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Introduction

The two-dimensional Yang-Mills measure is a probability model originating from Euclidean quantum field theory in the setting of pure gauge theory. It describes a generalised random connection on a principle bundle over a two dimensional manifold, with a compact Lie group as structure group, making rigorous the path integral over connections for the so-called Yang-Mills action. Different equivalent mathematical definitions have been given in two dimensions and are due to [START_REF] Gross | The Maxwell equations for Yang-Mills theory[END_REF][START_REF] Bruce | YM 2 : continuum expectations, lattice convergence, and lassos[END_REF][START_REF] Sengupta | Gauge theory on compact surfaces[END_REF][START_REF] Gross | Two-dimensional Yang-Mills theory via stochastic differential equations[END_REF][START_REF] Albeverio | Stochastic Lie group-valued measures and their relations to stochastic curve integrals, gauge fields and Markov cosurfaces[END_REF][START_REF] Albeverio | Stochastic multiplicative measures, generalized Markov semigroups, and group-valued stochastic processes and fields[END_REF][START_REF] Lévy | Two-dimensional Markovian holonomy fields[END_REF][START_REF] Chevyrev | Yang-Mills measure on the two-dimensional torus as a random distribution[END_REF]. The work of [START_REF] Witten | On quantum gauge theories in two dimensions[END_REF] brought to light many special features of the Yang-Mills measure in two dimensions, including its partial integrability, used as a way to perform exact volume computations for the Atiyah-Bott-Goldman measure [START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF][START_REF] William | The symplectic nature of fundamental groups of surfaces[END_REF] on the space of flat connections [START_REF] Liu | Heat kernels, symplectic geometry, moduli spaces and finite groups[END_REF][START_REF] Bismut | Symplectic geometry and the Verlinde formulas[END_REF][START_REF] Sengupta | Yang-Mills on surfaces with boundary: quantum theory and symplectic limit[END_REF].

When a compact Lie group G and a surface Σ are given, the Yang-Mills measure can be mathematically understood as a random matrix model which assigns to any loop 1 of the surface a random matrix so that concatenation and reversion of loops are compatible with the group operations. In [START_REF] Lévy | Yang-Mills measure on compact surfaces[END_REF], it is shown that it gives rise to a random homomorphism from the group of rectifiable reduced loops of the surface to the chosen group G.

We consider here a compact, orientable surface Σ of genus g ≥ 1 and a group G belonging to a series of classical compact matrix groups. We are primarily interested in the traces of these matrices, called Wilson loops, when the rank of G goes to infinity. We ask whether Wilson loops converge in probability under the Yang-Mills measure, towards a deterministic function.

Let us try to give a brief historical account of this problem. In physics, a motivation for the focus on Wilson loops is due to K. Wilson work [START_REF] Kenneth | Confinement of quarks[END_REF] related to quarks confinement. The introduction of the large rank regime in gauge theories, known as large N limit, is due to t'Hooft's work [START_REF] Hooft | A planar diagram theory for strong interactions[END_REF] on QCD. This lead to many articles in theoretical physics in the 80' studying the question in two dimensions, a partial list being [START_REF] Kazakov | Wilson loop average for an arbitrary contour in two-dimensional U(N ) gauge theory[END_REF][START_REF] Kazakov | Nonlinear strings in two-dimensional U(∞) gauge theory[END_REF][START_REF] Makeenko | Exact equation for the loop average in multicolor QCD[END_REF][START_REF] Migdal | Recursion equations in gauge field theories[END_REF][START_REF] Witten | The 1/N expansion in atomic and particle physics[END_REF][START_REF] Gross | Some properties of large-n twodimensional yang-mills theory[END_REF][START_REF] Gopakumar | Mastering the master field[END_REF][START_REF] Gross | Two-dimensional QCD is a string theory[END_REF]. In mathematics, this problem was advertised by I. Singer in [START_REF] Singer | On the master field in two dimensions[END_REF] where the candidate limit of Wilson loops was called master field, following the physics literature. The case of the plane and the sphere have been proved in [START_REF] Xu | A random matrix model from two-dimensional Yang-Mills theory[END_REF][START_REF] Anshelevich | Quantum free Yang-Mills on the plane[END_REF][START_REF] Lévy | Yang-Mills measure on compact surfaces[END_REF] and2 [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF]. The case of compact surfaces has been first investigated by [START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF] where loops contained in topological disc can be considered whenever the convergence holds for simple loops. The study of similar questions in the plane for analogs of the Yang-Mills measure has been investigated in [START_REF] Cébron | The generalized master fields[END_REF]. In higher dimension, an analog3 of this question for a lattice model has also been considered [START_REF] Chatterjee | Rigorous solution of strongly coupled so(n) lattice gauge theory in the large n limit[END_REF]. Very recently and independently from the current work, it was shown in [START_REF] Magee | Random Unitary Representations of Surface Groups II: The large n limit[END_REF][START_REF] Magee | Random Unitary Representations of Surface Groups I: Asymptotic expansions[END_REF] that under the Atiyah-Bott-Goldman measure, which can be understood as the weak limit of the Yang-Mills measure when the area of the surface vanishes, the expectation of Wilson loops converges and has a 1 N expansion when the group belongs to the series of special unitary matrices and the surface is closed, orientable and of genus g ≥ 2. For further details and references on the motivations of this problem, we refer to [16,Sec. 1] and [START_REF] Lévy | Two-Dimensional Quantum Yang-Mills Theory and the Makeenko-Migdal Equations[END_REF]Sec. 2.5.].

In this article, we give a complete answer in the case of the torus and a conjecture and a partial result for all surfaces with genus g ≥ 2. It is the sequel of [16] where we have shown the convergence for a large 4 but incomplete class of loops. Let us recall that in the case of the plane, the master field can be described thanks to free probability and more specifically in terms of free unitary Brownian motion [START_REF] Anshelevich | Quantum free Yang-Mills on the plane[END_REF][START_REF] Lévy | Yang-Mills measure on compact surfaces[END_REF]. The case of the sphere leads to the introduction of a different non-commutative stochastic process called the free unitary Brownian bridge [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF]. In contrast, for the torus, we show that after lifting loops to the universal cover, the master field is also described by the planar master field and we conjecture that the same holds for any surface of higher genus. In the torus case, the master field leads to an interpolation parametrised by the total area of the torus, between the free and the classical convolution of two Haar unitaries built with the free unitary Brownian motion, which differs from the t-freeness introduced by [START_REF] Benaych | A continuous semigroup of notions of independence between the classical and the free one[END_REF] using the liberation process of [START_REF] Voiculescu | The analogues of entropy and of Fisher's information measure in free probability theory. VI. Liberation and mutual free information[END_REF].

The aim of the current paper is to investigate the stability of Wilson loops convergence under homotopy equivalences. To do so, we will use a set of recursive equations named after Makeenko and Migdal [START_REF] Makeenko | Exact equation for the loop average in multicolor QCD[END_REF]. When a loop is deformed in a specific way -that we call a Makeenko-Migdal deformation -these equations relate the differential of the expected Wilson loops with the expectation of a product of Wilson loops having a smaller number of intersection points. These equations can be understood as a remarkable analog of Schwinger-Dyson equations used in random matrix theory and were first inferred heuristically in [START_REF] Makeenko | Exact equation for the loop average in multicolor QCD[END_REF] as an integration by part for the path integral over the space of connections. A first rigorous proof was given in the case of the plane in5 [START_REF] Lévy | Yang-Mills measure on compact surfaces[END_REF] and was later remarkably simplified and generalised in [START_REF] Driver | Three proofs of the Makeenko-Migdal equation for Yang-Mills theory on the plane[END_REF][START_REF] Driver | The Makeenko-Migdal equation for Yang-Mills theory on compact surfaces[END_REF] in a local way that applies to any surface. Makeenko-Migdal equations were crucial to [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF][START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF] leading to an induction argument on the number of intersection points that reduced the convergence of all Wilson loops on the sphere to the case of simple loops. In the case of other surfaces, the very same strategy fails a priori, as some loops cannot be deformed to simpler loops without raising the number of intersection points, while some homotopy classes do not contain any loop for which the convergence is known to hold. We show here that the first hurdle can be overcome, allowing to reduce the problem, completely in the torus case and partially when g ≥ 2, to the class of loops considered in [16]. We leave the completion of this program for all compact surfaces to a future work.

The paper is organised as follows. The first four following sections of the introduction give respectively an informal definition of the Yang-Mills measure and of the main results, a discussion on the relation with the Atiyah-Bott-Goldman measure and the work [START_REF] Magee | Random Unitary Representations of Surface Groups I: Asymptotic expansions[END_REF][START_REF] Magee | Random Unitary Representations of Surface Groups II: The large n limit[END_REF], a consequence of the result on the torus in non-commutative probability, and lastly, a sketch of the strategy of the main proofs. Section 2 recalls and adapts some combinatorial notions of discrete homotopy of loops in embedded graph instrumental to the proof. Section 3 gives the definition of the Yang-Mills measure, a statement of the Makeenko-Migdal equations and states the main results of the article. Section 4 consists in the proof of our main technical result, which is Proposition 3.18. Section 5 describes the behaviour of Wilson loops when one performs surgery on the underlying surface. Section 6 is finally discussing how the master field on the torus is a new candidate for the interpolation between classical and free convolution, different from Voiculescu's liberation process. In an appendix, for the sake of completeness, we recall and prove several results on Makeenko-Migdal equations, that are quite standard in the literature for unitary groups but not necessarily for all classical groups. 

Yang-Mills measure and master field, statement of results

We shall first give an heuristic definition of the Yang-Mills measure in its geometric setting and state informally the main results of the current article. Proper definitions and statements are respectively given in sections 3.2 and 3.3.

Let Σ be either a compact, connected, closed orientable surface of the genus g ≥ 1 endowed with a Riemannian metric, or the Euclidean plane R 2 with its standard inner product. Let G N be a classical compact matrix Lie group of size N , i.e. viewed compact subgroup of GL N (C). We assume that the Lie algebra g N of G N is endowed with an Ad-invariant inner product •, • , as in section 3.1.

Given a G N -principal bundle (P, π, Σ), a connection is a one form ω on M valued in adjoint fibre bundle ad(P ), its curvature is the two-form Ω = dω + 1 2 [ω ∧ ω] valued in ad(P ).

The Yang-Mills action of a connection ω on a G N -principal bundle (P, π, Σ) is defined by

S YM (ω) = 1 2 Σ Ω ∧ Ω , (1) 
where denotes the Hodge operator. An important feature of dimension 2 is that whenever Ψ is a diffeomorphism of Σ preserving its volume form,

S YM (Ψ * ω) = S YM (ω). (2) 
The Euclidean Yang-Mills measure is the formal Gibbs measure

dµ YM (ω)" = " 1 Z e -SYM(ω) Dω, (3) 
where Dω plays the role of a formal Lebesgue measure on the space of connections over an arbitrary principal bundle 6 and Z is a normalisation constant supposed to ensure the total mass to be 1. We choose here not to include a parameter in front of the action, as it can be included in the volume form of Σ.

The space A(P ) being infinite-dimensional, the latter equation has no mathematical meaning. Though at first stance, as the Yang-Mills action of ω can be seen as the L 2 -norm of the curvature Ω, an analogy with Gaussian measures can be hoped. Though, when G N is not abelian, Ω depends non-linearly on ω which prevents any direct construction of µ YM using a Gaussian measure. In two dimensions, this non-linearity can be compensated by the so-called gauge symmetry of S YM which allows to bypass this problem. This lead to the constructions of [START_REF] Gross | The Maxwell equations for Yang-Mills theory[END_REF][START_REF] Bruce | YM 2 : continuum expectations, lattice convergence, and lassos[END_REF][START_REF] Sengupta | Gauge theory on compact surfaces[END_REF] based on stochastic calculus. See also [START_REF] Chevyrev | Yang-Mills measure on the two-dimensional torus as a random distribution[END_REF] for an approach defining further a random, distribution valued, connection on trivial bundles over the two dimensional torus. We follow here instead the approach of [START_REF] Lévy | Two-dimensional Markovian holonomy fields[END_REF] which focuses on the holonomy of a connection, whose law can be directly defined using the heat kernel on G N . The definition we are using is recalled in section 3.2, it agrees with the construction of [START_REF] Gross | The Maxwell equations for Yang-Mills theory[END_REF][START_REF] Bruce | YM 2 : continuum expectations, lattice convergence, and lassos[END_REF][START_REF] Sengupta | Gauge theory on compact surfaces[END_REF] thanks to the so-called Driver-Sengupta formula. An important feature of this measure is suggested by [START_REF] Albeverio | Stochastic multiplicative measures, generalized Markov semigroups, and group-valued stochastic processes and fields[END_REF]. For any two dimensional Riemannian manifold Σ diffeomorphic to Σ, and for any diffeomorphism Ψ : Σ → Σ , there is an induced pushed forward measure Ψ * (YM Σ ) on connections of (P, Ψ • π, Σ ). Whenever Ψ maps the volume form of Σ to the one of Σ ,

Ψ * (YM Σ ) = YM Σ .
6 There is here an apparant additional issue with this vague definition. A slightly less dubious state space could be obtained by fixing a representant of each principle bundle equivalence class over Σ and by considering instead the set of pairs of a principal bundle belonging to this family together with a connection on it. When Σ is a contractible space or if GN is simply connected, there is only one equivalence class of GN -principal bundles over Σ and this issue disappears. We shall not discuss further the question of the type of the principal bundle under the Yang-Mills in this text. For more details and rigorous results we refer to [START_REF] Lévy | Discrete and continuous Yang-Mills measure for non-trivial bundles over compact surfaces[END_REF].

We shall call this property the area-invariance of the Yang-Mills measure. Moreover, for any relatively compact, contractible, open subset U of Σ, the restriction to U induces a measure R U * (YM Σ ) on connections of (π -1 (U ), π, U ). When Σ is the Euclidean plane R 2 or the hyperbolic Poincaré unit disc D h , with its usual metric, it satisfies 7 R U * (YM Σ ) = YM U , where U is endowed with the metric of Σ. If ω is a connection on a G N -principal bundle (P, π, Σ), and U is an open subset of Σ where π : π -1 (U ) → U can be 8 trivialised. When such a trivialisation has been fixed, its holonomy is a function γ → hol(ω, γ) mapping paths 9 

γ : [0, 1] → U to elements of the group G N such that hol(ω, γ 1 γ 2 ) = hol(ω, γ 2 )hol(ω, γ 1 )
for any paths γ 1 and γ 2 such that the endpoint of γ 1 coincides with the starting point of γ 2 , while for any path γ,

hol(ω, γ -1 ) = hol(ω, γ) -1 ,
where γ 1 γ 2 and γ -1 denote the concatenation and reversion of the paths.

When G N is a group of matrices of size N and is a loop of U , the Wilson loop associated to is the function

W (ω) = tr(hol(ω, )),
where tr = 1 N Tr, with Tr the usual trace of matrices. This function can be shown to be independent of the choice of local trivialisation of (P, π, Σ) and is therefore only a function of ω and .

Our primary source of interest is the study of the random variables W := W (ω), for loops of Σ, when ω is sampled according to YM Σ . We are interested in the large N limit of W , when the scalar product •, • is chosen as in section 3.1 and the volume form of the surface is fixed. The paper [START_REF] Singer | On the master field in two dimensions[END_REF] seems to be the first mathematical article focusing on this question and motivates the following conjecture, also suggested by [START_REF] Lévy | The master field on the plane[END_REF][START_REF] Driver | The Makeenko-Migdal equation for Yang-Mills theory on compact surfaces[END_REF][START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF].

Conjecture 1.1. Let G N be a classical compact matrix Lie group of size N , endowed with the metric of section 3.1 and denote by Σ a two-dimensional compact Riemannian manifold, the Euclidean plane R 2 or the hyperbolic Poincaré disc D h . For any loop ∈ L(Σ), there is a constant

Φ Σ ( ) such that under YM Σ W → Φ Σ ( ) in probability as N → ∞. (4) 
The functional Φ Σ is called the master field on Σ.

The works [START_REF] Xu | A random matrix model from two-dimensional Yang-Mills theory[END_REF][START_REF] Anshelevich | Quantum free Yang-Mills on the plane[END_REF] answered to this question in the plane for G N = U(N ). In [START_REF] Lévy | The master field on the plane[END_REF], the above statement was proved simultaneously to [START_REF] Anshelevich | Quantum free Yang-Mills on the plane[END_REF] for all groups mentioned, and for a large family of loops given by loops of finite length. Moreover, motivated by the physics articles [START_REF] Makeenko | Exact equation for the loop average in multicolor QCD[END_REF][START_REF] Migdal | Recursion equations in gauge field theories[END_REF][START_REF] Kazakov | Nonlinear strings in two-dimensional U(∞) gauge theory[END_REF], [START_REF] Lévy | The master field on the plane[END_REF] proved recursion relations giving a way to compute explicitly Φ R 2 for all loops with finitely many intersections. 7 Compact surfaces do not have this property but there is still absolute continuity in place of continuity. This was instrumental in [16].

8 the tubular neighbourhood of a smooth loop or of an embedded graph could be such an open set. 9 In this section the space of paths is not specified and could be taken as the space of piecewise smooth paths with constant speed and transverse intersections.

By area invariance and restriction property, the result on the hyperbolic plane can be deduced directly from these latter works as follows. According to a theorem of Moser [START_REF] Moser | On the volume elements on a manifold[END_REF], any relatively compact open disc U of D h with hyperbolic volume t can be mapped to the open Euclidean disc D t of R 2 centered at 0 and of area t, by a diffeomorphism Ψ : U → D t sending the restriction of the hyperbolic volume form on U to the restriction of Euclidean volume form on D t . By area-invariance,

R U * (YM D h ) = YM U = Ψ -1 * (YM Dt )
, so that the conjecture holds true for D h with

Φ D h ( ) = Φ R 2 (Ψ • )
for any loop with range included in U.

The work [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF] proved the conjecture for Σ = S 2 and all loops of finite length when G N = U(N ), while [START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF], written simultaneously, gave a conditional result on S 2 based on an argument similar to [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF], as well as a conditional result on other surfaces for loops included in a topological disc, given convergence of for simple loops. In [16] we gave an alternative argument proving a generalisation of the results of [START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF] on compact surfaces without using the conditions [START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF], see section 1.4. The current article was written with the aim to strengthen the argument common to [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF] and [START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF] to address the conjecture on all compact manifolds. This lead to the following theorem and conjecture.

Theorem 1.2. When T T is a torus of volume T > 0, conjecture 1.1 is valid. Moreover, considering T T as the quotient of the Euclidean plane R 2 by √ T .Z 2 , Φ T T ( ) =    Φ R 2 ( ˜ ) if is contractible, 0 otherwise,
where for any continuous loop in T T , ˜ is a lift of to R 2 , that is a smooth loop of R 2 , whose projection to R 2 / √ T .Z 2 is .

We discuss an interpretation of this result in terms of non-commutative probability in section 1.3. For compact surfaces of higher genus, a natural candidate is given as follows. Recall that for any compact surface Σ of volume T > 0, there is a covering map p : D h → Σ mapping the hyperbolic metric of D h to the metric of Σ.

Conjecture 1.3. For any two-dimensional compact manifold of genus g ≥ 2, with universal cover p : D h → Σ, the conjecture 1.1 is valid with

Φ Σ ( ) =    Φ D h ( ˜ ) if is contractible, 0 otherwise. (5) 
This conjecture is also justified by the main result of [16] which leads to the following. Recall that a simple loop γ of Σ is non-separating, if the set Σ \ γ, where γ denote the range of γ, is connected.

Corollary 1.4. When g ≥ 2 and γ is a non-separating loop of Σ, then the convergence (4) holds true with the limit [START_REF] Benaych | A continuous semigroup of notions of independence between the classical and the free one[END_REF], for all loops that do not intersect γ.

From this point of view, Theorem 1.2 and Conjecture 1.3 prove or claim the following "asymptotic restriction property": for any closed surface Σ of genus g ≥ 1, if Σ b is a surface with boundary embedded in Σ preserving the volume form, for any loop included in Σ b , W converges in probability towards a constant both under YM Σ b and YM Σ , and the two limits agree, being equal to Φ R 2 ( ˜ ), Φ D h ( ˜ ) or 0. See section 3.3 for a proper statement.

We obtained here two conditional results proving stability of the claimed convergence.

Proposition 1.5. For any two-dimensional compact manifold of genus g ≥ 2, when G N is a classical compact matrix group of size N , assume that for any geodesic loop of Σ with non-zero homology, under YM Σ , W → 0 in probability as N → ∞.

Then (6) also holds true for all loops with non-zero homology.

Assume g ≥ 2 and Γ g is a discrete subgroup of isometry acting freely, properly on D h and that D h /Γ g is a compact surface of genus g with finite total volume T > 0. Assume that there is a fundamental domain for this action given by a 4g hyperbolic polygon D of volume T, centred at 0.

Let us say that a loop of Σ is a delayed geodesic if there is a lift ˜ of starting from 0 such that ˜ = γ 1 γ 2 where γ 2 is a geodesic and γ 1 is smooth path included in D, intersecting ∂D only once, transversally at its endpoint.

Theorem 1.6. The conjecture 1.3 holds true if [START_REF] Biane | Free Brownian motion, free stochastic calculus and random matrices[END_REF] is true for all non contractible, delayed geodesic loops.

Besides, the recent results of [START_REF] Magee | Random Unitary Representations of Surface Groups II: The large n limit[END_REF] are furthermore coherent with the above statement as discussed in the next sub-section.

Atiyah-Bott-Goldman measure

Another measure on connections is due to [START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF][START_REF] William | The symplectic nature of fundamental groups of surfaces[END_REF] when g ≥ 2. Recently, the limit of Wilson loops under this measure has been investigated by [START_REF] Magee | Random Unitary Representations of Surface Groups I: Asymptotic expansions[END_REF][START_REF] Magee | Random Unitary Representations of Surface Groups II: The large n limit[END_REF], we discuss the relation with our result.

Let G be a compact connected semisimple 10 Lie group G, g its Lie algebra, endowed with an invariant inner product, and Z(G) its center. For any g ≥ 2, let K g : G 2g → G be the product of commutators:

K g (a 1 , b 1 , . . . , a g , b g ) = [a 1 , b 1 ] • • • [a g , b g ].
The space M g = K -1 g (e)/G is called the moduli space of flat G-connections over a compact surface of genus g ≥ 2, where G acts by diagonal conjugation, as

h.(z 1 , . . . , z 2g ) = (hz 1 h -1 , . . . , hz 2g h -1 ), ∀z ∈ G 2g , g ∈ G.
For any z ∈ G 2g , its isotropy group is

Z z = {h ∈ G, h.z = z}. The set M 0 g = {z ∈ G 2g : Z z = Z(G)
} can be shown to be a manifold [START_REF] William | The symplectic nature of fundamental groups of surfaces[END_REF][START_REF] Ambar | The volume measure for flat connections as limit of the yang-mills measure[END_REF] of dimension 2g -2, endowed with a symplectic form ω with finite total volume. Besides, using the holonomy map along a suitable 2g-tuple 1 , . . . , 2g of loops, M 0 g can be identified with a subset of smooth connections ω on a G-principal bundle over Σ such that S YM (ω) = 0. This subset is a manifold with a symplectic structure [START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF], equal to the push forward of ω. The Atiyah-Bott-Goldman measure is the volume form on M 0 g associated to ω, given by

vol g = ω 1 2 dim M 0 g ( 1 2 dim M 0 g )! . ( 7 
)
Let us denote by µ ABG,g the probability measure on M 0 g obtained by normalising vol g . It appeared in [START_REF] Witten | On quantum gauge theories in two dimensions[END_REF], that integrating against the Yang-Mills measure on a compact surface of total area T and letting T tend to 0, allows to obtain formulas for integrals against vol g . This convergence was proved rigorously by Sengupta in [START_REF] Ambar | The volume measure for flat connections as limit of the yang-mills measure[END_REF]. Using the holonomy mapping of the Yang-Mills measure, the convergence can be understood as follows. Consider a heat kernel (p t ) t>0 on G, when its Lie algebra g is endowed with its Killing form •, • .

Theorem 1.7 (Symplectic limit of Yang-Mills measure). Let f : G 2g → C be a continuous G-invariant function, and f : M 0 g → C be the induced function on the moduli space. Then

lim T ↓0 G 2g f (x)p T (K g (x))dx = vol(G) 2-2g |Z| M 0 g f dvol g . ( 8 
)
For any word w in the variables a 1 , . . . , b g and their inverse, setting

W w (z) = 1 N Tr(w(z 1 , z -1 1 , . . . , z 2g , z -1 2g )), ∀z ∈ G 2g
defines also a function on M 0 g . Denoting it also by W w and considering the loop w obtained by the concatenation w( 1 , -1 1 , . . . , 2g , -1 2g ), the last statement can be reformulated as

lim T ↓0 E YMΣ T [W w ] = M 0 g W w dµ ABG,g ,
Consider the surface group

Γ g = a 1 , b 1 , . . . , a g , b g |[a 1 , b 1 ] . . . [a g , b g ] .
Consider the equivalence relation ∼ on the set of words with 2g letters and their inverse, such that w ∼ w iff w(a 1 , . . . , b g ) and w (a 1 , . . . , b g ) are equal in Γ g . Thanks to the defining relation of M g , for any word w, the function W w depends only on the equivalence class of w. When γ ∈ Γ g is the evaluation of w in Γ g , denote this function by W γ . In [START_REF] Magee | Random Unitary Representations of Surface Groups II: The large n limit[END_REF], Magee obtained the following analog of asymptotic freeness of Haar unitary random matrices.

Theorem 1.8 ([41] Cor. 1.2). Consider the group G = SU(N ). For any γ ∈ Γ g , lim N →∞ E µ ABG,g [W γ ] =    1 if γ = 1, 0 otherwise.
Since for any word with evaluation γ ∈ Γ g , it can be shown that γ = 1 if and only if the loop w is contractible, the above statement can be understood as the T = 0 case of the conjecture 1.3, with a weaker convergence given in expectation instead of in probability. In [START_REF] Magee | Random Unitary Representations of Surface Groups I: Asymptotic expansions[END_REF], it is also shown that E µ ABG,g [W ] admits an asymptotic expansion in powers of 1 N . Our main arguments differ from the one of [START_REF] Magee | Random Unitary Representations of Surface Groups II: The large n limit[END_REF]; the one of [16] relies on the Markovian property of the Yang-Mills measure, while the ones of this paper starts from on the Makeenko-Migdal equations which allow to prove that convergence in probability is stable under a large class of deformations, a problem which does not occur in the zero volume case. Though, a common starting point to [16] and [START_REF] Magee | Random Unitary Representations of Surface Groups I: Asymptotic expansions[END_REF] is the convergence of the partition function of the model.

Besides, on the one hand we did not investigate asymptotic expansion in 1 N neither here nor in [16]. On the other hand, we prove a convergence in probability instead of in expectation and work also with larger family of matrix groups. Moreover, when g = 1, the construction and results mentioned within this subsection are not valid. Though, we are able to prove a result in this setting when T > 0. It gives a matrix approximation result for an interpolation between classical and free convolution.

Non-commutative distribution and master field on the torus: an interpolation between free and classical convolution

We discuss here the non-commutative distribution associated to the master field on the torus, leading to the corollary 1.11 below, obtained by specialising Theorem 1.2 to projection of loops restrained to the lattice √ T .Z 2 .

Non-commutative probability and free independence

Let us give an extremely brief account of these notions. We refer to [START_REF] Voiculescu | Lectures on free probability theory[END_REF][START_REF] Mingo | Free probability and random matrices[END_REF] for more details.

A non-commutative probability space 11 is the data of a tuple (A, * , 1, τ ) where (A, * , 1) is a unital * -algebra over C, and τ is a positive, tracial state, that is a linear map τ : A → C with τ (aa * ) ≥ 0 and τ (ab) = τ (ba), ∀a, b ∈ A, with furthermore τ (1) = 1 and τ (a * ) = τ (a), ∀a ∈ A. We shall often leave as implicit the choice of unit and * , and denote a non-commutative probability space simply as a pair (A, τ ).

Example 1.9. For N ≥ 1, the tuple (M N (C), * , Id N , tr), where tr = 1 N Tr, gives such a space. Consider the group U(N ) of unitary complex matrices of size N and a group Γ with unit element 1. Let (C[Γ], * ) be the group algebra of Γ endowed with the skew-linear idempotent defined by γ * = γ -1 , ∀γ ∈ Γ. Then, whenever ρ :

Γ → U N (C) is a unitary representation of Γ, setting τ ρ = tr • ρ, the tuple (C[Γ], * , 1, τ ρ ) is a non- commutative probability space.
Let (A 1 , A 2 ) be unital sub-algebras of a non-commutative probability space A 1 .

• They are classically independent if ∀a 1 , . . . ,

a n ∈ A 1 , b 1 , . . . , b n ∈ A 2 , τ (a 1 b 1 a 2 . . . a n b n ) = τ (a 1 . . . a n )τ (b 1 . . . b n ).
11 sometimes denoted NCPS

• They are freely independent if for any n ∈ N, for any {i 1 , . . . , i n } ∈ {1, 2} n such that i 1 = i 2 , . . . , i n-1 = i n and for any

a k ∈ A i k , τ (a k ) = 0, ∀1 ≤ k ≤ n =⇒ τ (a 1 • • • a n ) = 0.
These definitions can be generalised to any number of sub-algebras, and a family of elements (a i ) i∈I of a non-commutative probability space (A, τ ) is said to be independent (resp. free) if the family (A i ) i∈I is independent (resp. free), where for all i ∈ I, A i is the subalgebra generated by a i and a * i . We shall then say that (a i ) i∈I are resp. independent and free under τ.

When I is an arbitrary set, let us denote by C X i , X * i , i ∈ I the unital * -algebra of non-commutative polynomials in the variables X i , X * i , ∈ I, with * mapping X i to X * i for all i ∈ I. When (A, * , 1, τ ) is a non-commutative probability space and a = (a i ) i∈I is a family of elements of A, its non-commutative distribution is the positive, tracial, state on C X i , X * i , i ∈ I given by

τ a (P ) = τ (P (a i , i ∈ I)), ∀P ∈ C X i , X * i , i ∈ I ,
where P (a i , i ∈ I) ∈ A denotes the evaluation of P replacing X i and X * i by a i and a * i . Likewise, when A and B are sub-algebras of a same non-commutative probability space (C, τ ), we call the state τ

A,B on C X a , Y b , a ∈ A, b ∈ B given by τ A,B (P (X a , Y b ; a ∈ A, b ∈ B)) = τ (P (a, b; a ∈ A, b ∈ B)), the joint distribution of (A, B) in (C, τ ).
When a, b are two elements of non-commutative probability spaces with respective non-commutative distribution τ a and τ b , there are unique states τ a τ b and Let us recall the following result of asymptotic freeness due to Voiculescu [START_REF] Voiculescu | Limit laws for random matrices and free products[END_REF], and for the considered group series by [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF], see also [START_REF] Lévy | The master field on the plane[END_REF].

τ a * c τ b on C X, Y, X * , Y * such that τ X = τ
Theorem 1.10 ([54, 13, 36]). Let A and B be two deterministic matrices of size N with respective non-commutative distribution satisfying for all fixed P ∈ C X, X * , τ A (P ) → τ a (P ), τ B (P ) → τ b (P ), as N → ∞, for some state τ a , τ b on C X, X * . Consider U and V two independent Haar unitary matrices on a group G N and ρ N : C[F 2 ] → G N the associated unitary representation of the free group of rank 2.

Then for any γ ∈ F 2 and P ∈ C X, Y, X * , Y * , the following limit holds in probability as N → ∞,

τ ρ N (γ) →    1 if γ = 1, 0 if γ ∈ F 2 \ {1} (9) and τ A,U BU * (P ) → τ a τ b (P ). (10) 
On the one hand, the first convergence (9) can be proved to be a special case of (10) when A and B are themselves independent Haar unitary random variables. On the other hand, when A and B are unitary or Hermitian with uniformly bounded spectrum, [START_REF] Chatterjee | Rigorous solution of strongly coupled so(n) lattice gauge theory in the large n limit[END_REF] can be deduced from (9) by functional calculus.

A motivation of the current article was to understand an analog of (9), when (U, V ) are sampled according to a different law with correlation, as discussed in section 1.3.3.

Let us first mention a family of states which arises when considering an analog of [START_REF] Chatterjee | Rigorous solution of strongly coupled so(n) lattice gauge theory in the large n limit[END_REF], replacing the Haar measure by a Brownian motion on the group G N .

Free Unitary Brownian motion and t-freeness

We refer here to [START_REF] Biane | Free Brownian motion, free stochastic calculus and random matrices[END_REF][START_REF] Voiculescu | The analogues of entropy and of Fisher's information measure in free probability theory. VI. Liberation and mutual free information[END_REF][START_REF] Benaych | A continuous semigroup of notions of independence between the classical and the free one[END_REF] for more details. Consider a non-commutative probability space (A, τ, * , 1). An element u ∈ A is called unitary when

uu * = u * u = 1. It is Haar unitary if for all integer n > 0, τ (u n ) = τ ((u * ) n ) = 0.
The free unitary Brownian motion on a * -probability space (A, τ, * , 1) is a family (u t ) t≥0 of unitary elements of A such that the increments u t1 u * 0 , . . . , u tn u * tn-1 are free for all 0 ≤ t 1 ≤ • • • ≤ t n , and for any k ∈ Z * and 0 < s < t,

τ ((u t u * s ) k ) = τ (u k t-s ) while τ (u k t ) = ν t (|k|) is C 1 with for all m ≥ 0, d dt ν t (m) = - m 2 ν t (m) - m 2 m l=1 ν t (l)ν t (m -l), ∀t ≥ 0, , ν 0 (m) = 1. (11) 
Let us set ν t = τ ut . It follows from the above expression that as t tends respectively to 0 and +∞, the distribution ν t converges pointwise to the one of respectively 1 and a Haar unitary. In view of [START_REF] Chatterjee | Rigorous solution of strongly coupled so(n) lattice gauge theory in the large n limit[END_REF], it is also natural to introduce the following deformation of free convolution.

Definition 1.1 ([55]

). Let (A, τ A ) and (B, τ B ) be two non-commutative probability spaces. Then there is a non-commutative probability space (C (t) , τ C (t) ) such that 1. A and B can be identified with two independent sub-algebras of (C (t) , τ

C (t) ) with τ C (t) (a) = τ A (a) and τ C (t) (b) = τ B (b), ∀(a, b) ∈ A × B.
2. There is a unitary element u t ∈ C (t) free with the sub-algebra of C (t) generated by A and B, such that u t has distribution ν t .

The t-free convolution product of τ A and τ B is then the joint distribution τ A t τ B of (A, u t Bu * t ) in the non-commutative probability space (C (t) , τ C (t) ). It does not depend on the choice of (C (t) , τ C (t) ) satisfying 1) and 2). The above construction was introduced more generally 12 by Voiculescu [START_REF] Voiculescu | The analogues of entropy and of Fisher's information measure in free probability theory. VI. Liberation and mutual free information[END_REF] in his study of free entropy and free Fisher information via the liberation process.

For any t > 0, two sub-algebras A and B of a same non-commutative probability space (C, τ ) with respective distribution τ A and τ B are said to be t-free, if their joint distribution under τ is given by τ A t τ B . It can be shown ( [START_REF] Voiculescu | The analogues of entropy and of Fisher's information measure in free probability theory. VI. Liberation and mutual free information[END_REF][START_REF] Benaych | A continuous semigroup of notions of independence between the classical and the free one[END_REF]) that the following limits hold pointwise,

lim t↓0 τ A t τ B = τ A * c τ B and lim t→+∞ τ A t τ B = τ A τ B .
12 not necessarily with the assumption of classical independence for the initial state.

A matrix approximation for another interpolation from classical to free convolution

Let us present an application of Theorem 1.2. Consider a heat kernel (p t ) t>0 on a classical compact matrix Lie group G N endowed with the metric considered in section 3.1 and for any T > 0, define a probability measure setting

dµ N,T (A, B) = Z -1 T p T ([A, B])dAdB (12) 
on G 2 N where dAdB denotes the Haar measure on G 2 N and

Z T = G 2 N p T ([A, B])dAdB.
As the limits lim T ↓0 p T (U )dU = δ Id N and lim T →∞ p T (U )dU = dU hold weakly, we can think about µ T as a model of random matrices interpolating between commuting and non-commuting settings. In [16,Thm 2.15], we have proved that though A and B are not Haar distributed for N fixed, as N → ∞, they converge individually to Haar unitaries. Moreover, we also saw that under µ N,T , [A, B] converges in noncommutative distribution, with limit given by ν T , a free unitary Brownian motion at time T. In view of ( 9), it is then natural to investigate the possible limit of the joint law, hoping for a non-trivial coupling of Haar unitaries. Note that analog models with potentials13 have been investigated in [START_REF] Collins | Asymptotics of unitary and orthogonal matrix integrals[END_REF]. A challenge appearing in the setting of [START_REF] Collins | Asymptotics of unitary and orthogonal matrix integrals[END_REF] is that these general results are limited to weak coupling regimes. 14A consequence of our work is that µ N,T has a non-commutative limit for all T > 0, leading to an interpolation between independent and free Haar unitaries. Denote by τ u the distribution of a Haar unitary.

Corollary 1.11. For any T > 0, there is a state

Φ T on A = C X, X * , Y, Y * , such that for any P ∈ A, under µ N,T , tr(P (A, B)) → Φ T (P ) in probability as N → ∞ with lim T ↓0
Φ T (P ) = τ u * c τ u (P ) and lim

T →+∞ Φ T (P ) = τ u τ u (P ).
Besides, for all T, t > 0,

Φ T = τ u t τ u , (13) 
while Φ T ((XY X * Y * ) n ) = ν T (n) = τ u T 4 τ u ((XY X * Y * ) n ), ∀n ∈ Z * .
We prove in section 6 the above corollary together with a few other properties of Φ T . Let us mention that the interpolation provided by Corollary 1.11 is not the only possible interpolation, even if we exclude the t-free convolution; for instance another interpolation was proposed in [START_REF] Mergny | Rank one HCIZ at high temperature: interpolating between classical and free convolutions[END_REF] using rank one Harish-Chandra-Itzykson-Zuber integrals.

Strategy of proof via Makeenko-Migdal deformations

An important property formally inferred by integration by part from (3) in [START_REF] Makeenko | Exact equation for the loop average in multicolor QCD[END_REF] and rigorously proved in [START_REF] Lévy | The master field on the plane[END_REF] based on the Driver-Sengupta formula, are a family of equations almost characterising the function Φ Σ when Σ is the plane. Other proofs have been given in [START_REF] Dahlqvist | Free energies and fluctuations for the unitary Brownian motion[END_REF][START_REF] Driver | Three proofs of the Makeenko-Migdal equation for Yang-Mills theory on the plane[END_REF]. The proofs of [START_REF] Driver | Three proofs of the Makeenko-Migdal equation for Yang-Mills theory on the plane[END_REF] were much shorter and local, and it was possible to adapt them to all compact surfaces [START_REF] Driver | The Makeenko-Migdal equation for Yang-Mills theory on compact surfaces[END_REF]. See also [START_REF] Bruce | A functional integral approaches to the Makeenko-Migdal equations[END_REF] for a different approach using the construction of the Yang-Mills measure using the white noise.

These equations can be described informally as follows. Consider a smooth loop with a transverse intersection at a point v. Assume that ( ε ) ε is a deformation of in a neighborhood of v such that the areas of the four corners adjacent to v are modified as in Figure 1. Then the Makeenko-Migdal equation at v for a master field

ε +ε +ε -ε -ε Figure 1: Makeenko-Migdal deformation near an intersection point. Φ Σ is given by d dε ε=0 Φ Σ ( ε ) = Φ Σ ( 1 )Φ Σ ( 2 ) (14) 
where 1 , 2 are two loops obtained by de-singularising at v as on figure 2. The works [START_REF] Lévy | The master field on the plane[END_REF][START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF][START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF] can be understood as a study of existence and uniqueness of variants of the equation [START_REF] Dahlqvist | Free energies and fluctuations for the unitary Brownian motion[END_REF]. Our strategy here is to extendthese results to all compact surfaces of genus g ≥ 1.

A motivation of [START_REF] Lévy | The master field on the plane[END_REF] for proving these relations was to compute explicitly the planar master field by induction on the number of intersections and to characterise it through differential equations. It was realised there that for the plane there is no uniqueness for the Makeenko-Migdal equations alone, but there is if they are completed by an additional family of equations 15 . In [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF][START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF], the authors are interested in a perturbation of ( 14) arising from finite N analogs of ( 14) in view of proving the convergence of Wilson loops. The same lack of uniqueness occurs but is dealt with differently, adding in some sense boundary conditions, specifying the value of the master field 16 for simple loops. With this boundary condition, both [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF][START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF] are 15 associated to each face adjacent to an infinite face. 16 or the convergence of Wilson loops able to deduce the convergence of Wilson loops17 on the sphere by induction on the number of intersection points. To complete the proof of Wilson loops convergence, it is then necessary to prove the convergence for boundary conditions via other means: this was done in [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF] using a representation through a discrete18 β-ensemble.

In [START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF], the author applied the same argument on all compact surfaces with a boundary condition given by simple loops within a disc and a uniquess or convergence result for loops within a disc. See the introduction of [16] for a more detailed discussion. In [16] we were able, using an independent argument, to prove the same result but without any boundary condition and making a relation with the planar master field.

Theorem 1.12. Let be a loop in a compact Riemann surface Σ of genus g ≥ 1 with area measure vol.

1. If is topologically trivial and included in a disc U such that vol(U ) < vol(Σ), then as N tends to infinity, under µ YM ,

W → Φ(ψ • ) in probability,
where Φ denotes the master field in the planar disc ψ(U ) where ψ :

U → ψ(U ) ⊂ R 2 is an area-preserving diffeomorphism.
2. If is simple and non-contractible, then for any n ∈ Z * , as N tends to infinity,

W n → 0 in probability.
3. If γ is a separating loop of Σ and does not intersect γ, then W converges in probability towards a constant.

A first remark is that evaluating the planar master field at lift of contractible loops to the universal cover of Σ, as in the conjecture 1.3, gives a solution to Makeenko-Migdal equations. Our main focus will therefore be to study uniqueness of the Makeenko-Migdal equations or its deformation arising for finite N .

The general strategy of this article is to use Theorem 1.12 as boundary condition to prove Proposition 1.5 and Theorem 1.6. For the torus, any non-trivial closed geodesic is whether simple or the iteration of a simple closed loop, Proposition 1.5 together with Theorem 1.6 yield Theorem 1.2. For surfaces of genus g ≥ 2, the result of [16] do not cover delayed geodesic loops and there are then loops whose homotopy class does not include any simple loop, or any loop obtained by iterating a simple loop [START_REF] Birman | Dehn's algorithm revisited, with applications to simple curves on surfaces[END_REF] (moreover most geodesics have intersection points).

Let us now discuss how this strategy is implemented here. When applying the argument of [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF] or [START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF], it is difficult to prove a result better than Theorem 1.12, which, given point 1. of Theorem 1.12, makes the use of Makeenko-Migdal equations pointless. A first obstacle being for instance a loop like in figure 3, where it does not seem possible to apply Makeenko-Migdal equations at any vertex to deform the loop into a simpler loop. To improve on [START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF], a first step is to understand exactly in the case of surfaces of genus g ≥ 1, what family of deformations are allowed to use Makeenko-Migdal equations.Viewing the evaluation at a regular loop of the master field as a function of faces area, we wonder along which deformation of loops, the derivative of the master field is a linear combination of area derivatives such as the one involved in the left-hand-side of ( 14). This was understood first in the plane by [START_REF] Lévy | The master field on the plane[END_REF]. This is achieved here for surfaces in section 2.2 with the following conclusion. When a loop has non-zero homology, then any reasonable deformation is allowed. When a loop has zero homology, then it is possible to define the winding number and algebraic area of the loop and a deformation is allowed if and only if it preserves the algebraic area.

This observation allows to consider the simpler case of loops with non-zero homology separately. In this case, it is possible to argue as follows by induction, showing at each step that the derivative along a suitable deformation is bounded by induction assumption. First, considering the lift of a loop with non-zero homology to the universal cover, by induction on the number of intersections, it is possible to reduce the problem to loops with non-zero homology such that each strand of the lift going through a fundamental region has 19 no intersection point. Then Proposition 1.5 can be proved by induction on the number of fundamental domains visited. A key remark in this case is that at each intersection point, the two loops obtained by de-singularisation have both non-zero homology and visit strictly less fundamental domains. This programme is carried out in section 4.1.

A second step is to overcome the difficulty met in Figure 3. This loop has vanishing homology. The cause of the obstruction becomes clearer thanks to the first step: it is not possible to decrease the area of the central face as it is a strict maximum of the winding number function. An idea is then to first pull and twist the loop in a face that we want to "inflate" so that the algebraic area remains preserved, as suggested on the following figure.

An apparent issue with this argument is that the number of intersections of the loops involved in the different steps may raise. It is therefore not possible a priori to apply, as in [START_REF] Lévy | The master field on the plane[END_REF][START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF][START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF], an induction on the number of intersections to prove uniqueness. This suggests to use another form of complexity for loops and the introduction of marked loops, with a main part and a "perturbed part" allowing to keep the algebraic area constant. Despite that the number of intersection points may raise along the deformation, the loops get closer at each step to the loops belonging to the boundary condition. Defining a convenient notion20 of "distance" to the loops of the boundary condition is the purpose of section 2.4. We choose a minimal class of loops obtained as "perturbation part" that we introduce in section 2.5 and call nested loops.

However, for any choice of complexity, if we allow the number of intersection points to grow, proving the vanishing of the the right-hand side of Makeenko-Migdal equations is not possible by direct induction. This issue also appears in the above example. When going from the second to the third step in Figure 4, it is necessary to apply the Makeenko-Migdal equation at the new intersection point of the blue curve. By area invariance, the right-hand-side of the equation ( 14) contains a function of the area which is identical to the initial function. To prove uniqueness, we cannot anymore apply directly an induction argument to bound this derivative. Nonetheless this case can be handled as follows. Setting the complexity as the number of crossings of the square defining the torus, all loops obtained by de-singularisation of all other points will have a complexity strictly smaller than the initial one. To conclude an induction step, it is then enough to apply Grönwall's lemma along a parametrisation of the second deformation. This idea is implemented and generalised in Lemma 4.5 and is a key step in our argument.

Using the Lemma 4.5, the main induction for all loops is then carried out in Proposition 4.6, which concludes the main part of the proof for loops with finitely many transverse intersections.

Lastly it remains to extend our convergence result to a wider family of loops. As explained in section 6, to prove corollary 1.11, it is indeed needed to consider all loops within a lattice. We then use a property of uniform continuity for loops with finitely many transverse intersections. Besides, by a more general argument introduced in [START_REF] Cébron | The generalized master fields[END_REF][START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF] that built on the construction of [START_REF] Lévy | Two-dimensional Markovian holonomy fields[END_REF], it is possible to consider all loops with finite length. 212 Homology and homotopy on embedded graphs

Four equivalence relations on paths and loops on maps

We recall briefly here standard notions and define some notations of topological discretisation of a surface.

In this text, 22 a map G of genus g is the data of three finite sets (V, E, F ) in bijection with the 0, 1 and 2 cells of a finite CW complex Σ G which is isomorphic to a connected, closed, compact surface of genus g. Such complex is sometimes called surface complex, see [START_REF] Stillwell | Classical topology and combinatorial group theory[END_REF] for instance. We define a map with boundary as the data of a map (V, E, F ) together with a proper subset B of F such that the closure of 2 cells associated to any pair of distinct elements of B do not intersect. We identify E with the set of edges of the graph with vertices V , where a pair v, w ∈ V is adjacent whenever it forms the boundary of an element of E. We denote by E o and F o the set of oriented edges and faces. For any oriented edge e ∈ E o , we write e and e for its endpoint and starting point, e -1 for the edge with reverse orientation. A path in G is whether a single vertex or a finite string of edges e 1 . . . e n with n ≥ 1 such that for all k ∈ {1, . . . , n -2}, e k+1 = e k . We say it is constant in the first case and set |γ| = 0, while in the second, we denote by γ = e n and γ = e 1 its starting point and endpoint and by |γ| = n its length. A loop of G is a path γ with γ = γ. A loop l is based at a vertex v when l = v. We say it is simple when all vertices of l occur only once l but l which occurs exactly twice. We write respectively P(G) and L(G) for the set of paths and loops of G. The respective sets of paths starting from a vertex v ∈ V are denoted by P v (G) and L v (G). Whenever α and β are two paths with α = β, αβ denotes their concatenation, while α -1 is the path run in reverse direction, with the convention that γ 1 αγ 2 = α when γ 1 and γ 2 are constant paths at α and α. We say that β is a subpath of δ ∈ P(G) and write β ≺ δ, if there are paths α and γ with δ = αβγ.

Homeomorphic loops: When two maps G, G yields homeomorphic CW complexes, it induces a bijection between cells of same dimension. Denote by Φ : E → E the associated bijection between edges of G and G and the associated bijection between P(G) and P(G ). Consider two paths α and β within maps G α and G β . We say that α and β are homeomorphic and write α ∼ Σ β if there are maps G and G finer than respectively G α and G β such that G and G have homeomorphic, with induced bijection Φ : P(G) → P(G ) such that

Φ(α) = β.
Cyclically equivalent loops: We say that two loops are cyclically equivalent when one can be obtained from the other by cyclically permuting its edges. By convention, two constant loops are cyclically equivalent if they have equal base-point. This defines an equivalence relation

∼ c on L(G). An element of the quotient L c (G) = L(G)/ ∼ c is called an unrooted loop.
Reduced loops: A path γ is obtained by insertion of an edge in a path γ, if γ = γ 1 γ 2 and γ = γ 1 ee -1 γ 2 with γ 1 , γ 2 two subpaths of γ and e an edge, satisfying

γ 1 = e = γ 2 .
Vice-versa, we say in this situation that γ is obtained by erasing of an edge of γ . Two paths are said to have the same reduction if a finite sequence of erasures and insertions of edges transforms one into the other. This defines an equivalence relation ∼ r on P(G) and we write RP(G) = P(G)/ ∼ r , RP v (G) = P(G)/ ∼ r and RL v (G) = L v (G)/ ∼ r for any v ∈ V . The reduction of a path γ ∈ P(G) is the unique path of minimal length in its ∼ r -equivalence class. We say that two loops are ∼ r,c -equivalent if one can be obtained from the other by iterated cyclic permutations, insertions and erasures of edges.

Lassos and discrete homotopy: For any face f ∈ F o , its boundary can be identified with an unrooted loop ∂f. When r ∈ V is a vertex of ∂f, we write ∂ r f for the loop in the ∼ c -class of ∂f with ∂ r f = r. When F * is a subset of F, a F * -lasso is a loop of the form α∂ r f α -1 , where f is an oriented face belonging up to orientation to F * and α ∈ P(G) is a path such that r = α is a vertex of ∂f. When γ ∈ P(G), γ is obtained by lasso insertion from γ if γ = γ 1 γ 2 for some paths γ 1 , γ 2 ∈ P(G) and γ = γ 1 lγ 2 , where l is a lasso with γ 1 = l = γ 2 . Conversely, γ is said to be obtained from γ by lasso erasure. We say that two paths are discrete homotopic if there is a finite sequence of lassos or edge erasures and insertions transforming one into the other. This defines an equivalence relation ∼ h on P(G) which is also well defined on RP(G). Moreover, two paths of G are discrete homotopic if and only if their image in Σ G are homotopic with fixed endpoints. For any v ∈ V, we denote the quotient P v (G)/ ∼ h and L v (G)/ ∼ h by Ṽv and π 1,v (G). When F * ⊂ F, we say that two paths of G are F * -homotopic if there is a finite sequence of F * -lassos or edge erasures and insertions transforming one into the other. This defines an equivalence relation on P(G) denoted by ∼ F * . When K is a closed, compact, contractible subset of Σ G given by the closure of the union of images of F * , for any pair of paths γ 1 , γ 2 ∈ P(G) whose image in Σ G is included in K and with same endpoints,

γ 1 ∼ F * γ 2 .
The group of reduced loops and the fundamental group: For any vertex v ∈ V , we define a group by endowing RL v (G) with the multiplication given by concatenation and the inverse map given by reversing the orientation of loops. The group π 1,v (G) is the quotient of RL v (G) by the normal subgroup generated by lassos based at v. Since two loops of G are discrete homotopic if and only if their image in Σ G are homotopic, the group π 1,v (G) is isomorphic to the fundamental group of the surface [START_REF] Lévy | Two-dimensional Markovian holonomy fields[END_REF]). For any map G, the following assertions hold:

Σ G . For any group G, let us write [a, b] = aba -1 b -1 , ∀a, b ∈ G. Then π 1,v (G) is isomorphic to the surface group Γ g = x 1 , y 1 , . . . , x g , y g |[x 1 , y 1 ] . . . [x g , y g ] . Lemma 2.1 ([
1. The group RL v (G) is free of rank #E -#V + 1 = #F + 2g -1.
2. Assume that g ≥ 0 and #F = r. For any v ∈ V, there are lassos

(l i , 1 ≤ i ≤ r)
based at v, with faces in bijection with F , and loops

a 1 , b 1 , . . . , a g , b g ∈ L v (G) such that the application Γ r,g = z 1 , . . . , z r , x 1 , y 1 , . . . , x g , y g |z 1 . . . z r = [x 1 , y 1 ] . . . [x g , y g ] → RL v (G)
that sends z i on l i for all 1 ≤ i ≤ r, x m (resp. y m ) on a m (resp. b m ) for all 1 ≤ m ≤ g is an isomorphism 23 . The diagram

1 → Γ r,g → RL v (G) → 1 ↓ ↓ 1 → Γ g → π 1,v (G) → 1 is then commutative. Dual map: When G = (V, E, F
) is a map of genus g with surface Σ G , (V * , E * , F * ) = (F, E, V ) can also be endowed with a map structure G * such that Σ G * = Σ G while two faces of G are adjacent in (V * , E * ) if and only if they share an edge.

Refining maps: When

G = (V , E , F ) and G = (V, E, F ) are two maps, G is finer than G if (V, E) is a subgraph of (V , E ) and Σ G = Σ G ,
so that we can identify V and E with subsets of respectively V and P(G), while any face of G is the union of faces of G . 

Cutting and gluing maps:

When G = (V, E, F ) is
G 1 = (V 1 , E 1 , F 1 {f 1,∞ }). We define likewise f 2,∞ and a map G 2 = (V 2 , E 2 , F 2 {f 2,∞ }).
We say that the pair of maps with boundary

(G 1 , {f 1,∞ }), (G 2 , {f 2,∞ }) is the cut of G along l.
We say that the cut is essential if l is not contractible. A cut is essential if and only if the maps G 1 and G 2 have genus larger or equal to 1.

Discrete homology, winding function and Makeenko-Migdal vectors

We recall here an elementary definition of discrete homology and discuss its relation to Makeenko-Migdal vectors introduced in [START_REF] Lévy | The master field on the plane[END_REF][START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF][START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF].

Discrete homology: Consider a map G = (V, E, F ) without double edges, with vertices V and oriented edges E and denote here by R the ring Z or R. For any oriented edge e ∈ E o , we denote by e -1 ∈ E o its reverse, e ∈ V its source and e ∈ V its target. Consider the R-module

Ω 1 (G, R) = {ω : E o → R : ω(e -1 ) = -ω(e)}
of discrete one-forms. When e ∈ E o , we write ω e ∈ Ω 1 (G, R) for the one-form such that ω e (e) = 1, ω e (e -1 ) = -1 and ω e (e ) = 0 for e ∈ {e, e -1 }. When l = (e 1 , . . . , e n ) is a loop of G, we set

ω l = n i=1 ω ei .
The discrete exterior derivative is defined by

d : Ω 0 (G, R) = R V → Ω 1 (G, R), f → df : e → f (e) -f (e). (15) 
Let

d * : Ω 1 (G, R) → Ω 0 (G, R)
be the adjoint of d for the non-degenerate bilinear form on Ω 0 (G, R) and the one on

Ω 1 (G, R) defined by 24 f, g = v∈V f (v)g(v) and ω, ν = 1 2 e∈E ω(e)ν(e),
for all f, g ∈ Ω 0 (G, R) and ω, ν ∈ Ω 1 (G, R). Denoting by ♦ 1 the module spanned by the one-forms ω l where l is a loop of G and by 1 the image of d, we have that ♦ 1 ⊂ ker(d * ) and the orthogonal of ♦ 1 is included in 1 , hence ♦ 1 = ker(d * ) and the orthogonal decomposition

Ω 1 (G, R) = 1 ⊕ ♦ 1
into exact and co-closed one forms.

Let us define now the space of 2-forms Ω 2 (G, R) as the space of functions ϕ on

F o with ϕ(f ) = -ϕ(f )
whenever f and f are the same 2-cell with two different orientations. Set

∂ : Ω 2 (G, R) → Ω 1 (G, R), ϕ → 1 2 f ∈F ϕ(f )ω ∂f .
Endowing Ω 2 (G, R) with the non-degenerate bilinear form

ϕ, ψ = 1 2 f ∈F ϕ(f )ψ(f ),
the adjoint of ∂ is given by

d : Ω 1 (G) → Ω 2 (G), ω → f → 1 2 e∈E ω ∂f (e)ω(e) = ω ∂f , ω .
By construction *

1 := d * (Ω 2 (G, R)) ⊂ ♦ 1 and 1 ⊂ ♦ * 1 := ker(d : Ω 1 → Ω 2 ) so that so that d • d = 0, d * • d * = 0 and Ω 2 (G, R) d * → Ω 1 (G, R) d * → Ω 0 (G, R)
is a chain complex. The vector space

H 1 = ( * 1 ) ⊥ ∩ ♦ 1 = ker(d : Ω 1 → Ω 2 ) ∩ ker(d * : Ω 1 → Ω 0 )
is isomorphic to the first homology group

H 1 (d * , R) = ker(d * : Ω 1 → Ω 0 )/d * (Ω 2 ).
24 mind that fixing an orientation of edges, second expression is a sum in R

Changing ring the two constructions are compatible with

H 1 (d * , R) = R ⊗ Z H 1 (d * , Z).
For any n ≥ 2, we set

H 1 (d * , Z n ) = Z n ⊗ Z H 1 (d * , Z). Definition 2.1. When l is a loop of G, its R-homology [l] R is the image of the element ω l in H 1 (d * , R). For any n ≥ 2, its Z n -homology [l] Zn is the element 1⊗[l] Z ∈ H 1 (d * , Z n ).
Lemma 2.2. Assume that G is embedded in an orientable surface of genus g.

1. H 1 (d * , R
) is free of rank 2g and there are 2g simple loops

a 1 , b 1 , a 2 , b 2 , . . . , a g , b g of G such that [a 1 ] R , [b 1 ] R , . . . , [a g ] R , [b g ] R is a free basis of H 1 (d * , R). 2. When g ≥ 1 and v ∈ V, (l i , 1 ≤ i ≤ r) and a 1 , b 1 , . . . , a g , b g ∈ L v (G) are as in Lemma 2.
1, the map

Γ g = x 1 , y 1 , . . . , x g , y g |[x 1 , y 1 ] . . . [x g , y g ] → H 1 (d * , Z) x m → [a m ] Z , y m → [b m ] Z , ∀1 ≤ m ≤ g
is a well defined onto morphism, with kernel given by the commutator group [Γ g , Γ g ].

3.

Denoting by H the R-span of ω a1 , . . . , ω bg ,

H ⊕ * 1 = Ω 1 (G, R). For any loop l of G, there is therefore a unique pair (n l , h) with n l ∈ Ω 2 (G, R)/Rµ * and h ∈ H such that ω l = d * n l + hl .
We call the two-form n l the H-winding function of l. When [l] R = 0, it does not depend on H and we call it simply the winding function of l. When furthermore R = R, we shall identify n l with an element of {µ * } ⊥ .

Makeenko-Migdal vectors for a regular loop: Let us first define a notion of loops with transverse simple intersections.

Consider a loop of a topological map G = (V, E, F ) which uses each non-oriented edge at most once and each vertex at most twice. We denote then by E l the subset of edges e ∈ E such that l runs through e or e -1 .

Whenever a vertex v is visited twice, the four outgoing edges at v visited by l can be ordered e 1 , e 2 , e 3 , e 4 respecting the counterclockwise, cyclic ordering of the orientation of the map, so that l is cyclically equivalent to a tame loop of the form αe -1 1 e 3 βe -1 2 e 4 γ, αe -1 1 e 4 βe -1 3 e 2 γ, αe -1 1 e -1 4 βe -1 2 e 3 γ or αe -1 1 e 4 βe -1 2 e 3 γ, these four cases being exclusive. See Figure 6. We say that l is a tame loop if only the first case occurs. The set V l of vertices visited twice by l are then called the (transverse) intersection points of l.

The Makeenko-Migdal vector at an intersection v ∈ V l of a tame loop is then the 2-form

µ v = d(ω e1 ) + d(ω e3 ) = -d(ω e2 ) -d(ω e4 ). (16) 
The vector space m l of Makeenko-Migdal vectors is the linear span of Makeenko-Migdal vectors µ v , v ∈ V l and of the 2-forms dω e with e ∈ E l . 

c c -1 c -2 c -1 c -1 c c -2 c -1 c -2 c -2 c -1 c c -1 c -1
m l =    {α ∈ Ω 2 (G, R) : α, µ * = 0} if [l] = 0, {α ∈ Ω 2 (G, R) : α, µ * = α, n l = 0} if [l] = 0.
Proof. Let us first remark that the above construction is invariant by the following appropriate subdivisions. Let us call subdivision of an oriented face f * , the operation of adding two new vertices on its boundary and adding an edge e connecting them; the new map G has 2 new vertices, 1 more edge and 1 more face, with in place of f * , two faces f 1 and f 2 with the same orientation induced from f * , while any other face is identified with a face of G. The map G being finer than G, l can be identified with a tame loop G that we denote by the same letter. Denote respectively by m l , µ * and, when [ ] = 0, n l , the space of Makeenko-Migdal vectors, the constant 2-form and the winding function of l on G . Consider the map P : Ω 2 (G ) → Ω 2 (G) with P (ϕ)(f ) = ϕ(f ) whenever a face f of G is identified with a face of G and ϕ(f 1 ) + ϕ(f 2 ) when f = f * . On the one hand, P (dω e ) = 0 and P maps all other vectors of the defining generating family of m l to the generating family of m l . Therefore, P (m l ) = m l . As P : {dω e } ⊥ → Ω 2 (G) is an isometry, while dω e ∈ m l ∩ ker(P ), P (m l ⊥ ) = m ⊥ l . On the other hand, P (µ * ) = µ * and when [l] = 0, P (n l ) = n l . We conclude that it is enough to prove the claim for any subdivision of G.

Therefore, we can w.l.o.g. assume that l and the paths a defines a one-form. We claim that for any oriented edge e ∈ T(S ),

α e = dω e -d(η.ω e ) ∈ m l .
Indeed, it is non zero only when γ ∈ S runs through e or e -1 , in which case, it follows from (16) that α e is a Makeenko-Migdal vector at respectively e or e.

Let us now consider (d -d • η)ω e = 0, ∀e ∈ T(S ), whereas β, dω e = 0, ∀e ∈ T(S ), so that

β ∈ m ⊥ l ∩ {µ * } ⊥ . Then β, α e = β,
d * β = (d • η) * (β) = η -1 • d * β and d * β, ω e = 0, ∀e ∈ T(S ).
It follows that

d * β = cω l + g i=1 (a i ω ai + b i ω bi ), for some c, a 1 , b 1 , . . . , a g , b g ∈ R.
Using the decomposition ♦ 1 = * 1 ⊕ H, we find

d * β = cd * n l and c hl + g i=1 (a i ω ai + b i ω bi ) = 0.
Since β ∈ m⊥ l , for any edge e such that e, e -1 do not belong to l, d * β, ω e = 0. In particular, a i = b i = 0 for all i and d * β = cω l . Since β ∈ µ ⊥ * , it follows that whether [l] = 0 and β = cn l or c = 0 and β = 0. We conclude that whether [l] = 0 and m ⊥ l ∩ {µ * } ⊥ = R.n l , or [l] = 0 and m ⊥ l ∩ {µ * } ⊥ = {0}.

Regular polygon tilings of the fundamental cover, tilinglength of a tame loop and geodesic loops

To simplify the presentation, we shall work only with surfaces of genus g obtained by a standard quotient of 4g polygons. We fix here notations and definitions relative to the universal cover of such maps. We refer to [START_REF] Birman | Dehn's algorithm revisited, with applications to simple curves on surfaces[END_REF] for more details.

Regular maps and regular loops: A 2g-bouquet map is a map (V, E, F ) with 1 vertex v, 1 face and 2g edges, so that for f ∈ F o , there are 2g oriented edges

a 1 , b 1 , . . . , a g , b g ∈ E o corresponding to distinct edges, with ∂ v f = [a 1 , b 1 ] . . . [a g , b g ].
A 2g-bouquet map can be obtained by labelling the edges of a 4g-polygon counterclockwise and gluing the i + 4k-th edge with the i + 2 + 4k edge for all 0 ≤ k ≤ g -1 i ∈ {1, 2}. A regular map is a pair given by a map G = (V, E, F ) and a 2g-bouquet map G g , such that G is finer than G g . Each edge of G g is uniquely decomposed as a concatenation of edges of G. Let ∂E ⊂ E be the set of non-oriented edges appearing in these concatenations. We then set ∂V the set of endpoints of edges of ∂E and o V = V \ ∂V. When (G, G g ) is a regular map, we refine the notion of tame loops defined in the previous section as follows. A loop l ∈ L(G) is regular whenever it is tame, none of its edges belong to ∂E and l ∈ o V . In particular its intersection points

satisfy V l ⊂ o V .
Universal cover of a regular map and its tiling: Let (G, G g ) be a regular map with G = (V, E, F ). When g = 1, consider the closed square P 1 with vertices coordinates in {- 1 2 , 1 2 } and the tiling of R 2 by translation of P 1 by Z 2 . When g ≥ 2, consider a tiling of the Poincaré hyperbolic disc H by a family of closed regular 4g-polygons of H whose sides do not intersect 0 and denote by P 1 the polygon among them enclosing 0. The group Γ g can be identified with Z 2 when g = 1 and with a subgroup of Möbius transformations that acts properly by isometry on H when g ≥ 2. The group Γ g acts freely on the set of tiles and for each h ∈ Γ g , there is a unique tile P h with g.0 belonging to the interior of P h . Let us define ΣG as R 2 when g = 1 and H when g ≥ 2.

The quotient of ΣG by Γ g is homeomorphic to Σ G and we denote by p : ΣG → Σ G the quotient mapping. There is a unique CW approximation of ΣG such that the restriction of p to the interior of each cell in ΣG is an homeomorphism onto the interior of a cell of Σ G labeled by an element of V, E or F . We denote a labelling of the cells of this CW complex by G = ( Ṽ , Ẽ, F ) and call G a universal cover of G.

There is a natural map from Ṽ , Ẽ, F to respectively V, E and F that we also denote by p. As for maps, the pair ( Ṽ , Ẽ) can be identified with a graph, and we denote by P( G) its set of paths. For each path γ = e 1 . . . e n ∈ P(G) and ṽ ∈ p -1 (v 0 ), the lift of γ from ṽ is the unique path γ = (ẽ 1 , . . . , ẽn ) ∈ P(G) with ṽ0 = ṽ and p(ẽ k ) = e k for all 1 ≤ k ≤ n. For all h ∈ Γ g , we denote by For any path γ ∈ P(G) with lift γ,

D h ⊂ Ṽ , D * h ⊂ F
|γ| D = |γ| -# {0 ≤ i ≤ |γ| -1 : ∃h ∈ Γ g with {γ i , γi+1 } ⊂ D h }
does not depend on the choice of starting point of γ, and we call it tiling length of γ. The tile decomposition of l are the paths γ 0 , . . . , γ |l| D of G, with lifts γ0 , . . . , γ|l| D , such that we can decompose l as

l = γ0 . . . γ|l| D (17) 
where for all 0 ≤ k ≤ |l| D , there are h 0 , h 1 , . . . , h |l| |D| ∈ Γ g such that all vertices of γk belong to D h k , while l Γ = (h 0 , . . . , h |l| D ) is a path in Γ g . We call l D = γ |l| D γ 0 the initial strand of l. We call l Γ the tiling path of l and set

|l| Γ = |h |l| D | Γ . A loop l 1 of (G, G g ) is called an inner loop of l if l 1 is regular, included in o D and l 1 ≺ l.
We then say that l 1 is a contractible intersection point of l and denote by V c,l the set of such points. A proper loop is a regular loop l with #V c,l = 0.

A path γ ∈ P(G) is said to be geodesic when the image in ΣG of its lift γ ∈ P( G) is the restriction of a line (resp. a circle orthogonal to the unit disc), when g = 1 (resp. g ≥ 2). A path in Γ g is geodesic if it is the tiling path of a geodesic path of a regular map.

Shortening homotopy sequence

We define here operations on regular loops allowing to decrease their tiling length.

We say that a sequence l 1 , . . . , l n is a shortening homotopy sequence from l 1 to l n if l 1 , . . . , l n are regular loops such that

|l 1 | D ≥ . . . ≥ |l n | D and for all 1 ≤ l < n, #V c,l = #V c,l+1 = 0 or #V c,l > #V c,l+1 ,
while there is a regular map (V, E, F ) with l l , l l+1 ∈ P(G) and a subset of faces

K l ⊂ = F , with l l ∼ K l l l+1 .
The aim of this section is to prove the following. Proposition 2.4. For any proper loop l, there is a shortening homotopy sequence l 1 , . . . , l m , a geodesic loop l and a path η within the same map G = (V, E, F ) as l m , such that l m ∼ K ηl η -1 for some K ⊂ F with K = F. The path η can be chosen simple, within a fundamental domain and crossing l m and l only at their endpoints.

We need two additional notions for this proof.

Bulk of a loop: Consider a regular map (G, G g ) with G = (V, E, F ), and a contractible loop l of G whose lift is a loop l of G. Let E c be the set of edges used by l and let O l be the unbounded component of G * \ E c . The bulk of l is then K l = p( F \ O l ). Since E l is connected, the image of O l in ΣG is a surface with one boundary and the image Xl of F \ O l in ΣG is a contractible set. The image of l is then contractible within X l = p( Xl ) and l ∼ K l l * where l * is the constant loop at l.

Adding a rim to a regular map: When (G, G g ) is a regular map, let us define a map G r finer than G in the following way. First add exactly one vertex to each edge of E \ ∂E with one endpoint in ∂V and exactly two when both endpoints belong to ∂V . Each new vertex is paired uniquely with a vertex of ∂V and their set inherit the cyclic order of vertices of ∂V. Second add an edge for each consecutive new vertices. We denote by G r the new map defined thereby and call the set ∂ r E of edges added in the second step the rim of G. Each face of the new map, whose boundary has an edge in ∂E has exactly four adjacent edges with exactly one in ∂E r . We denote this set of faces by F r,o . We denote all other faces of G r by F i . For any f ∈ F, whether its boundary has no edge in ∂E and it is identified to a face of F i , or it is the union of faces of G r with exactly one in F i , that we abusively also denote by f . For any oriented edge e of G r belonging to ∂E, its right retract is the oriented edge of ∂E r belonging to the face of F r,o on the right of e. When γ is a path with edges in ∂E, its right retraction is the concatenation of the right retraction of its edges. The left retraction is defined likewise.

We can now prove the existence of shortening homotopy sequence starting from any regular loop, using a 5 type of operations.

Step 1-Deleting contraction points: Consider a regular loop l with #V c,l > 0 of a regular map with faces set F . Any lift α of an inner loop α ≺ l is a loop and we can consider its bulk. Denote by K the union of bulks for all inner loops. Any face bordering ∂E does not belong to K so that K F while l is ∼ K -equivalent to the regular loop l with all inner loops erased.

Step 2-Backtrack erasure: Assume that l is a regular loop of a regular map (G, G g ) such that there is 1 < i < |l| D with h i-1 = h i+1 , where (h 1 , . . . , h |l| D ) is the tiling path of l. Consider the decomposition of l as in [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF]. Let G be the map (G, G g ) with a rim added. Denote by e i and e o the last and first edge of γ i-1 and γ i+1 . Then e i and e o belong the same edge e of G g . Let β ∈ P(G ) be the reduced path using only edges of the rim with β = e i and β = e o . Denote by γ i-1 and γ i+1 the reduction of γ i-1 e -1 i and e -1 o γ i+1 . The backtrack erasure for the backtracking

(h i-1 , h i , h i+1 ) of l is the regular loop l = γ 1 . . . γ i-2 γ i-1 β γ i+1 γ i+2 . . . γ |l| D .
It can be obtained from l by the following discrete homotopy. Since a lift of the paths β and e i γ i e o starting in D hi-1 both ends in D hi , the loop of e i γ i e o β -1 is contractible. Denote by K bt its bulk. Then l ∼ F bt l .

Since γ i only intersect the rim of G through the edge e, any face belonging to the rim whose boundary intersects two different edges of G b is not in K bt . It follows that K bt = F .

Step 3-Vertex switch: Let l be a regular loop of a regular map (G, G g ) and consider its decomposition as in [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF]. A half turn of l is a sequence γ l , . . . , γ l+k such that 2g ≤ k ≤ 4g -1, and D h l , D h l+1 , . . . , D h l+k runs around a common vertex v ∈ G g . Consider such a long turn and let G = (V , E , F ) be the map obtained from G by adding twice a rim as described in the last paragraph. See Figure 8 for an example. Let e i and e o be respectively the last and the first edge of γ l and γ l+k in G . Besides, let β p ∈ P(G * ) be the shortest reduced path from a face adjacent of e i to a face adjacent of e o that crosses first e i and uses only faces of F r,o so that its lift starting from D * h l goes through D * h l ∪ D * h l+k and ends in D * h l+k . Let β ∈ P(G ) be the reduced path from e i to e o , such that each edge of β is bordering a face of β p . Denote by γ l and γ k+l the reduction of γ l e -1 i and e -1 o γ k+l . The vertex switch of l for the considered half turn is the regular loop Besides, F sw = F . Indeed, consider the map G 1 obtained by adding a single rim to G, so that G is finer than G 1 . Let F cr , Fcr be the set of of faces of G 1 neighbouring respectively p(v) and v. The restriction of p to Fcr is a homeomorphism onto F cr . Since k < 4g, there is at least one face fcr of Fcr that does not belong to p -1 (F sw ). Since β uses only faces of F r,o , any face of F \ F r,o included in f cr = p( fcr ) does not belong to K sw .

l = γ 0 γ 1 . . . γ l-1 γ l β γ k+l γ k+l+1 . . .
The following lemma reformulates a result due to [START_REF] Birman | Dehn's algorithm revisited, with applications to simple curves on surfaces[END_REF] relating |l| D to long turns of l when g ≥ 2.

Lemma 2.5. Let l be a regular loop of a regular map (G, G b ). There is a finite sequence l 1 , . . . , l n or regular loops obtained by vertex switches or backtracking erasures such that

l 1 = l, |l 1 | D ≥ |l 2 | D . . . ≥ |l n | D and |l n | D = |l| Γg .
Proof. The case g = 1 is elementary. An argument goes as follows. The path in Γ 1 = Z 2 associated to l can be assumed up to axial symmetries that h l has nonnegative coordinates. A backtracking of l Γ can be erased by a backtracking erasure of l. A path is geodesic if and only if all of its increments coordinates are non-negative. There are two consecutive increments with a negative followed by a positive sign. This pair corresponds to a backtrack or a half turn of l if one or two coordinates change. Applying to a backtrack erasure or a switch at the half turn, the new loop has one less pair of increments with coordinates changing sign. When g ≥ 2, the result follows from [7, Lemma 2.5]. In the setting of [START_REF] Birman | Dehn's algorithm revisited, with applications to simple curves on surfaces[END_REF], a half turn of l is a half cycle of the path in Γ g associated to l. A switch at a half turn corresponds to a replacement of a half cycle with its complementary. Moreover in the setting of [START_REF] Birman | Dehn's algorithm revisited, with applications to simple curves on surfaces[END_REF], replacing a long chain by its complementary chain can be obtained by successively replacing a long cycle by its complementary cycle.

Step 4-From minimal tiling length to geodesic tiling paths: We say that a regular path γ of a regular map has minimal tiling length when |γ| D = |γ| Γ . When g ≥ 2, the following is a consequence of [7, Thm 2.8].

Lemma 2.6. If l is a regular loop of a regular map, there is a sequence of regular loops l 1 , . . . , l n with minimal tiling length equal to |l 1 | Γ obtained by switches, such that l 1 = l while the tiling path of l n is geodesic.

Proof. When g ≥ 2, in the setting of [START_REF] Birman | Dehn's algorithm revisited, with applications to simple curves on surfaces[END_REF], our condition for a tiling path to be geodesic is equivalent for it to be a shortest path. Since switches at half turn imply switches for half cycles of the tiliing path in the setting of [START_REF] Birman | Dehn's algorithm revisited, with applications to simple curves on surfaces[END_REF], the result follows from point (c) of [START_REF] Birman | Dehn's algorithm revisited, with applications to simple curves on surfaces[END_REF]Thm 2.8].

When g ≥ 1, for any regular loop with minimal tiling length, we can assume w.l.o.g. that both coordinates of the endpoint (a, b) of l Γ are non-negative. When γ is a path of Z 2 with only positive coordinates, a corner swap of γ is the path obtained by replacing a sequence of the form (x, y), (x + 1, y), (x + 1, y + 1) with (x, y), (x, y+1), (x+1, y+1) or vice-versa. Any other path of Z 2 with same endpoints can be obtained by corner swaps. Since a switch at a half turn of l implies a corner swap of its tiling path and that tiling paths with positive coordinates have minimal length in Z 2 , the claim follows.

Step 5-From geodesic tiling paths to geodesic paths: Assume that l is a regular loop such that l Γ is geodesic and set n = |l| D = |l| Γ . Let l ( * ) be a geodesic loop with l ( * ) Γ = l Γ . Up to translation of the geodesic associated to l ( * ) , we can assume that l (0) and l ( * ) are regular paths of a same regular map (G (0) , G (0) g ). Let η ∈ P (G (0) ) that does not cross the boundary of the polygon, while η = l and η = l ( * ) , without using any edge of l ( * ) . Denote by (G, G g ) the regular map obtained by adding a rim to (G (0) , G (0) g ). Using the same notation as in [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF], consider the tile paths decompositions of l and l ( * ) adding an upper-script ( * ) for the second decomposition. β k e k γ k+1 . . . γ n .

Let us set l (n) = ηl ( * ) η -1 and l (-1) = l. Let α k be the reduction of the loop

η -1 γ 0 e -1 0 β -1 0 e ( * ) 0 γ ( * ) 0 -1 when k = 0, e ( * ) k-1 -1 β k-1 e k-1 γ k e k -1 β -1 k γ ( * ) k -1 when 0 < k < n and e ( * ) n-1 -1 β n-1 e k-1 γ n ηγ ( * ) n -1 when k = n. With this notation l ∼ r ηα 0 γ * 0 α 1 γ * 1 . . . α k γ ( * ) k e ( * ) k -1 β k e k γ k+1 . . . γ n for 0 ≤ k < n and l ∼ r ηα 0 γ * 0 α 1 γ * 1 . . . α n γ ( * ) n η -1 . Therefore, for all 0 ≤ k ≤ n l (k-1) = αβ and l (k) = αα k β ( 18 
)
for some paths α, β ∈ P(G). For all 0 ≤ k ≤ n, α k is contractible. Denoting by K k its associated bulk, [START_REF] Diaconis | Linear functionals of eigenvalues of random matrices[END_REF] yields

l (k) ∼ K k l (k-1) for all 0 ≤ k ≤ n.
Besides, since α k intersects at most two edges of G g , any face within the rim f ∈ F r,o , which borders a different edge of G g , does not belong to K k . Therefore K k = F.

Proof of Proposition 2.4. For any regular loop l, the claimed shortening homotopy sequence can be obtained by applying first the deletion of contraction points, followed by Lemma 2.5, 2.6 and lastly a shortening homotopy sequence from a loop with geodesic tiling path to a loop conjugated to a geodesic loop.

The following lemma is not mandatory for our main argument and can be skipped at first read. Let us note that it is also possible to do the vertex switch operation (step 3) before deleting contraction points (Step 1) thanks to the following. Lemma 2.7. Consider l is a regular loop within a regular map (G, G g ) with faces set F . Denote respectively by K and E in the union of bulks and the set of edges of its initial strand l D . Then

F \ K is connected in G * \ (∂E ∪ E in ).
Proof. Since l is regular, any edge crossing ∂E does not belong to E in and faces adjacent to ∂E belong to the same connected component

X of F \ K in G * \ (∂E ∪ E in ). Denote by X the lift of X in D * 1 . Assume that F \ K is not connected in G * \ (∂E ∪ E in ) and consider a connected component K different from X. Then all edges of ∂K belong to E in . Since the infinite connected component of G * \ E in is given by F \ D * ∪ X, the lift of K in D *
1 is included in the bounded connected component of G * \ E in , where we identified E in with the set of edges of the lift of l D starting from D 1 . It follows that K is included in K, which is a contradiction.

Nested and marked loops

Nested loop: We say that a loop l with n transverse intersection points is nested if it is regular and if there are sub-loops

l 1 ≺ l 2 ≺ . . . ≺ l n such that |l 1 | < |l 2 | < . . . < |l n |.
By convention, a constant loop is a nested loop. A regular loop is nested if and only if its transverse intersection points can be labeled v 1 , v 2 , . . . , v n so that it visits them in the order Remark. A nested loop is an example of a splittable loop as defined in [17, Section 6.5], originally introduced in [START_REF] Kazakov | Wilson loop average for an arbitrary contour in two-dimensional U(N ) gauge theory[END_REF] and called therein planar loops. Note that the right example in figure 9 is splittable but not nested.

(v 1 v 2 . . . v n-1 v n v n v n-1 . . . v 2 v 1 ). See figure 9.
Marked loops: A marked loop is a couple (l, γ nest ) of a regular loop and a regular path within a regular map such that 1. the first path γ 1 of the tiling decomposition of l can be written γ 1 = γ nest γ , for some path γ .

2. when γ nest is non-constant, it is of the form αl nest β where l nest is a nested loop and α, β are simple paths, such that the only intersection between α, β and l nest are at α and β.

3. The path γ nest does not intersect transversally the two components of the initial strand l D , that is

V l D ⊂ V βα ∪ V lnest .
4. The path γ nest does not intersect any inner loop of αβ.

We call the loop (l, γ nest ) ∧ = γ 0 αβγ 1 and the path (l, γ nest ) ∧ * = γ 1 γ 0 the pruning and the cut of (l, γ nest ). We shall often denote them abusively simply by l ∧ and l ∧ * . We say that (l, γ nest ) is non-overlapping if γ nest does not intersect the path l ∧ * but at its endpoints. For any marked loop (l, γ nest ), because of point 1., the loop l nest is contractible and we denote by F nest ⊂ F the associated bulk. A face of F \ F nest neighbouring F nest is an outer face. When l nest is not constant, we call the simple sub-loop of l with length 1 the central loop of (l, γ nest ). Being a sub-loop of l nest , it is contractible, faces belonging to its bulk are called central. A moving edge is an edge e of l with the following property:

• When l nest is constant, e is any edge of γ nest .

• Otherwise, e bounds a central face of l nest .

When γ nest is constant, we say that γ nest is a moving vertex. The following is then a simple variation of Proposition 2.4.

Lemma 2.8. For any marked loop (l, γ nest ) with l ∧ proper, there is a shortening homotopy sequence l 1 , . . . , l m such that

1. l 1 ∼ c l, 2. For all 1 ≤ k ≤ m, there is a nested sub-path γ nest,k of l k , such that (l k , γ nest,k )
is a marked loop and l ∧ k is proper for k ≥ 2.

There are proper faces subsets

K 1 , . . . , K m , such that l ∧ k ∼ K k l ∧ k+1 for all 1 ≤ k < m.
4. There is a marked loop (l , γ nest ) such that l m ∼ Σ l and l ∧ is geodesic.

Pull and twist moves

We introduce here two operations on loops in order to later modify shortening homotopy sequences to satisfy the constraint imposed by Makeenko-Migdal equations, namely to keep constant the algebraic area of loops introduced in section 2.2. This type of operation shall be required only when considering loops with vanishing homology.

Pull move: Consider a non-constant marked loop (l, γ nest ) in a regular map (G, G g ) with l ∧ proper and a simple path γ * = (f 1 , . . . , f m ) in the dual G * that does not cross ∂E, such that the first edge of γ * crosses a moving edge e. Let us define inductively a new map G finer than G, a new marked loop (l , γ nest ), as well as a subset F stem of faces of G . An example of the result in displayed in Figure 11. Let us first set F stem = ∅. Let k be the largest k < m such that (f k , f k+1 ) crosses an edge of l D , setting k = 1 when γ * does not cross any edge of γ 1 .

2. Cut all faces of α but α into three faces adding two non-crossing edges such that endpoints of a new edge do not belong to the same initial edge. Add to F stem all new faces bounded by 2 new edges. Twist move: Consider a marked loop (l, γ nest ). If γ nest is constant, let us refine the map of G by adding a vertex to an edge e r of l D that does belong to an inner loop. We reroot then l at e r and redefine γ nest as the outgoing edge of l D at e r . Let us now consider a marked loop with a moving edge e. Let us refine a regular and marked loop as follows. Add a vertex to e and cut the face left of e into two faces, adding an oriented edge e with both endpoints equal to the new vertex, such that e is the boundary a positively oriented face. The initial moving edge reads e = e 1 e 2 in the new map. The left twist of (l, γ nest ) is the marked loop obtained by replacing the occurrence of e by e 1 e e e in both l and γ nest . The new marked loop has then e has unique moving edge. We denote by F tw the face bounded by e . The right twist of (l, γ nest ) is defined similarly considering the right face and a negative orientation. When n is respectively positive or negative, the n-twist of a marked loop is obtained by applying respectively n left twists or -n right-twists and denote then by F tw the |n| faces of the new map bounded solely by newly added edges. The set F tw can be alternatively characterised as the smallest subset of faces of the new map such that the n-twist is ∼ Ftw -equivalent to l.

Vertex desingularisation

Consider a regular map G. Assume that l is a regular loop and v ∈ V l is an intersection point. We denote by l 1 and l 2 the two sub-loops of l based at v such that l ∼ c l 1 l 2 . We then set

δ v l = l 1 ⊗ l 2 ∈ C[L c (G)] ⊗2 ,
with the convention that l 1 is left of l 2 at v as displayed on Figure 2. By definition of Makeenko-Migdal vectors given in section 2.2, there are25 linear forms (α v ) v∈V l and (β e ) e∈E\E l on m l such that

X = v∈V l α v (X)µ v + e∈E\E l β e (X)dω e , ∀X ∈ m l .
We then set

δ X l = v∈V l α v (X)δ v l.
Let us compare how this operation combines with the different functions and moves on loops defined above.

Inner loops and tiling length: When v ∈ V c,l is a contractible loop, one them say l 2 is an inner loop of l, while l 1 is a regular loop with

#V c,l1 < #V c,l .
Otherwise, both l 1 and l 2 are regular loops both crossing ∂E at least twice so that

|l 1 | D , |l 2 | D > 0. Moreover |l 1 | D + |l 2 | D = |l| D
since both count the number of edges of ∂E crossed by l. Therefore,

|l 1 | D , |l 2 | D < |l| D . (19) 
Homology: Since

ω l = ω l1 + ω l2 , [l] = [l 1 ] + [l 2 ]. In particular, if [l] = 0, [l 1 ] = 0 or [l 2 ] = 0.
Pull and twist moves: Consider a marked loop (l (0) , γ (0) nest ). Assume that (l, γ nest ) is a n-twist of a pull move of (l (0) , γ 0 nest ) and v ∈ V l be an intersection point of the new loop l. Note that the tiling decomposition of l is identical to the one of l (0) but with the first part modified so that |l| D = |l (0) | D . Also, by construction l nest does not intersect the root strand γ D and l ∧ has as many contraction intersection points as l (0) ∧ . We deduce the following.

If v ∈ V c,l , then by [START_REF] Bruce | YM 2 : continuum expectations, lattice convergence, and lassos[END_REF],

|l 1 | D , |l 2 | D < |l| D = |l (0) | D .
Since l nest is an inner loop of l,

V lnest ⊂ V c,l . If v ∈ V c,l \ V lnest , l nest is a sub-loop of l 1 or l 2 , say l 1 . Then (l 1 , l nest ) is a marked loop and #V c,l ∧ 1 , #V c,l2 < #V c,l ∧ = #V c,l (0) ∧ . If v ∈ V lnest , l 1 or l 2 , say l 2 , is a sub-loop of l nest . Then #V c,l ∧ 1 = #V c,l ∧ = #V c,l ∧ (0) and |l 1 | D = |l| D = |l (0)
|. These last identities prevents the use of a direct induction argument in section 4.2, but allow the one of a Grönwall estimate in Proposition 4.6.

3 Yang-Mills measure and Makeenko-Migdal equations

Metric and heat kernel on classical groups

We recall here briefly the definition and main properties of the heat kernel on classical groups that will be needed to define the discrete Yang-Mills measure. These results are quite standard, and can also be found for instance in [36, Section 1]. In this text, for any N ≥ 1, we denote by CG N the family of classical compact matrix groups U(N ), SU(N ), SO(N ) and Sp(N ), following the same conventions as in section 2.1.2 of [16].

When G denotes a compact Lie group, its Lie algebra g is endowed with an invariant inner product •, • . Setting

L X f (g) = d dt t=0 f (ge tX ), ∀f ∈ C ∞ (G) and g ∈ G,
the Laplacian associated to •, • is the operator defined by

∆ G f = 1≤i≤d L Xi • L Xi (f ), ∀f ∈ C ∞ (G),
where (X i ) 1≤i≤d is an arbitrary orthonormal basis.

Definition 3.1. The heat kernel on G is the solution p : (0, ∞) × G → R + , (t, g) → p t (g) of the heat equation, with p t ∈ C ∞ (G) for all t > 0 and

∂ t p t (g) = ∆ G p t (g), ∀g ∈ G, ∀t > 0, lim t↓0 p t (g)dg = δ I N , (20) 
where the convergence in the second line holds weakly.

It defines a semigroup for the convolution product, that is

p t * p s = p t+s , ∀t, s > 0. (21) 
It inherits the following properties from the conjugation invariance of the scalar product: for all g, h ∈ G and t > 0,

p t (hgh -1 ) = p t (g) (22) 
and p t (g -1 ) = p t (g).

When G N ∈ CG N , we fix an invariant inner product •, • as in (1) of [16, Section 2.1.2].

Area weighted maps, Yang-Mills measure and area continuity

We recall here a definition of the discrete and continuous Yang-Mills measure in two dimensions on arbitrary surfaces, with a focus on the former.

Area vectors and area weighted maps: When G = (V, E, F ) is a topological map, an area vector is a function a : F → R + . We say that (G, a) is an area weighted map with volume f ∈F a f . When K is a subset of faces of G we then write a(K) = f ∈K a(f ) its volume. When m = (G, a) and m = (G , a ) are area weighted maps with faces set F and F , m is finer than m if G is finer than G and a f = f ∈F :f ⊂F a f . When T > 0, we denote by

∆ G (T ) = {a : F → R + : f ∈F a f = T }
the closed simplex of area vectors of fixed volume T and its interior by

∆ o G (T ) = {a ∈ ∆ G (T ) : a(f ) > 0, ∀f ∈ F }.
Its faces are given as follows. For any subset K F , we set

∆ K,G (T ) = {a ∈ ∆ G (T ) : a(K) = 0} and ∆ o K,G (T ) = {a ∈ ∆ K,G (T ) : a(f ) > 0, ∀f ∈ F \ K}. When (G, B) is a map with boundary faces B, we set ∆ G,B (T ) = {a : F \ B → R + : f ∈F \B a f = T } and ∆ o G,B (T ) = {a ∈ ∆ G,B (T ) : a(f ) > 0, ∀f ∈ F }. When G = (V , E
) is finer than G, any face F of G can be identified with a subset of faces of G , and for any a ∈ ∆ G (T ), we denote r G (a) ∈ ∆ G (T ) the associated area vector of G. We then say that the area weighted map (G , a) is finer than (G, r G (a)).

Multiplicative functions and Wilson loops: Given a map G = (V, E, F ) and a compact group G, we say that a function h : P(G) → G is multiplicative if for any pair of paths γ 1 , γ 2 with γ 1 = γ 2 ,

h γ1γ2 = h γ2 h γ1 . (24) 
We denote their set by M(P(G), G). Endowing it with pointwise multiplication, it is a compact group and fixing an orientation of the edges, the evaluation on these edges defines an isomorphism

M(P(G), G) G E .
The Haar measure on M(P(G), G) can be identified via this isomorphism to the tensor product of the Haar measure on G, we denote it simply by dh.

When G is a map finer than G, the restriction from

P(G ) to P(G) defines a map R G G : M(P(G ), G) → M(P(G), G). A Wilson loop is a function of the form M(P(G), G) -→ C h -→ χ(h l )
where χ : G → C is a function invariant by conjugation and l ∈ L(G). By centrality, the value χ(h l ) depends on l only through its ∼ c -equivalence class l and we denote it by χ(h l ). When G ∈ CG N , for any loop l ∈ L(G), we shall focus on the Wilson loop W l obtained considering as central function

χ = tr N ,
where tr N = d -1 N Tr is the standard trace Tr in the natural matrix representation normalised by the size d N of the matrix, that is 2N in the symplectic case and N otherwise.

Discrete Yang-Mills measure, non-singular case on closed surfaces: When T > 0, G is a map with boundary faces B and a ∈ ∆ o G,B (T ), the Yang-Mills measure is the probability measure YM G,B,a on the compact group M(P(G), G) with density

Z -1 G,B,a f ∈F \B p a f (h ∂f )
with respect to the Haar measure on M(P(G), G), where

Z G,B,a = 1 if B = ∅ and Z G,a = M(P(G),G) f ∈F p a f (h ∂f )dh
otherwise. In the above formula, ∂f is the boundary of the face for some arbitrary choice of root and orientation. This does not change the value of p a f (h ∂f ) thanks to [START_REF] Driver | Three proofs of the Makeenko-Migdal equation for Yang-Mills theory on the plane[END_REF] and [START_REF] William | The symplectic nature of fundamental groups of surfaces[END_REF]. The fact that this density defines a probability measure when B = ∅ follows for instance from Lemma 3.2 below. We denote YM G,∅,a simply by YM G,a .

Lemma 3.1.

1. For any a ∈ ∆ o G (T ), the constant Z G,a depends only on T and the genus g of G, we denote it by Z g,T .

2. When m = (G , a ), m = (G, a) are two area weighted maps with m finer than m and a ∈ ∆ o G (T ), then

R G G * (YM G ,a ) = YM G,a .
Uniform continuity and compatibility: The Yang-Mills measure is also well defined on the faces on the simplex of area vectors. For any r, g ≥ 1 let us consider the set Hom(Γ g,r , G) of group morphisms. When endowed with point-wise multiplication it is a compact group and thanks to the presentation of Lemma 2.1,

Hom(Γ g,r , G) G r+2g-1 .
Moreover, this presentation allows to write the following integration formula.

Lemma 3.2 ([35]

). Assume that (G, a) is an area weighted map with r faces and that (l i , 1 ≤ i ≤ r) and a 1 , b 1 , . . . , a g , b g are as in Lemma 2.1. For any 1 ≤ i ≤ r, denote by a i the area of the face of l i . Then for any continuous function χ :

G 2g+r → C and any a ∈ ∆ o G (T ) and 1 ≤ k ≤ r, E YM G,a (χ(h l1 , . . . , h lr , h a1 , . . . , h bg )) = Z -1 g,T G 2g+r-1 χ(z 1 , . . . , z r , x 1 , . . . , y g )p a k (z k ) r i=1,i =k p ai (z i )dz i g l=1 dx l dy l ,
where we set

z k = (z 1 . . . z k-1 ) -1 [a 1 , b 1 ] . . . [a g , b g ](z k+1 . . . z r ) -1 .
When B is a nonempty subset of faces of G and lassos with faces in its complement have labels i 1 , . . . , i p ,

E YM G,B,a (χ(h li 1 , . . . , h li p , h a1 , . . . , h bg )) = G 2g+p
χ(z 1 , . . . , z p , x 1 , . . . , y g )

p i=1
p ai (z i )dz i g l=1 dx l dy l .

The above expression yields the following continuity in the area parameter. For any vertex v of a map G, the restriction of a multiplicative function to loops based at v depends only on the ∼ r -class of a loop and the restriction operation defines a map R v : 

M(P(G), G) → Hom(RL v (G, G)). For any a ∈ ∆ o G (T ), we set YM a,G,v = R v * (YM G,a ).
E YM G,a,v (χ(h l1 , . . . , h lr , h a1 , . . . , h bg )) = 1 Z g,T G 2g+r-1 χ(z 1 , . . . , z r , x 1 , . . . , y g )p a k (z k ) i∈S,i =k p ai (z i )dz i g l=1 dx l dy l ,
where we set

z k = (z 1 . . . z k-1 ) -1 [a 1 , b 1 ] . . . [a g , b g ](z k+1 . . . z r ) -1 and z i = 1 for all i ∈ S.
2. Consider a weighted map (G , a ) finer than (G, a) and denote the restriction map

R G G : Hom(RL v (G , G)) → Hom(RL v (G, G)). Then, R G G * (YM G ,a ,v ) = YM G,a,v .
3. Consider K ⊂ F with K = F and a ∈ ∆ K (T ). Then for any loops l, l ∈ RL v (G) with l ∼ K l , h l and h l have same law under YM G,a,v .

Continuous Yang-Mills measure: Thanks to the invariance by subdivision of the discrete Yang-Mills measure, given a Riemannian metric it is possible to take the projective limit of measures defined on graphs embedded in Σ whose edges are piecewise geodesic. It allows to define a multiplicative random process (H γ ) γ indexed by all piecewise geodesic paths, whose marginals are given by the discrete Yang-Mills measure.

This was done in [START_REF] Lévy | Two-dimensional Markovian holonomy fields[END_REF], where the author is furthermore able to show a weak convergence result allowing to define uniquely the distribution of a multiplicative function (H γ ) P(Σ) indexed by all path of finite length. Let us recall this result.

Denote by P(Σ) the set of Lipschitz functions γ : [0, 1] → Σ with speed bounded from above and from below, considered up to bi-Lipshitz re-parametrisations of [0, 1]. The set P(Σ) is endowed with the starting and endpoint maps, γ → γ, γ and of the operations of concatenation and reversion as above. A path of Σ is an element of γ ∈ P(Σ). It is simple if for any parametrisation p : [0, 1] → Σ, p : [0, 1) → Σ is injective. We consider then the set

M(P(Σ), G)
of multiplicative functions as in [START_REF] Gopakumar | Mastering the master field[END_REF]. It is a compact subset of G P(Σ) when the latter is endowed with the product topology. A loop is a path ∈ P(Σ) such that = . We denote their set by L(Σ). For any x, y ∈ Σ, we endow P x,y (Σ) = {γ ∈ P(Σ) : γ = x, γ = y} with a metric setting for any γ 1 , γ 2 ∈ P x,y (Σ),

d(γ 1 , γ 2 ) = inf p1,p2 p 1 -p 2 ∞ + |L (γ 1 ) -L (γ 2 )|
where the infimum is taken over all parametrisations p 1 , p 2 of γ 1 , γ 2 and for any γ ∈ P(Σ), L (γ) denotes the Riemannian length of γ. Endowing M(P(Σ), G) with the cylindrical sigma field B Σ,G , we denote by (H γ ) γ∈P(Σ) the canonical process. When G = G N is a classical compact matrix Lie group of size N, we write for any path γ ∈ P(Σ),

W γ = tr N (H γ ).
When (G, a) is an area weighted map of genus g ≥ 0, an embedding of (G, a) in a Riemann surface with volume vol, is a collection of simple paths (γ e ) e∈E of Σ indexed by edges of G, that do not cross but at their endpoints with the following properties:

1. The ranges of all paths (γ e ) e∈E form the 1-cells of a CW complex isomorphic to the CW complex of G.

2. Fixing such an isomorphism, each 2-cell of the complex associated to (γ e ) e∈E is a subset of Σ of Riemannian volume a(f ), whenever it is identified with a face f of G.

When Σ is the Euclidean plane or the hyperbolic disc, while G is a map of genus 0, f ∞ is a face of G and a ∈ ∆ G,{f∞} (T ), an embedding in Σ of the area weighted map (G, {f ∞ }, a) with one boundary component is a collection of simple paths (γ e ) e∈E of R 2 indexed by edges of G, that do not cross but at their endpoints with the following properties:

1. The ranges of all paths (γ e ) e∈E form the 1-cells of a CW complex isomorphic to the CW complex of G, such that the unique unbounded 2-cell is mapped to f ∞ .

2. Fixing such an isomorphism, each bounded 2-cell of the complex associated to (γ e ) e∈E is a subset of Σ of Riemannian volume a(f ), whenever it is identified with a face f of G.

In each case, we say that G is embedded in Σ if there is an area vector a satisfying the property 2.

When G = (V, E, F ) is a map, l ∈ L(G), Σ is a two-dimensional Riemannian manifold and ∈ L(Σ), we say that is a drawing of l = e 1 . . . e n if there is an embedding (γ e ) E∈E of G into Σ, such that is the concatenation γ e1 . . . γ en . The next two theorems are due to Lévy [START_REF] Lévy | Two-dimensional Markovian holonomy fields[END_REF].

Theorem 3.4. Let Σ be a compact Riemannian surface with area measure vol, G a fixed compact Lie group such that g is endowed with a G-invariant inner product. There exists a unique measure YM Σ on (M(P(Σ), G), B Σ , G), with following properties.

1. If (γ e ) e∈E is an embedding in Σ of an area-weighted map (G, a) with edges E, the distribution of (H γe ) e∈E is the discrete Yang-Mills measure YM G,a .

2. For any x, y ∈ Σ, if (γ n ) n≥1 is a sequence of paths of P x,y (Σ) with lim n→∞ d(γ n , γ) = 0 for some γ ∈ P(Σ), then under YM Σ , the sequence of random variables (H γn ) n≥1 converges in probability to H γ .

The process (H γ ) γ∈P(Σ) is called the Yang-Mills holonomy process.

Theorem 3.5. Let Σ be a Euclidean plane R 2 or the hyperbolic disc D h , endowed with their area measure vol, G a fixed compact Lie group such that g is endowed with a G-invariant inner product. There a exists a measure YM Σ on (M(P(Σ), G), B Σ , G), with following properties.

1. If (γ e ) e∈E is an embedding in Σ of an area-weighted map of genus 0 with one boundary (G, {f ∞ }, a) and edge set E, the distribution of (H γe ) e∈E is the discrete Yang-Mills measure YM G,a .

2. For any x, y ∈ Σ, if (γ n ) is a sequence of paths of P x,y (Σ) with d(γ n , γ) → n→∞ 0 for some γ ∈ P(Σ), then under YM Σ , the sequence of random variables (H γn ) n∈N converges in probability to H γ .

The process (H γ ) γ∈P(Σ) is called the Yang-Mills holonomy process.

In [START_REF] Cébron | The generalized master fields[END_REF][START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF], the authors showed that the proof of the above theorem can be adapted to yield the following extension result, when G is allowed to vary. Let us denote by A(Σ) the subset of paths of P(Σ) with a geodesic bi-Lipschitz parametrisation. Proposition 3.6. Let G N be a sequence of classical compact matrix Lie group. Assume the following two properties.

1. For any γ ∈ A(Σ), Φ(γ) = lim N →∞ W γ where the convergence holds in probability under YM Σ and Φ(γ) is constant.

2. There is a constant K > 0 independent of N, such that for any simple contractible loop ∈ L(Σ) bounding an area t > 0,

E YMΣ [1 -(W )] ≤ Kt.
Then Φ : A(Σ) → C has a unique extension to P(Σ) such that for all x, y ∈ Σ, Φ : P x,y (Σ) → C is continuous and for any γ ∈ L(Σ), W γ converges in probability towards Φ(γ) as N → ∞.

The argument given in section 5 of [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF] for the sphere applies verbatim on any compact surface Σ to yields the above statement, we will not repeat it in the current version. The details of following extension result is also left in the current version. Lemma 3.7.

1. For any map G there is a regular graph G finer than G.

2. For any γ ∈ A(Σ) there is an embedded graph G such that γ is the drawing of a path of G.

3. For any area weighted map (G, a) and γ ∈ P(G), there is a regular area weighted map (G , a ) finer than (G, a), γ a regular path of G and K a subset of faces of G , such that γ ∼ K γ .

4. For any compact Lie group G and any γ ∈ A(Σ), there is a regular path p in a regular graph G and a ∈ ∆ G (T ) such that under YM Σ , W γ has same law as W p under YM G,a .

Together with the last proposition, this lemma reduces the study of Wilson loops for all loops of finite length to the case of regular loops.

Planar master field, main results and conjecture

In the above setting, the following was proved in [START_REF] Lévy | The master field on the plane[END_REF] and26 [START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF], see [START_REF] Xu | A random matrix model from two-dimensional Yang-Mills theory[END_REF][START_REF] Anshelevich | Quantum free Yang-Mills on the plane[END_REF] for a weaker statement with a smaller class of loops and of groups G N . Recall the definition of the de-singularisation operation in section 2.7.

Theorem 3.8. Assume that G N is a classical compact matrix Lie group of size N . Assume that (G, {f ∞ }, a) is any area weighted map of genus 0, with one boundary component and l ∈ L(G), or that ∈ L(R 2 ), then the following convergences hold in probability 27 and the limits are constant and independent of the type of series of

G N : Φ f∞ l (a) = lim N →∞ W l under YM G,{f∞},a and Φ R 2 ( ) = lim N →∞ W under YM R 2 .
The function Φ R 2 is characterised by the following properties:

1. For any x ∈ R 2 , Φ R 2 : P x,x (R 2 ) → C is continuous. 2. Whenever ∈ L(R 2
) is a drawing of a loop l of an area weighted map of genus 0 with one boundary component (G, {f ∞ }, a), Φ R 2 ( ) = Φ l,f∞ (a).

3. For any map of genus 0 with one boundary component (G, {f ∞ }), T > 0, and any loop l ∈ L(G), Φ is uniformly continuous on ∆ G,{f∞} (T ) and differentiable on ∆ o G,{f∞} (T ) such that (a) if G is regular, l is a tame loop and v ∈ V l is a transverse intersection with

δ v l = l 1 ⊗ l 2 , µ v .Φ l,f∞ = Φ l1,f∞ Φ l2,f∞ in ∆ o G,{f∞} (T ). (b) Whenever Φ R 2 ( ) = e -t 2 .
See the appendix of [START_REF] Lévy | The master field on the plane[END_REF] for a table of values of Φ R 2 . Alternatively, the master field can be characterised using free probability as follows.

Lemma 3.9. Consider an area weighted map (G, {f ∞ }, a) of genus 0 with one boundary component. Assume G = (V, E, F ), #F = r + 1, F = {f 1 , . . . , f r , f ∞ } and v ∈ V. For any l ∈ L v (G) depends on l only through its ∼ r class. Setting

τ v (l) = Φ l,f∞ (a) and l * = l -1 , ∀l ∈ RL v (G)
and extending these maps linearly and sesqui-linearly, defines a non-commutative probability space (C[RL v (G)], τ v , * ). Assume that l 1 , . . . , l r , l ∞ is a family of lassos as in Lemma 2.1 with l i bounding f i for 1 ≤ i ≤ r and l ∞ for f ∞ . Then τ v is the unique state on (C[RL v (G)], * ) such that 1. for all n ∈ Z * , τ v (l n i ) = ν a(fi) (n), 2. l 1 , . . . , l r are freely independent under τ v .

Similarly the following lemma follows from the classical result of [START_REF] Biane | Free Brownian motion, free stochastic calculus and random matrices[END_REF] and Lemma 3.2. It shows that the conclusion of the former one is valid when the genus condition is dropped. Lemma 3.10. Consider an area weighted regular map with boundary (G, {f ∞ }, a) of genus g ≥ 1. Assume G = (V, E, F ), #F = r + 1 with F = {f 1 , . . . , f r , f ∞ } and v ∈ V. Assume that a 1 , . . . , b g and l 1 , . . . , l r+1 are 2g simple loops and r + 1 lassos as in Lemma 2.1, with l i bounding f i for 1 ≤ i ≤ r and f ∞ for i = r + 1. Assume that G N is a sequence of classical compact matrix group of size N. Then for any T > 0, a ∈ ∆ G,{f∞} (T ) and l ∈ RL v (G),

W l → Φ 1,g l (a) under YM G,{f∞},a ,
where Φ 1,g l (a) is constant. Moreover there is a constant K > 0 independent of G and N ≥ 1, such that for any face

f ∈ F \ {f ∞ }, E[1 -(W ∂f )] ≤ Ka(f ).
(*)

The * -algebra (C[RL v (G)], * ) is endowed with a unique state τ v satisfying τ v (l) = Φ 1,g l (a), ∀l ∈ RL v (G). Moreover, τ v is characterised by the following three properties:

1. l 1 , . . . , l r , a 1 , . . . , b g are free under τ v .

2. under τ v , a 1 , . . . , b g are 2g Haar unitaries.

For any

1 ≤ i ≤ r and n ∈ Z * , τ v (l n i ) = ν a(fi) (n).
A sketch of the proof is given in section 5. From Lemma 3.10 and the absolute continuity result of [16] follows a result on closed surfaces, for loops avoiding at least one handle.

Let us recall the definition of the universal cover G = ( Ṽ , Ẽ, F ) of a regular graph (G, G b ) given in section 2.3, with a canonical covering map p :

F → F. When a ∈ ∆ G (T ), let us set ã = a • p : F → [0, T ].
Theorem 3.11. Assume that (G, a) is an area weighted map with cutting along a simple loop l ∈ L(G) given by (G 1 , {f 1,∞ }) and (G 2 , {f 2,∞ }), with the same convention as in section 2.1. Then if G 2 has genus g 2 ≥ 1, for any loop l ∈ L(G 1 ) and a ∈ ∆ G (T ) with a(F 2 ) ∈ (0, T ),

W l → N →∞ Φ l (a) =    Φ l(ã) if l ∼ h c l , 0 if l ∼ h c l , in probability under YM G,a , (25) 
where l is a lift of l in G. Moreover, when g 1 = 0, the convergence holds true uniformly in a ∈ ∆ G (T ). Besides, there is a constant K > 0 independent of G and N ≥ 1, such that for any face f ∈ F 1 ,

E[1 -(W ∂f )] ≤ Ka(f ). (26) 
When G has genus 1 the above result gives information about loops included in a topological disc but does not say anything about other loops, for instance contractible loops obtained by concatenation of simple loops of non trivial homology.

A more satisfying answer is then given by the following theorem. Theorem 3.12. Consider a classical compact matrix Lie group G N of size N , T T is a torus of volume T > 0 obtained as a quotient of the Euclidean plane R 2 by the lattice √ T Z 2 . Then, the following convergence holds in probability under

YM T T , W → N →∞ Φ T T ( ) =    Φ R 2 ( ˜ ) if is contractible, 0 otherwise,
where for any loop ∈ L(T T ), ˜ ∈ P(R 2 ) is a finite length path with projection to T T given by . Besides,

Φ T T : L(R 2 ) → [-1, 1] is the unique function satisfying 1. For any x ∈ T T , Φ T T : L x (T T ) → C is continuous for the length metric d.
2. For any regular loop l in a regular map G of genus 1, there is a differentiable function

Φ l : ∆ G (T ) → C such that for any transverse intersection v ∈ V l , with δ v l = l 1 ⊗ l 2 , µ v Φ l = Φ l1 Φ l2 . (27) 
3. For any loop ∈ L(T T ) obtained by projection of a loop

˜ ∈ L(R 2 ) included in a fundamental domain of √ T Z 2 , Φ T T ( ) = Φ R 2 ( ˜ ).
4. For any non-contractible simple loop ∈ L(T 2 T ) and n ∈ Z * ,

Φ T T ( n ) = 0.
When g ≥ 2, we were unable to show a satisfying version of conjecture 1.3, but are able to prove the following conditional results. Theorem 3.13. Consider classical compact matrix Lie group G N of size N , g ≥ 2 and T > 0. Assume that for any regular area weighted map (G, a) of genus g,

W l → N →∞ Φ l(ã) in probability under YM G,a , (28) 
whenever l ∈ L(G) such that 1. any lift l ∈ L( G) of l is included in a fundamental domain, or 2. l = γ nest γ, where γ nest is a nested loop and γ is a geodesic path. 28Then for any regular graph G of genus g, (28) holds true for all l ∈ L(G).

Besides, the following weaker statement can be proved independently.

Proposition 3.14. Consider G N is a classical compact matrix Lie group of size N and g ≥ 2. Assume that for any regular area weighted map (G, a) of genus g,

W l → N →∞ 0 in probability under YM G,a , (29) 
whenever l ∈ L(G) is a geodesic loop with non zero-homology. Then for any regular graph G of genus g, (29) holds true for all l ∈ L(G) with non-zero homology.

Remark. The above statements may give the impression that any possible master field is expressed in terms of the planar case. This is nonetheless not the case as the Wilson loops limit on the of sphere give raise to different limits [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF]. See also the discussion in [16, Section 2.5].

Invariance in law and Wilson loop expectation

Before proceeding to the main part of this paper, let us give here a partial result that only holds in expectation, but relies on a simpler argument: the invariance in law by an action of the center of the structure group G N . Consider a regular graph G = (V, E, F ) with r faces, v ∈ V and a basis l 1 , . . . , l r , a 1 , . . . , b g of the free group RL v (G) as in Lemma 2.1. For any h ∈ G 2g and φ ∈ Hom(RL v (G), G), let us denote by h.φ ∈ Hom(RL v (G), G) the unique group morphism with

h.φ(l i ) → φ(l i ), for 1 ≤ i ≤ r and h.φ(a i ) = h 2i-1 φ(a i ) and h.φ(b i ) = h 2i φ(b i ) for 1 ≤ i ≤ g.
Let us denote by Z the center of G. When h ∈ Z 2g , it follows easily from point 2. of Lemma 2.2 that

h.φ(l) = φ h ([l] Z )φ(l), ∀l ∈ RL v (G), (30) 
where φ h ∈ Hom(H 1 (d * , Z), Z) is the unique group morphism such that

φ h ([a i ] Z ) = h 2i-1 and φ h ([b i ] Z ) = h 2i for 1 ≤ i ≤ g.
Lemma 3.15. Let G be regular map, T > 0, a ∈ ∆ G (T ). Denoting by (H l ) l∈RLv(G) the canonical G-valued random variable on Hom(RL v (G), G), the following assertions hold true.

1. The measure YM a,G,v on Hom(RL v (G), G) is invariant under the action of Z 2g . 

Assume that

χ : G → C is continuous and α : Z → C is such that χ(z.h) = α χ (z)χ(h), ∀(z, h) ∈ Z × G. Then (a) for any h ∈ Z 2g and l ∈ RL v (G), E YM a,G,v [χ(H l )] = α χ • φ h ([l] Z )E YM a,G,v [χ(H l )]. (b) If there is φ ∈ Hom(H 1 (d * , Z), Z) with φ([l] Z ) = 0, then E YM a,G,v [χ(H l )] = 0.
(RLv(G),G) χ(h -1 .φ)dYM a,G,v (φ) = Hom(RLv(G),G) χ(h -1 .φ)p ar+1 (φ((l 1 . . . l r ) -1 [a 1 , b 1 ] . . . [a g , b g ])) r i=1 p ai (φ(l i ))dφ = Hom(RLv(G),G) χ(φ)p ar+1 (h.φ((l 1 . . . l r ) -1 [a 1 , b 1 ] . . . [a g , b g ])) r i=1 p ai (h.φ(l i ))dφ = Hom(RLv(G),G) χ(φ)p ar+1 (h.φ((l 1 . . . l r ) -1 [a 1 , b 1 ] . . . [a g , b g ])) r i=1 p ai (h.φ(l i ))dφ,
where in the last line we used that h

.φ([a i , b i ]) = [φ(a i )h 2i-1 , φ(b i )h 2i-1 ]) = φ([a i , b i ])
for 1 ≤ i ≤ g and h.φ(l j ) = φ(l j ), for 1 ≤ j ≤ r.

Makeenko-Migdal equations, existence and uniqueness problem

The main tool of the current article are approximate versions of equations ( 27), satisfied on any surface when G N ∈ CG N and N → ∞. Let us introduce a setting to prove existence and uniqueness of these equations.

For any regular graph G and any vertex v of G, let A v (G) be the algebra with elements in C[L v (G)] endowed with the multiplication given by concatenation and setting l * = l -1 for all l ∈ L v (G) and extending it skew-linearly. When w is another vertex, we consider the * -algebra A

v,w (G) with elements in C[L v (G)] ⊗ C[L w (G)]
and multiplication and * -operation defined for all (x i , y

i ) ∈ A v (G) × A w (G) by (x 1 ⊗ y 1 ).(x 2 ⊗ y 2 ) = (x 1 x 2 ) ⊗ (y 1 y 2 ) and (x 1 ⊗ y 1 ) * = x * 1 ⊗ y * 1 .
Let us fix g ≥ 1 and T > 0. A Wilson loop system is a family of continuous functions φ l1 , φ l1⊗l2 : ∆ G (T ) → C given for each regular graph G of genus g and each pair of loops l 1 , l 2 ∈ L(G), with the following properties:

1. For any constant loop c, φ l1⊗c = φ l1 and φ c = 1.

2.

For any pair of loops l 1 , l 2 within a same regular graph of genus g, φ l1⊗l2 = φ l2⊗l1 depend on l 1 , l 2 only through their ∼ r,c equivalence class.

3. If G is finer than G of genus g, then for all loops l, l 1 , l 2 ∈ L(G)

φ l • r G G = φ l and φ l1⊗l2 • r G G = φ l1⊗l2
where loops are identified in the right-hand-sides with elements of L(G ).

If

G is isomorphic to G of genus g, a ∈ ∆ G (T ) is mapped to a ∈ ∆ G (T ), while l 1 , l 2 ∈ L(G) with l 1 ∼ Σ l 1 , l 2 ∼ Σ l 2
, through the same isomorphism map, then φ l1 (a) = φ l 1 (a ) and φ l1⊗l2 (a) = φ l 1 ⊗l 2 (a ).

If

G = (V, E, F ) is a regular graph of genus g, l 1 , l 1 , l 2 ∈ L(G), K ⊂ F with l 1 ∼ K l 1 , then φ l1⊗l2 (a) = φ l 1 ⊗l2 (a), ∀a ∈ ∆ K,G ( 
T ).

6. For any regular graph G of genus g with vertices v and w, for any a ∈ ∆ G (T ),

extending l 1 ⊗ l 2 ∈ L v (G) ⊗ L w (G) → φ l1⊗l2 (a) linearly defines a non-negative states φ a,v,w on A v,w (G) while for any x ∈ A v (G), φ x⊗x * ≥ 0.
Whenever G N ∈ CG N , from the above definition of the Yang-Mills measure, the collection

a ∈ ∆ G (T ) → E YM G,a [W l ], E YM G,a [W l1 W l2 ]
for all regular maps G of genus g and loops l, l 1 , l 2 ∈ L(G), is a Wilson loop system. Let us note that the first part of point 6. together with point 1. implies that for any and

|X.V φ N ,l | ≤ X C l V φ N ,l + v∈V l (V φ N ,lv,1 + V φ N ,l1,2 ) + 1 N (37) 
where for any v ∈ V l we wrote

∂ v l = l 1,v ⊗ l 2,v , C l > 0 is independent of N ≥ 1 and sup N ≥1 R N l ∞ < +∞.
The existence problem of these equations is a consequence of [START_REF] Driver | The Makeenko-Migdal equation for Yang-Mills theory on compact surfaces[END_REF] and [START_REF] Lévy | The master field on the plane[END_REF] for the approximate solutions, and given Theorem 3.8, of a simple computation for the exact ones. Lemma 3.16. Consider g ≥ 1, T > 0.

1. Assume that G N ∈ CG N , then setting for all regular graph G, a ∈ ∆ G (T ) and all loops l, l 1 , l 2 ∈ L(G)

φ N l (a) = E YM G,a [W l ], φ N l1⊗l2 (a) = E YM G,a [W l1 W l2
] defines an approximate solution of the Makeenko-Migdal equations. 2. Denoting by c v the constant loop at a vertex v, setting for any regular graph G, a ∈ ∆ G (T ) and l ∈ L(G),

φ l (a) =    Φ l(ã) if l ∼ h c l , 0 if l ∼ h c l ,
defines an exact solution of the Makeenko-Migdal equations.

Proof. Point 1. is a direct consequence of Proposition 7.3 below, together with Cauchy-Schwarz or arithmetic-geometric mean inequality to get [START_REF] Lévy | The master field on the plane[END_REF] and [START_REF] Lévy | Two-Dimensional Quantum Yang-Mills Theory and the Makeenko-Migdal Equations[END_REF]. For point 2., we shall only check that the Makeenko-Migdal equations are satisfied and leave the other points to the Reader. Consider a regular graph G of genus g with l ∈ L(G) and v ∈ V l . Consider δ v l = l 1 ⊗ l 2 and let us show that µ v φ l = φ l1 φ l2 .

If l ∼ h c l , then the rerooting l at v of l satisfies l ∼ h c v . Therefore l 1 ∼ h c v or l 2 ∼ h c v and we conclude that φ l = φ l = 0 = φ l1 φ l2 . Assume now l ∼ h c l . Consider a fundamental cover G = ( Ṽ , Ẽ, F ) of G with projection map p. For all a ∈ ∆ o G (T ),

µ v .φ l (a) = µ v .(Φ l(ã)) = ṽ∈p -1 (v)∩Tl (µ ṽ .Φ l)(ã),
where T l is the set of vertices of G visited by l. Since l is regular, whether

#p -1 (v) ∩ T l = 2 and #(V l ∩ p -1 (v)) = 0, or #(p -1 (v) ∩ T l) = #(p -1 (v) ∩ V l) = 1.
In the first case, l 1 ∼ h c v and l 2 ∼ h c v , so that φ l1 = φ l2 = 0. Moreover for any ṽ ∈ p -1 (v) ∩ T l and e 1 , . . . , e 4 ∈ Ẽo four cyclically ordered, outgoing edges at ṽ, we may assume that l uses e -1

1 and e 3 while e 2 , e 4 ∈ E l. Therefore dω e2 .Φ l = dω e4 .Φ l = 0 and as µ ṽ = ±(dω e2 + dω e4 ), (µ ṽ .Φ l)(ã) = 0 = φ l1 (a)φ l2 (a).

In the second case, for ṽ ∈

V l ∩ p -1 (v) = T l ∩ p -1 (v)
, by definition of the fundamental cover, l 1 ∼ h c v ∼ h l 2 . Then δ ṽl = l1 ⊗ l2 , where l1 , l2 are lift with initial condition v, so that using 3. a) of Theorem 3.8, we get

(µ ṽ .Φ l)(ã) = Φ l1 (ã)Φ l2 (ã) = φ l1 (a)φ l2 (a). that L * n,g ⊂ B * g .
As a simple regular loop with non-zero homology belongs to P * g , L * 0,g ⊂ B * g . Consider n > 0 and assume that the claim holds true for n -1. Consider l ∈ L n,g with #V c,l > 0. Let us write l ∼ c γ 0 .l * .γ 2 where l * is an inner loop of l and γ 0 , γ 2 are reduced loops. The loop l = γ 1 γ 2 is regular and homotopic to l, while l * ∈ V l \ V l . Therefore l ∈ L * n-1,g and by induction l ∈ B * g . Being included in D o , l * is contractible. Denoting by K its bulk, K = F and l ∼ K l . Moreover for any transversed intersection v ∈ V l , if δ v .l = l 1 ⊗ l 2 where l 1 and l 2 , then

[l 1 ] + [l 2 ] = [l] and #V l1 + #V l2 + 1 = #V l .
Since [l] = 0, we can assume that [l 1 ] = 0. Then, thanks to the last equation l 1 ∈ L * g,n-1 and by induction l 1 ∈ B * g . By Lemma 4.2, it follows that l ∈ B * g , which concludes the proof of the first point.

Consider now b), assume that C * g ⊂ B * g and introduce for any n ≥ 0 the subset P * n,g of proper loops l ∈ P * g with |l| D ≤ n. We shall prove by induction on n that P * n,g ⊂ B * g . When l ∈ P * g,0 , then l is included in a fundamental domain and l ∈ C * g . By assumption l ∈ B * g . Assume that n > 0 and P * n-1,g ⊂ B * g , and consider l ∈ P * n,g . According to Proposition 2.4, there is a geodesic loop l ∈ C * g and shortening homotopy sequence l 1 , . . . , l m of proper loops with l 1 = l and l m ∼ K ηl η -1 for some path η and proper subset of faces K. By assumption l ∈ B * g . Therefore, by induction and Lemma 4.2, it is enough to prove that for any 1 ≤ k ≤ m and v ∈ V lm , then δ v .l m = α ⊗ β for some regular loops with α or β belonging to B * g . Now since l m is proper, [START_REF] Bruce | YM 2 : continuum expectations, lattice convergence, and lassos[END_REF] yields

|α| D , |β| D < |l m | D ≤ |l 1 | D ≤ n.
Therefore by induction α and β belong to B * g . This concludes the proof of b).

To complete the proof of Theorem 4.1, it remains to do the following.

Proof of Lemma 4.2. Setting

a (f ) =    T #F -#F1 if f ∈ K, 0 if f ∈ K. ( 44 
)
defines an element of ∆ K (T ). According to the compatibility Lemma ?? and using that l ∈ B * g , Ψ N l (a ) = Ψ N ηl η -1 (a ) = Ψ N l (a ) -→ 0 as N → +∞.

(*)

Now since [l] = 0 and a, a ∈ ∆ G (T ), according to Lemma 2.3, X = a -a ∈ m l . For any v ∈ V l , by assumption, we have δ v .l = l 1 ⊗ l 2 with l 1 ∈ B * g . Therefore using the inequality [START_REF] Makeenko | Exact equation for the loop average in multicolor QCD[END_REF], each term of the summand vanishes uniformly on ∆ G (T ) as N → ∞ and for any t ∈ (0, 1), We consider here k = 2, the area of F 2 needs to be "moved" into f 1 . We have a(f 1 ) = a(f 2 ) = a(f 3 ) = 0 = a (f 1 ) = a (f 2 ). For all 0 < s < t < 1, define b 2 setting b 2 (f 1 ) = b(F 1 ) + (t -s)a (F 1 ) and 0 for other faces. Denote a s,t = sa + (t -s)a + b and ãs,t = sa + b 2 . On the one hand, for any face f ∈ F 1 , a s,t (f ) = a s,t (f ) while a s,t (F 1 ) = a s,t (F 1 ), therefore Ψ N l 2 (a s,t ) = Ψ N l 2 (ã s,t ). On the other hand, ãs,t (F 2 ) = 0 so that Ψ N l 2 (ã s,t ) = Ψ N l (ã s,t ). 

|∂ t Ψ N l (a + tX)| = |X.Ψ N l (a + tX)| ≤ C l X ε N ≤ C l ( a +
Since ∆ in (T ) ⊂ ∆ K (T ), by ( 47)

sup a∈∆ F tw ,+ H N a (0) ≤ sup x∈∆ G,K (T ) Ψ l (x)
vanishes as N → ∞. Since ε N → 0 as N → ∞, from (51),

Ψ N l (a) = H N (1) → 0 uniformly in a ∈ ∆ Ftw,+ (T ). According to step 2, this concludes the proof.

Liberation and master field on the torus

Let us give here a proof of corollary 1.11. For T > 0, let us consider the two dimensional torus T 2 T obtained as the quotient R 2 / √ T Z 2 endowed with the pushforward of the Euclidean metric, so that it has total volume T . Denote by α and β the loop of T 2 T obtained by projecting the segments from (0, 0) to respectively ( √ T , 0) and (0, √ T ). Then, under YM Σ , the law (a, b) on G 2 is given by [START_REF] Collins | Asymptotics of unitary and orthogonal matrix integrals[END_REF]. Therefore, for any word w in α, β, α -1 , β -1 denoting by [w] ∈ Z 2 the signed number of occurences of α and β and by γw the path of R 2 starting from (0, 0) obtained by lifting the loop Σ formed by w, under YM Σ , the following converge holds in probability as N → ∞,

τ ρ N (w) →    Φ R 2 (γ w ) if [γ w ] = 0 0 if [γ w ] = 0.
The first statement of Corollary 1.11 follows considering the non-commutative distribution Φ T of αt and β under the limit of τ ρ N as N → ∞.

On the one hand, for any word w with [w] = 0, γ w is a loop and by continuity of the master (Point 1 of Theorem 3.8), Φ T (w) = Φ R 2 (γ w ) → 1 as T → 0. On the other hand, for any word w with [w] = 0, γw is not a loop, [γ w ] = 0, and for all T > 0, Φ T (w) = 0. Therefore, for all word in α, β, α -1 , β -1 , lim T →0 Φ T (w) = τ u c τ u (w), since

τ u c τ u (w) =    1 if [w] = 0, 0 otherwise.
Consider now the second limit of corollary 1.11. When (G, a) an area weighted map embedded in R 2 with v a vertex of G sent to 0 by the embedding, consider the state τT on (RL v (G), * ) such that τT (l) = Φ R 2 ( T ), where is the drawing of l while T = √ T . Consider a free-basis of lassos l 1 , . . . l r of RL v (G), with meanders given by distinct faces of area a 1 , . . . , a r . Under τT , l 1 , . . . , l r are r independent unitary Brownian motion marginals at time √ T a 1 , . . . , √ T a r . It follows easily from its definition in moments, that the free unitary Brownian motion at time s converges weakly towards a Haar unitary as s → ∞. Since a ∈ ∆ o (T ), (l 1 , . . . , l r ) converges weakly toward r freely independent unitary variables as T → ∞. Therefore, for any reduced loop l, lim T →∞ τT (l) = 1 if l is the constant loop and 0 otherwise. Now for any word w in α, β, α -1 , β -1 , with [w] = 0, it follows that Since γ w ∼ r c where c is a constant loop if and only if w can be reduced to the empty word, it follows that lim T →∞ Φ T (w) = τ u τ u (w).

Let us now recall a way introduced in [START_REF] Benaych | A continuous semigroup of notions of independence between the classical and the free one[END_REF] to compute the evaluation of τ A t τ B given τ A and τ B , solving systems of ODEs in the parameter t and present an argument for [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF]. Let us say that a non-commutative monomial P in (X 1,i ) i∈I , (X 2,j ) j∈I is alternated if it is of the form X ε1,i1 X ε2,i2 . . . X εn,in with ε k = ε k+1 for all 1 ≤ k < n. Denote by d X2 is degree in the variables (X 2,j ) i∈I . For such a monomial, let us set ∆ ad .P = -d X2 (P ) 2 (P ⊗ 1 + 1 ⊗ P ) + Q1,Q2,i

X 2,i ⊗ Q 1 Q 2 ,
-P1,1,P1,2,P2,i,j X 2,i P 2 ⊗ (P 1,1 X 2,j P 1,2 ) + (P 1,1 X 2,i P 1,2 ) ⊗ P 2 X 2,j -(P 1,1 P 1,2 ) ⊗ (X 2,i P 2 X 2,j ) -(P 1,1 X 2,i X 2,j P 1,2 ) ⊗ P 2

where the first sum is over all monomials Q 1 , Q 2 and i ∈ I such that P = Q 1 X 2,i Q 2 , while the second is over all monomials P 1,1 , P 1,2 , P 2 and i, j ∈ I such that P = P 1,1 X 2,i P 2 X 2,j P 1,2 . With these notations, Theorem 3.4 of [START_REF] Benaych | A continuous semigroup of notions of independence between the classical and the free one[END_REF] states that for all alternated non-commutative monomial P in (X 1,i ) i∈I , (X 2,j ) j∈I , τ A t τ B (P ) is differentiable with ∂ t τ A t τ B (P ) = (τ A t τ B ) ⊗2 (∆ ad .P ), ∀t ≥ 0.

For instance assume that for all t ≥ 0, (a, b) is a t-free couple within a noncommutative probability space (C, τ t ), such that a and b are Haar unitaries for all t > 0. Then for any n ≥ 1, 

A similar argument together with [START_REF] Chevyrev | Yang-Mills measure on the two-dimensional torus as a random distribution[END_REF] imply the following lemma. where we have set

i X i ⊗ Y i abcd = i X i ab Y i cd .
Using the expression of C g for each value of g leads to Eq. [START_REF] Voiculescu | The analogues of entropy and of Fisher's information measure in free probability theory. VI. Liberation and mutual free information[END_REF]. By similar computations we also obtain Eq. ( 56).

In the unitary case, the formulas in Lemma 7.1 are known as the "magic formulas", as stated in [START_REF] Driver | The Makeenko-Migdal equation for Yang-Mills theory on compact surfaces[END_REF] for instance, and appeared already in [START_REF] Ambar | Traces in two-dimensional QCD: the large-N limit[END_REF]; they are crucial to the derivation of Makeenko-Migdal equations for Wilson loops, that we briefly recall in the next section. Although we do not detail it, there exist a beautiful interpretation Lemma 7.1 in terms of Schur-Weyl duality; the interested reader can refer to [START_REF] Lévy | Schur-Weyl duality and the heat kernel measure on the unitary group[END_REF] or [START_REF] Dahlqvist | Integration formulas for Brownian motion on classical compact Lie groups[END_REF] for an explanation and discussion of this fact and to [36, Chap. I, Section 1.2 ] about the above Lemma.

Makeenko-Migdal equations

Given a topological map G of genus g with m edges, a vertex of G will be said to be an admissible crossing if it possesses four outgoing edges labelled e 1 , e 2 , e 3 , e 4 counterclockwise. 

where a i denotes the variable associated to the edge e i and b denotes the tuple of other edge variables than e 1 , e 2 , e 3 , e 4 .

The extended gauge-invariance was first introduced by Lévy in [START_REF] Lévy | Two-dimensional Markovian holonomy fields[END_REF] to prove Makeenko-Migdal equations in the plane, then used in [START_REF] Driver | Three proofs of the Makeenko-Migdal equation for Yang-Mills theory on the plane[END_REF] to give alternative, local proofs of these equations, which allowed in [START_REF] Driver | The Makeenko-Migdal equation for Yang-Mills theory on compact surfaces[END_REF] to prove their validity on any surface; these last equations were then applied in [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF][START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF]. Theorem 7.2 (Abstract Makeenko-Migdal equations). Let (G, a) be an area-weighted map of area T and genus g with m edges, and f : G m → C be a function with extended gauge invariance at an admissible crossing v. Denote by f 1 (resp. f 2 , f 3 , f 4 ) the face of G whose boundary contains (e 1 , e 2 ) (resp. (e 2 , e 3 ), (e 3 , e 4 ), (e 4 , e 1 )). Denote by t i the area of the face f i , choose an orthonormal basis B of g with respect to the chosen inner product, and set

(∇ a1 • ∇ a2 f )(a 1 , a 2 , a 3 , a 4 , b) = X∈B ∂ 2 ∂s∂t
f (a 1 e sX , a 2 e tX , a 3 , a 4 , b) s=t=0 .

We have

∂ ∂t 1 - ∂ ∂t 2 + ∂ ∂t 3 - ∂ ∂t 4 G m f dµ = - G m ∇ a1 • ∇ a2 f dµ. (58) 
Equation ( 58) might be confusing, as it involves partial derivatives with respect to variables that do not appear explicitly in the function G m f dµ; it becomes in fact where the |R l | ≤ 10 uniformly on ∆ G (T ). There is a constant C l independent of G, such that for all X ∈ m l , µ v ψ G l⊗l -1 =ψ δ X (l)⊗l -1 + ψ G l,δ X (l -1 ) + ψ l1⊗l -1 Φ l2 + ψ l -1

1 ⊗l Φ l -1 2 + ψ G l2⊗l -1 Φ l1 + ψ l -1 2 ⊗l Φ l -1 1 + R l N ,
with |R l | ≤ 10 uniformly on ∆ G (T ).
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  a and τ Y = τ b both under and τ a * c τ b and τ a τ b , while the joint distribution (X, Y ) under τ a τ b and τ a * c τ b , are respectively freely and classically independent. The states τ a τ b and τ a * c τ b are resp. called the free and the classical convolution of τ a and τ b . We define likewise the free and classical convolution of two states on τ A , τ B of NCPS (A, τ A ), (B, τ B ) as states τ A τ B and τ A * c τ B on C X a , Y b , a ∈ A, b ∈ B .

1 2 Figure 2 :

 122 Figure 2: De-singularisation at a simple intersection point.

T

  

Figure 3 :

 3 Figure 3: In this example, it is impossible to change the area around any intersection point, respecting the constraint of Makeenko-Migdal given in figure 1, without raising the number of intersection points.

Figure 4 :

 4 Figure 4: Discrete homotopy towards a loop included in a disc preserving the algebraic area.Faces are labeled by their area. Faces without label have area 0.

Figure 5 :

 5 Figure 5: A representant of the winding number function with c ∈ R, for a loop of null homology, on a map of genus 2. The loop is drawn in green and the value on each positively oriented face is displayed on each 2-cell.

Figure 6 :Lemma 2 . 3 .

 623 Figure 6: The four types of intersections at a vertex visited twice.

Figure 7 :

 7 Figure 7: A tame loop in a graph with one vertex and 2 faces. The value of µ v is displayed on each face in blue.

1 ,

 1 b 1 , . . . , a g , b g of Lemma 2.2 do not share any edge in common. Under this assumption, let us set S = {l, a 1 , b 1 , . . . , a g , b g }, denote by H as in Lemma 2.2 and by T(S ) the set of oriented edges e such that an element of S runs through e or e -1 . Let η be the permutation of the edges E such that η(e -1 ) = η(e) -1 for any edge e ∈ E, with 2 + 4g non-trivial cycles associated to elements of S forgetting the base point. More precisely, for each γ ∈ {l, a 1 , b 1 , . . . , a g , b g } with γ = e 1 . . . e n , (e 1 , . . . , e n ) and (e -1 1 , . . . , e -1 n ) are cycles of η, whereas η(e) = e for any e ∈ T(S ). For any ω ∈ Ω 1 (G), setting η.ω = ω • η -1

  and o D h ⊂ Ṽ the subsets of vertices and faces of G, whose image in ΣG is included respectively in P h and its interior o P h . The projection o D of o D h does not depend on h ∈ Γ. When U ⊂ F and E c ⊂ Ẽ, we denote by U \ E c the subgraph of the graph of G * where all faces from F \ U and all edges dual to E c are removed. Let us consider the oriented graph with vertices Γ g such that there is an edge between a and b if and only if P a and P b share a side. The action of Γ g on H induces a free, transitive, isometric action on this graph and we denote by |h| Γg the distance between any h ∈ Γ g and 1.

Figure 8 :

 8 Figure 8: Discrete homotopy at a left turn of l when g = 2 and k = 7. The latter vertex is shown as a green dot, contracted faces are shown in green. The second rim is displayed with dotted lines. A lift l of the initial loop in displayed in plain orange line, while a lift l of the terminal loop is displayed in dashed red line.

  For any 0 ≤ k ≤ n -1, let e k and e ( * ) k be the last edges of respectively γ k and γ ( * ) k , denote by β k the reduced path with edges in ∂E r from e ( * ) k to e k and define l (k) as the reduction of ηγ

Figure 9 :

 9 Figure 9: Left, a nested loop. Right, this is not a nested loop.

Figure 10 :

 10 Figure 10: A marked loop. Its nested part is drawn in blue. There are exactly one central face coloured in blue and one outer face filled with dashed green lines.

3 . 4 . 5 .

 345 Cut the face α into two faces, adding an edge connecting the two new vertices on ∂α * . Add to F stem the new face included in α whose boundary has only two edges. Denote by γ the simple path using only edges added in step 2 and 3 such that γ = e 1 and γ = e 1 . Transform l and γ nest replacing the occurrence of the edge e by γ. When k = 1 stop the procedure. Otherwise, repeat this operation for the path α = (f k , . . . , f m ), where k is the largest k < k such that (f k , f k+1 ) crosses an edge of γ 1 , setting k = 1 when this set is empty.The last marked loop produced in step 4. is called the pull of (l, γ nest ) along γ * .

Figure 11 :

 11 Figure 11: Left: A marked loop with the nested part drawn in blue. New edges of the modified regular map are drawn with dashed lines. The union of faces of F stem is stroke with dashed lines. Right: Pull of the left marked loop along the path of the dual drawn in orange. The base point of the marked loops is displayed as a green cross.

Figure 12 :

 12 Figure 12: Left: A marked loop with the nested part drawn in blue. The chosen moving edge is drawn in orange. Right: n-twist of the left marked loop, with n = -2 and the chosen moving edge. The new moving edge is displayed in orange.

Lemma 3 . 3 .

 33 The family of measures (YM a,G,v , a ∈ ∆ o G (T )) on Hom(RL v (G), G) has a weakly continuous extension to ∆ G (T ). It has the following properties. 1. Consider K ⊂ F with K = F , let S ⊂ {1, . . . , r} be the labels of the lassos with meander in F \ K and set s = #S. Then for any a ∈ ∆ o K (T ), any continuous function χ : G 2g+r → C and k ∈ S,

3 .

 3 When G is a classical compact matrix Lie group, for any l ∈ RL v (G), E[W ] = 0 if one of the following conditions is satisfied: (a) G = U(N ) and [l] Z = 0. (b) G = SU(N ) and [l] Zn = 0 (c) G = SO(2N ) and [l] Z2 = 0. Proof. The implication 2.a) ⇒ 2.b) ⇒ 3 are elementary. Thanks to (30), 1 ⇒ 2.a). Lastly, consider 1. Denote by dφ the Haar measure on Hom(RL v (G), G) endowed with pointwise multiplication. By Lemma 3.3, it is enough to consider a ∈ ∆ o G (T ) and denote by a 1 , . . . a r the area enclosed by the meanders of l 1 , . . . , l r and set a r+1 = T -r i=1 a i . For any continuous function χ : Hom(RL v (G), G) → C and h ∈ Z 2g , dφ is invariant by the action of Z 2g and Hom

1 0∂f c = f 3 f o = f 0 f 1 f 2 l 2 v 2 Figure 13 :

 13122213 Figure13: Example of a n-left twist with n = 3. We consider here k = 2, the area of F 2 needs to be "moved" into f 1 . We have a(f1 ) = a(f 2 ) = a(f 3 ) = 0 = a (f 1 ) = a (f 2 ). For all 0 < s < t < 1, define b 2 setting b 2 (f 1 ) = b(F 1 ) + (t -s)a (F 1) and 0 for other faces. Denote a s,t = sa + (t -s)a + b and ãs,t = sa + b 2 . On the one hand, for any facef ∈ F 1 , a s,t (f ) = a s,t (f ) while a s,t (F 1 ) = a s,t (F 1 ), therefore Ψ N l 2 (a s,t ) = Ψ N l 2 (ã s,t). On the other hand, ãs,t (F 2 ) = 0 so that Ψ N l 2 (ã s,t ) = Ψ N l (ã s,t ).

  On the one hand, for any t ∈ (0, 1) and b ∈ ∆ in (T -tT ),∂ s Ψ N l (sa + (t -s)a + b) = X.Ψ N l (sa + (t -s)a + b), ∀s ∈ (0, t). On the other hand, for all s ∈ (0, t), since a(F k ) = 0 and l k ∼ F k l for all k, there are b1 , . . . , b n ∈ ∆ in (T -sT ) ∩ ∆ F k (T ) (see Figure13) such thatΨ l k (sa + (t -s)a + b) = Ψ l (sa + b k ), ∀1 ≤ k ≤ n. (50)Combining the last two equalities with the bound (49), we findH N a (t) ≤ H N a (0) + ε N C + (n + 1)C t 0 H N a (s)ds, ∀t ∈ [0, 1], a ∈ ∆ Ftw,+(T ). By Grönwall's inequality, H N a (t) ≤ (H N a (0) + ε N C) exp((n + 1)Ct), ∀t ∈ [0, 1].

1

 1 if γ w ∼ r c with c constant, 0 otherwise.

∂

  t τ t (ab n ) = -τ t (ab n ) + τ (a)τ t (b n ) = -τ t (ab n ), ∀t ≥ 0 and since τ 0 (ab n ) = τ 0 (a)τ 0 (b n ) = 0, τ t (ab n ) = 0. Likewise ∂ t τ t (ab n a * (b * ) n ) = -2τ t (ab n a * (b * ) n ) + τ t (b n )τ t (aa * (b * ) n ) + τ t (ab n a * )τ t ((b * ) n ) -τ t (a(b * ) n )τ t (b n a * ) -τ t (a(b * ) n )τ t (b n a * ) + τ t (a)τ t (b n a * (b * ) n ) + τ t (ab n (b * ) n )τ t (a * ) = -2τ t (ab n a * (b * ) n ). Since τ 0 (ab n a * (b * ) n ) = τ 0 (aa * )τ 0 (b n (b * ) n ) = 1, this implies τ t (ab n a * (b * ) n ) = e -2t .

Lemma 6. 1 . 1 . 2 .

 112 For any word w in a, b, a -1 , b -1 , if [w] = 0, τ t (w) = 0. For any n ≥ 1, ∂ t τ t ([a, b] n ) = -2nτ t ([a, b] n ) -2n n-1 k=1 τ t ([a, b] k )τ ([a, b] n-k ).

3 .

 3 For any n ∈ Z and t ≥ 0,τ t ([a, b] n ) = ν 4t (|n|).

Definition 7 . 2 .

 72 Let G be map of genus g with m edges, and v be an admissible crossing. A function f : G m → C has an extended gauge invariance at v if for anyx ∈ G, f (a 1 , a 2 , a 3 , a 4 , b) = f (a 1 x, a 2 , a 3 x, a 4 , b) = f (a 1 , a 2 x, a 3 , a 4 x, b),
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  a maps and l is a simple loop of G, with dual edges E * l , we say that l is separating if the graph (F, E * \E * l ) has exactly two connected components (F 1 , E * 1 ) and (F 2 , E * 2 ). Let us denote by E 1 , E 2 the edges of G dual to E 1 and E 2 and by V 1 , V 2 the vertices of G belonging the boundary of E 1 and E 2 . Giving the new 2-cell the label f ∞,1 and setting

  γ |l| D .It can be obtained from l by the following discrete homotopy. Consider the loop e i γ l+1 . . . γ l+k-1 e o β

-1 . Since a lift of β starting in D h l ends in D h l+k it follows that e i γ l+1 . . . γ l+k-1 e o β -1 is contractible. Denote by K sw its bulk. Then, e i γ l+1 . . . γ l+k-1 e o ∼ Ksw β and l ∼ Ksw γ 0 . . . γ l-1 γ l e i γ l+1 . . . γ l+k-1 e o γ k+l+1 . . . γ |l| D ∼ Ksw l .

with enough regularity.

See also[START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF] where a conditional result was obtained implying the case of the sphere, given the convergence for simple loops.

though in this case, there is at the time of writing, no construction of the continuous Yang-Mills measure in dimension 3 and higher is available.

informally described as all simple loops or iteration of simple loops, and all loops which do not visit one handle of the surface.

See also[14, sect. 7] for a variation of this proof and [32, section 0] for the heuristics of the original proof of[START_REF] Makeenko | Exact equation for the loop average in multicolor QCD[END_REF] based on an integration by part in infinite dimension. See also[START_REF] Bruce | A functional integral approaches to the Makeenko-Migdal equations[END_REF] for a proof closer in spirits to the original argument of[START_REF] Makeenko | Exact equation for the loop average in multicolor QCD[END_REF].

Mind that this excludes U(N ).

Though the class of potentials considered in[START_REF] Collins | Asymptotics of unitary and orthogonal matrix integrals[END_REF] do not cover the heat kernel.

meaning that the parameter of the potential responsible for the non-independence of A and B needs to be small enough.

This argument is valid for loops with finitely many transverse intersections. An additional step which is not considered in[START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF] is to extend it to loops with finite length.

as suggested in[START_REF] Hall | The large-N limit for two-dimensional Yang-Mills theory[END_REF], another route here could be to relate Wilson loops for simple loops on the sphere to the Dyson Brownian bridge on the unit circle, which has been studied recently at another scale in[START_REF] Liechty | Nonintersecting brownian motions on the unit circle[END_REF].

We shall call below these loops proper loops

We believe there is a lot of flexibility here in the argument. We choose here a combinatorial approach. It would be interesting to use instead a continuous functional on loops.

This second step is not needed to consider projection of loops on a lattice.

We shall not consider here non-orientable surfaces.

denoting here abusively the ∼r class of a loop by the same symbol as the loop.

Add first two new vertices to all edges crossed by α. Denote e = e 0 e 1 e 2 the edge decomposition of e in the new map.

We fix them arbitrarily, for instance using the pseudo-inverse of the Gram matrix of the spanning family (αv)v∈V l and (βe) e∈E\E l .

In[START_REF] Lévy | The master field on the plane[END_REF], to get uniqueness (b) is replaced by an additional set of differential equations

It is also shown in[START_REF] Lévy | The master field on the plane[END_REF] that the following convergences are almost sure.

See Fig.9and Section 2.3.

Besides, when g1, g2 ≥ 2 and GN = U(N ), it remains bounded uniformly in a ∈ ∆ G (T ), which allows then to drop the condition a(F1) ∈ (0, T ) in Theorem 3.11.
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regular graph of genus g with vertex v, for all a ∈ ∆ G (T ) l ∈ L v → φ l (a) extends linearly to a state φ v,a of (A v , * ). Moreover, it then follows from 1. and 2. that for any vertices v, w, and (l 1 , l 2 ) ∈ L v (G) × L w (G), l 1 and l 1 ⊗ l 2 have a unitary distribution in (A v , φ v,a ) and (A v,w , φ a,v,w ). When φ is a Wilson loop system, for any regular graph G and any loop l ∈ L(G), the second part of point 6. and point 1. yield

We say that a Wilson loop system φ is an exact solution of Makeenko-Migdal equations if 1. For any loop l within a regular graph G of genus g, φ ∈ C 1 (∆ o G (T )) and for any v ∈ V l , µ v .φ l = φ l1 φ l2 .

2. For any pair of regular loops within the same graph, φ α⊗β = φ α φ β .

3. For any regular loop l with l ∼ h c l , φ l = 0.

We say that a sequence (φ N ) N ≥1 of Wilson loop systems is an approximate solution of Makeenko-Migdal equations if for any regular graph of genus g, any loop l in L(G), φ N l and V N φ,l are in C 1 (∆ o G (T )), and for any intersection point v ∈ V l ,

while there is a constant C > 0 independent of l and N ≥ 1, such that

and

where l 1 ⊗ l 2 = δ v l and R N l : ∆ G (T ) → C satisfy

Remark. Note that it follows from point 3. that if φ is a Wilson loop system and l, l 1 , l 2 are a regular loops of a regular graph G = (V, E, F ) with e ∈ E o \ (E o l ∪ E o l1 ∪ E o l2 ), then dω e .φ l = dω e .φ l1⊗l2 = 0.

Consequently, for any regular loop l, using the same linear forms as in section 2.7, if φ ∞ and (φ N ) are respectively exact and approximate solutions of Makeenko-Migdal equations, for any regular loop l and X ∈ m l , X.φ ∞ l = φ δ X l and X.φ

while

The main technical result of this article is the proof of the following uniqueness statements. Denote by L g the space of regular loops of regular maps of genus g ≥ 1.

Let us say that a subset F of L g is a good boundary condition of the Makeenko-Migdal equations if for any pair φ ∞ and (φ N ) N ≥1 made of an exact and an approximate solutions of Makeenko-Migdal equations,

implies lim

Setting

where c is the constant loop at l, this is equivalent to

Proposition 3.17. For any genus g ≥ 1 and total volume T > 0, the family of loops l ∈ L g with a sub-path γ such that (l, γ) is a marked loop and (l, γ) ∧ is geodesic, is a good boundary condition.

Denote by L * g the subset of L g of loops l with [l] Z = 0. Let us say that a subset F * of L * g is a good boundary condition in homology if for any pair φ ∞ and (φ N ) N ≥1 made of an exact and an approximate solution of Makeenko-Migdal equations, using the same notation as in [START_REF] Magee | Random Unitary Representations of Surface Groups I: Asymptotic expansions[END_REF],

The following can be proven independently from Proposition 3.17.

Proposition 3.18. For any genus g ≥ 1 and total volume T > 0, the family of geodesic loops in L * g is a good boundary condition in homology. When g = 1, for any loop l ∈ L g , l ∼ h c l if and only if [l] Z = 0 and any geodesic loop is of the form s d where s is a simple loop and d ≥ 1. Therefore the Proposition 3.18 and 3.17 have the following consequence.

Corollary 3.19. Consider g = 1, T > 0, the set of regular loops l ∈ L g such that |l| D = 0 or l = s d for some simple loop s and some integer d ≥ 1 is a good boundary condition.

Proof of Theorem 3.13 and Proposition 3.14. Since L 2 convergence implies convergence in probability, both statements follow from Lemma 3.16 and of respectively proposition 3.17 and 3.18.

Proof of Theorem 3.12. Using the solutions given by 1. and 2. of Lemma 3.16, Theorem 3.11 implies that the boundary condition of corollary 3.19 are satisfied. Therefore the convergence in probability holds true for any regular loops. Using Lemma 3.7, it follows that the convergence holds for all [START_REF] Diaconis | Linear functionals of eigenvalues of random matrices[END_REF]. To prove the convergence in probability for any path of finite length, it is now enough to combine the area bound [START_REF] Gross | Two-dimensional QCD is a string theory[END_REF] with Proposition 3.6. The uniqueness claim is proved identically considering in place of the above approximate solution, a constant sequence given by an exact solution.

Proof of the main result, stability of convergence under deformation

In this section we give a proof first of Proposition 3.18, then of Proposition 3.17. We consider exact and approximate solutions φ ∞ and (φ N ) N ≥1 of Makeenko-Migdal equations in genus g ≥ 1 and volume T > 0, define Ψ N as in [START_REF] Magee | Random Unitary Representations of Surface Groups I: Asymptotic expansions[END_REF] and consider the subset B g ⊂ L g of loops l with map G, satisfying

Our aim is to find a small subset C g of loops in L g , such that C g ⊂ B g implies B g = L g . In the first and second second sections, we shall use respectively the following bounds. Thanks to [START_REF] Lévy | Two-dimensional Markovian holonomy fields[END_REF], ( 36) and ( 37), using the same notation, for any l ∈ L g and X ∈ m l ,

and

where C l > 0 is a constant independent of N ≥ 1.

Non-null homology loops

Let us denote by B * g the subset B g ∩ L * g . This sub-section purpose is to prove proposition 3.18. It is equivalent to the following statement. Denote by C * g the subset of L * g of regular loops with non-zero homology which are geodesic. Theorem 4.1. Assume that C * g ⊂ B * g . Then B * g = L * g . To prove this Theorem we shall use the following application of Makeenko-Migdal equations.

Lemma 4.2. Let l, l ∈ L * g be two loops of a regular map G with faces set F , such that there is K ⊂ F with K = F and l ∼ K ηl η -1 where η is a path with η = l and η = l. Assume that l ∈ B * g and that for any v ∈ V l , if δ v (l) = l 1 ⊗ l 2 , then l 1 or l 2 belongs to B * g . Then l ∈ B * g . We split the proof Theorem 4.1 into two steps enacted by the two following propositions. The first one allows to contract inner loops. The second allows to follow a shortening sequence from proper loops to loops conjugated to a geodesic. Denote by P * g of loops of L * g which are proper or included in a fundamental domain. Theorem 4.1 follows directly from the following Proposition.

Proof. Let us prove first point a). Assume P * g ⊂ B * g and introduce for any n ≥ 0 the subset L * n,g of loops l ∈ L * g with #V l ≤ n. We shall prove by induction on n

Null homology loops

The purpose of this sub-section is to prove Proposition 3.17. It is equivalent to the following statement. Denote by C ∨ g the subset of L g of regular loops l, such that there is a nested sub-path γ nest of l making (l, γ nest ) a marked loop on a map of genus g and with l ∧ geodesic. Theorem 4.4. If C ∨ g ⊂ B g , then B g = L g . To prove this Theorem, we shall use the following Lemma, formally analog to Lemma 4.2. Though, unlike Lemma 4.2, due to the new constraint on the Makeenko-Migdal vectors, we shall work here with marked loops which allow to change the nested part in order to keep the contraint satisfied while performing the required homotopy. This will break the induction on the number of intersection points. This issue leads us to use of a different "complexity" function for loops, and is implemented by a multiple induction on its parameters. The modification of the nested part yields a constant complexity when applying Makeenko-Migdal equations. An idea is then to apply Grönwall's lemma, taking advantage of the nested structure of the modification. This is presented in step 4 of the proof of Lemma 4.5 .

Denote by L m g the set of marked loops on a regular map of genus g. Lemma 4.5. Assume that l ∈ B g for any nested loop l ∈ L g . Let (α, α nest ), (β, β nest ) ∈ L m g be two marked loops on a regular map and K proper subset of faces, such that

(iv) if α ∧ is a proper loop, whenever (α , α nest ) is a twist of a pull move of (α, α nest ), denoting by V tw the intersection points of the twisted part of α nest ,

When α ∧ is not proper, assume furthermore that (α, α nest ) has a moving edge or vertex that is not adjacent to K. Then α ∈ B g .

Using this lemma, the rest of the proof is a refinement of the null-homology case using a suitable complexity on marked loops. We shall study the subset

Proof. We shall prove both statements by multiple inductions. Denote by N the set of non-negative integers and for any positive integer K > 0, let us endow N K with the lexicographic order ≺. Consider a family of statements (P n ) n∈N K and 1 ≤ k ≤ K. Starting from any n ∈ N K , any strictly decreasing sequence in (N K , ≺) with more than n k + . . . + n K steps will have an element with at least one of the first k-coordinates vanishing. Assume that P n holds true for all n ∈ N K with n l = 0 for some 1 ≤ l ≤ k. To prove P n for all n ∈ N K , it is then enough to prove that for all n ∈ N K , if P n holds true for any n ≺ n with n = n, then P n holds true. When C : L m g → N K has been fixed, for all n ∈ N K , we denote by L n , L - n and P n , P - n the marked loops x = (l, γ nest ) of L m g and P m g , with respectively C(x) ≺ n and

Let us prove first point a). Assume

We may assume that n 2 > 0 and (l, γ nest ) ∈ P g . Consequently, we can write l ∼ c γ 0 .l * .γ 2 where l * is an inner loop of l that does not intersect γ nest , while γ 0 , γ 2 are reduced loops. The loop l = γ 0 γ 2 is regular and homotopic to l, while (l , γ nest ) is a marked loop with

Being included in D o , l * is contractible. Denoting by K its bulk, K = F and l ∼ K l . Possibly adding a vertex to an edge of the first path of the tile decomposition of l that does not belong to an inner loop of l and rerooting l, we can assume w.l.o.g. that γ nest is not constant. By definition of marked loops, a moving edge e does not belong to an inner loop and is therefore not adjacent to K. Since (l, γ nest ) is not proper, it remains to check the conditions (ii) and (iii) of Lemma 4.5 for the pair (l, γ nest ), (l , γ nest ). It is enough to check (iii). Consider v ∈ V ltw for a twist move (l tw , γ tw ) of (l, γ nest ) and write δ v (l tw ) = l 1 ⊗ l 2 . If v is an intersection of l ∧ * tw with γ tw , since γ tw does not intersect transversally l tw,D ,

Therefore (l 1 , γ 1,nest ), (l 2 , l 2 ) ∈ L - n . We conclude in the three cases that l 1 , l 2 ∈ B g . This concludes the proof of point a).

Consider now b) and assume that C m g ⊂ B m g . For any marked loop x = (l, γ nest ) ∈ L g , let us set |x| s = 0 if there is a marked loop y = (l , γ nest ) with y ∧ geodesic and l ∼ Σ l . Otherwise let |l| s be the smallest l ≥ 1 such that there is a shortening homotopy sequence l 1 , . . . , l l+1 , satisfying the property of Lemma 2.8. We then set for any marked loop x = (l, γ nest ), with nested loop l nest ,

and by assumption, (l, γ nest ) ∈ B m g . Let us now fix n ∈ N 5 and assume that P - n ⊂ B g . Let us prove that P n ⊂ B m g . Consider x = (l, γ nest ) ∈ P n . Since C(x) does not depend on the number of transverse intersections between γ nest and l, we can assume w.l.o.g. that γ nest = γ nest . Besides, we can also assume |l| s > 0. Consider a shortening homotopy sequence σ 1 , . . . , σ |x|s+1 as in Lemma 2.8, such that σ 1 = l and (σ k , l nest ) 1≤k≤|x|s+1 are marked loops.

It is enough to prove that the assumptions of Lemma 4.5 are satisfied for the pair

Let us check (iv). Consider a twist (l tp , γ tp ) of a pull move (l p , γ p ) of (σ 1 , γ 1,nest ), denote by V tw the intersection point of the twisted part of γ 1,nest and let us show that for all v ∈ V ltp \V tw , δ v (l tp ) = l a ⊗l b for loops l a and l b of marked loops belonging to

When v ∈ V ltp,nest \ V tw , the argument is almost identical to the non-proper case: l a or l b , say l b is a sub-loop of l tp,nest and since l tp,nest is nested and v ∈ V tw , there is a sub-path γ a,nest of l a and γ p,nest such that (l a , γ a,nest ) is a marked loop, while

In both cases, l a , l b ∈ L - n so that (iv) is satisfied. For (ii), the first argument in the last case analysis yields the claim. Since l ∧ is proper, this concludes the proof of b).

To complete the proof of Theorem 4.4, it remains to do the following.

Proof of Lemma 4.5. When (α, α nest ) has a moving edge e or vertex α nest not adjacent to K, let us set (l (0) , γ (0) nest ) = (α, α nest ) and e (0) = e, when α nest is not constant.

When (α, α nest ) is proper, w.l.o.g., possibly adding a vertex to the first edge of α, we can assume that α nest = β nest is not constant. Let us denote by (G • , G g ) a regular map finer than the one of α and β possibly modified accordingly. Let us choose an arbitrary path γ * of G *

• \ ∂E whose first edge crosses e and with γ * ∈ K. We then define (l (0) , γ (0) nest ) as the pull move of (α, α nest ) along γ * . Denote by G (0) = (V (0) , E (0) , F (0) ) the associated map finer than G • . The marked loop (l (0) , γ (0) nest ) has then a moving edge e (0) with both adjacent faces disjoint from K. Recall that F stem denotes the subset of faces of G (0) associated to the pull move. Then l (0) ∼ Fstem α and the restriction map ∆ Fstem (T ) → ∆ G (T ) is surjective. In both cases, it is enough to prove that l (0) ∈ B g .

Step 1: Let us first argue that the convergence at stake holds true on a subset of ∆ G (0) (T ). Since the pull operation does not change the cut of the marked loop,

nest β ∧ * . Also since β ∧ * is a regular path of G • that does not use edges of α nest , while the pull move changes solely α nest using only edges disjoint from edges of G • , (l (0) , γ

Let us now use Makeenko-Migdal equations to enlarge this set of convergence. Thanks to Theorem 4.1, we can assume that [l (0) ] = 0. Let f l , f r be the faces left and right of the moving edge e (0) . Recall from Lemma 2.2, that since [l (0) ] = 0, l (0) has a unique winding function n l (0) ∈ Ω 2 (G (0) ) with n l (0) (f

defines an element a ∈ ∆ G (0) (T ) with n l (0) , a = n l (0) , a and hence X = a -a ∈ m l (0) . On the one hand, since e (0) is not adjacent to K, a ∈ ∆ G (0) ,K (T ). On the other hand, for all v ∈ V l (0) , thanks to point (ii), δ v (l (0) ) = l 1 ⊗ l 2 with l 1 , l 2 ∈ B g . Using exactly the same argument as in Lemma 4.2, it follows that

Step 2: From here onwards, the argument differs substantially from the one of Lemma 4.2. Choosing the same convention for n l (0) -1 , n l (0) -1 = -n l (0) and since

Let us set n = max(1, max f ∈F (0) n l (0) (f )) and define (l, γ nest ) as the n-twist of (l (0) , γ

nest ). Denote by G = (V, E, F ) the associated map finer than G (0) . Recall that F tw denotes the subset of n faces of F associated to the twist move such that l ∼ Ftw l (0) . Denote by f o ∈ F \ F tw the face included in f l neighbouring F tw and by f c ∈ F tw the central face of (l, γ nest ). Faces of F (0) \ {f l } are not changed by the twist and can be identified with F \ (F tw ∪ {f o }) . Recall that [l] = [l (0) ] = 0 and denote by n l the winding number function of l with n l (f r ) = 0. It satisfies

Consider now

For any a ∈ ∆ Ftw (T ), n l (a) = n l (0) (a) and the restriction map from

+ (T ) is surjective. Therefore, since l ∼ Ftw l (0) , it is enough to show that Ψ N l → 0 uniformly on ∆ Ftw,+ (T ).

Step 3: Let us argue as above that this convergence holds true on another set of areas. Since the pull and twist operations do not change the cut of the marked loop, l ∧ * = α ∧ * and l = γ nest α ∧ * ∼ K l = γ nest β ∧ * . Also since β ∧ * is a regular path of G • that does not use edges of α nest , while the pull and twist moves change solely α nest using only edges disjoint from edges of G • , (l , γ nest ) is a marked loop. Since l ∧ * = β ∧ * , by assumption, l ∈ B g . Using that l ∼ K l ,

Step 4: Let us now enlarge the convergence set using Makeenko-Migdal equations. Setting

For any a ∈ ∆ Ftw,+ (T ), setting

defines an element a ∈ ∆ K * (T ) with n l , a = n l , a and hence

Let us now bound δ v Ψ l for all v ∈ V l . Denote by V tw = {v 1 , . . . , v n } the n intersection points of the twisted part of l nest , ordering them so that l nest = (v 1 . . . v n v n . . . v 1 ). The dual graph induces an order f 1 , . . . f n of F tw , with f n = f c . Let us set for all 1 ≤ k ≤ n, F k = {f k , . . . , f n }. On the one hand, using (ii), for all

On the other hand, for all 1 ≤ k ≤ n, δ v (l) = α k ⊗ l k , where α k is a nested loop, hence α k ∈ B g and l k is a sub-loop of l, with l 1 = l (0) and l k ∼ F k l for all 1 ≤ k ≤ n. Since X ∈ m l , using the inequality [START_REF] Mergny | Rank one HCIZ at high temperature: interpolating between classical and free convolutions[END_REF], we find

where

and for all a ∈ ∆ Ftw,+ (T ) fixed, set

Proof of convergence after surgery

We give here the main arguments to prove Theorem 3.11.

Proof of Lemma 3.10. Thanks to the second part of Lemma 3.2, under YM G,{f∞},a , (h l1 , . . . , h lr , h a1 , . . . , h bg ) are independent random variables on G N , such that for all 1 ≤ i ≤ g, h ai , h bi are Haar distributed, while for any 1 ≤ k ≤ r, h l k has same law as a Brownian motion at time a(f k ). It is now standard, see [START_REF] Lévy | The master field on the plane[END_REF]Section 3], that as N → ∞, these tuple of matrices is asymptotically freely independent and its joint non-commutative distribution converges towards τ v satisfying the properties (*), 1,2 and 3.

Let us use the same notation as in Theorem 3.11. In what follows, we will denote by E (resp. E i , E i ) the expectation with respect to YM G,a (resp. YM Gi,ai , YM G i ,a ). In a previous paper, we proved that the restriction to G 1 of YM G,a is absolutely continuous with respect to YM G 1 ,a .

where I : G N → C is a bounded measurable function such that

Note that the bound in the previous proposition ensures that I is uniformly bounded, because for any considered sequence (G N ), the corresponding sequences of partition functions converge, therefore they are bounded. 29 Proof of Theorem 3.11. Let l be a loop in L v (G 1 ). According to Proposition 5.1,

where I is uniformly bounded by a finite constant. From Lemma 3.10 we have the convergence of W l under YM G1,a , which implies the convergence in probability towards Φ 1,g1 l (a 1 ). The proof of uniform convergence uses a simpler version of Proposition 3.6. Being very similar to the proof of uniformity in Theorem 2.12 in [16], its proof is not detailed here.

It remains to identify Φ 1,g1 l (a 1 ) with Φ l (a). Consider the linear functional τ on

It is enough to show that properties 1,2 and 3 are satisfied. Denote by ṽ0 a vertex of G with v 0 ∈ D = D 1 and p(v 0 ) = v. The identity Φ γn (ã) = 0, ∀n = 0, for any lift γ of γ ∈ {a 1 , . . . b g } implies point 2. Point 3 follows point 1 of Lemma 3.9. Consider the free independence property. Note that l 1 , . . . , l r have same joint distribution under τ v and τ . Hence, thanks to point 2 of Lemma 3.9, l 1 , . . . , l r are freely independent under τ .

Let us now recall that the images of a 1 , b 1 , . . . , a g1 , b g1 in Γ g span a free subgroup Γ of Γ g of rank 2g 1 , isomorphic to the fundamental group of the surface with one boundary given by the total space of (G 1 , {f 1,∞ }). To conclude it is enough to show that the sub-algebras A and B of C[RL v (G 1 )] spanned respectively by S c = {l 1 , . . . l r } and S top = {a 1 , b 1 . . . , a g1 , b g1 } are free under τ . Let us first note that a 1 , . . . , b g1 are freely independent under τ . Indeed, for any word w in S top and their inverses, since the image of S top is a free basis of Γ , the loop l w ∈ RL v (G 1 ) associated to w satisfies l w ∼ h c v if and only if w can be reduced to the empty word, so that (a 1 . . . , b g1 ) has same distribution as a tuple of 2g 1 freely independent Haar unitaries. Moreover for any word w in S top and their inverses, the collection of vertices and non-oriented edges visited by the lift lw with lw = ṽ0 , form a tree of G.

Consider now reduced words w 1 , . . . , w k in S top and their inverses. Denote by Γ c the subgroup of RL v (G 1 ) spanned by S c . For any α 1 , . . . , α k ∈ Γ c , consider the loop obtained by the concatenation

Since l ∼ h l w , where w = w 1 . . . w k , and images of S top form a free basis of Γ , we conclude as above that τ (l) = 0 whenever w 1 . . . w k cannot be reduced to the empty word.

Otherwise, consider the tree T w and the following property of the lift. Each loop in the decomposition (*) of l has a unique lift so that l = lw1 α1 lw2 . . . lw k αk , with l = ṽ0 . Their respective base points satisfy lwi = αi for all i, whereas for any i < j, lwi = lwj if and only if w i+1 . . . w j can be reduced to the empty word, that is w 1 . . . w i ∼ r w 1 . . . w j . Moreover for any i, αi is included in D w1...wi and can be decomposed as a product of lassos based at l wi with meanders in D * w1...wi . Now for any vertex ṽ of T w , let γ ṽ be the unique path of T w with γ i = ṽ0 and γ i = ṽ. Then {(γ ṽl m γ -1 ṽ ) 1≤m≤r , ṽ ∈ T w } are collection of lassos of G based at ṽ0 which can be completed to form a free basis of an area weighted planar map coarser than ( G, ã), with the same property as in Lemma 3.9. In particular, denoting by τ the state with τ ( l) = Φ l(ã) for all l ∈ RL ṽ ( G), thanks to property 2., the families {(γ ṽl m γ -1 ṽ ) 1≤m≤r , ṽ ∈ T w } are freely independent under τ . Denoting for any ṽ ∈ T w , A ṽ the algebra spanned by (γ ṽl m γ -1 ṽ ) 1≤i≤r and by Θ ṽ : A → A v the algebra morphism with Θ ṽ (l ε i ) = γ ṽ l ε i γ -1 ṽ , ∀ε ∈ {1, -1}, 1 ≤ i ≤ r, the algebras (A ṽ ) ṽ∈Tw are free under τ . Moreover, setting ṽl = lw l , ∀1 ≤ l ≤ k, since w l is reduced, ṽl = ṽl-1 . Thanks to the latter free independence under τ , for all x 1 , . . . ,

Since S top are freely independent Haar unitaries under τ , it follows by linearity that for any y 1 , . . . , y k ∈ B with τ (y l ) = 0 for all 1 ≤ l ≤ k,

It is enough to conclude that A and B are free under τ .

The last equality of corollary 1.11 follows from last point of the above Lemma. Besides for any t > 0, T > 0

so that if τ u t τ u = Φ T then T = 4t. But (53) implies

Therefore for all t, T > 0, Φ T = τ u t τ u .

Appendix

Makeenko-Migdal equations

Let us recall some tensor identities, instrumental to prove Makeenko-Migdal relations.

Definition 7.1. Consider a Lie algebra g endowed with an inner product •, • . The Casimir element of (g, •, • ) is the tensor

where B is an orthonormal basis of g for the inner product •, • .

It is simple to check that the definition of the Casimir element does not depend on the choice of the basis but only on the inner product •, • . We focus on the setting recalled in section 3.1; we consider the Lie algebra g N of a group G N ∈ CG N with the inner product (1) considered in [16,Section 2.1.]. We set the value β to be respectively 1 and 4 when G N is O(N ) and Sp(N ) and 2 otherwise, that is when G N is SU (N ) or U (N ). We set γ = 1 when G N = SU (N ) and 0 otherwise.

Most of the following results can be proved by a direct computation using an arbitrary chosen basis. For any (a, b) ∈ {1, . . . , N } 2 , the elementary matrix E ab ∈ M N (R) is defined by (E ab ) ij = δ ai δ bj .

We shall need the following standard result result on the Casimir element in this setting, which gives computation rules for traces of products and product of traces involving elements of B. 

Proof. We only sketch the proof in order to show where the expressions come from. First of all, remark that by linearity they only need to be proved for A = E ij and B = E k . We have for instance

clearer after being translated in terms of the area simplex. We define the differential operator µ v on functions ∆ G (T ) → C by

using the labelling of a = (a 1 , . . . , a p ) ∈ ∆ G (T ) such that a i corresponds to the face f i . Equation ( 58) becomes then

and now everything only depends on the areas of the faces. We want to apply these abstract Makeenko-Migdal equations to functionals of Wilson loops, in order to obtain the convergence to the master field. We define, for k unrooted loops l 1 , . . . , 1. If v is a self-intersection of a single loop l 1 such that the edges (e ±1 j , 1 ≤ j ≤ 4) are visited in the following order: e 1 , e -1

4 , e 2 , e -1 3 , then define l 11 the subloop of l 1 starting at e 1 and finishing at e -1 4 , l 12 the subloop starting at e 2 and finishing at e -1 3 . We have, for any loops l 2 , . . . , l k that do not cross v,

where the |R l1 | ≤ 10 uniformly on ∆ G (T ).

2. If v is the intersection between two loops l 1 and l 2 such that l 1 starts at e 1 and finishes at e -1 3 , and l 2 starts at e 2 and finishes at e -1 4 , then define l the loop obtained by concatenation of l 1 and l 2 . We have, for any loops l 3 , . . . , l k that do not cross v,

It was proved for all classical Lie algebras if G is a planar combinatorial graph by Lévy in [START_REF] Lévy | The master field on the plane[END_REF]Prop. 6.16] when the loops form what he called a skein. If G is a map of genus 0 and g is the Lie algebra of U(N ), this result was proved by one of the authors with Norris in [START_REF] Dahlqvist | Yang-mills measure and the master field on the sphere[END_REF]Prop. 4.3]. See also [START_REF] Driver | Three proofs of the Makeenko-Migdal equation for Yang-Mills theory on the plane[END_REF]Prop. ] Proof of Prop. 7.3. Let us start with the first case, which is when v is a selfintersection of a loop l 1 . We take E o = {e 1 , e 2 , e 3 , e 4 , e 1 , . . . , e m-4 } as an orientation of E, with e 1 , e 2 , e 3 , e 4 the four outgoing edges from v. We identify any multiplicative function h ∈ M(P (G), G) to a tuple (a 1 , a 2 , a 3 , a 4 , b) by setting a i = h ei and b = (h e i ) 1≤i≤m-4 the tuple of all other images of edges by h. There are words α, β, w 2 , . . . , w k in the elements of b such that

It appears that φ G l1,...,l k = E(f ), where f is the extended gauge-invariant function

Then, by the abstract Makeenko-Migdal equation ( 58), we get

and by definition

where X runs through an orthonormal basis of g. A straightforward application of (55) from Lemma 7.1 yields (59), by noticing that h l11 = a -1 4 βa 1 and h

We have

tr(a -1 3 αa 2 Xa -1 4 βa 1 X)tr(a -1 1 β -1 a 4 a -1 2 α -1 a 3 )

-tr(a -1 3 αa 2 a -1 4 βa 1 X)tr(a -1 1 β -1 a 4 Xa -1 2 α -1 a 3 ) -tr(a -1 3 αa 2 Xa -1 4 βa 1 )tr(Xa -1 1 β -1 a 4 a -1 2 α -1 a 3 ) + tr(a -1 3 αa 2 a -1 4 βa 1 )tr(Xa -1 1 β -1 a 4 Xa -1 2 α -1 a 3 ) , and a simultaneous application of ( 55) and ( 56) leads to the result. We detail the case of SU(N ) and leave the others as an exercise: if we set A = h l11 and B = h l12 , then We can then take the expectation of the alternated sum of these expressions, and as all traces are bounded by 1 because they apply to special unitary matrices, we find that all terms with a coefficient 1 N or 1 N 2 fall into O 1 N which does not depend on any loop 30 , so that Let us now turn to the second case, when v is the intersection of l 1 and l 2 . We take E o = {e 1 , e 2 , e 3 , e 4 , e 1 , . . . , e m-4 } as an orientation of E, with e 1 , e 2 , e 3 , e 4 the four outgoing edges from v. There are words α, β, w 2 , . . . , w k in the elements of b such that h l1 = a -1 3 αa 1 , h l2 = a -1 4 αa 2 , h li = w i ∀3 ≤ i ≤ k. We have φ G l1,...,l k = E(f ), where f is the extended gauge-invariant function The result follows then from [START_REF] Voiculescu | Lectures on free probability theory[END_REF].

By letting N → ∞ in Prop. 7.3, one immediately gets the following. 

(62) 30 we add up a finite number of terms, 6 to be precise, which are bounded by 1 N , so their sum is bounded by 6 N which is indeed independent from the loops or the face-area vector.