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ABSTRACT
XML is currently a well established and widely used document
format. It is used as a core data container in collaborative writing
suites and other modern information architectures. The extraction
and analysis of differences between two XML document versions
is an attractive topic, and has already been tackled by several re-
search groups. The goal of this study is to compare 12 existing
state-of-the-art and commercial XML diff algorithms by applying
them to JATS documents in order to extract and evaluate changes
between two versions of the same academic article. Understand-
ing changes between two article versions is important not only
regarding data, but also semantics. Change information consumers
in our case are editorial teams, and thus they are more generally
interested in change semantics than in the exact data changes. The
existing algorithms are evaluated on the following aspects: their
edit detection suitability for both text and tree changes, execution
speed, memory usage and delta file size. The evaluation process is
supported by a Python tool available on Github.

CCS CONCEPTS
• General and reference→ General conference proceedings;
Evaluation; •Applied computing→ Extensible Markup Lan-
guage (XML); Version control.
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1 INTRODUCTION
Extracting and understanding the differences between two versions
of an academic article has practical usage within the scientific com-
munity. Currently, reviewers and editorial teams must manually
compare two versions of the same manuscript when author correc-
tions have to be evaluated. More widely, readers are interested in
comparing different versions of the same article (e.g., two preprint
versions or a preprint with its later published article version). There
are several main document types in which a scientific article can be
written. Authors mostly use tex1, docx2 and odt3, which are well-
known and established formats used by the main typesetter tools.
Office suites (Open Office and MS Office) provide two interesting
functions—change tracking and document compare. Although very
useful, the change tracking function lies in the author’s hands and
can be disabled at any time. The document compare function can
be applied regardless of the change tracking function; however,
it relies on the typesetter tool. For both, changes are represented
only visually and cannot be extracted for further processing. From
the reader’s perspective, having direct access to changes made by
the author (differences between the original and the modified ver-
sion, called deltas) is more convenient than reading both versions
of the article and visually evaluating the differences in order to
match them with the improvement suggestions. Standardising the
delta would not only speed up the process, but also increase the
revision evaluation quality; thus, there is a need for a dedicated
and powerful document comparison tool able to compare academic
articles.

Since the beginning of the digital age in the 1970s, researchers
have expressed their interest in comparing textual documents with
the purpose of extracting, analysing and understanding differences.
Text diff algorithms [16, 27] have been studied and described. Some
of them are still in use, like Hunt–McIlroy’s [10] algorithm (cur-
rently used in the GNU Diff utility) and Myers’ [17] algorithm. Most
of these algorithms are line-based and rely on two edit operations:
1foldoc.org/TeX
2https://loc.gov/preservation/digital/formats/fdd/fdd000397.shtml
3https://loc.gov/preservation/digital/formats/fdd/fdd000428.shtml
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Insert and Delete. The difference is calculated by comparing each
line of the original with the corresponding line of the modified
text file. The range of applications for text diff algorithms is wide;
they are present in version control systems (Git, Apache Subver-
sion) and many other tools like IDEs (Eclipse Compare) or text
editors (Notepad++ Compare), where tracking textual differences
is important. Starting from the late 1990s to the early 2000s, with
the explosion of the World Wide Web and semi-structured text
documents, several research groups had their focus on a specific
type of text document—XML [28]. The main reason for this was
the promising future of XML, adopted widely in a short period by
many key players in the domain of high technology. Compared
with plain text documents, the particularity of XML resides in its
hierarchical structure, also called tree structure, and the existence
of its parent–child node relations. The tree-to-tree editing problem
defined by Selkow [26] makes existing text diff algorithms unsuit-
able for comparing XML documents. This was further demonstrated
by several research groups [2, 3, 7]. Several projects [29] also de-
veloped HTML-based diff algorithm implementations providing
content and styling differences. In our environment, we are only
interested in content changes, so this approach is not considered.

Academic publishers convert articles from tex, docx and odt to
JATS (Journal Article Tag Suite) XML developed by NISO (National
Information Standards Organization). JATS is the de-facto standard
for the XML representation of journal articles. It has the advantage
of beingmachine readable and independent of typesetter tools. JATS
has no styling/layout information, and carries only the article data
and structure. The styling, depending on the publisher preferences,
is applied at a later stage, while the JATS is converted to LaTeX,
HTML and other formats. Due to the text-centric nature of JATS,
important information resides in text nodes, tree elements and
attributes (Figure 1). The data are divided into the following main
tree elements: front, body and back. The front contains subtree
elements about the metadata information: the journal, the title, the
authors, etc. The body contains the article content structured with
sections, subsections and paragraphs. It is the largest part of the
document, dominated by paragraphs representing text blocks in
a similar way to HTML <p> tags. The back contains references,
figures, tables, notes and acknowledgments. We are interested in
analysing the existing XML diff algorithms by evaluating their
compatibility with JATS documents. This is one of the possible
metrics we are using to measure the quality of a delta, and is closely
related to our initial goal of comparing JATS article versions.

Table 1 shows 12 implementations of XML diff algorithms: 11 are
state-of-the-art algorithms from the scientific literature and one is a
commercial implementation. Their analyses will be presented as fol-
lows: In Section 2, we describe each of the algorithms individually.
In Section 3, we present the analysis approach and the XMLDif-
fAnalyzer script we developed in order to automate one part of
the analysis. In Section 4, we do an initial high-level performance
and suitability analysis of the algorithms for JATS document com-
parison. The performance is evaluated in terms of execution time,
average and maximal memory used and resulting delta file size.
The suitability depends on the results obtained by analysing the
delta files for specific author edit operations which impact the XML
document in both the text and tree structure. In Section 5, we focus
on the three algorithms we identified as most suitable and three

Table 1: XML diff algorithms

Algorithm Language Link Last update

XmlDiff [3] Python Pypi.org present
DeltaXML Java Commercial present
XyDiff [7] C++ Github 2015
Xdiff [31] C++ Github C++ 2015
DiffXml [4] Java Github 2018
XOp [11] Java Living-pages.de 2009
FC-XmlDiff [12] Java Github 2009
DiffMK [18] Java Sourceforge 2015
JXyDiff [24] Java Github 2009
XCC [22] Java Launchpad 2009
JNDiff [5] Java Sourceforge 2014
Node-delta [13] JavaScript Github present

algorithms identified as low-performing in JATS comparison. A
deeper analysis of the delta outputs they generated is performed in
order to identify their strengths and weaknesses. Finally, in Section
6, we present the need for a new JATS diff algorithm.

2 RELATEDWORK
As seen in Table 1, we identified 12 XML diff algorithms. In these
algorithms, edit operations specific to the tree structure were intro-
duced: Insert, Delete, Update and Move. Deleting a node implies the
same action on all of its child nodes, which means it is no longer a
line-based approach, but becomes a tree-structure-based approach.
While moving a tree has no impact on the text content, it does
move the content by changing its position within the tree. In the
real-world scenario of an academic article, inserting an author that
is composed of multiple child nodes representing the author’s name,
email and affiliation number would result in a node Insert action
where the entire author tree substructure is impacted. The Update
operation is also important in order to minimise the overuse of In-
sert/Delete operations. Ronnau et al. [23] explain that in case of an
attribute change on the root of the document tree, without Update
it is necessary to represent the change with a full Delete operation
followed by a full Insert operation. The Move operation consists of
changing the position of a given child node among the other child
nodes of a specific parent, and can be used for author ordering.
Without the Move action, changing the node order would result
in removing and re-inserting them in the correct order. Attribute
editing is another specificity of XML documents which the text
diff algorithms are not able to deal with. By using all previously
mentioned edit operations, XML diff algorithms should be able to
detect both text and tree changes.

XML documents, being simple and general in nature, are suitable
for both text and data, and so there are two main categories of XML
documents: text-centric (or document-centric) and data-centric, as
described in [5] and [15] (see chapter Text-centric vs. data-centric
XML retrieval). The size of individual text nodes is usually larger in
text-centric XML documents, while data-centric nodes are smaller
in size but higher in number. Most of the early XML diff algorithms
were developed for data-centric XML documents with the main
focus on execution time, memory usage and delta size efficiency.

https://pypi.org/project/xmldiff/
https://www.deltaxml.com/products/compare/xml-compare/
https://github.com/fdintino/xydiff
https://github.com/albfan/x-diff-c
https://github.com/amouat/diffxml
http://www.living-pages.de/mirrors/living-pages.de_archive/de/projects/xop/index.html
https://github.com/nyxtom/fc-xmldiff
https://sourceforge.net/projects/diffmk/
https://github.com/tanob/jxydiff
https://launchpad.net/xcc
https://sourceforge.net/projects/jndiff
https://github.com/znerol/node-delta
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Several research groups [5, 21, 25] demonstrated that XML diff algo-
rithms for data-centric documents are not suitable for text-centric
documents, and there is a need for specific XML diff algorithms
adapted for text-centric XML documents.

Here, we will briefly describe each of these algorithms and the
research work done around them in chronological order:

• XMLDiff is the oldest among the algorithms we analysed. It
was published in 1996 [3]. However, the XMLDiff implemen-
tation we tested dated from 2004. The paper was published
two years before the first XML 1.0 Specification and did not
directly mention the XML format. It was related to hierarchi-
cally structured data, which is closely related to data-centric
XML documents. Four edit actions, all related to tree struc-
ture changes, were defined (Insert, Delete, Update and Move).
The algorithm was written with the purpose of being able
to compute the minimum-cost edit script” between two doc-
uments. It is still maintained and is at version 2.4.
• DeltaXML is a commercial suite of products that started in
2001. One of their solutions is XML Compare, which can be
used as a command line or GUI to compare XML files. The
delta results are passed through a pipeline so the output can
be adapted to different needs. DeltaXML is still maintained,
and their R&D teams have published several white papers
[30] regarding new approaches in XML diffing.
• XyDiff was developed by Gregory Cobena within an PhD
project called Xyleme. The publication describing the algo-
rithm was published in 2002 [7]. XyDiff was developed in
C++ with the purpose of indexing and analysing the changes
on the web where parts of French websites were stored as
XML documents. The algorithm parses each document twice:
the first time for assigning so-called “XID persistent iden-
tifiers” to each node and then to compute the difference.
Differences, called XyDelta, are all related to the XIDs. An
additional .xidmap file is created grouping XIDs depending
on the node differences between the two documents. XyDiff
supported four edit actions: Insert, Delete, Update and Move.
Its implementation has not been maintained since 2015.
• XDiff was published in 2003 [31]. The paper explains that
for data-centric XML documents, the order of the elements is
not important. This involved the vanishing of the Move edit
action. This hypothesis is not suitable in our JATS environ-
ment, as sections, authors and others are ordered elements.
The complexity of comparing XML documents within the
so-called “unordered model” was described as higher than
comparing within the “ordered model”. The algorithm im-
plementation was written in C++ and was maintained until
2015.
• DiffXMLwas published in 2004 [4]. The algorithmmaps the
XML DOM tree structure to a relational database using SQL
operations to detect changes. DiffXML supports four edit
actions: Insert, Delete, Update and Move. Its implementation
has not been maintained since 2018.
• XOpwas developed in 2004 by Living Pages Research GmbH
as part of the Ercato project. There is no research litera-
ture describing XOp; however, the Ercato project concept
was published in 2004 [11] and one year later analysed in

a XML Diff comparison thesis [9] that evaluated, among
others, the XOp algorithm. The Ercato project was based on
“thing-oriented programming” with the so-called ercatons
representing “things” (i.e., XML documents). In order to rep-
resent object-oriented inheritance, the XOp was developed
within the project to compute the difference between two
ercatons (XML documents) and represent those as algebraic
operations on XML trees. Its implementation has not been
maintained since 2009.
• FC-XmlDiff, also called faxma, was published in 2006 [12].
The first implementation of the algorithm dates from 2008.
In the publication, FC-XmlDiff was compared with other
existing algorithms and was presented as being fast and
simple. The algorithm uses a greedy heuristic approach by
transforming the XML to the domain of sequence alignment,
computing the difference and transforming it back to the
tree domain. FC-XmlDiff supports four edit actions: Insert,
Delete, Update and Move. The algorithm implementation
has not been maintained since 2009.
• DiffMK implementationwas done byNormanWalsh in 2007.
Therewas no research literature describing DiffMK, but there
was one paper [12] and one PhD thesis [6] evaluating the
algorithm. DiffMK uses the Unix diff algorithm and works in
the sequence domain, which makes the tree move detection
impossible. Thus, there are three possible edit actions: Insert,
Delete and Update. The algorithm implementation has not
been maintained since 2015.
• JXyDiff is a Java implementation of the XyDiff algorithm
developed by Adriano Bonat in 2009. The author claimed this
implementation had some improvements compared to the
original C++ implementation developed by Gregory Cobena
in 2002. This implementation has not been maintained since
its publication in 2009.
• XCC was published in 2012 [22]. However, the implemen-
tation dated from 2009 and has the purpose of comparing
office documents where the content is saved in XML format—
precisely, the OpenDocument format. Context fingerprints
were introduced in order to identify the edit operation in a
highly reliable way. XCC supports four edit actions: Insert,
Delete, Update and Move. The algorithm implementation
has not been maintained since 2009.
• JNDiff was published in 2016 [5], however, its implemen-
tation was done in earlier in 2009. Compared to most of
the XML diff algorithms, the JNDiff authors made a clear
difference between text- and data-centric XML documents
and set the focus on the delta output quality (human read-
ability, accuracy and clearness) rather than high execution
performance. Their approach concentrated on comparing
textual documents in XML and representing the differences
in a similar way to change-tracking tools in different word
processors. JNDiff supports four edit actions: Insert, Delete,
Update and Move. The research paper also mentioned the
need of additional level 2 edit operations to detect paragraph
split, etc. The algorithm implementation has not been main-
tained since 2014.
• Node-delta was part of the Delta.js JavaScript project de-
veloped by Lorenz Schori in 2012. There was no research
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literature describing the algorithm. However, its develop-
ment was part of a BSc. thesis [13]. The main purpose of the
Delta.js project was the implementation of a version con-
trol system for structured documents. The algorithm was
inspired by the XCC we mentioned earlier. Node-delta sup-
ports four edit actions: Insert, Delete, Update and Move. The
algorithm also uses fingerprints, and its implementation is
still maintained in 2020.

In the above, we described 12 existing XML diff algorithms. There
are probably many more that are less well-known, proprietary or
with no scientific literature. Each of these algorithms has its own
way of describing differences with no universal delta model. This
makes it challenging to compare them and measure the quality of
their delta outputs, as described in [1].

3 CRITERIA
In previous data-centric XML diff comparison studies [8, 9], the
main criteria for an appropriate algorithm were set based on its
execution time, delta size, CPU and memory usage. In our case, we
are mainly focused on the delta output—that is, all the differences
between two versions of an academic article should be detected,
correctly interpreted and represented. In order to assess the delta
output, we need to understand the modifications an author is mak-
ing during the revision process and correlate those to the changes
observed on JATS.

3.1 Author Modifications
During the revision rounds, the following author modification ac-
tions are seen as common:

• Paragraph correction is the most common author modifi-
cation we observed. This is because paragraphs represent
the largest part of the article. Authors modify paragraph con-
tent, and move, merge or split paragraphs. Content changes
include text additions, removals, moves and style changes.
Paragraphs are also composed of other objects such as math-
ematical formulas and citations that are subject to editing.
Smaller corrections can be interpreted as updates, while
larger corrections can be seen as rewrites.
• Section correction is mostly about article structural change.
A section is composed of other sub-elements such as its title,
subsections, paragraphs, figures, etc. Authors modify section
sub-elements, merge and split sections or upgrade subsec-
tions into sections or downgrade sections into subsections.
• Author correction is observed while modifying author in-
formation, adding or deleting an author or changing an au-
thor’s position within the authors list.
• Title correction is observed in the article title, which is a
relatively short portion of text.
• Citable object correction is observed on objects that can
be cited within the article (i.e., references, figures, tables,
sections, algorithms, etc.). The particularity of those objects
is that their order of appearance within the article is used
to generate their incremental citation number; moving a
table, reference or figure impacts the number with which
this object is cited within the article.

• Embedded object correction is observed on objects that
are externally produced and inserted in the article. The most
common examples are figures and images.

By further analysing the previously mentioned modifications
observed on a corpus of academic articles, we identified nine general
edit actions that an author can apply: Add, Remove, Update, Move,
Merge, Split, Upgrade, Downgrade and Styling. Add and Remove
are the two main modifications, and the others can be reinterpreted
with their sequence. Figure 1 shows the correlation between the
typesetter version of an academic article and its JATS representation.
As mentioned in the introduction, JATS has structured data, and
important information resides in text nodes, tree element structures
and attributes. The following list shows a short description of each
edit action:

• Add is the first main modification observed on all levels
of the article. Authors can add characters, sentences, para-
graphs, sections, authors, affiliations, references, etc.
• Remove is the opposite of Add.
• Update is observed where changes are minor. Instead of
representing a typo correction or a rephrasing in a paragraph
as a full Remove/Add sequence, Update is used as a more
fine-grained approach.
• Move is observed where the order of items within the article
is changed. It has no impact on the content itself, only on its
position within the article.
• Merge is observed on paragraphs, subsections and sections.
For paragraphs, it usually consists of removing the line
breaks between two paragraphs in order to form one larger
paragraph. For subsections and sections, the line breaks are
removed and, additionally, their titles are merged.
• Split is the opposite of Merge.
• Upgrade is observed on subsections and consists of chang-
ing a subsection to a section.
• Downgrade is observed on sections and consists of chang-
ing a section to a subsection.
• Styling is observed on portions of text, mostly within para-
graphs. Authors can add or remove styling elements such
as italic, bold, subscript, superscript, etc. Those styling ele-
ments can also have their range changed while extending or
shrinking the styled portion.

Each of the previously described modifications that an author
applies to an article is a sequence of the general edit actions we
identified. Paragraph correction, for example, can be composed
of text Insertions, Deletions, Updates, Moves, Merges with other
paragraphs, Splits or Styling changes.

3.2 JATS Edit Actions
In order to understand how these common author modifications
impact the JATS versions of the article, we analysed each of them
by observing the changes from an XML perspective. This gave us
the opportunity to define 16 edit actions produced by the author
and reflected on the JATS. Those actions are divided into two edit
groups: six text and ten tree edits. Text edits are actions observed
on text nodes, mostly paragraphs, but also article title, author name,
etc. Tree edit actions are observed on the tree structure of the JATS
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Figure 1: Author modifications’ impact on JATS article version
Left, the original typesetter article; middle, the modified version; right, the impact on JATS

while adding or deleting elements, moving paragraphs or sections.

Text edits:
• Delete is a basic edit operation that can be executed on any
text node within the article. We can find text deletion in
paragraphs, sections, authors, title and other nodes.
• Insert is another basic edit operation that can be executed
on any text node within the article.
• Move is a composite operation that is often seen in para-
graphs. Entire sentences or parts of sentences are moved in
order to correct the grammar or improve the writing clarity.
• Update is another composite edit type that can be seen in
any of the XML nodes. It makes sense while doing relatively
small modifications to a given text. Having a text edit action
with a high volume of inserted/deleted text should not be
considered as an update, but rather as a full rewrite using
Delete–Insert actions.
• Style is a specific edit type where styling elements range
change while extending or shrinking the styled portion. One
example is the extension of a portion of text that is in italics.
• Complex is a specific text content (usually paragraphs) that
has the specificity of embedding other markups such as
styling, cross-reference, tables, mathematical formulas, etc.
This is very common in academic articles, and edits on com-
plex content should be implemented in the same way as on
non-complex content.

Tree edits:
• Delete is produced by deleting specific parts of the article,
for example an author, section, paragraph, reference or figure.
It is specific enough that when a parent node is removed, all
child nodes are also removed.
• Insert is the opposite of Delete.
• Update attribute is very specific to XML documents. It is
observed when changing the correspondence of an author,
the license information of the article or the reference type
within the reference.

• Move is observed in the reordering of authors, references,
figures and other elements. It is an important edit action for
text-centric XML documents and is reflected by changing
the order of child nodes within their parent node.
• Merge is observed when paragraphs or sections are merged.
This implies the merging of multiple parent nodes with all
their child nodes into a single parent node containing all
child elements from each merged parent node.
• Split is the opposite of Merge.
• Upgrade is observed when subsections are changed to sec-
tions.
• Downgrade is the opposite of Upgrade and is observed
when sections are changed to subsections.
• Style consists of adding or removing styling information
such as bold or italics to some portion of text.
• Complex tree nodes are nodes that contain text nodes em-
bedding other markups.

After observing a sample batch of 50 real-life author JATS ar-
ticles4, we found that the frequency of complex paragraphs was
much higher compared to plain text paragraphs. The average ratio
is 80% vs. 20%. The largest edited part of a JATS document is the
article body, composed mostly of paragraphs. We conclude that
edits on complex text and trees is important.

3.3 XMLDiffAnalyzer Script
In order to automate the execution and the results collection for
the 12 algorithms we are comparing, we developed the XMLDiff-
Analyser script available online5. The results collected and JATS
testing files prepared from the original research paper [14] are also
available6. Algorithm 1 presents the pseudo code of the script writ-
ten in Python. The script embeds the executable of 12 algorithm
implementations, the compared articles and the resulting delta files
per algorithm per article. It requires the user to input the number

4github.com/milos-cuculovic/XMLDiffAnalyzer/tree/master/Sup/XML
5github.com/milos-cuculovic/XMLDiffAnalyzer
6github.com/milos-cuculovic/XMLDiffAnalyzer/tree/master/TestingCorpus
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of times each algorithm will be executed, and which articles the
algorithms will run on. It measures and returns the time, memory
and delta size performance data, writing them to a CSV file and
generating SVG vector figures. In case of further tests, the algorithm
can be easily reused on other XML documents.

Algorithm 1 XMLDiffAnalyzer
procedure XMLDiffAnalyzer()

tools← XyDiff, JNDiff, JXyDiff, ..., DiffXml
rounds← 5

𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 ←


𝑜𝑟𝑖𝑔1 𝑛𝑒𝑤1

𝑜𝑟𝑖𝑔2 𝑛𝑒𝑤2

... ...

𝑜𝑟𝑖𝑔𝑛 𝑛𝑒𝑤𝑛

delta_dir← Full path of the delta save directory
start(rounds, articles, delta_dir)
function start(rounds, articles, delta_dir)

build the CSV file
for 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 in 𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 do

for 𝑟𝑜𝑢𝑛𝑑 in 𝑟𝑜𝑢𝑛𝑑𝑠 do
for 𝑡𝑜𝑜𝑙 in 𝑡𝑜𝑜𝑙𝑠 do

𝑟𝑒𝑠𝑢𝑙𝑡 ← proc(𝑡𝑜𝑜𝑙, 𝑟𝑜𝑢𝑛𝑑𝑠, 𝑎𝑟𝑡𝑖𝑐𝑙𝑒)
for 𝑟𝑒𝑠𝑢𝑙𝑡_𝑖𝑡𝑒𝑚 in 𝑟𝑒𝑠𝑢𝑙𝑡 do

generate 𝑟𝑒𝑠𝑢𝑙𝑡_𝑖𝑡𝑒𝑚 pyplot graph
save 𝑟𝑒𝑠𝑢𝑙𝑡_𝑖𝑡𝑒𝑚 into SVG vector figures

end for
𝑟𝑒𝑠𝑢𝑙𝑡𝑠 [] ←result

end for
end for

end for
write results[] in the CSV file

end function
function proc(tool,rounds,article)

build and execute the command
results.execution_time← Execution time
results.memory← Max and average memory used
results.delta_file_size← Size of the delta output
return result

end function
end procedure

4 COARSE-GRAINED
The initial evaluation phase consists of a high-level performance
and suitability analyse of the 12 XML diff algorithms. Here, we carry
out a coarse-grained evaluation with the purpose of identifying the
potential suitable algorithms for JATS article comparisons. These
will be further analysed in Section 5 with a more fine-grained
approach. The coarse-grained evaluation is divided in two parts,
first the performance evaluation and then the delta output analysis.

4.1 Performance Evaluation
JATS articles are large text-centric XML files that may vary from
100 KB to 400 KB. In order to calculate the minimum performance
requirements for suitable algorithms, we measure the time and
memory needed per algorithm for a comparison. The tests7 were
7The evaluation was done on an Apple MacBook Pro (15-inch, 2016); Processor: 2.7
GHz Quad-Core Intel Core i7; Memory: 16 GB 2133 MHz LPDDR3; SSD Hard Drive

Figure 2: Time—minimal vs. real-life author changes
Time measured per algorithm in two edit scenarios: one with minimal text
edit and the other with real-life author changes. In both scenarios, the
algorithms were run to compare the same original file with its modified

version depending on the two edit scenarios

run on two different edit scenarios. The first on a JATS represent-
ing one minimal change on the title, and the second on a JATS
representing real-life author changes to the article title, authors,
affiliations, paragraphs, figures, tables, references, etc.

Figure 2 shows the execution time each algorithm takes on av-
erage to perform a comparison of the XML file pairs. The average
was calculated on five comparison round executions per algorithm.
Except for XMLDiff, where the execution time scales exponentially
while the number of changes increases, the rest of the algorithms
are able to do the comparison in under three seconds (under five
seconds for DiffXML), which is acceptable within our environment.

Figure 3 represents the average and maximum RAM usage per
algorithm. The results range from 5 MB for XDiff to 120 MB for
DiffMK in terms of average RAM used, which is more than ac-
ceptable within our environment. We noticed that DiffMK has an
imbalance between the average and maximum RAM used, where
the maximum peaks are up to six times larger than the average.

The purpose of the delta file size evaluation is to get initial
insights on the number of potential operations that each algorithm
will produce, and how those are stored. For one minimal change
comparison, Figure 4a shows that three algorithms, DeltaXML,
DiffMK and XMLDiff, produce large delta files compared to others
due to the fact these algorithms represent differences by annotating
one of the two compared XML files. While evaluating the real-
life author changes comparison, Figure 4b shows that DiffXML
produces the largest delta file with over 10k edit actions, which
seems to be oversized. JXyDiff and XCC are both heavily affected
by the number of changes. Overall, with the exception of DiffXML,
the algorithms produce delta files with acceptable sizes within our
environment.
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Figure 3: Memory—minimal vs. real-life author changes
Average and maximum memory measured per algorithm in two edit

scenarios: one with minimal text edit and the other with real-life author
changes. In both scenarios, the algorithms were run to compare the same
original file with its modified version depending on the two edit scenarios

4.2 Delta Output
The evaluation of delta outputs is done within the two modification
groups we have presented—text and tree edits—with a total of 16
edit actions:

• Text edits:
– Delete
– Insert
– Move
– Update
– Style edit
– Complex edit

• Tree edits:
– Delete
– Insert
– Attribute
– Move
– Merge

– Split
– Upgrade
– Downgrade
– Style edit
– Complex edit

Using the XMLDiffAnalyzer, we applied the algorithms to 16
different JATS file pairs, each pair reflecting one of the edit actions.
The full comparison results are shown in the supplementary sup-
porting information8 organised into individual tables, each table
describing our observation per edit action. The scoring system
gives between zero and two points per edit action by comparing
the expected and obtained delta results. The number of points is
weighted by a factor two for complex edit actions, both on text and
trees. This decision is supported by the importance of the author
edits on complex content, as mentioned in 3.2. An active Excel sheet
was created 9 in order to interactively observe the scoring changes
by editing the weights.

We present the delta output results in Table 2. The total score is
calculated by summing the successful matching of expected versus
obtained delta outputs per edit action. Based on this, we can rate
the JNDiff algorithm as first; XyDiff sharing the second place with
XMLDiff; and XCC as third.

8github.com/milos-cuculovic/XMLDiffAnalyzer/blob/master/Sup/Supplementary.pdf
9github.com/milos-cuculovic/XMLDiffAnalyzer/blob/master/Sup/Weight_Editor.xlsx

(a) Minimal change

(b) Real-life author changes

Figure 4: Delta size—minimal vs. real-life author changes
Delta size per algorithm applied to the same original JATS—once on the
modified JATS with minimal text edit and once with real-life author

changes

By further analysing the obtained results, we observe that none
of the algorithms are able to deal with Text move nor Style ad-
dition or removal detection. In the best-case scenario, those are
considered as full text node updates, and in other cases as a suite
of Delete–Insert actions. Operations on complex text nodes are
common in text-centric XML documents, and only one of the 12
algorithms, JNDiff, is able to successfully treat complex text ed-
its. Regarding complex tree operations, the best-scoring algorithm
is XDiff because it only detects tree edits and is not affected by
analysing text edit operations. Tree move is only supported by jXy-
Diff, XyDiff and JNDiff. Most of the remaining algorithms present
this change as a sequence of tree Delete–Insert operations. Tree
merge, split, upgrade and downgrade are not fully supported by
any of the tested algorithms. Node-Delta, DeltaXML, XyDiff, XCC
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Table 2: Delta output analysis

Coarse-grained analysis of delta output per edit action for each of the 12 XML diff algorithms. The results are divided into two groups: text and tree edits

Text edits Tree edits
Algorithm Del Ins Mv Upd Style Complex Del Ins Attr Mv Merge Split Upgr Dwngr Style Complex Res/36

XOP 0
DiffXml 1 1 2
FC-XmlDiff 2 1 3
DiffMK 1 1 2 4
Xdiff 2 2 2 6
Node-delta 1 1 2 1 1 1 1 2 10
DeltaXML 2 2 2 2 1 1 1 11
jXyDiff 2 2 1 1 1 2 2 2 13
XCC 2 2 1 1 2 2 1 1 2 14
XMLDiff 2 2 2 2 4 1 1 1 15
XyDiff 2 1 1 2 2 2 2 1 1 1 15
JNDiff 2 2 1 1 4 2 1 2 2 1 1 1 1 4 25

and JNDiff are partly able to represent some of those operations as
a short sequence of tree Delete–Insert operations.

5 FINE-GRAINED ANALYSIS
As seen in Table 2, none of the tested XML diff algorithms are able to
fully fulfil our expectations for comparing JATS documents. More-
over, XMLDiff is too slow within our environment (see Figure 2).
However, three of them (JNDiff, XyDiff and XCC) are interesting, as
their delta outputs could be eventually improved or post-processed
in order to obtain the desired results; we decided to further analyse
these three algorithms in order to understand their functional prin-
ciples and identify their strengths and weaknesses. Moreover, we
also perform a quick analysis of the three algorithms that scored
the lowest in order to identify the principal reasons of their low
performance in our testing scenario. The analysis is more technical
and allows us to extract important aspects for a suitable JATS XML
diff algorithm.

5.1 JNDiff
JNDiff is able to fulfil 69% of our expectations and is the only algo-
rithm able to deal with text changes in complex environments—one
of the reasons it rates as top performing. Complex environments
are common in JATS documents, as the majority of the text content
contains bold, italics, xref and other styling or reference nodes. The
algorithm is also able to make distinctions between text updates
and replacements (Delete–Insert), depending on the size of the
modification compared to the original text. While editing short text
sequences such as the author name, JNDiff considers this action as a
full replace. The article title being longer, the same text insertion is
considered as a text update. All tree edits are well or partly detected,
more than any of the 11 other algorithms. As a concrete example,
JNDiff was able to detect all modifications to article authors: inser-
tions and removals, changes in the correspondences via attribute
updates and position/ordering changes.

Although scoring higher than others regarding the ability to
detect changes in JATS documents, there are several aspects we
would like to mention where the algorithm was not able to fulfil
our expectations. One of them is the missing ability to represent

text Move operations. When an author moves large portions of
text, it is considered as a complete rewrite using the Delete–Insert
edit sequence. Tree Moves are presented for the parent but also
for all its child nodes, which represents an author Move operation
containing three child nodes (firstname, lastname and email) as four
Move operations. Although the distinction between text Update
and text Replace has its strengths, it also presents a weakness where
small changes have to be detected. This can be the case for text
corrections where changes have been made on the character level.
JNDiff will, in this case, consider those edits as complete word
rewrites. Tree Merge, Split, Upgrade and Downgrade operations
are represented as Delete–Insert sequences. In this way, merging or
splitting two paragraphs and upgrading or downgrading sections
within a document are not interpreted as we would expect. When
on Style edit operations, styling a text is represented as a complete
deletion of the existing text followed by a complete insertion of the
new text containing the styling node. One last note about JNDiff is
the fact that the documentation is written in Italian, which could
present further difficulties for future improvements.

5.2 XyDiff
XyDiff is one of the fastest XML diff algorithms, able to fulfil 42% of
our expectations and to deal with most of the tree edits (Delete, In-
sert, Attribute Update and Move) with the exception of Split, Merge
and Downgrade, which are only partly carried out. Tree downgrade
is, for example, represented as four move actions, which makes
post-processing difficult. On the other hand, the text edits score
is much lower for XyDiff. Text Update precision is fine-grained,
which is good for small text changes like corrections; however,
in our test environment, this is more often considered as a weak-
ness for larger text changes, as the algorithm calculates the longest
common substring (LCS) and tries to minimise the edit distance
at the cost of increasing the difficulty of post-processing the delta
representations. Comparisons of complex text nodes are not opti-
mal. Minor text changes are represented as very large due to the
fact the change is shown on the entire non-complex part of the
text node; changing one letter in such an environment results in a
multi-sentence change. Note that XyDiff also considers as complex
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those text nodes containing HTML character representations. In
the same way as other algorithms, text moves are represented as
complete Delete–Insert rewrites. The same behaviour occurs in tree
merges, where paragraph/section merges are not represented as
we would expect.

5.3 XCC
XCC is able to fulfil 39% of our expectations. It always presents
old and new values, which could be very useful for eventual post-
treatment of the delta results. XCC is also able to detect text Updates.
Tree Insert is represented as one edit action, which is easier to
interpret compared to JNDiff. Furthermore, attribute updates are
also well represented.

However, there are several important edit actions that are not
represented as we would expect. The most important is the detec-
tion of all edit operations in complex environments. Changing one
character in a large paragraph containing one bold node will result
in a large update of the entire text content outside of the bold node.
Text Move operations are not detected and are represented as an
Update. XCC is also not able to deal with Style changes; they are
represented as two actions—an Insert of the new style element with
the following text node, and an Update of the original edited ele-
ment in order to remove the duplicated text. Tree Move detection
is another weakness of the XCC algorithm. This edit action is rep-
resented as two Inserts, two Deletes and four Updates. Tree Delete
impacts the parent, but also all its child elements, similar to how
JNDiff interprets tree Move, making the further processing of this
edit action difficult. Tree Upgrade and Downgrade are represented
by complete Delete–Insert actions, followed by some Updates.

5.4 Low-Performing Algorithms
XOP, DiffXML and FC-XmlDiff (faxma) are the lowest scoring
among the tested algorithms. XOP is not able to represent text-node
differences but only tree differences. DiffXML is able to represent
text Insert, delete and Move operations. While performing tree ed-
its, a tree Upgrade operation results in close to 1000 edit operations,
mostly composed of Move actions. FC-XmlDiff, also called faxma,
presents the difference with a diff-copy XML tag and there is no
information about the edit type.

6 DISCUSSION
The previous section illustrates that several algorithms are able to
correctly detect differences between two JATS documents. Unfortu-
nately, none of them are able to fulfil all of our expectations—that is,
all differences between two versions of an academic article should
not only be detected, but also correctly interpreted and represented.
One of the reasons for this is the limited portfolio of possible edit
actions, as the current XML diff algorithms are only able to rep-
resent Insert, Delete, Move and Update on tree nodes, and Insert,
Delete and Update on text nodes. We will list the requirements for
a new algorithm able to fulfil the remaining requirements. Figure 1
represents a simplified version of an academic article with the fol-
lowing author modifications: article title edited; author 1 deleted
together with its affiliation, implying a correspondence information
change and a reorder of the remaining authors; paragraphs 2 and
3 in Section 1 merged into a unique paragraph; Subsection s2.1

from Section 2 moved to Section 3, implying the reorder of the two
existing subsections in Section 3; and Subsection s3.2 from Section
3 upgraded to Section 4. We were able to identify the following
additional edit actions that would be useful for JATS comparisons:

• Style edit (bold, italic, etc.): interpreted and represented
differently compared to other nodes. Adding or removing
a styling element is not the same as adding or removing a
paragraph or a section. These edits should be seen as style
edits and not as tree edits.
• Citable object edit (section, table, figure, reference, mathe-
matical formula, etc.): interpreted and represented differently
compared to other nodes. These objects have several specific
aspects: complex tree structure, auto-incremental behaviour
while being cited and common elements such as caption
nodes or citable object identifiers.
• Text move: considered as a move action instead of rewrites,
after a certain size.
• Tree merge (paragraphs, sections, subsections): considered
as a merge action instead of an Insert–Delete sequence.
• Tree split (paragraphs, sections, subsections): opposite to
the tree merge.
• Tree upgrade (subsection): considered as an upgrade action
instead of an Insert–Delete sequence.
• Tree downgrade (section): opposite to the tree upgrade.
• Semantics: additional information on what was changed
and how.

In addition to the need for new edit actions, another improve-
ment which could be made is the specific treatment of text (mostly
paragraph) nodes. Style, citable objects and mathematical formulas
can all be seen differently from other tree nodes, and thus the text
change detection could be more accurate. We would also like to
discuss the need for semantic change detection. Some recent studies
[19, 20] were done on algorithms for semantic change detection
on XML documents. This approach is also interesting for scientific
articles. The following semantic analyses would be useful while
reviewing changes:

Edit Area : Provide semantic information on the area of the article
where the change was made (title, author, section, table, etc.).
Edit Type: Provide semantic information on the update type, for ex-
ample an addition, deletion, correction, reorder, styling, rephrasing,
etc.
Edit Score: Number or percent of changes for the entire document
or per edit area and edit type.

Knowing that a new author was added, a specific section was
changed by X% or one part of a section was used to create a new
section is often initially more interesting for the reviewer than the
exact change that was applied.

7 CONCLUSION
In this article, we tested 12 implementations of existing state-of-the-
art and commercial XML diff algorithms (Table 1) for their suitabil-
ity in detecting changes in JATS versions of academic articles. We
started with a performance evaluation with the XMLDiffAnalyzer
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script we developed, followed by a manual evaluation of the result-
ing deltas. The overall performance was rather acceptable among
the algorithms. XMLDiff presents large execution times for real-
life JATS documents and would not be suitable for regular usage.
Concerning memory, all 12 tested algorithms have acceptable per-
formance. The delta file size allowed us to identify three algorithms
(DeltaXML, DiffMK and XMLDiff) annotating changes on one of
the compared XML files. Xdiff is not able to detect text edits and
works only on tree edit detections. XOp prints the entire parent
tree of a modified text element, which is not convenient for inter-
pretation. The delta file size of DiffXML scales exponentially as the
number of changes increase because this algorithm interprets most
of the changes as move operations. In the second part of the evalu-
ation, we analysed the delta output produced by each algorithm for
specific types of edit operations an author usually performs while
revising an article. The results show that none of the algorithms
are fully compliant with our expectations. The top three algorithms
have success scores of 25/36 for JNDiff, 15/36 for XyDiff and 14/36
for XCC. The main weakness shown by most of the algorithms,
except JNDiff, is the inability to represent edit operations in com-
plex environments. Moreover, the existing edit operations detected
while comparing two XML articles (Insert, Delete, Update, Move)
are not sufficient to efficiently represent the differences between
two versions of an academic article. In order to implement a suitable
JATS diff algorithm, it would be necessary to detect, in addition to
the existing edits, style changes, citable object changes, text moves,
tree splits and merges, tree upgrades and downgrades and semantic
differences. Once these are added, it would be possible to properly
detect, represent and store most of the edit operations presented in
Section 3. Having such a mechanism in place would be useful for
an eventual future versioning system for academic articles.
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