |l(0)|.

These last identities prevents the use of a direct induction argument in section 4.2,
but allow the one of a Grönwall estimate in Proposition 4.6.

3 Yang–Mills measure and Makeenko–Migdal equa-
tions

3.1 Metric and heat kernel on classical groups
We recall here briefly the definition and main properties of the heat kernel on classical
groups that will be needed to define the discrete Yang–Mills measure. These results
are quite standard, and can also be found for instance in [36, Section 1]. In this text,
for any N ≥ 1, we denote by CGN the family of classical compact matrix groups
U(N),SU(N),SO(N) and Sp(N), following the same conventions as in section 2.1.2
of [16].

When G denotes a compact Lie group, its Lie algebra g is endowed with an
invariant inner product 〈·, ·〉. Setting

LXf(g) =
d

dt

∣∣∣∣
t=0

f(getX), ∀f ∈ C∞(G) and g ∈ G,

the Laplacian associated to 〈·, ·〉 is the operator defined by

∆Gf =
∑

1≤i≤d

LXi ◦ LXi(f),∀f ∈ C∞(G),

where (Xi)1≤i≤d is an arbitrary orthonormal basis.

Definition 3.1. The heat kernel on G is the solution p : (0,∞)×G→ R+, (t, g) 7→
pt(g) of the heat equation, with pt ∈ C∞(G) for all t > 0 and{

∂tpt(g) = ∆Gpt(g), ∀g ∈ G, ∀t > 0,
limt↓0 pt(g)dg = δIN ,

(20)

where the convergence in the second line holds weakly.
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It defines a semigroup for the convolution product, that is

pt ∗ ps = pt+s,∀t, s > 0. (21)

It inherits the following properties from the conjugation invariance of the scalar
product: for all g, h ∈ G and t > 0,

pt(hgh
−1) = pt(g) (22)

and
pt(g

−1) = pt(g). (23)

When GN ∈ CGN , we fix an invariant inner product 〈·, ·〉 as in (1) of [16, Section
2.1.2].

3.2 Area weighted maps, Yang–Mills measure and area con-
tinuity
We recall here a definition of the discrete and continuous Yang–Mills measure in two
dimensions on arbitrary surfaces, with a focus on the former.

Area vectors and area weighted maps: When G = (V,E, F ) is a topological
map, an area vector is a function a : F → R+. We say that (G, a) is an area
weighted map with volume

∑
f∈F af . When K is a subset of faces of G we then

write a(K) =
∑
f∈K a(f) its volume. When m = (G, a) and m′ = (G′, a′) are area

weighted maps with faces set F and F ′, m′ is finer than m if G′ is finer than G and
af =

∑
f ′∈F ′:f ′⊂F a

′
f ′ . When T > 0, we denote by

∆G(T ) = {a : F → R+ :
∑
f∈F

af = T}

the closed simplex of area vectors of fixed volume T and its interior by

∆o
G(T ) = {a ∈ ∆G(T ) : a(f) > 0,∀f ∈ F}.

Its faces are given as follows. For any subset K & F , we set

∆K,G(T ) = {a ∈ ∆G(T ) : a(K) = 0}

and
∆o
K,G(T ) = {a ∈ ∆K,G(T ) : a(f) > 0,∀f ∈ F \K}.

When (G, B) is a map with boundary faces B, we set

∆G,B(T ) = {a : F \B → R+ :
∑

f∈F\B

af = T}

and
∆o

G,B(T ) = {a ∈ ∆G,B(T ) : a(f) > 0,∀f ∈ F}.

When G′ = (V ′, E′) is finer than G, any face F of G can be identified with
a subset of faces of G′, and for any a ∈ ∆G′(T ), we denote rG(a) ∈ ∆G(T ) the
associated area vector of G. We then say that the area weighted map (G′, a) is finer
than (G, rG(a)).
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Multiplicative functions and Wilson loops: Given a map G = (V,E, F ) and a
compact group G, we say that a function h : P(G) → G is multiplicative if for any
pair of paths γ1, γ2 with γ1 = γ

2
,

hγ1γ2 = hγ2hγ1 . (24)

We denote their set byM(P(G), G). Endowing it with pointwise multiplication, it
is a compact group and fixing an orientation of the edges, the evaluation on these
edges defines an isomorphism

M(P(G), G) ' GE .

The Haar measure on M(P(G), G) can be identified via this isomorphism to the
tensor product of the Haar measure on G, we denote it simply by dh.

When G′ is a map finer than G, the restriction from P(G′) to P(G) defines a
map

RG′
G :M(P(G′), G)→M(P(G), G).

A Wilson loop is a function of the form

M(P(G), G) −→ C
h 7−→ χ(hl)

where χ : G→ C is a function invariant by conjugation and l ∈ L(G). By centrality,
the value χ(hl) depends on l only through its ∼c-equivalence class l and we denote
it by χ(hl). When G ∈ CGN , for any loop l ∈ L(G), we shall focus on the Wilson
loop Wl obtained considering as central function

χ = trN ,

where trN = d−1
N Tr is the standard trace Tr in the natural matrix representation

normalised by the size dN of the matrix, that is 2N in the symplectic case and N
otherwise.

Discrete Yang–Mills measure, non-singular case on closed surfaces: When T > 0,
G is a map with boundary faces B and a ∈ ∆o

G,B(T ), the Yang–Mills measure is the
probability measure YMG,B,a on the compact groupM(P(G), G) with density

Z−1
G,B,a

∏
f∈F\B

paf (h∂f )

with respect to the Haar measure onM(P(G), G), where ZG,B,a = 1 if B 6= ∅ and

ZG,a =

∫
M(P(G),G)

∏
f∈F

paf (h∂f )dh

otherwise. In the above formula, ∂f is the boundary of the face for some arbitrary
choice of root and orientation. This does not change the value of paf (h∂f ) thanks to
(22) and (23). The fact that this density defines a probability measure when B 6= ∅
follows for instance from Lemma 3.2 below. We denote YMG,∅,a simply by YMG,a.

Lemma 3.1. 1. For any a ∈ ∆o
G(T ), the constant ZG,a depends only on T and

the genus g of G, we denote it by Zg,T .
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2. When m′ = (G′, a′),m = (G, a) are two area weighted maps with m′ finer than
m and a′ ∈ ∆o

G′(T ), then

RG′
G ∗(YMG′,a′) = YMG,a.

Uniform continuity and compatibility: The Yang–Mills measure is also well de-
fined on the faces on the simplex of area vectors. For any r, g ≥ 1 let us consider
the set Hom(Γg,r, G) of group morphisms. When endowed with point-wise multipli-
cation it is a compact group and thanks to the presentation of Lemma 2.1,

Hom(Γg,r, G) ' Gr+2g−1.

Moreover, this presentation allows to write the following integration formula.

Lemma 3.2 ([35]). Assume that (G, a) is an area weighted map with r faces and that
(li, 1 ≤ i ≤ r) and a1, b1, . . . , ag, bg are as in Lemma 2.1. For any 1 ≤ i ≤ r, denote
by ai the area of the face of li. Then for any continuous function χ : G2g+r → C
and any a ∈ ∆o

G(T ) and 1 ≤ k ≤ r,

EYMG,a
(χ(hl1 , . . . , hlr , ha1 , . . . , hbg ))

= Z−1
g,T

∫
G2g+r−1

χ(z1, . . . , zr, x1, . . . , yg)pak(zk)

r∏
i=1,i6=k

pai(zi)dzi

g∏
l=1

dxldyl,

where we set zk = (z1 . . . zk−1)−1[a1, b1] . . . [ag, bg](zk+1 . . . zr)
−1. When B is a non-

empty subset of faces of G and lassos with faces in its complement have labels
i1, . . . , ip,

EYMG,B,a
(χ(hli1 , . . . , hlip , ha1

, . . . , hbg ))

=

∫
G2g+p

χ(z1, . . . , zp, x1, . . . , yg)

p∏
i=1

pai(zi)dzi

g∏
l=1

dxldyl.

The above expression yields the following continuity in the area parameter. For
any vertex v of a map G, the restriction of a multiplicative function to loops based
at v depends only on the ∼r-class of a loop and the restriction operation defines a
map Rv :M(P(G), G)→ Hom(RLv(G, G)). For any a ∈ ∆o

G(T ), we set YMa,G,v =
Rv∗(YMG,a).

Lemma 3.3. The family of measures (YMa,G,v, a ∈ ∆o
G(T )) on Hom(RLv(G), G)

has a weakly continuous extension to ∆G(T ). It has the following properties.

1. Consider K ⊂ F with K 6= F , let S ⊂ {1, . . . , r} be the labels of the lassos with
meander in F \K and set s = #S. Then for any a ∈ ∆o

K(T ), any continuous
function χ : G2g+r → C and k ∈ S,

EYMG,a,v
(χ(hl1 , . . . , hlr , ha1

, . . . , hbg ))

=
1

Zg,T

∫
G2g+r−1

χ(z1, . . . , zr, x1, . . . , yg)pak(zk)
∏

i∈S,i 6=k

pai(zi)dzi

g∏
l=1

dxldyl,

where we set zk = (z1 . . . zk−1)−1[a1, b1] . . . [ag, bg](zk+1 . . . zr)
−1 and zi = 1

for all i 6∈ S.
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2. Consider a weighted map (G′, a′) finer than (G, a) and denote the restriction
map RG′

G : Hom(RLv(G′, G))→ Hom(RLv(G, G)). Then,

RG′
G ∗(YMG′,a′,v) = YMG,a,v.

3. Consider K ⊂ F with K 6= F and a ∈ ∆K(T ). Then for any loops l, l′ ∈
RLv(G) with l ∼K l′, hl and hl′ have same law under YMG,a,v.

Continuous Yang–Mills measure: Thanks to the invariance by subdivision of
the discrete Yang–Mills measure, given a Riemannian metric it is possible to take
the projective limit of measures defined on graphs embedded in Σ whose edges
are piecewise geodesic. It allows to define a multiplicative random process (Hγ)γ
indexed by all piecewise geodesic paths, whose marginals are given by the discrete
Yang-Mills measure.

This was done in [35], where the author is furthermore able to show a weak
convergence result allowing to define uniquely the distribution of a multiplicative
function (Hγ)P(Σ) indexed by all path of finite length. Let us recall this result.

Denote by P(Σ) the set of Lipschitz functions γ : [0, 1]→ Σ with speed bounded
from above and from below, considered up to bi-Lipshitz re-parametrisations of [0, 1].
The set P(Σ) is endowed with the starting and endpoint maps, γ 7→ γ, γ and of the
operations of concatenation and reversion as above. A path of Σ is an element of
γ ∈ P(Σ). It is simple if for any parametrisation p : [0, 1] → Σ, p : [0, 1) → Σ is
injective. We consider then the set

M(P(Σ), G)

of multiplicative functions as in (24). It is a compact subset of GP(Σ) when the
latter is endowed with the product topology. A loop is a path ` ∈ P(Σ) such that
` = `. We denote their set by L(Σ). For any x, y ∈ Σ, we endow Px,y(Σ) = {γ ∈
P(Σ) : γ = x, γ = y} with a metric setting for any γ1, γ2 ∈ Px,y(Σ),

d(γ1, γ2) = inf
p1,p2

‖p1 − p2‖∞ + |L (γ1)−L (γ2)|

where the infimum is taken over all parametrisations p1, p2 of γ1, γ2 and for any
γ ∈ P(Σ), L (γ) denotes the Riemannian length of γ. Endowing M(P(Σ), G) with
the cylindrical sigma field BΣ,G, we denote by (Hγ)γ∈P(Σ) the canonical process.
When G = GN is a classical compact matrix Lie group of size N, we write for any
path γ ∈ P(Σ),

Wγ = trN (Hγ).

When (G, a) is an area weighted map of genus g ≥ 0, an embedding of (G, a) in
a Riemann surface with volume vol, is a collection of simple paths (γe)e∈E of Σ
indexed by edges of G, that do not cross but at their endpoints with the following
properties:

1. The ranges of all paths (γe)e∈E form the 1-cells of a CW complex isomorphic
to the CW complex of G.

2. Fixing such an isomorphism, each 2-cell of the complex associated to (γe)e∈E
is a subset of Σ of Riemannian volume a(f), whenever it is identified with a
face f of G.
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When Σ is the Euclidean plane or the hyperbolic disc, while G is a map of genus 0,
f∞ is a face of G and a ∈ ∆G,{f∞}(T ), an embedding in Σ of the area weighted map
(G, {f∞}, a) with one boundary component is a collection of simple paths (γe)e∈E of
R2 indexed by edges of G, that do not cross but at their endpoints with the following
properties:

1. The ranges of all paths (γe)e∈E form the 1-cells of a CW complex isomorphic
to the CW complex of G, such that the unique unbounded 2-cell is mapped to
f∞.

2. Fixing such an isomorphism, each bounded 2-cell of the complex associated to
(γe)e∈E is a subset of Σ of Riemannian volume a(f), whenever it is identified
with a face f of G.

In each case, we say that G is embedded in Σ if there is an area vector a satisfying
the property 2.

When G = (V,E, F ) is a map, l ∈ L(G), Σ is a two-dimensional Riemannian
manifold and ` ∈ L(Σ), we say that ` is a drawing of l = e1 . . . en if there is an
embedding (γe)E∈E of G into Σ, such that ` is the concatenation γe1 . . . γen . The
next two theorems are due to Lévy [35].

Theorem 3.4. Let Σ be a compact Riemannian surface with area measure vol, G
a fixed compact Lie group such that g is endowed with a G-invariant inner prod-
uct. There exists a unique measure YMΣ on (M(P(Σ), G),BΣ, G), with following
properties.

1. If (γe)e∈E is an embedding in Σ of an area-weighted map (G, a) with edges E,
the distribution of (Hγe)e∈E is the discrete Yang–Mills measure YMG,a.

2. For any x, y ∈ Σ, if (γn)n≥1 is a sequence of paths of Px,y(Σ) with limn→∞ d(γn, γ) =
0 for some γ ∈ P(Σ), then under YMΣ, the sequence of random variables
(Hγn)n≥1 converges in probability to Hγ .

The process (Hγ)γ∈P(Σ) is called the Yang–Mills holonomy process.

Theorem 3.5. Let Σ be a Euclidean plane R2 or the hyperbolic disc Dh, en-
dowed with their area measure vol, G a fixed compact Lie group such that g is
endowed with a G-invariant inner product. There a exists a measure YMΣ on
(M(P(Σ), G),BΣ, G), with following properties.

1. If (γe)e∈E is an embedding in Σ of an area-weighted map of genus 0 with
one boundary (G, {f∞}, a) and edge set E, the distribution of (Hγe)e∈E is the
discrete Yang–Mills measure YMG,a.

2. For any x, y ∈ Σ, if (γn) is a sequence of paths of Px,y(Σ) with d(γn, γ) →
n→∞

0 for some γ ∈ P(Σ), then under YMΣ, the sequence of random variables
(Hγn)n∈N converges in probability to Hγ .

The process (Hγ)γ∈P(Σ) is called the Yang–Mills holonomy process.

In [9, 17], the authors showed that the proof of the above theorem can be adapted
to yield the following extension result, when G is allowed to vary. Let us denote by
A(Σ) the subset of paths of P(Σ) with a geodesic bi-Lipschitz parametrisation.

Proposition 3.6. Let GN be a sequence of classical compact matrix Lie group.
Assume the following two properties.
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1. For any γ ∈ A(Σ), Φ(γ) = limN→∞Wγ where the convergence holds in proba-
bility under YMΣ and Φ(γ) is constant.

2. There is a constant K > 0 independent of N, such that for any simple con-
tractible loop ` ∈ L(Σ) bounding an area t > 0,

EYMΣ
[1−<(W`)] ≤ Kt.

Then Φ : A(Σ) → C has a unique extension to P(Σ) such that for all x, y ∈ Σ,
Φ : Px,y(Σ) → C is continuous and for any γ ∈ L(Σ), Wγ converges in probability
towards Φ(γ) as N →∞.

The argument given in section 5 of [17] for the sphere applies verbatim on any
compact surface Σ to yields the above statement, we will not repeat it in the current
version. The details of following extension result is also left in the current version.

Lemma 3.7. 1. For any map G there is a regular graph G′ finer than G.
2. For any γ ∈ A(Σ) there is an embedded graph G such that γ is the drawing of

a path of G.
3. For any area weighted map (G, a) and γ ∈ P(G), there is a regular area weighted

map (G′, a′) finer than (G, a), γ′ a regular path of G′ and K a subset of faces
of G′, such that

γ ∼K γ′.

4. For any compact Lie group G and any γ ∈ A(Σ), there is a regular path p in
a regular graph G and a ∈ ∆G(T ) such that under YMΣ, Wγ has same law as
Wp under YMG,a.

Together with the last proposition, this lemma reduces the study of Wilson loops
for all loops of finite length to the case of regular loops.

3.3 Planar master field, main results and conjecture
In the above setting, the following was proved in [36] and26 [29], see [60, 3] for
a weaker statement with a smaller class of loops and of groups GN . Recall the
definition of the de-singularisation operation in section 2.7.

Theorem 3.8. Assume that GN is a classical compact matrix Lie group of size N .
Assume that (G, {f∞}, a) is any area weighted map of genus 0, with one boundary
component and l ∈ L(G), or that ` ∈ L(R2), then the following convergences hold
in probability27 and the limits are constant and independent of the type of series of
GN :

Φf∞l (a) = lim
N→∞

Wl under YMG,{f∞},a

and
ΦR2(`) = lim

N→∞
W` under YMR2 .

The function ΦR2 is characterised by the following properties:

1. For any x ∈ R2, ΦR2 : Px,x(R2)→ C is continuous.

26In [36], to get uniqueness (b) is replaced by an additional set of differential equations
27It is also shown in [36] that the following convergences are almost sure.
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2. Whenever ` ∈ L(R2) is a drawing of a loop l of an area weighted map of genus
0 with one boundary component (G, {f∞}, a),

ΦR2(`) = Φl,f∞(a).

3. For any map of genus 0 with one boundary component (G, {f∞}), T > 0, and
any loop l ∈ L(G), Φ` is uniformly continuous on ∆G,{f∞}(T ) and differentiable
on ∆o

G,{f∞}(T ) such that

(a) if G is regular, l is a tame loop and v ∈ Vl is a transverse intersection
with δvl = l1 ⊗ l2,

µv.Φl,f∞ = Φl1,f∞Φl2,f∞ in ∆o
G,{f∞}(T ).

(b) Whenever
ΦR2(`) = e−

t
2 .

See the appendix of [36] for a table of values of ΦR2 . Alternatively, the master
field can be characterised using free probability as follows.

Lemma 3.9. Consider an area weighted map (G, {f∞}, a) of genus 0 with one
boundary component. Assume G = (V,E, F ), #F = r + 1, F = {f1, . . . , fr, f∞}
and v ∈ V. For any l ∈ Lv(G) depends on l only through its ∼r class. Setting

τv(l) = Φl,f∞(a) and l∗ = l−1,∀l ∈ RLv(G)

and extending these maps linearly and sesqui-linearly, defines a non-commutative
probability space (C[RLv(G)], τv, ∗). Assume that l1, . . . , lr, l∞ is a family of lassos
as in Lemma 2.1 with li bounding fi for 1 ≤ i ≤ r and l∞ for f∞. Then τv is the
unique state on (C[RLv(G)], ∗) such that

1. for all n ∈ Z∗, τv(lni ) = νa(fi)(n),

2. l1, . . . , lr are freely independent under τv.

Similarly the following lemma follows from the classical result of [6] and Lemma
3.2. It shows that the conclusion of the former one is valid when the genus condition
is dropped.

Lemma 3.10. Consider an area weighted regular map with boundary (G, {f∞}, a)
of genus g ≥ 1. Assume G = (V,E, F ), #F = r + 1 with F = {f1, . . . , fr, f∞} and
v ∈ V. Assume that a1, . . . , bg and l1, . . . , lr+1 are 2g simple loops and r+1 lassos as
in Lemma 2.1, with li bounding fi for 1 ≤ i ≤ r and f∞ for i = r + 1. Assume that
GN is a sequence of classical compact matrix group of size N. Then for any T > 0,
a ∈ ∆G,{f∞}(T ) and l ∈ RLv(G),

Wl → Φ1,g
l (a) under YMG,{f∞},a,

where Φ1,g
l (a) is constant. Moreover there is a constant K > 0 independent of G

and N ≥ 1, such that for any face f ∈ F \ {f∞},

E[1−<(W∂f )] ≤ Ka(f). (*)

The ∗-algebra (C[RLv(G)], ∗) is endowed with a unique state τv satisfying

τv(l) = Φ1,g
l (a),∀l ∈ RLv(G).

Moreover, τv is characterised by the following three properties:
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1. l1, . . . , lr, a1, . . . , bg are free under τv.

2. under τv, a1, . . . , bg are 2g Haar unitaries.

3. For any 1 ≤ i ≤ r and n ∈ Z∗,

τv(l
n
i ) = νa(fi)(n).

A sketch of the proof is given in section 5. From Lemma 3.10 and the absolute
continuity result of [16] follows a result on closed surfaces, for loops avoiding at least
one handle.

Let us recall the definition of the universal cover G̃ = (Ṽ , Ẽ, F̃ ) of a regular
graph (G,Gb) given in section 2.3, with a canonical covering map p : F̃ → F. When
a ∈ ∆G(T ), let us set ã = a ◦ p : F̃ → [0, T ].

Theorem 3.11. Assume that (G, a) is an area weighted map with cutting along a
simple loop l ∈ L(G) given by (G1, {f1,∞}) and (G2, {f2,∞}), with the same conven-
tion as in section 2.1. Then if G2 has genus g2 ≥ 1, for any loop l ∈ L(G1) and
a ∈ ∆G(T ) with a(F2) ∈ (0, T ),

Wl →
N→∞

Φl(a) =

 Φl̃(ã) if l ∼h cl,

0 if l 6∼h cl,
in probability under YMG,a, (25)

where l̃ is a lift of l in G̃. Moreover, when g1 = 0, the convergence holds true
uniformly in a ∈ ∆G(T ). Besides, there is a constant K > 0 independent of G and
N ≥ 1, such that for any face f ∈ F1,

E[1−<(W∂f )] ≤ Ka(f). (26)

When G has genus 1 the above result gives information about loops included
in a topological disc but does not say anything about other loops, for instance
contractible loops obtained by concatenation of simple loops of non trivial homology.
A more satisfying answer is then given by the following theorem.

Theorem 3.12. Consider a classical compact matrix Lie group GN of size N , TT
is a torus of volume T > 0 obtained as a quotient of the Euclidean plane R2 by the
lattice

√
TZ2. Then, the following convergence holds in probability under YMTT

,

W` →
N→∞

ΦTT
(`) =

 ΦR2(˜̀) if ` is contractible,

0 otherwise,

where for any loop ` ∈ L(TT ), ˜̀ ∈ P(R2) is a finite length path with projection to
TT given by `. Besides, ΦTT

: L(R2)→ [−1, 1] is the unique function satisfying

1. For any x ∈ TT , ΦTT
: Lx(TT )→ C is continuous for the length metric d.

2. For any regular loop l in a regular map G of genus 1, there is a differentiable
function

Φl : ∆G(T )→ C

such that for any transverse intersection v ∈ Vl, with δvl = l1 ⊗ l2,

µvΦl = Φl1Φl2 . (27)
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3. For any loop ` ∈ L(TT ) obtained by projection of a loop ˜̀∈ L(R2) included in
a fundamental domain of

√
TZ2,

ΦTT
(`) = ΦR2(˜̀).

4. For any non-contractible simple loop ` ∈ L(T2
T ) and n ∈ Z∗,

ΦTT
(`n) = 0.

When g ≥ 2, we were unable to show a satisfying version of conjecture 1.3, but
are able to prove the following conditional results.

Theorem 3.13. Consider classical compact matrix Lie group GN of size N , g ≥ 2
and T > 0. Assume that for any regular area weighted map (G, a) of genus g,

Wl →
N→∞

Φl̃(ã) in probability under YMG,a, (28)

whenever l ∈ L(G) such that

1. any lift l̃ ∈ L(G̃) of l is included in a fundamental domain, or

2. l = γnestγ, where γnest is a nested loop and γ is a geodesic path.28

Then for any regular graph G of genus g, (28) holds true for all l ∈ L(G).

Besides, the following weaker statement can be proved independently.

Proposition 3.14. Consider GN is a classical compact matrix Lie group of size N
and g ≥ 2. Assume that for any regular area weighted map (G, a) of genus g,

Wl →
N→∞

0 in probability under YMG,a, (29)

whenever l ∈ L(G) is a geodesic loop with non zero-homology. Then for any regular
graph G of genus g, (29) holds true for all l ∈ L(G) with non-zero homology.

Remark. The above statements may give the impression that any possible master
field is expressed in terms of the planar case. This is nonetheless not the case as the
Wilson loops limit on the of sphere give raise to different limits [17]. See also the
discussion in [16, Section 2.5].

3.4 Invariance in law and Wilson loop expectation
Before proceeding to the main part of this paper, let us give here a partial result
that only holds in expectation, but relies on a simpler argument: the invariance in
law by an action of the center of the structure group GN . Consider a regular graph
G = (V,E, F ) with r faces, v ∈ V and a basis l1, . . . , lr, a1, . . . , bg of the free group
RLv(G) as in Lemma 2.1. For any h ∈ G2g and φ ∈ Hom(RLv(G), G), let us denote
by h.φ ∈ Hom(RLv(G), G) the unique group morphism with

h.φ(li) 7→ φ(li), for 1 ≤ i ≤ r

and
h.φ(ai) = h2i−1φ(ai) and h.φ(bi) = h2iφ(bi) for 1 ≤ i ≤ g.

28See Fig. 9 and Section 2.3.
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Let us denote by Z the center of G. When h ∈ Z2g, it follows easily from point
2. of Lemma 2.2 that

h.φ(l) = φh([l]Z)φ(l),∀l ∈ RLv(G), (30)

where φh ∈ Hom(H1(d∗,Z), Z) is the unique group morphism such that

φh([ai]Z) = h2i−1 and φh([bi]Z) = h2i for 1 ≤ i ≤ g.

Lemma 3.15. Let G be regular map, T > 0, a ∈ ∆G(T ). Denoting by (Hl)l∈RLv(G)

the canonical G-valued random variable on Hom(RLv(G), G), the following asser-
tions hold true.

1. The measure YMa,G,v on Hom(RLv(G), G) is invariant under the action of
Z2g.

2. Assume that χ : G → C is continuous and α : Z → C is such that χ(z.h) =
αχ(z)χ(h),∀(z, h) ∈ Z ×G. Then
(a) for any h ∈ Z2g and l ∈ RLv(G),

EYMa,G,v
[χ(Hl)] = αχ ◦ φh([l]Z)EYMa,G,v

[χ(Hl)].

(b) If there is φ ∈ Hom(H1(d∗,Z), Z) with φ([l]Z) 6= 0, then

EYMa,G,v
[χ(Hl)] = 0.

3. When G is a classical compact matrix Lie group, for any l ∈ RLv(G), E[W`] =
0 if one of the following conditions is satisfied:

(a) G = U(N) and [l]Z 6= 0.

(b) G = SU(N) and [l]Zn 6= 0

(c) G = SO(2N) and [l]Z2 6= 0.

Proof. The implication 2.a) ⇒ 2.b) ⇒ 3 are elementary. Thanks to (30), 1 ⇒ 2.a).
Lastly, consider 1. Denote by dφ the Haar measure on Hom(RLv(G), G) endowed
with pointwise multiplication. By Lemma 3.3, it is enough to consider a ∈ ∆o

G(T )
and denote by a1, . . . ar the area enclosed by the meanders of l1, . . . , lr and set
ar+1 = T −

∑r
i=1 ai. For any continuous function χ : Hom(RLv(G), G) → C and

h ∈ Z2g, dφ is invariant by the action of Z2g and∫
Hom(RLv(G),G)χ(h−1.φ)dYMa,G,v(φ)

=

∫
Hom(RLv(G),G)

χ(h−1.φ)par+1(φ((l1 . . . lr)
−1[a1, b1] . . . [ag, bg]))

r∏
i=1

pai(φ(li))dφ

=

∫
Hom(RLv(G),G)

χ(φ)par+1(h.φ((l1 . . . lr)
−1[a1, b1] . . . [ag, bg]))

r∏
i=1

pai(h.φ(li))dφ

=

∫
Hom(RLv(G),G)

χ(φ)par+1
(h.φ((l1 . . . lr)

−1[a1, b1] . . . [ag, bg]))

r∏
i=1

pai(h.φ(li))dφ,

where in the last line we used that h.φ([ai, bi]) = [φ(ai)h2i−1, φ(bi)h2i−1]) = φ([ai, bi])
for 1 ≤ i ≤ g and h.φ(lj) = φ(lj), for 1 ≤ j ≤ r.
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3.5 Makeenko–Migdal equations, existence and uniqueness
problem
The main tool of the current article are approximate versions of equations (27),
satisfied on any surface when GN ∈ CGN and N → ∞. Let us introduce a setting
to prove existence and uniqueness of these equations.

For any regular graph G and any vertex v of G, let Av(G) be the algebra with
elements in C[Lv(G)] endowed with the multiplication given by concatenation and
setting l∗ = l−1 for all l ∈ Lv(G) and extending it skew-linearly. When w is another
vertex, we consider the ∗-algebra Av,w(G) with elements in C[Lv(G)] ⊗ C[Lw(G)]
and multiplication and ∗-operation defined for all (xi, yi) ∈ Av(G)×Aw(G) by

(x1 ⊗ y1).(x2 ⊗ y2) = (x1x2)⊗ (y1y2) and (x1 ⊗ y1)∗ = x∗1 ⊗ y∗1 .

Let us fix g ≥ 1 and T > 0. A Wilson loop system is a family of continuous
functions φl1 , φl1⊗l2 : ∆G(T ) → C given for each regular graph G of genus g and
each pair of loops l1, l2 ∈ L(G), with the following properties:

1. For any constant loop c,

φl1⊗c = φl1 and φc = 1.

2. For any pair of loops l1, l2 within a same regular graph of genus g,

φl1⊗l2 = φl2⊗l1

depend on l1, l2 only through their ∼r,c equivalence class.
3. If G′ is finer than G of genus g, then for all loops l, l1, l2 ∈ L(G)

φl ◦ rG
′

G = φl and φl1⊗l2 ◦ rG
′

G = φl1⊗l2

where loops are identified in the right-hand-sides with elements of L(G′).
4. If G′ is isomorphic to G of genus g, a ∈ ∆G(T ) is mapped to a′ ∈ ∆G′(T ),

while l′1, l′2 ∈ L(G) with l1 ∼Σ l′1, l2 ∼Σ l′2, through the same isomorphism map,
then

φl1(a) = φl′1(a′) and φl1⊗l2(a) = φl′1⊗l′2(a′).

5. If G = (V,E, F ) is a regular graph of genus g, l1, l′1, l2 ∈ L(G), K ⊂ F with
l1 ∼K l′1, then

φl1⊗l2(a) = φl′1⊗l2(a),∀a ∈ ∆K,G(T ).

6. For any regular graph G of genus g with vertices v and w, for any a ∈ ∆G(T ),
extending l1⊗ l2 ∈ Lv(G)⊗Lw(G) 7→ φl1⊗l2(a) linearly defines a non-negative
states φa,v,w on Av,w(G) while for any x ∈ Av(G),

φx⊗x∗ ≥ 0.

Whenever GN ∈ CGN , from the above definition of the Yang-Mills measure, the
collection

a ∈ ∆G(T ) 7→ EYMG,a
[Wl],EYMG,a

[Wl1Wl2 ]

for all regular maps G of genus g and loops l, l1, l2 ∈ L(G), is a Wilson loop system.
Let us note that the first part of point 6. together with point 1. implies that for any
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regular graph of genus g with vertex v, for all a ∈ ∆G(T ) l ∈ Lv 7→ φl(a) extends
linearly to a state φv,a of (Av, ∗). Moreover, it then follows from 1. and 2. that
for any vertices v, w, and (l1, l2) ∈ Lv(G) × Lw(G), l1 and l1 ⊗ l2 have a unitary
distribution in (Av, φv,a) and (Av,w, φa,v,w). When φ is a Wilson loop system, for
any regular graph G and any loop l ∈ L(G), the second part of point 6. and point
1. yield

Vφ,l = φl⊗l−1 − |φl|2 = φl⊗l−1 − φlφl−1 ≥ 0.

We say that a Wilson loop system φ is an exact solution of Makeenko–Migdal
equations if

1. For any loop l within a regular graph G of genus g, φ ∈ C1(∆o
G(T )) and for

any v ∈ Vl,
µv.φl = φl1φl2 .

2. For any pair of regular loops within the same graph, φα⊗β = φαφβ .

3. For any regular loop l with l 6∼h cl, φl = 0.

We say that a sequence (φN )N≥1 of Wilson loop systems is an approximate
solution of Makeenko–Migdal equations if for any regular graph of genus g, any loop
l in L(G), φNl and V N

φ,l are in C1(∆o
G(T )), and for any intersection point v ∈ Vl,

µv.φ
N
l = φNδv(l) +

1

N
RNl (31)

while there is a constant C > 0 independent of l and N ≥ 1, such that

|µv.V N
φ,l| ≤ VφN ,l + VφN ,l1 + VφN ,l2 +

C

N
(32)

and
|µv.V N

φ,l| ≤
√

VφN ,l1VφN ,l2 + |φNl1 |
√

VφN ,l2 + |φNl2 |
√

VφN ,l1 +
C

N
(33)

where l1 ⊗ l2 = δvl and RNl : ∆G(T )→ C satisfy

sup
N≥1
‖RNl ‖∞ < +∞.

Remark. Note that it follows from point 3. that if φ is a Wilson loop system and
l, l1, l2 are a regular loops of a regular graph G = (V,E, F ) with e ∈ Eo \ (Eol ∪Eol1 ∪
Eol2), then

dωe.φl = dωe.φl1⊗l2 = 0. (34)

Consequently, for any regular loop l, using the same linear forms as in section 2.7, if
φ∞ and (φN ) are respectively exact and approximate solutions of Makeenko-Migdal
equations, for any regular loop l and X ∈ ml,

X.φ∞l = φδX l and X.φNl = φNδX l +
‖X‖
N

RNl (35)

while

|X.VφN ,l| ≤ Cl‖X‖

(∑
v∈Vl

(√
VφN ,l1VφN ,l2 + |φNl1 |

√
VφN ,l2 + |φNl2 |

√
VφN ,l1

)
+

1

N

)
(36)
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and

|X.VφN ,l| ≤ ‖X‖Cl

(
VφN ,l +

∑
v∈Vl

(VφN ,lv,1
+ VφN ,l1,2) +

1

N

)
(37)

where for any v ∈ Vl we wrote ∂vl = l1,v ⊗ l2,v, Cl > 0 is independent of N ≥ 1 and

sup
N≥1
‖RNl ‖∞ < +∞.

The existence problem of these equations is a consequence of [21] and [36] for
the approximate solutions, and given Theorem 3.8, of a simple computation for the
exact ones.

Lemma 3.16. Consider g ≥ 1, T > 0.

1. Assume that GN ∈ CGN , then setting for all regular graph G, a ∈ ∆G(T ) and
all loops l, l1, l2 ∈ L(G)

φNl (a) = EYMG,a
[Wl], φ

N
l1⊗l2(a) = EYMG,a

[Wl1Wl2 ]

defines an approximate solution of the Makeenko–Migdal equations.
2. Denoting by cv the constant loop at a vertex v, setting for any regular graph

G, a ∈ ∆G(T ) and l ∈ L(G),

φl(a) =

 Φl̃(ã) if l ∼h cl,

0 if l 6∼h cl,

defines an exact solution of the Makeenko–Migdal equations.

Proof. Point 1. is a direct consequence of Proposition 7.3 below, together with
Cauchy-Schwarz or arithmetic-geometric mean inequality to get (36) and (37). For
point 2., we shall only check that the Makeenko–Migdal equations are satisfied and
leave the other points to the Reader. Consider a regular graph G of genus g with
l ∈ L(G) and v ∈ Vl. Consider δvl = l1 ⊗ l2 and let us show that µvφl = φl1φl2 .
If l 6∼h cl, then the rerooting l′ at v of l satisfies l′ 6∼h cv. Therefore l1 6∼h cv or
l2 6∼h cv and we conclude that φl = φl′ = 0 = φl1φl2 . Assume now l ∼h cl. Consider
a fundamental cover G̃ = (Ṽ , Ẽ, F̃ ) of G with projection map p. For all a ∈ ∆o

G(T ),

µv.φl(a) = µv.(Φl̃(ã)) =
∑

ṽ∈p−1(v)∩Tl̃

(µṽ.Φl̃)(ã),

where Tl̃ is the set of vertices of G̃ visited by l̃. Since l is regular, whether #p−1(v)∩
Tl̃ = 2 and #(Vl̃ ∩ p−1(v)) = 0, or #(p−1(v) ∩ Tl̃) = #(p−1(v) ∩ Vl̃) = 1.

In the first case, l1 6∼h cv and l2 6∼h cv, so that φl1 = φl2 = 0. Moreover for any
ṽ ∈ p−1(v) ∩ Tl̃ and e1, . . . , e4 ∈ Ẽo four cyclically ordered, outgoing edges at ṽ, we
may assume that l̃ uses e−1

1 and e3 while e2, e4 6∈ El̃. Therefore dωe2 .Φl̃ = dωe4 .Φl̃ = 0
and as µṽ = ±(dωe2 + dωe4), (µṽ.Φl̃)(ã) = 0 = φl1(a)φl2(a).

In the second case, for ṽ ∈ Vl̃ ∩ p−1(v) = Tl̃ ∩ p−1(v), by definition of the
fundamental cover, l1 ∼h cv ∼h l2. Then δṽ l̃

′ = l̃1 ⊗ l̃2, where l̃1, l̃2 are lift with
initial condition v, so that using 3. a) of Theorem 3.8, we get

(µṽ.Φl̃)(ã) = Φl̃1
(ã)Φl̃2

(ã) = φl1(a)φl2(a).
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The main technical result of this article is the proof of the following uniqueness
statements. Denote by Lg the space of regular loops of regular maps of genus g ≥ 1.
Let us say that a subset F of Lg is a good boundary condition of the Makeenko–Migdal
equations if for any pair φ∞ and (φN )N≥1 made of an exact and an approximate
solutions of Makeenko–Migdal equations,

lim
N→∞

‖φNl − φ∞l ‖∞ + ‖VφN ,l‖∞ = 0,∀l ∈ F (38)

implies
lim
N→∞

‖φNl − φ∞l ‖∞ + ‖VφN ,l‖∞ = 0,∀l ∈ Lg. (39)

Setting
ΨN

l = φN(l−φ∞l c)⊗(l−φ∞l c)∗ = VφN ,l + |φNl − φ∞l |2, (40)

where c is the constant loop at l, this is equivalent to

lim
N→∞

‖ΨN
l ‖∞ = 0,∀l ∈ F ⇒ lim

N→∞
‖ΨN

l ‖∞ = 0,∀l ∈ Lg.

Proposition 3.17. For any genus g ≥ 1 and total volume T > 0, the family of loops
l ∈ Lg with a sub-path γ such that (l, γ) is a marked loop and (l, γ)∧ is geodesic, is
a good boundary condition.

Denote by L∗g the subset of Lg of loops l with [l]Z 6= 0. Let us say that a subset
F∗ of L∗g is a good boundary condition in homology if for any pair φ∞ and (φN )N≥1

made of an exact and an approximate solution of Makeenko–Migdal equations, using
the same notation as in (40),

lim
N→∞

‖ΨN
l ‖∞ = 0,∀l ∈ F∗ ⇒ lim

N→∞
‖ΨN

l ‖∞ = 0,∀l ∈ L∗g.

The following can be proven independently from Proposition 3.17.

Proposition 3.18. For any genus g ≥ 1 and total volume T > 0, the family of
geodesic loops in L∗g is a good boundary condition in homology.

When g = 1, for any loop l ∈ Lg, l ∼h cl if and only if [l]Z = 0 and any geodesic
loop is of the form sd where s is a simple loop and d ≥ 1. Therefore the Proposition
3.18 and 3.17 have the following consequence.

Corollary 3.19. Consider g = 1, T > 0, the set of regular loops l ∈ Lg such that
|l|D = 0 or l = sd for some simple loop s and some integer d ≥ 1 is a good boundary
condition.

Proof of Theorem 3.13 and Proposition 3.14. Since L2 convergence implies conver-
gence in probability, both statements follow from Lemma 3.16 and of respectively
proposition 3.17 and 3.18.

Proof of Theorem 3.12. Using the solutions given by 1. and 2. of Lemma 3.16,
Theorem 3.11 implies that the boundary condition of corollary 3.19 are satisfied.
Therefore the convergence in probability holds true for any regular loops. Using
Lemma 3.7, it follows that the convergence holds for all γ ∈ A(Σ) ∩ L(Σ). When
γ ∈ A(Σ) \ L(Σ), under YMΣ, Wγ is Haar distributed, so that EYMΣ [|Wγ |2] → 0
as N → ∞ by [18]. To prove the convergence in probability for any path of finite
length, it is now enough to combine the area bound (26) with Proposition 3.6. The
uniqueness claim is proved identically considering in place of the above approximate
solution, a constant sequence given by an exact solution.
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4 Proof of the main result, stability of convergence
under deformation
In this section we give a proof first of Proposition 3.18, then of Proposition 3.17.
We consider exact and approximate solutions φ∞ and (φN )N≥1 of Makeenko–Migdal
equations in genus g ≥ 1 and volume T > 0, define ΨN as in (40) and consider the
subset Bg ⊂ Lg of loops l with map G, satisfying

ΨN
l →
N→∞

0 uniformly on ∆G(T ). (41)

Our aim is to find a small subset Cg of loops in Lg, such that Cg ⊂ Bg implies
Bg = Lg. In the first and second second sections, we shall use respectively the
following bounds. Thanks to (35), (36) and (37), using the same notation, for any
l ∈ Lg and X ∈ ml,

|X.ΨN
l | ≤ ‖X‖C ′l

(∑
v∈Vl

(√
ΨN

lv,1
+ |φ∞lv,1

|
)(√

ΨN
lv,2

+ |φ∞lv,2
|
)

+
1

N

)
(42)

and

|X.ΨN
l | ≤ ‖X‖C ′l

(
ΨN

l +
∑
v∈Vl

(ΨN
lv,1

+ ΨN
lv,2

) +
1

N

)
(43)

where C ′l > 0 is a constant independent of N ≥ 1.

4.1 Non-null homology loops
Let us denote by B∗g the subset Bg ∩ L∗g. This sub-section purpose is to prove
proposition 3.18. It is equivalent to the following statement. Denote by C∗g the
subset of L∗g of regular loops with non-zero homology which are geodesic.

Theorem 4.1. Assume that C∗g ⊂ B∗g. Then B∗g = L∗g.

To prove this Theorem we shall use the following application of Makeenko–Migdal
equations.

Lemma 4.2. Let l, l′ ∈ L∗g be two loops of a regular map G with faces set F , such
that there is K ⊂ F with K 6= F and l ∼K ηl′η−1 where η is a path with η = l′ and
η = l. Assume that l′ ∈ B∗g and that for any v ∈ Vl, if δv(l) = l1 ⊗ l2, then l1 or l2
belongs to B∗g. Then l ∈ B∗g.

We split the proof Theorem 4.1 into two steps enacted by the two following
propositions. The first one allows to contract inner loops. The second allows to
follow a shortening sequence from proper loops to loops conjugated to a geodesic.
Denote by P∗g of loops of L∗g which are proper or included in a fundamental domain.
Theorem 4.1 follows directly from the following Proposition.

Proposition 4.3. a) If P∗g ⊂ B∗g, then B∗g = L∗g.

b) If C∗g ⊂ B∗g, then P∗g ⊂ B∗g.

Proof. Let us prove first point a). Assume P∗g ⊂ B∗g and introduce for any n ≥ 0
the subset L∗n,g of loops l ∈ L∗g with #Vl ≤ n. We shall prove by induction on n
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that L∗n,g ⊂ B∗g. As a simple regular loop with non-zero homology belongs to P∗g,
L∗0,g ⊂ B∗g. Consider n > 0 and assume that the claim holds true for n−1. Consider
l ∈ Ln,g with #Vc,l > 0. Let us write l ∼c γ0.l∗.γ2 where l∗ is an inner loop of l and
γ0, γ2 are reduced loops. The loop l′ = γ1γ2 is regular and homotopic to l, while
l∗ ∈ Vl \ Vl′ . Therefore l′ ∈ L∗n−1,g and by induction l′ ∈ B∗g. Being included in Do,
l∗ is contractible. Denoting by K its bulk, K 6= F and l ∼K l′. Moreover for any
transversed intersection v ∈ Vl, if δv.l = l1 ⊗ l2 where l1 and l2, then

[l1] + [l2] = [l] and #Vl1 + #Vl2 + 1 = #Vl.

Since [l] 6= 0, we can assume that [l1] 6= 0. Then, thanks to the last equation
l1 ∈ L∗g,n−1 and by induction l1 ∈ B∗g. By Lemma 4.2, it follows that l ∈ B∗g, which
concludes the proof of the first point.

Consider now b), assume that C∗g ⊂ B∗g and introduce for any n ≥ 0 the subset
P∗n,g of proper loops l ∈ P∗g with |l|D ≤ n. We shall prove by induction on n that
P∗n,g ⊂ B∗g. When l ∈ P∗g,0, then l is included in a fundamental domain and l ∈ C∗g.
By assumption l ∈ B∗g.

Assume that n > 0 and P∗n−1,g ⊂ B∗g, and consider l ∈ P∗n,g. According to
Proposition 2.4, there is a geodesic loop l′ ∈ C∗g and shortening homotopy sequence
l1, . . . , lm of proper loops with l1 = l and lm ∼K ηl′η−1 for some path η and proper
subset of faces K. By assumption l′ ∈ B∗g. Therefore, by induction and Lemma 4.2,
it is enough to prove that for any 1 ≤ k ≤ m and v ∈ Vlm , then δv.lm = α ⊗ β for
some regular loops with α or β belonging to B∗g. Now since lm is proper, (19) yields

|α|D, |β|D < |lm|D ≤ |l1|D ≤ n.

Therefore by induction α and β belong to B∗g. This concludes the proof of b).

To complete the proof of Theorem 4.1, it remains to do the following.

Proof of Lemma 4.2. Setting

a′(f) =


T

#F−#F1
if f 6∈ K,

0 if f ∈ K.
(44)

defines an element of ∆K(T ). According to the compatibility Lemma ?? and using
that l′ ∈ B∗g,

ΨN
l (a′) = ΨN

ηl′η−1(a′) = ΨN
l′ (a

′) −→ 0 as N → +∞. (*)

Now since [l] 6= 0 and a, a′ ∈ ∆G(T ), according to Lemma 2.3, X = a− a′ ∈ ml. For
any v ∈ Vl, by assumption, we have δv.l = l1 ⊗ l2 with l1 ∈ B∗g. Therefore using the
inequality (42), each term of the summand vanishes uniformly on ∆G(T ) as N →∞
and for any t ∈ (0, 1),

|∂tΨN
l (a+ tX)| = |X.ΨN

l (a+ tX)| ≤ Cl‖X‖εN ≤ Cl(‖a‖+ ‖a′‖)εN (**)

where εN → 0. Thanks to the boundary condition (*), we conclude that

ΨN
l (a) = ΨN

l′ (a
′) +

∫ 1

0

∂tΨl(a+ tX)dt

converges to 0 uniformly in a ∈ ∆G(T ), as N →∞, that is l ∈ B∗g.
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4.2 Null homology loops
The purpose of this sub-section is to prove Proposition 3.17. It is equivalent to the
following statement. Denote by C∨g the subset of Lg of regular loops l, such that
there is a nested sub-path γnest of l making (l, γnest) a marked loop on a map of
genus g and with l∧ geodesic.

Theorem 4.4. If C∨g ⊂ Bg, then Bg = Lg.

To prove this Theorem, we shall use the following Lemma, formally analog to
Lemma 4.2. Though, unlike Lemma 4.2, due to the new constraint on the Makeenko–
Migdal vectors, we shall work here with marked loops which allow to change the
nested part in order to keep the contraint satisfied while performing the required
homotopy. This will break the induction on the number of intersection points. This
issue leads us to use of a different "complexity" function for loops, and is imple-
mented by a multiple induction on its parameters. The modification of the nested
part yields a constant complexity when applying Makeenko–Migdal equations. An
idea is then to apply Grönwall’s lemma, taking advantage of the nested structure of
the modification. This is presented in step 4 of the proof of Lemma 4.5 .

Denote by Lm
g the set of marked loops on a regular map of genus g.

Lemma 4.5. Assume that l ∈ Bg for any nested loop l ∈ Lg. Let (α, αnest), (β, βnest) ∈
Lmg be two marked loops on a regular map and K proper subset of faces, such that
αnest = βnest and α∧∗ ∼K β∧∗ , while

(i) β′ ∈ Bg, whenever (β′, β′nest) ∈ Lm
g with β′∧∗ = β∧∗ ,

(ii) for all v ∈ Vα with δv(α) = α1 ⊗ α2, α1, α2 ∈ Bg,

(iii) if α∧ is not proper, whenever (α′, α′nest) is a twist of (α, αnest), denoting by
Vtw the intersection points of the twisted part of α′nest,

∀v ∈ Vα′ \ Vtw, δv(α′) = α1 ⊗ α2, with α1, α2 ∈ Bg,

(iv) if α∧ is a proper loop, whenever (α′, α′nest) is a twist of a pull move of (α, αnest),
denoting by Vtw the intersection points of the twisted part of α′nest,

∀v ∈ Vα′ \ Vtw, δv(α′) = α1 ⊗ α2, with α1, α2 ∈ Bg.

When α∧ is not proper, assume furthermore that (α, αnest) has a moving edge or
vertex that is not adjacent to K.

Then α ∈ Bg.

Using this lemma, the rest of the proof is a refinement of the null-homology case
using a suitable complexity on marked loops. We shall study the subset Bm

g ⊂ Lm
g

of marked loops (l, lnest) ∈ Lm
g with l ∈ Bg. Denote by Cm

g the set of marked loops
(l, lnest) ∈ Lm

g with l∧ ∈ Cg. Denote by Pm
g the set of marked loops (l, γnest) ∈ Lm

g

with l∧ proper or included in a fundamental domain. With this definition, if C∨g ⊂
B0
g, then Cm

g ⊂ Bm
g , whereas if Bm

g = Lm
g , then Lg = Bg. Theorem 4.4 is then a

direct consequence of the following Proposition.

Proposition 4.6. a) If Pm
g ⊂ Bm

g , then Bm
g = Lm

g .

b) If Cm
g ⊂ Bm

g , then Pm
g ⊂ Bm

g .
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Proof. We shall prove both statements by multiple inductions. Denote by N the
set of non-negative integers and for any positive integer K > 0, let us endow NK
with the lexicographic order ≺. Consider a family of statements (Pn)n∈NK and
1 ≤ k ≤ K. Starting from any n ∈ NK , any strictly decreasing sequence in (NK ,≺)
with more than nk + . . . + nK steps will have an element with at least one of the
first k-coordinates vanishing. Assume that Pn holds true for all n ∈ NK with nl = 0
for some 1 ≤ l ≤ k. To prove Pn for all n ∈ NK , it is then enough to prove that for
all n ∈ NK , if Pn′ holds true for any n′ ≺ n with n′ 6= n, then Pn holds true. When
C : Lm

g → NK has been fixed, for all n ∈ NK , we denote by Ln,L
−
n and Pn,P

−
n the

marked loops x = (l, γnest) of Lm
g and Pm

g , with respectively C(x) ≺ n and C(x) ≺
6=
n.

Let us prove first point a). Assume Pm
g ⊂ Bm

g . For any marked loop x =
(l, γnest), let us set C(x) = (|l|D,#Vl∧ ,#Vlnest

). Consider n ∈ N3 and (l, γnest) ∈ Ln.
If n2 = 0, l∧ has no contraction point, (l, γnest) ∈ Pm

g and by assumption (l, γnest) ∈
Bm
g . If n1 = 0, l is included in a fundamental domain so that (l, γnest) ∈ Bm

g .
Let us now fix n ∈ N3 and assume that L−n ⊂ Bm

g . Let us prove that Ln ⊂
Bm
g . Consider (l, γnest) ∈ Ln. We may assume that n2 > 0 and (l, γnest) 6∈ Pg.

Consequently, we can write l ∼c γ0.l∗.γ2 where l∗ is an inner loop of l that does
not intersect γnest, while γ0, γ2 are reduced loops. The loop l′ = γ0γ2 is regular
and homotopic to l, while (l′, γnest) is a marked loop with l∗ ∈ Vl∧ \ Vl′∧ . Therefore
#Vl∧ < #Vl∧ . Besides |l′|D = |l|D, so that x ∈ L−n ⊂ Bm

g for any marked loop
x ∈ Lg with x∧ = (l′, γnest)

∧.
Being included in Do, l∗ is contractible. Denoting by K its bulk, K 6= F and

l ∼K l′. Possibly adding a vertex to an edge of the first path of the tile decomposition
of l that does not belong to an inner loop of l and rerooting l, we can assume w.l.o.g.
that γnest is not constant. By definition of marked loops, a moving edge e does not
belong to an inner loop and is therefore not adjacent to K. Since (l, γnest) is not
proper, it remains to check the conditions (ii) and (iii) of Lemma 4.5 for the pair
(l, γnest), (l

′, γnest). It is enough to check (iii). Consider v ∈ Vltw for a twist move
(ltw, γtw) of (l, γnest) and write δv(ltw) = l1 ⊗ l2. If v is an intersection of l∧∗tw with
γtw, since γtw does not intersect transversally ltw,D, |l1|D, |l2|D < |lt| = |l|D. As for
any α ∈ Lg with |α|D < |l|D (α, α) ∈ L−n ⊂ Bm

g , l1, l2 ∈ Bg. If v ∈ Vl∧tw , ltw,nest is a
sub-loop of l1 or l2, say l1. Then (l1, ltw,nest) is a marked loop, while l2 is a sub-loop
of l∧tw and

#Vl∧1 ,#Vl2 < #Vl∧ and |l1|D, |l2|D ≤ |l|D.
Therefore (l1, ltw,nest), (l2, l2) ∈ L−n . Lastly if v ∈ Vlnest

\ Vltw , l1 or l2, say l2, is a
sub-loop of lt,nest. Since lt,nest is nested and v 6∈ Vtw, there is a sub-path γ1,nest of
γnest such that (l1, γ1,nest) is a marked loop with (l1, γ1,nest)

∧ = (l, γnest)
∧. Denoting

by l1,nest its nested sub-loop,

#Vc,l∧1 = #Vc,l∧ ,#Vl1,nest
< #Vl while |l1|D = |l|D and |l2|D = 0. (45)

Therefore (l1, γ1,nest), (l2, l2) ∈ L−n . We conclude in the three cases that l1, l2 ∈ Bg.
This concludes the proof of point a).

Consider now b) and assume that Cm
g ⊂ Bm

g . For any marked loop x = (l, γnest) ∈
Lg, let us set |x|s = 0 if there is a marked loop y = (l′, γ′nest) with y∧ geodesic and
l ∼Σ l′. Otherwise let |l|s be the smallest l ≥ 1 such that there is a shortening
homotopy sequence l1, . . . , ll+1, satisfying the property of Lemma 2.8. We then set
for any marked loop x = (l, γnest), with nested loop lnest,

C(x) = (|l|D, |x|s,#Vl∧∗ ,#Vlnest
).
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Consider n ∈ N5 and (l, γnest) ∈ Pn. If n1 = 0, as argued above, (l, γnest) ∈ Bm
g .

If n2 = 0, then l ∼Σ l′ for some marked loop y = (l′, γ′nest) ∈ Cmg . Then ΨN
l = ΨN

l′

and by assumption, (l, γnest) ∈ Bm
g .

Let us now fix n ∈ N5 and assume that P−n ⊂ Bg. Let us prove that Pn ⊂ Bm
g .

Consider x = (l, γnest) ∈ Pn. Since C(x) does not depend on the number of trans-
verse intersections between γnest and l, we can assume w.l.o.g. that γ

nest
= γnest.

Besides, we can also assume |l|s > 0. Consider a shortening homotopy sequence
σ1, . . . , σ|x|s+1 as in Lemma 2.8, such that σ1 = l and (σk, lnest)1≤k≤|x|s+1 are
marked loops.

It is enough to prove that the assumptions of Lemma 4.5 are satisfied for the pair
x1 = (l, lnest), x2 = (σ2, lnest). Since L−n ⊂ Bm

g , while |σ∧2 |D = |σ2|D ≤ |σ1|D = |l|D
and |x2|s < |x|s ≤ n2, point (i) is satisfied. Let us check (iv). Consider a twist
(ltp, γtp) of a pull move (lp, γp) of (σ1, γ1,nest), denote by Vtw the intersection point
of the twisted part of γ1,nest and let us show that for all v ∈ Vltp \Vtw, δv(ltp) = la⊗lb
for loops la and lb of marked loops belonging to L−n . Now since l∧tp is proper, for any
v ∈ Vl∧tp ,

|la|D, |lb|D < |l|D.

When v ∈ Vltp,nest \Vtw, the argument is almost identical to the non-proper case: la
or lb, say lb is a sub-loop of ltp,nest and since ltp,nest is nested and v 6∈ Vtw, there is
a sub-path γa,nest of la and γp,nest such that (la, γa,nest) is a marked loop, while

#Vl∧∗a = #Vσ∧∗1
,#Vla,nest < #Vl1,nest and |la|D = |l|D, |l∧a |s = |l∧|s, |l2|D = 0.

In both cases, la, lb ∈ L−n so that (iv) is satisfied. For (ii), the first argument in the
last case analysis yields the claim. Since l∧ is proper, this concludes the proof of
b).

To complete the proof of Theorem 4.4, it remains to do the following.

Proof of Lemma 4.5. When (α, αnest) has a moving edge e or vertex αnest not ad-
jacent to K, let us set (l(0), γ

(0)
nest) = (α, αnest) and e(0) = e, when αnest is not

constant.
When (α, αnest) is proper, w.l.o.g., possibly adding a vertex to the first edge of

α, we can assume that αnest = βnest is not constant. Let us denote by (G◦,Gg)
a regular map finer than the one of α and β possibly modified accordingly. Let
us choose an arbitrary path γ∗ of G∗◦ \ ∂E whose first edge crosses e and with
γ∗ 6∈ K. We then define (l(0), γ

(0)
nest) as the pull move of (α, αnest) along γ∗. Denote

by G(0) = (V (0), E(0), F (0)) the associated map finer than G◦. The marked loop
(l(0), γ

(0)
nest) has then a moving edge e(0) with both adjacent faces disjoint from K.

Recall that Fstem denotes the subset of faces of G(0) associated to the pull move.
Then l(0) ∼Fstem

α and the restriction map ∆Fstem
(T ) → ∆G(T ) is surjective. In

both cases, it is enough to prove that l(0) ∈ Bg.

Step 1: Let us first argue that the convergence at stake holds true on a subset
of ∆G(0)(T ). Since the pull operation does not change the cut of the marked loop,
l(0)∧∗ = α∧∗ and l(0) = γ

(0)
nestα

∧∗ ∼K l(0)′ = γ
(0)
nestβ

∧∗ . Also since β∧∗ is a regular
path of G◦ that does not use edges of αnest, while the pull move changes solely
αnest using only edges disjoint from edges of G◦, (l(0)′, γ

(0)
nest) is a marked loop.
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Since l(0)′∧∗ = β∧∗ , by assumption, l(0)′ ∈ Bg. Using that l(0) ∼K l(0)′, ΨN
l(0) → 0

uniformly on ∆G(0),K(T ).
Let us now use Makeenko–Migdal equations to enlarge this set of convergence.

Thanks to Theorem 4.1, we can assume that [l(0)] = 0. Let fl, fr be the faces left and
right of the moving edge e(0). Recall from Lemma 2.2, that since [l(0)] = 0, l(0) has a
unique winding function nl(0) ∈ Ω2(G(0)) with nl(0)(f

(0)
l ) = 1

2 . For any a ∈ ∆G(0)(T )

with |〈nl, a〉| ≤ T
2 , setting

a′(f) =



T
2 + 〈nl(0) , a〉 if f = fl,

T
2 − 〈nl(0) , a〉 if f = fr,

0 if f ∈ F \ {fl, fr},

(46)

defines an element a′ ∈ ∆G(0)(T ) with 〈nl(0) , a〉 = 〈nl(0) , a′〉 and hence X = a′ − a ∈
ml(0) . On the one hand, since e(0) is not adjacent toK, a′ ∈ ∆G(0),K(T ). On the other
hand, for all v ∈ Vl(0) , thanks to point (ii), δv(l(0)) = l1 ⊗ l2 with l1, l2 ∈ Bg. Using
exactly the same argument as in Lemma 4.2, it follows that ΨN

l(0) → 0 uniformly on
{a ∈ ∆G(0) : |〈nl(0) , a〉| ≤ T

2 }.

Step 2: From here onwards, the argument differs substantially from the one of
Lemma 4.2. Choosing the same convention for nl(0)−1 , nl(0)−1 = −nl(0) and since
ΨN

l(0)−1 = ΨN
l(0) , it is enough to show that as N →∞, ΨN

l(0) → 0 uniformly on

∆
(0)
+ (T ) =

{
a ∈ ∆G(0)(T ) : 〈nl(0) , a〉 ≥

T

2

}
.

Let us set n = max(1,maxf∈F (0) nl(0)(f)) and define (l, γnest) as the n-twist of
(l(0), γ

(0)
nest). Denote by G = (V,E, F ) the associated map finer than G(0). Recall

that Ftw denotes the subset of n faces of F associated to the twist move such that
l ∼Ftw

l(0). Denote by fo ∈ F \ Ftw the face included in fl neighbouring Ftw and by
fc ∈ Ftw the central face of (l, γnest). Faces of F (0) \ {fl} are not changed by the
twist and can be identified with F \ (Ftw ∪ {fo}) . Recall that [l] = [l(0)] = 0 and
denote by nl the winding number function of l with nl(fr) = 0. It satisfies

nl(fc) = n+
1

2
,

1

2
≤ nl(f) ≤ n− 1

2
,∀f ∈ Ftw \ {fc}

while

nl(f) = nl(0)(f),∀f ∈ F \ (Ftw ∪ {fo}) and nl(fo) =
1

2
= nl(0)(fl).

Consider now
∆+(T ) =

{
a ∈ ∆G(T ) : 〈nl, a〉 ≥

T

2

}
.

For any a ∈ ∆Ftw(T ), nl(a) = nl(0)(a) and the restriction map from ∆Ftw,+(T ) =

∆Ftw(T ) ∩∆+(T ) to ∆
(0)
+ (T ) is surjective. Therefore, since l ∼Ftw l(0), it is enough

to show that ΨN
l → 0 uniformly on ∆Ftw,+(T ).
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Step 3: Let us argue as above that this convergence holds true on another set
of areas. Since the pull and twist operations do not change the cut of the marked
loop, l∧∗ = α∧∗ and l = γnestα

∧∗ ∼K l′ = γnestβ
∧∗ . Also since β∧∗ is a regular path

of G◦ that does not use edges of αnest, while the pull and twist moves change solely
αnest using only edges disjoint from edges of G◦, (l′, γnest) is a marked loop. Since
l′
∧∗ = β∧∗ , by assumption, l′ ∈ Bg. Using that l ∼K l′,

ΨN
l → 0 uniformly on ∆G,K(T ). (47)

Step 4: Let us now enlarge the convergence set using Makeenko–Migdal equa-
tions. Setting K∗ = F \ {fc, fo}, as fl 6∈ K, K∗ ⊃ K. Moreover since the winding
function is larger than 1

2 on {fc, fo},

∆K∗(T ) ⊂ ∆+(T ) ∩∆K(T ).

For any a ∈ ∆Ftw,+(T ), setting

a′(f) =



〈nl,a〉−T
2

n if f = fc,

T (n+ 1
2 )−〈nl,a〉
n if f = fo,

0 if f ∈ F \ {fo, fin}.

(48)

defines an element a′ ∈ ∆K∗(T ) with 〈nl, a〉 = 〈nl, a′〉 and hence

X = a− a′ ∈ ml.

Let us now bound δvΨl for all v ∈ Vl. Denote by Vtw = {v1, . . . , vn} the
n intersection points of the twisted part of lnest, ordering them so that lnest =
(v1 . . . vnvn . . . v1). The dual graph induces an order f1, . . . fn of Ftw, with fn = fc.
Let us set for all 1 ≤ k ≤ n, Fk = {fk, . . . , fn}. On the one hand, using (ii), for all
v ∈ Vl \ Vtw, δv(l) = lv,1 ⊗ lv,2, with lv,1, lv,2 ∈ Bg.

On the other hand, for all 1 ≤ k ≤ n, δv(l) = αk ⊗ lk, where αk is a nested loop,
hence αk ∈ Bg and lk is a sub-loop of l, with l1 = l(0) and lk ∼Fk

l for all 1 ≤ k ≤ n.
Since X ∈ ml, using the inequality (43), we find

|X.ΨN
l | ≤ C

(
εN + ΨN

l +

n∑
k=1

ΨN
lk

)
. (49)

where C > 0 is a constant independent of N and εN = 1
N + sup1≤k≤n+

‖ΨN
αk
‖∞ +

supv∈Vl\Vtw

(
‖ΨN

lv,1
‖∞ + ‖Ψlv,2

‖∞
)
. Consider for all t ∈ [0, 1],

∆in(t) = {a ∈ ∆G(tT ) : a(f) = 0,∀f 6∈ Ftw ∪ {fo}}

and for all a ∈ ∆Ftw,+(T ) fixed, set

HN
a (t) = sup

b∈∆in((1−t)T )

Ψl(ta+ b),∀0 ≤ t ≤ 1.
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fc = f3

fo = f0

f1

f2

l2

v2

Figure 13: Example of a n-left twist with n = 3. We consider here k = 2, the area of F2

needs to be "moved" into f1. We have a(f1) = a(f2) = a(f3) = 0 = a′(f1) = a′(f2). For
all 0 < s < t < 1, define b2 setting b2(f1) = b(F1) + (t − s)a′(F1) and 0 for other faces.
Denote as,t = sa+ (t− s)a′ + b and ãs,t = sa+ b2. On the one hand, for any face f 6∈ F1,
as,t(f) = a′s,t(f) while as,t(F1) = a′s,t(F1), therefore ΨN

l2
(as,t) = ΨN

l2
(ãs,t). On the other

hand, ãs,t(F2) = 0 so that ΨN
l2

(ãs,t) = ΨN
l (ãs,t).

On the one hand, for any t ∈ (0, 1) and b ∈ ∆in(T − tT ),

∂sΨ
N
l (sa+ (t− s)a′ + b) = X.ΨN

l (sa+ (t− s)a′ + b),∀s ∈ (0, t).

On the other hand, for all s ∈ (0, t), since a(Fk) = 0 and lk ∼Fk
l for all k, there are

b1, . . . , bn ∈ ∆in(T − sT ) ∩∆Fk
(T ) (see Figure 13) such that

Ψlk(sa+ (t− s)a′ + b) = Ψl(sa+ bk),∀1 ≤ k ≤ n. (50)

Combining the last two equalities with the bound (49), we find

HN
a (t) ≤ HN

a (0) + εNC + (n+ 1)C

∫ t

0

HN
a (s)ds,∀t ∈ [0, 1], a ∈ ∆Ftw,+(T ).

By Grönwall’s inequality,

HN
a (t) ≤ (HN

a (0) + εNC) exp((n+ 1)Ct),∀t ∈ [0, 1]. (51)

Since ∆in(T ) ⊂ ∆K(T ), by (47)

sup
a∈∆Ftw,+

HN
a (0) ≤ sup

x∈∆G,K(T )

Ψl(x)

vanishes as N →∞. Since εN → 0 as N →∞, from (51),

ΨN
l (a) = HN (1)→ 0

uniformly in a ∈ ∆Ftw,+(T ). According to step 2, this concludes the proof.
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5 Proof of convergence after surgery
We give here the main arguments to prove Theorem 3.11.

Proof of Lemma 3.10. Thanks to the second part of Lemma 3.2, under YMG,{f∞},a,
(hl1 , . . . , hlr , ha1

, . . . , hbg ) are independent random variables on GN , such that for
all 1 ≤ i ≤ g, hai , hbi are Haar distributed, while for any 1 ≤ k ≤ r, hlk has same
law as a Brownian motion at time a(fk). It is now standard, see [36, Section 3],
that as N →∞, these tuple of matrices is asymptotically freely independent and its
joint non-commutative distribution converges towards τv satisfying the properties
(*), 1,2 and 3.

Let us use the same notation as in Theorem 3.11. In what follows, we will denote
by E (resp. Ei, E′i) the expectation with respect to YMG,a (resp. YMGi,ai , YMG′i,a).
In a previous paper, we proved that the restriction to G′1 of YMG,a is absolutely
continuous with respect to YMG′1,a.

Proposition 5.1 ([16], Corollary 4.3). Let l ∈ RLv(G′1). For any f : GN → C
bounded, measurable and central,

E[f(Hl)] = E′1[f(Hl)I(H−1
l0

)], (52)

where I : GN → C is a bounded measurable function such that

‖I‖∞ ≤
Zg1,a(F1)Zg2,a(F2)

Zg,T
.

Note that the bound in the previous proposition ensures that I is uniformly
bounded, because for any considered sequence (GN ), the corresponding sequences
of partition functions converge, therefore they are bounded.29

Proof of Theorem 3.11. Let l be a loop in Lv(G1). According to Proposition 5.1,

E[Wl] = E′1[WlI(Hl−1
0

)]

where I is uniformly bounded by a finite constant. From Lemma 3.10 we have
the convergence of Wl under YMG1,a, which implies the convergence in probabil-
ity towards Φ1,g1

l (a1). The proof of uniform convergence uses a simpler version of
Proposition 3.6. Being very similar to the proof of uniformity in Theorem 2.12 in
[16], its proof is not detailed here.

It remains to identify Φ1,g1

l (a1) with Φl(a). Consider the linear functional τ̃ on
(C[RLv(G1)], ∗) extending linearly Φ(a). Consider a basis l1, . . . , lr, lr+1, a1, b1, . . . ,
ag1

, bg1
of RLv(G1) as in Lemma 2.1.

It is enough to show that properties 1,2 and 3 are satisfied. Denote by ṽ0 a
vertex of G̃ with v0 ∈ D = D1 and p(v0) = v. The identity Φγ̃n(ã) = 0,∀n 6= 0,
for any lift γ̃ of γ ∈ {a1, . . . bg} implies point 2. Point 3 follows point 1 of Lemma
3.9. Consider the free independence property. Note that l1, . . . , lr have same joint
distribution under τv and τ̃ . Hence, thanks to point 2 of Lemma 3.9, l1, . . . , lr are
freely independent under τ̃ .

29Besides, when g1, g2 ≥ 2 and GN 6= U(N), it remains bounded uniformly in a ∈ ∆G(T ), which allows
then to drop the condition a(F1) ∈ (0, T ) in Theorem 3.11.
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Let us now recall that the images of a1, b1, . . . , ag1
, bg1

in Γg span a free sub-
group Γ′ of Γg of rank 2g1, isomorphic to the fundamental group of the surface with
one boundary given by the total space of (G1, {f1,∞}). To conclude it is enough
to show that the sub-algebras A and B of C[RLv(G1)] spanned respectively by
Sc = {l1, . . . lr} and Stop = {a1, b1 . . . , ag1 , bg1} are free under τ̃ . Let us first note
that a1, . . . , bg1 are freely independent under τ̃ . Indeed, for any word w in Stop and
their inverses, since the image of Stop is a free basis of Γ′, the loop lw ∈ RLv(G1)
associated to w satisfies lw ∼h cv if and only if w can be reduced to the empty
word, so that (a1 . . . , bg1

) has same distribution as a tuple of 2g1 freely independent
Haar unitaries. Moreover for any word w in Stop and their inverses, the collection
of vertices and non-oriented edges visited by the lift l̃w with l̃w = ṽ0, form a tree of
G̃.

Consider now reduced words w1, . . . , wk in Stop and their inverses. Denote by
Γc the subgroup of RLv(G1) spanned by Sc. For any α1, . . . , αk ∈ Γc, consider the
loop obtained by the concatenation

l = lw1
α1lw2

. . . lwk
αk. (*)

Since l ∼h lw, where w = w1 . . . wk, and images of Stop form a free basis of Γ′, we
conclude as above that τ̃(l) = 0 whenever w1 . . . wk cannot be reduced to the empty
word.

Otherwise, consider the tree Tw and the following property of the lift. Each
loop in the decomposition (*) of l has a unique lift so that l̃ = l̃w1 α̃1̃lw2 . . . l̃wk

α̃k,
with l̃ = ṽ0. Their respective base points satisfy l̃wi

= α̃i for all i, whereas for
any i < j, l̃wi = l̃wj if and only if wi+1 . . . wj can be reduced to the empty word,
that is w1 . . . wi ∼r w1 . . . wj . Moreover for any i, α̃i is included in Dw1...wi

and
can be decomposed as a product of lassos based at lwi

with meanders in D∗w1...wi
.

Now for any vertex ṽ of Tw, let γṽ be the unique path of Tw with γ
i

= ṽ0 and
γi = ṽ. Then {(γṽ l̃mγ−1

ṽ )1≤m≤r, ṽ ∈ Tw} are collection of lassos of G̃ based at ṽ0

which can be completed to form a free basis of an area weighted planar map coarser
than (G̃, ã), with the same property as in Lemma 3.9. In particular, denoting
by τ̂ the state with τ̂ (̃l) = Φl̃(ã) for all l̃ ∈ RLṽ(G̃), thanks to property 2., the
families {(γṽ l̃mγ−1

ṽ )1≤m≤r, ṽ ∈ Tw} are freely independent under τ̂ . Denoting for
any ṽ ∈ Tw, Aṽ the algebra spanned by (γṽ l̃mγ

−1
ṽ )1≤i≤r and by Θṽ : A → Av

the algebra morphism with Θṽ(l
ε
i ) = γṽl

ε
iγ
−1
ṽ ,∀ε ∈ {1,−1}, 1 ≤ i ≤ r, the algebras

(Aṽ)ṽ∈Tw are free under τ̂ .Moreover, setting ṽl = l̃wl
,∀1 ≤ l ≤ k, since wl is reduced,

ṽl 6= ṽl−1. Thanks to the latter free independence under τ̂ , for all x1, . . . , xk ∈ A
with τ̃(xl) = 0,∀1 ≤ l ≤ k,

τ̃(w1x1 . . . wkxk) = τ̂(Θṽ1
(x1)Θṽ2

(x2) . . .Θṽk(xk)) = 0.

Since Stop are freely independent Haar unitaries under τ̃ , it follows by linearity that
for any y1, . . . , yk ∈ B with τ̃(yl) = 0 for all 1 ≤ l ≤ k,

τ̃(y1x1 . . . ykxk) = 0.

It is enough to conclude that A and B are free under τ̃ .
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6 Liberation and master field on the torus
Let us give here a proof of corollary 1.11. For T > 0, let us consider the two
dimensional torus T2

T obtained as the quotient R2/
√
TZ2 endowed with the push-

forward of the Euclidean metric, so that it has total volume T . Denote by α and β the
loop of T2

T obtained by projecting the segments from (0, 0) to respectively (
√
T , 0)

and (0,
√
T ). Then, under YMΣ, the law (a, b) on G2 is given by (12). Therefore, for

any word w in α, β, α−1, β−1 denoting by [w] ∈ Z2 the signed number of occurences
of α and β and by γ̃w the path of R2 starting from (0, 0) obtained by lifting the loop
Σ formed by w, under YMΣ, the following converge holds in probability as N →∞,

τρN (w)→

 ΦR2(γ̃w) if [γw] = 0

0 if [γw] 6= 0.

The first statement of Corollary 1.11 follows considering the non-commutative
distribution ΦT of αt and β under the limit of τρN as N →∞.

On the one hand, for any word w with [w] = 0, γw is a loop and by continuity of
the master (Point 1 of Theorem 3.8), ΦT (w) = ΦR2(γw)→ 1 as T → 0. On the other
hand, for any word w with [w] 6= 0, γ̃w is not a loop, [γw] 6= 0, and for all T > 0,
ΦT (w) = 0. Therefore, for all word in α, β, α−1, β−1, limT→0 ΦT (w) = τu ?c τu(w),
since

τu ?c τu(w) =

 1 if [w] = 0,

0 otherwise.

Consider now the second limit of corollary 1.11. When (G, a) an area weighted
map embedded in R2 with v a vertex of G sent to 0 by the embedding, consider
the state τ̂T on (RLv(G), ∗) such that τ̂T (l) = ΦR2(`T ), where ` is the drawing of l
while `T =

√
T`. Consider a free-basis of lassos l1, . . . lr of RLv(G), with meanders

given by distinct faces of area a1, . . . , ar. Under τ̂T , l1, . . . , lr are r independent
unitary Brownian motion marginals at time

√
Ta1, . . . ,

√
Tar. It follows easily from

its definition in moments, that the free unitary Brownian motion at time s converges
weakly towards a Haar unitary as s → ∞. Since a ∈ ∆o(T ), (l1, . . . , lr) converges
weakly toward r freely independent unitary variables as T →∞. Therefore, for any
reduced loop l, limT→∞ τ̂T (l) = 1 if l is the constant loop and 0 otherwise. Now for
any word w in α, β, α−1, β−1, with [w] = 0, it follows that

lim
T→∞

ΦT (w) =

 1 if γw ∼r c with c constant,

0 otherwise.

Since γw ∼r c where c is a constant loop if and only if w can be reduced to the
empty word, it follows that limT→∞ΦT (w) = τu ? τu(w).

Let us now recall a way introduced in [5] to compute the evaluation of τA ?t τB
given τA and τB, solving systems of ODEs in the parameter t and present an argu-
ment for (13). Let us say that a non-commutative monomial P in (X1,i)i∈I , (X2,j)j∈I
is alternated if it is of the form Xε1,i1Xε2,i2 . . . Xεn,in with εk 6= εk+1 for all 1 ≤ k <
n. Denote by dX2 is degree in the variables (X2,j)i∈I . For such a monomial, let us
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set

∆ad.P =− dX2(P )

2
(P ⊗ 1 + 1⊗ P ) +

∑
Q1,Q2,i

X2,i ⊗Q1Q2,

−
∑

P1,1,P1,2,P2,i,j

[
X2,iP2 ⊗ (P1,1X2,jP1,2) + (P1,1X2,iP1,2)⊗ P2X2,j

− (P1,1P1,2)⊗ (X2,iP2X2,j)− (P1,1X2,iX2,jP1,2)⊗ P2

]
where the first sum is over all monomials Q1, Q2 and i ∈ I such that P = Q1X2,iQ2,
while the second is over all monomials P1,1, P1,2, P2 and i, j ∈ I such that P =
P1,1X2,iP2X2,jP1,2. With these notations, Theorem 3.4 of [5] states that for all
alternated non-commutative monomial P in (X1,i)i∈I , (X2,j)j∈I , τA ?t τB(P ) is dif-
ferentiable with

∂tτA ?t τB(P ) = (τA ?t τB)⊗2(∆ad.P ),∀t ≥ 0.

For instance assume that for all t ≥ 0, (a, b) is a t-free couple within a non-
commutative probability space (C, τt), such that a and b are Haar unitaries for all
t > 0. Then for any n ≥ 1,

∂tτt(ab
n) = −τt(abn) + τ(a)τt(b

n) = −τt(abn),∀t ≥ 0

and since τ0(abn) = τ0(a)τ0(bn) = 0,

τt(ab
n) = 0.

Likewise

∂tτt(ab
na∗(b∗)n) = −2τt(ab

na∗(b∗)n) + τt(b
n)τt(aa

∗(b∗)n) + τt(ab
na∗)τt((b

∗)n)

− τt(a(b∗)n)τt(b
na∗)− τt(a(b∗)n)τt(b

na∗) + τt(a)τt(b
na∗(b∗)n) + τt(ab

n(b∗)n)τt(a
∗)

= −2τt(ab
na∗(b∗)n).

Since τ0(abna∗(b∗)n) = τ0(aa∗)τ0(bn(b∗)n) = 1, this implies

τt(ab
na∗(b∗)n) = e−2t. (53)

A similar argument together with (11) imply the following lemma.

Lemma 6.1. 1. For any word w in a, b, a−1, b−1, if [w] 6= 0,

τt(w) = 0.

2. For any n ≥ 1,

∂tτt([a, b]
n) = −2nτt([a, b]

n)− 2n

n−1∑
k=1

τt([a, b]
k)τ([a, b]n−k).

3. For any n ∈ Z and t ≥ 0,

τt([a, b]
n) = ν4t(|n|).
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The last equality of corollary 1.11 follows from last point of the above Lemma.
Besides for any t > 0, T > 0

τu ?t τu(XYX∗Y ∗) = e−2t and ΦT (XYX∗Y ∗) = e−
T
2 ,

so that if τu ?t τu = ΦT then T = 4t. But (53) implies

τu ?t τu(XY 2X∗Y −2) = e−2t > e−4t = Φ4t(XY
2X∗Y −2).

Therefore for all t, T > 0, ΦT 6= τu ?t τu.

7 Appendix

7.1 Makeenko–Migdal equations
Let us recall some tensor identities, instrumental to prove Makeenko–Migdal rela-
tions.

Definition 7.1. Consider a Lie algebra g endowed with an inner product 〈·, ·〉. The
Casimir element of (g, 〈·, ·〉) is the tensor Cg ∈Md(C)⊗RMd(C) defined by

Cg =
∑
X∈B

X ⊗X, (54)

where B is an orthonormal basis of g for the inner product 〈·, ·〉.

It is simple to check that the definition of the Casimir element does not depend
on the choice of the basis but only on the inner product 〈·, ·〉. We focus on the setting
recalled in section 3.1; we consider the Lie algebra gN of a group GN ∈ CGN with
the inner product (1) considered in [16, Section 2.1.]. We set the value β to be
respectively 1 and 4 when GN is O(N) and Sp(N) and 2 otherwise, that is when
GN is SU(N) or U(N). We set γ = 1 when GN = SU(N) and 0 otherwise.

Most of the following results can be proved by a direct computation using an
arbitrary chosen basis. For any (a, b) ∈ {1, . . . , N}2, the elementary matrix Eab ∈
MN (R) is defined by (Eab)ij = δaiδbj .

We shall need the following standard result result on the Casimir element in this
setting, which gives computation rules for traces of products and product of traces
involving elements of B.

Lemma 7.1. For any A,B ∈ GN we have :∑
X∈B

tr(AXBX) = −tr(A)tr(B)− β − 2

βN
tr(AB−1) +

γ

N2
tr(AB) (55)

and ∑
X∈B

Tr(AX)Tr(BX) = −tr(AB)− β − 2

βN
tr(AB−1) + γtr(A)tr(B). (56)

Proof. We only sketch the proof in order to show where the expressions come from.
First of all, remark that by linearity they only need to be proved for A = Eij and
B = Ek`. We have for instance∑

X∈B
tr(AXBX) =

1

N

∑
X∈B

∑
a,b,c,d

AabXbcBcdXda =
1

N
(Cg)jk`i,
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where we have set (∑
i

Xi ⊗ Y i
)
abcd

=
∑
i

Xi
abY

i
cd.

Using the expression of Cg for each value of g leads to Eq. (55). By similar compu-
tations we also obtain Eq. (56).

In the unitary case, the formulas in Lemma 7.1 are known as the "magic formu-
las", as stated in [21] for instance, and appeared already in [50]; they are crucial
to the derivation of Makeenko–Migdal equations for Wilson loops, that we briefly
recall in the next section. Although we do not detail it, there exist a beautiful in-
terpretation Lemma 7.1 in terms of Schur–Weyl duality; the interested reader can
refer to [34] or [15] for an explanation and discussion of this fact and to [36, Chap.
I, Section 1.2 ] about the above Lemma.

7.2 Makeenko–Migdal equations
Given a topological map G of genus g with m edges, a vertex of G will be said to
be an admissible crossing if it possesses four outgoing edges labelled e1, e2, e3, e4

counterclockwise.

Definition 7.2. Let G be map of genus g with m edges, and v be an admissible
crossing. A function f : Gm → C has an extended gauge invariance at v if for any
x ∈ G,

f(a1, a2, a3, a4,b) = f(a1x, a2, a3x, a4,b) = f(a1, a2x, a3, a4x,b), (57)

where ai denotes the variable associated to the edge ei and b denotes the tuple of
other edge variables than e1, e2, e3, e4.

The extended gauge-invariance was first introduced by Lévy in [35] to prove
Makeenko–Migdal equations in the plane, then used in [22] to give alternative, local
proofs of these equations, which allowed in [21] to prove their validity on any surface;
these last equations were then applied in [17, 29].

Theorem 7.2 (Abstract Makeenko–Migdal equations). Let (G, a) be an area-weighted
map of area T and genus g with m edges, and f : Gm → C be a function with ex-
tended gauge invariance at an admissible crossing v. Denote by f1 (resp. f2, f3, f4)
the face of G whose boundary contains (e1, e2) (resp. (e2, e3), (e3, e4), (e4, e1)). De-
note by ti the area of the face fi, choose an orthonormal basis B of g with respect to
the chosen inner product, and set

(∇a1 · ∇a2f)(a1, a2, a3, a4,b) =
∑
X∈B

∂2

∂s∂t
f(a1e

sX , a2e
tX , a3, a4,b)

∣∣
s=t=0

.

We have (
∂

∂t1
− ∂

∂t2
+

∂

∂t3
− ∂

∂t4

)∫
Gm

fdµ = −
∫
Gm

∇a1 · ∇a2fdµ. (58)

Equation (58) might be confusing, as it involves partial derivatives with respect
to variables that do not appear explicitly in the function

∫
Gm fdµ; it becomes in fact
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clearer after being translated in terms of the area simplex. We define the differential
operator µv on functions ∆G(T )→ C by

µv =
∂

∂a1
− ∂

∂a2
+

∂

∂a3
− ∂

∂a4
,

using the labelling of a = (a1, . . . , ap) ∈ ∆G(T ) such that ai corresponds to the face
fi. Equation (58) becomes then

µvE(f) = −E(∇a1 · ∇a2f),

and now everything only depends on the areas of the faces. We want to apply
these abstract Makeenko–Migdal equations to functionals of Wilson loops, in order
to obtain the convergence to the master field. We define, for k unrooted loops
l1, . . . , lk ∈ Lc(G), the k-point function φGl1,...,lk : ∆G(T )→ C by

φGl1⊗...⊗lk = E(Wl1 · · ·Wlk).

and extend it linearly to C[Lc(G)]⊗k. The following proposition offers an estimate
of the face-area variation of the functions φGl1⊗...⊗lk .

Proposition 7.3 (Makeenko–Migdal equations for Wilson loops). Assume that
GN ∈ CGN and 〈·, ·〉 are fixed as in section 3.1. Let (G, a) be a weighted map
of area T and genus g with m edges, and v be an admissible crossing in G.

1. If v is a self-intersection of a single loop l1 such that the edges (e±1
j , 1 ≤ j ≤ 4)

are visited in the following order: e1, e
−1
4 , e2, e

−1
3 , then define l11 the subloop

of l1 starting at e1 and finishing at e−1
4 , l12 the subloop starting at e2 and

finishing at e−1
3 . We have, for any loops l2, . . . , lk that do not cross v,

µvφ
G
l1⊗...⊗lk = φGl11⊗l12⊗l2⊗...⊗lk +

2− β
βN

φG
l11l
−1
12 ⊗l2⊗...⊗lk

+
γ

N2
φl1⊗...⊗lk , (59)

µvφ
G
l1⊗l−1

1
= φG

l11⊗l12⊗l−1
1

+ φG
l1⊗l−1

11 ⊗l
−1
12

+
Rl1

N
, (60)

where the |Rl1 | ≤ 10 uniformly on ∆G(T ).

2. If v is the intersection between two loops l1 and l2 such that l1 starts at e1 and
finishes at e−1

3 , and l2 starts at e2 and finishes at e−1
4 , then define l the loop

obtained by concatenation of l1 and l2. We have, for any loops l3, . . . , lk that
do not cross v,

µvφ
G
l1⊗l2⊗...⊗lk =

Rl1⊗l2⊗...⊗lk
N2

(61)

with |Rl1⊗l2⊗...⊗lk | ≤ 3 uniformly on ∆G(T ).

It was proved for all classical Lie algebras if G is a planar combinatorial graph
by Lévy in [36, Prop. 6.16] when the loops form what he called a skein. If G is a
map of genus 0 and g is the Lie algebra of U(N), this result was proved by one of
the authors with Norris in [17, Prop. 4.3]. See also [22, Prop. ]

Proof of Prop. 7.3. Let us start with the first case, which is when v is a self-
intersection of a loop l1. We take Eo = {e1, e2, e3, e4, e

′
1, . . . , e

′
m−4} as an orientation

64



of E, with e1, e2, e3, e4 the four outgoing edges from v. We identify any multiplica-
tive function h ∈ M(P (G), G) to a tuple (a1, a2, a3, a4,b) by setting ai = hei and
b = (he′i)1≤i≤m−4 the tuple of all other images of edges by h. There are words
α, β, w2, . . . , wk in the elements of b such that

hl1 = a−1
3 αa2a

−1
4 βa1, hli = wi ∀2 ≤ i ≤ k.

It appears that φGl1,...,lk = E(f), where f is the extended gauge-invariant function

f :

{
Gm → C

(a1, a2, a3, a4,b) 7→ tr(a−1
3 αa2a

−1
4 βa1)tr(w2) · · · tr(wk).

Then, by the abstract Makeenko–Migdal equation (58), we get

µvE(f) = −E(∇a1 · ∇a2f),

and by definition

∇a1 · ∇a2f =

(∑
X

tr(a−1
3 αa2Xa

−1
4 βa1X)

)
tr(w2) · · · tr(wk)

where X runs through an orthonormal basis of g. A straightforward application of
(55) from Lemma 7.1 yields (59), by noticing that hl11

= a−1
4 βa1 and hl12

= a−1
3 αa2.

Similarly, we have φGl,l−1 = E(f ′), where

f ′ :

{
Gm → C

(a1, a2, a3, a4,b) 7→ tr(a−1
3 αa2a

−1
4 βa1)tr(a−1

1 β−1a4a
−1
2 α−1a3).

We have

∇a1 · ∇a2f ′ =
∑
X

{
tr(a−1

3 αa2Xa
−1
4 βa1X)tr(a−1

1 β−1a4a
−1
2 α−1a3)

− tr(a−1
3 αa2a

−1
4 βa1X)tr(a−1

1 β−1a4Xa
−1
2 α−1a3)

− tr(a−1
3 αa2Xa

−1
4 βa1)tr(Xa−1

1 β−1a4a
−1
2 α−1a3)

+ tr(a−1
3 αa2a

−1
4 βa1)tr(Xa−1

1 β−1a4Xa
−1
2 α−1a3)

}
,

and a simultaneous application of (55) and (56) leads to the result. We detail the
case of SU(N) and leave the others as an exercise: if we set A = hl11

and B = hl12
,

then∑
X

tr(AXBX)tr(B−1A−1) =− tr(A)tr(B)tr((AB)−1) +
1

N
tr(AB)tr((AB)−1)

∑
X

tr(ABX)tr(B−1XA−1) =− 1

N2
tr([A,B]) +

1

N
tr(AB)tr(A−1B−1)

∑
X

tr(AXB)tr(XB−1A−1) =− 1

N2
tr([A,B]−1) +

1

N
tr(BA)tr(B−1A−1)

∑
X

tr(AB)tr(XB−1XA−1) =− tr(A−1)tr(B−1)tr((AB)) +
1

N
tr(AB)tr(A−1B−1).
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We can then take the expectation of the alternated sum of these expressions, and as
all traces are bounded by 1 because they apply to special unitary matrices, we find
that all terms with a coefficient 1

N or 1
N2 fall into O

(
1
N

)
which does not depend on

any loop30, so that

φ
SU(N)

l1⊗l−1
1

= φ
SU(N)
l11⊗l12⊗(l11l12)−1 + φ

SU(N)

l−1
11 ⊗l

−1
12 ⊗(l11l12)

+O
( 1

N

)
.

Let us now turn to the second case, when v is the intersection of l1 and l2. We
take Eo = {e1, e2, e3, e4, e

′
1, . . . , e

′
m−4} as an orientation of E, with e1, e2, e3, e4 the

four outgoing edges from v. There are words α, β, w2, . . . , wk in the elements of b
such that

hl1 = a−1
3 αa1, hl2 = a−1

4 αa2, hli = wi ∀3 ≤ i ≤ k.

We have φGl1,...,lk = E(f), where f is the extended gauge-invariant function

f :

{
Gm → C

(a1, a2, a3, a4,b) 7→ tr(a−1
3 αa1)tr(a−1

4 βa2)tr(w2) · · · tr(wk),

then
µvE(f) = −E(∇a1 · ∇a2f),

where

∇a1 · ∇a2f =

(∑
X

tr(a−1
3 αa1)tr(Xa−1

4 βa2X)

)
tr(w2) · · · tr(wk).

The result follows then from (56).

By letting N →∞ in Prop. 7.3, one immediately gets the following.

Corollary 7.4 (Makeenko–Migdal equations for a master field). Assume for some
some sequence GN , N ≥ 1 with GN ∈ CGN for all N ≥ 1, we have for all maps G of
genus g ≥ 1 and l ∈ L(G), limN→∞ ΦG

N

l and limN→∞ΦGN

l⊗l−1 = |Φl|2 uniformly on
∆G(T ), then Φ defines an exact solution of the Makeenko-Migdal solution as defined
in section 3.5.

To address uniqueness questions, it is convenient to work with centered Wilson
loops. Define, for any l1, . . . , lk in an area-weighted graph (G, a),

ψGl1⊗...⊗lk = E

[
k∏
i=1

(Wli − Φli)

]
.

Proposition 7.5 (Makeenko–Migdal equations for centered Wilson loops). Assume
g ≥ 0, T > 0, l ∈ Lg, v ∈ Vl with δvl = l1 ⊗ l2. Then for any G ∈ CGN ,

µvψ
G
l⊗l−1 =ψGl1⊗l2⊗l−1 + ψG

l−1
1 ⊗l

−1
2 ,l

+ ψGl1⊗l−1Φl2 + ψG
l−1
1 ⊗l

Φl−1
2

+ ψGl2⊗l−1Φl1 + ψl−1
2 ⊗l

Φl−1
1

+
Rl

N
,

(62)

30we add up a finite number of terms, 6 to be precise, which are bounded by 1
N
, so their sum is

bounded by 6
N

which is indeed independent from the loops or the face-area vector.
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where the |Rl| ≤ 10 uniformly on ∆G(T ). There is a constant Cl independent of G,
such that for all X ∈ ml,

µvψ
G
l⊗l−1 =ψδX(l)⊗l−1 + ψGl,δX(l−1) + ψl1⊗l−1Φl2 + ψl−1

1 ⊗l
Φl−1

2

+ ψGl2⊗l−1Φl1 + ψl−1
2 ⊗l

Φl−1
1

+
Rl

N
,

with |Rl| ≤ 10 uniformly on ∆G(T ).
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