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Abstract—The estimation of an optimal time series average
has been studied for over three decades. The process is mainly
challenging due to temporal distortion. Previous approaches
mostly addressed this challenge by using alignment algorithms
such as Dynamic Time Warping (DTW). However, the quadratic
computational complexity of DTW and its inability to align more
than two time series simultaneously complicate the estimation.
In this paper, we follow a different path and state the averaging
problem as a generative problem. To this end, we propose a
multi-tasking convolutional autoencoder architecture to extract
latent features of similarly labeled time series under the influence
of temporal distortion. We then take the arithmetic mean of
latent features as an estimate of the latent mean. Moreover, we
project these estimations and investigate their performance in
the time domain. We evaluated the proposed approach through
one nearest centroid classification using 85 data sets obtained
from the UCR archive. Experimental results show that, in the
latent space, the proposed multi-tasking autoencoder achieves
competitive accuracies as compared to the state-of-the-art, thus
demonstrating that the learned latent space is suitable to compute
time series averages. In addition, the time domain projection of
latent space means provides superior results as compared to time
domain arithmetic means.

Index Terms—Time Series, Averaging, Autoencoder, Multi-
tasking

I. INTRODUCTION

A time series can be seen as a set of ordered observations
whose attributes can be a vector or a scalar. Although the
ordering of these observation is usually made through time,
particularly in terms of some equally spaced time intervals, it
can also be taken through other dimensions, such as space [1].
Today, such data sets are available from different sources
like acoustic signals, financial indices, internet traffic, satellite
images, etc. [1]. A more formal or technical definition of these
data sets considered a time series as a temporally ordered
sequence X : {x1, x2, ....., xN}, defined over an attribute set
λ, xi ∈ λ [2]. With this definition, a time series is considered
to be univariate if ∀xi ∈ λ : xi ∈ R. On the contrary, it is
called a multivariate time series if ∀xi ∈ λ : xi ∈ Rm.

Like their non temporal counterparts, time series are also
analyzed in a supervised, unsupervised and semi supervised
manner [3]–[5]. In practice, data mining techniques falling in
these broad categories have to be tuned to meet data specific
demands [6]. When it comes to time series, most of the tech-
niques have to be tuned for temporal misalignment (distortion).
This challenge is illustrated in Figure 1. In the Figure, we
have selected the BettleFly data set from the University of
California univariate time series repository (UCR) [7]. We

have selected data sets belonging to class one. From Figure 1,
we can first observe how the data sets present a similar
per class shapes (features). Additionally, we can also notice
how temporal distortion creates misalignment between class
members.
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Fig. 1: Within class temporal distortion in BeetleFly data set
obtained from the UCR.

Practically speaking, such distortions are apparent in tem-
poral data sets for different reasons like difference in the sam-
pling rate of measuring equipment or behaviour of measured
entities [6], [8]. These distortion sources place a constraint on
most temporal data mining techniques [6], [8]. For example,
if we take the power consumption measurements of home
appliances residing at different residents, we do not expect
the measurements of similar appliances to be aligned perfectly.
This is because, the utilization of the appliances are dependent
on the schedule of the end user. Thus, if we are asked to iden-
tify appliances using templates (such as class averages), basic
similarity measurement techniques, like Euclidean distance,
are expected to perform poorly due to the misalignment [8]. In
other problem domains, we might also be expected to generate
representative averages for such measurements, e.g. K-means
clustering, data indexing, etc [6], [8], [9]. In this regard, an
Euclidean mean also performs poorly. This is better illustrated
in Figure 2. In the figure, we have retaken the BeetleFly data
set shown in Figure 1. A time series is defined for this data set
by taking the boundaries of a binary (black & white) images of
Beetles and Flies [8]. Even if, Beetles or Flies are expected to
have a certain descriptive structures, the generated time series
are not aligned perfectly due to a difference in the size of the
insects, rotation of the images, etc. Thus, if we intend to define
an average descriptor from several time series samples, their
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arithmetic mean estimation would look like the one shown in
Figure 2. As highlighted by red boxes, we can observe that the
arithmetic mean fails to preserve the overall shapes, resulting
in a poor representative average.
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Fig. 2: Impact of temporal distortion on an arithmetic mean.

With this understanding, various temporal data mining
techniques, including time series averaging, deploy alignment
algorithms as a pre-processing step [10]–[13]. The algorithms
minimize the phase discrepancy between pairs or groups of
data sets. However, in most cases, the algorithms also present
different challenges as seen from the task at hand [2], [9],
[14]. For instance, the Dynamic Time Warping (DTW) is not
suitable to align multiple time series [12]. Thus, it complicates
the definition of an ensemble mean [15]. On top of that, it also
provides a non smooth and non convex averaging cost function
that is difficult to optimize [14]. With these observations,
different data mining tasks propose mitigation techniques.
For instance, domain transformation techniques have been
utilized to speed up classification with sound accuracy [16],
[17]. Furthermore, convolutional neural networks have also
been intensively studied for time series classification [18].
Such CNN-base methods allowed to improve classification
accuracy and overcome the high computational complexity
associated with DTW based classification techniques. In the
context of time series averaging, diffeomorphism have recently
been proposed to mitigate the multiple alignment challenge in
time series averaging [19]. However, in most proposed aver-
aging techniques the possibility of utilizing neural networks
have been overlooked due to complexities associated with
DTW [10]–[12].

Practically speaking, we can state the averaging problem
as: given a set of time series X = {X1, X2, ...., XN} where
Xi ∈ Rm, generate a series z ∈ Rn where n ≥ m. We
generate z in a way that minimizes:

D =
1

N

N∑
i=1

d(z,Xi), (1)

where, d is a distance function. In most cases, d it is taken as
the DTW distance. To this end, currently available averaging
heuristics transform the set X into an aligned representation.
Then, they estimate an ensemble average by taking the arith-
metic mean of the aligned ensemble. In this context, if DTW
is utilized as an alignment procedure, (1) becomes a non

smooth and non convex cost function [14]. Thus, it avoids the
possibility of using DTW-based loss functions within neural
networks for optimization.

In this paper, we follow a different path and investigate the
latent space of an autoencoders to estimate (generate) z. To this
end, we propose two sets of convolutional autoencoder archi-
tectures. An autoencoder performing reconstruction (encoding
and decoding) and a multi-tasking convolutional autoencoder
performing classification and reconstruction (decoding). In the
latter proposal, classification is imposed as an additional task
to force the encoder to learn per class separable and compact
latent features. In our work, we place a higher emphasis on
utilizing the latent features to estimate an optimal mean. We
do this for one main reason:

• Given a set of time series (an ensemble) X =
{X1, X2, X3, . . . , XN}|Xi ∈ Rm, a multiple alignment
is expected to bring the members of an ensemble close
to each other (obtains a compact transformation) in Rn,
where, n ≥ m [9], [19] . Thus, if we are able to extract
compact and separable latent features using autoencoders,
then we will be mimicking per class multiple alignment
in Rl space, where m > l.

We intend to use this assumption and take the arithmetic
average of the latent features as an optimal estimate of the
mean. In addition, we also want to utilize the symmetric nature
of an autoencoder to project the estimated latent mean to the
time domain and observe its performance as compared to the
state of the arts. To the best of our knowledge, generative
models have never been investigated in such a way for time
series averaging.

With this said, we have organized the rest of the paper as
follows. In section II, we reviewed previous works address-
ing time series averaging. Following this, we described our
approach in section III. The experimental results and their
analysis is presented in section IV. We finalized the paper
by drawing our conclusion and remaining future works in
section V.

II. RELATED WORK

As mentioned in the previous section, time series averaging
techniques rely on some sort of alignment algorithms such as
DTW or diffeomorphism [10]–[12], [19]. In reality, there are
four well known DTW based averaging heuristics.

The first of these four proposals is the Non Linear Averaging
and Alignment Filter (NLAAF) [10]. In NLAAF, members
of an averaged ensemble are aligned in a pairwise manner
prior to averaging. To this end, given N time series, NLAAF
generate N/2 estimate in its first iteration. This is performed
by taking the DTW aligned arithmetic mean of pairs [10].
This iterative process is continued until a single estimate is
generated. However, the limitation with NLAAF is that, the
algorithm assumes even number of ensemble members [11].
Furthermore, in NLAAF different estimations are generated
for different pair selections. Moreover, the dimension of the
estimated mean grows for each iteration due to averaging per
DTW associated points [12].



To overcome these limitations, two averaging heuristics
have been proposed: Prioritized Shape Averaging (PSA) and
DTW Barycenter averaging (DBA) [11], [12]. PSA over-
came the ordering dependency using hierarchical clustering
and pairwise averaging [11]. However, PSA could not also
overcome the limitation of growing mean dimension [12].
Hence, DBA proposed to align the members of the series
to a template that is either selected from the ensemble or
randomly initialized [12]. Additionally, DBA proposed to take
the barycenter of DTW associated points [12]. This approach
provided two advantages. First, DBA mimicked multiple align-
ment by aligning the series to a template. Hence, it provided
improved results as compared to its predecessor. Second, the
dimension of the estimated mean is fixed to the dimension of
the template.Nevertheless, DBA is still expected to minimize
a non smooth and non convex cost function [14].

To overcome this challenge, a differentiable version of
DTW, called softDTW, have been proposed in [13]. The
proposal smoothed the cost function, i.e., (1), hence improved
the probability of DBA to identify global minimas, resulting in
softDBA. In spite of this, DTW based averaging techniques
still demanded re-execution when a single new data set be-
comes available [19].

To address this observation, continuous piecewise
affine (CPA) velocity fields based on diffeomorphism
was proposed in Diffeomorphic temporal alignment
net (DTAN) [19]. DTAN estimated CPA velocity fields
via a convolutional network from the input data sets. It
then used the fields to conduct diffeomorphic transformation
on the input that minimize the within group squared sum
of similarly labeled time series. Thus, after transformation,
similarly labeled time series became aligned and a per class
arithmetic mean is presumed to be an optimal estimate [20].
In addition, beside addressing the memory less nature
of DTW based approaches, DTAN also address the joint
alignment problem by morphing groups of time series at a
time. Thus, DTAN achieved superior results as compared to
its predecessors [20].

III. PROPOSED METHOD

As discussed in previous section, most averaging techniques
focused on addressing multiple alignment to obtain compact
representations of original time series. On top of that, most
of the techniques have not harnessed the potentials of neural
networks or provided an end to end neural network solutions.
To address the alignment challenge, we aim at obtaining
compact representations of the original series in the latent
space of a neural network learning the right task. For in-
stance, if we consider a neural network built to conduct a
classification task, we expect the network to extract class
specific information (features) through its hidden layer [18],
[21]. Thus, we expect the per class hidden layers (latent
space) features to be compact and separable as compared to
their original counterpart. In other words, we expect a neural
network learning the right task to mimic temporal alignment in
its latent space. Thus, in our work we try to identify a suitable

architecture with a suitable learning task to transform the
time series into a latent representation. Moreover, unlike most
temporal transformation techniques [16], [17], we want our
latent space transformation to have a meaningful interpretation
in the time domain. This is because, we want to observe and
evaluate the capability of the latent mean on preserving shapes
and trends observed in the time domain. To this end, we have
chosen to investigate autoencoders for two main reasons:

1) An autoencoder is by design used to obtain a compressed
latent representation of a data set. Hence, it makes it a
good candidate for feature learning.

2) With autoencoders, it is possible to project the learned
latent features to their original representation.

With this understanding, we first investigate the feature
extracting capability of a basic convolutional autoencoder, as
shown at the top part of Figure 3. We then learn a per class
discriminating features by making the architecture a multi-
tasking autoencoder, as shown in Figure 3. For the multi-
tasking, we select a classification task in addition to the
reconstruction. This is expected to force the encoder learn a
more compact per class latent representation. However, the
latter architecture makes the feature learning process to be
semi supervised, i.e., requiring class labels during training.
Our approach accounts for this by being a trainable averaging
technique. This is not true for most averaging heuristics, with
the exception of DTAN [19].

A. Convolutional Autoencoders

1) Autoencoder models: An Autoencoder utilizes a sym-
metric architecture, i.e., encoder and decoder, to learn latent
representations (features) of the input data sets and their re-
projection respectively [22], [23]. To meet these objectives,
a basic autoencoder aims at minimizing a reconstruction
loss [23]. Given a time series X = {x0, x1, ...., xN} and
their reconstructed version R = {r0, r1, ...., rN}, a basic
autoencoder aims at minimizing [22]:

Lreconstruction =
1

N

N∑
i=0

(ri − xi)2. (2)

In practice, we have different versions of an autoencoder,
each modifying the objective function to a specific task [23].
For instance, a variational autoencoder aims at learning latent
features resembling a given probability distribution. Thus, it
adds KL divergence loss in addition to the reconstruction
loss [23]. In this paper, we are trying to investigate the
capability of autoencoders on extracting compact features from
the original distributions of the data sets. Thus, we have
avoided utilizing advanced encoders and strictly focused on
the basic cost function given in (2).

2) Convolutional Autoencoders: In addition to different
loss functions, autoencoders also utilize different types of
layers such as Convolution, LSTM and dense [18], [23]. A
layer type influences the type of extracted latent features [21].
For this work, we have selected convolution layers for two
main reasons:
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Fig. 3: Proposed multi-tasking autoencoder.

1) Convolution layers are computationally less demanding
as compared to their dense and LSTM counterpart.

2) Convolution layers are able to learn local features and
identify them globally.

A convolution layer extracts features by using the dot
product of its kernel with the input. Hence, for a given
input X = {x0, x1, x2, ...., xN} and trainable kernel weights
W = {w0, w1, ..., wj}, the output entries of a convolutional
layer are calculated as:

C(i) =

j∑
k=0

wkxi+k (3)

In the convolution operation, we can assume the trainable
weight are the impulse response of a linear filter. In linear
systems, filters are designed to respond to a specific set of
inputs. Similarly, a convolution layer kernel is responsive to
a specific feature (shapes) [21]. Thus, we can consider each
entries of the transformation C(i) as a response of the kernel
to the segmented input of the data sets. Practically, most
convolution layers learn M such kernels in parallel. Thus,
the output of a convolution layer with single stride and same
padding is a M ×N dictionary of responses, where N is the
dimension of the original data set.

The complexity and descriptiveness of the learned features
can be enhanced by sequentially stacking convolution lay-
ers [21], [24]. This will help to learn hierarchical shapes
by systematically increasing the view of the filter [18], [21].
Moreover, beside the stacking of layers, most convolutional
networks also refine the learned features with pooling. Pooling
layers filter out noisy and redundant features by either select-
ing the most dominant (Max Pooling) or averaged (Average
Pooling) features. Thus, a pooling operation is expected to
reduce the dimension of the input data set by 1

K , where K
is the pooling kernel size. We can also further increase the

complexity of the learned dictionary by integration of non
linear activation functions [21], [24]. In this regard, most
convolution layers utilize ReLU activation function [18], [21],
[24]. The ReLU activation will truncate negative responses to
zero [21], [24]. In reality, convolution layers were designed to
process shapes and images. Thus, it would be counter intuitive
to expect negative pixels and shapes. Furthermore, the ReLU
activation is able to overcome the exploding and vanishing
gradient problems while optimizing through back propaga-
tion [21]. Thus, most of the time, it insures convergence.

3) Proposed convolutional Autoencoder: With the men-
tioned technicalities, we can now consider the encoder of a
convolutional autoencoder to be a non linear transformation
function. The transformation learns the basis functions (basis
features) of a given data set. Most of the time, basis functions
have the capability of separating the phase information from
the original data set. For instance, if we consider a time
series X = sin(t + 30), t = 1, . . . , T as an example, it can
be written as sin(t)cos(30) + cos(t)sin(30). Hence, we can
write X as sin(t+ 30) = [sin(t) cos(t)][cos(30) sin(30)]T .
Furthermore, any variants of sin(t) and cos(t) can also be
written in such manner, thus making sin(t) and cos(t) to be
the basis dictionary. Generally, for an M ×N basis dictionary
D and a recombination factor q ∈ Rn, a time series, X ∈ Rm,
spanned by the dictionary D is computed as,

X = DqT , (4)

where the basis functions are arranged in column.
With this definition, we can now consider the outputs

after the flattening layer of the encoder, shown in Figure 3,
as a learned basis features (D). We can also assume the
recombination factors (q) as the learned weights of the dense
layer. At this point, it is feasible to think that if the inputs
belong to similar classes or clusters, the convolution layers, the
non linear activation and the pooling layers will pick up similar



features (response). Additionally, the combined transforma-
tions are expected to filter out minor phase distortion. If these
conditions are met, one can expect the latent representations
to be compact. Thus, in the latent space, we can assume an
arithmetic mean to be an optimal estimation of the average.

Nevertheless, in most practical cases, multiple per class
averages are needed. In such scenario, it would be unrealistic
to expect a basic autoencoder to generate separable compact
latent features. In previous proposals, heuristics utilize class
information directly or indirectly. For instance, DBA will
average each class separately, DTAN will use class labels to
learn per class alignment [12], [19]. In our case, we have
identified three possible paths:

1) For N classes, train N autoencoders
2) Force a single autoencoder to learn multiple per class

dictionaries.
3) Integrate the class information with the help of multi-

tasking.
We have avoided the first solution due to its computational

cost. On the contrary, we have tested the second and third
proposal. For the multi-tasking model, we propose an au-
toencoder performing classification and reconstruction with a
shared encoder (hard multi-tasking), as shown in Figure 3.

B. Multi-tasking Autoencoder

The quality of the learned latent representations are de-
pendent on the objective function. In basic autoencoders, the
objective function will force the encoder to learn features
minimizing reconstruction. Thus, in the case of multi class
inputs, we have no control over the separability of the per
class features. This will increase the chances of overlapping
latent means which are poorly projected by the decoder. To
overcome this limitation we can force the autoencoder to
perform an additional learning task. In the context of obtaining
a compact latent representation, a more suitable choice would
be classification. This is true for two reasons:

1) The classifier will force the encoder to learn the most
per class discriminating basis features [21].

2) The classifier will also force a compact recombination
of the discriminating basis features generated after the
flattening layer of the encoder. This is because, in the
proposed architecture, the classifier is attached after the
dense layer. Hence, in order to achieve higher accuracy
it needs to recombine the learned basis features in a non
overlapping (separable) manner.

In addition, multi-tasking is also expected to learn better
features with limited training data sets. Generally, the multi-
tasking autoencoder approach modifies objective function
given in (2) and becomes [25]:

Lmulti(x, r, h, P ) =
1

N

N∑
i=0

(ri−xi)2−
C∑

c=0

ho,c log po,c, (5)

where r and x are the reconstructed and input time series,
and h and p are the categorical representation and the softmax
activation values for each C catagories, respectively.

IV. EXPERIMENTAL EVALUATION

In this section, we have provided a description of the
proposed autoencoder architectures and our training strategy.

A. Proposed Autoencoder Architectures

For the encoder and decoder portion of the network, we
have followed an architecture resembling the one proposed
by the visual geometry group (VGG), i.e., VGG16, as shown
on the top part of Figure 3. Thus, for the encoder we have
used nine convolutional layers. The nine layers are divided
among three groups. Each group is assigned with a filter size
of 128, 64 and 32. Furthermore, between each group we have
used in total three max pooling layers with a kernel size of
three. The same architecture is repeated for the decoder, where
the max pooling is replaced with an upsampling layer having
a kernel size of three. However, we have not used a third
upsampling layer at the end of the decoder. Additionally, we
have set the dimension Dl of the latent space to D/4, where,
D is the dimension of a time series. Finally, for the multi-
tasking autoencoder, the classifier is constructed from three
fully connected dense layers with a node size of Dl/2, Dl/4
and the number of class labels Nc.

B. Evaluation Procedures and Data Sets

In practice, the quality of an estimated average is measured
by within group squared sum (WGSS), i.e., a per class Fréchet
sum given in (1) [12]. An alternative way of testing WGSS
would be one nearest centroid classification. Indeed, if a mean
achieves a high one nearest centroid classification accuracy,
it is minimizing its WGSS with a high probability [20].
Moreover, one nearest centroid classification gives a practical
implication in relation to application domains [9]. To this end,
we have tested our proposal using one nearest centroid clas-
sification on 85 data sets obtained from the UCR archive [7].

We have conducted the classification task in both the latent
space and time domain. For the latent space classification,
we used the arithmetic mean of latent features extracted
from the training data sets. We then projected the test data
sets to the latent space and used Euclidean distance as a
similarity measure. This is done to evaluate the separability
and compactness of the latent features. On the contrary, since
time domain is still impacted by distortion, the quality of the
projected mean is evaluated with DTW distance. Finally, we
have extracted the time domain results for the other averaging
techniques from [20]. In [20], the classification results for
DBA, softDBA were computed using DTW distance for 84
data sets. To conduct the evaluation for DTAN [20], authors
first trained their diffeomorphic network using the train data
sets. Then, they used the trained network to project test
data sets so that a multiple alignment of the data sets is
achieved. Thus, in the aligned space, the one nearest centroid
classification was conducted by taking an arithmetic mean
that is estimated from the train set and euclidean distance.
However, the paper avoided estimating the mean for the
data ”StarlightCurves” for unmentioned reasons. Nevertheless,
we have run our experiments for 85 data sets for future



comparison. Moreover, [20] also computed the classification
accuracy for the arithmetic mean using euclidean distance,
which is not fair. This is because, an arithmetic mean is
highly impacted by temporal distortion. Moreover, the results
for DBA, softDBA are evaluated using DTW distance which
is expected to give superior results [6], [8]. Thus, we have
recomputed the results for the arithmetic mean using DTW
distance. In our implementations, we have used Tslearn’s
implementations of DTW, DBA and SDBA [26].

We have conducted more than 580 experiments. The exper-
imentation code was implemented in Keras with Tensorflow
backend. Our implementation of the autoencoder and the full
experimental results are available online1. For the experiments,
we have used 80% of the training data for training and 20% for
validation. Moreover, we have trained the plain autoencoder
for 2,500 epochs with no L1 or L2 regularization. On the
contrary, we have trained the multi-tasking autoencoder with
five different L2 regularization setups as shown in Table I. For
the first regularization setup, we have trained the network with
zero L2 regularization and 600 epochs. We have done this to
reduce computational time and also avoid over-fitting. For the
remaining four setups, we have trained the network for 2,500
epochs so that the network converges. We then have used the
best results for analysis. Finally, for all training, we have set
the learning rate to 10−4.

TABLE I: L2 Regularization schemes used while training the
multi tasking autoencoder.

No. Layer L2 Regularizations
1. Encoder 0, 10−4, 10−3, 10−3, 10−2

2. Decoder 0, 10−4, 10−3, 10−3, 10−2

3. Classifier 0, 10−3, 10−3, 10−2, 10−2

C. Experimental Results

1) Numerical and Graphical Analysis: For the multi-
tasking autoencoder, we have selected outcomes with higher
latent space classification accuracy. Such accuracy indicates
separable and compact latent features. As we can see in
Table II, in the latent space, the multi-tasking autoencoder
achieved wins without ties (clean wins) on 32.14% of the
data sets (MT.Enc.Lat). On the other hand, the time domain
projected means were able to achieve clean wins on 2.38%
of the data sets (MT.Enc.Time). On the contrary, the basic
autoencoder achieved a clean win on 2.38% of the latent
space classifications (Enc.Lat). The time domain projection
of the means won on 1.19% of the data sets (Enc.Time)
and behaved as an arithmetic mean, as shown in Figure 7.
Relatively, DTAN, DBA, SDBA, Arithmetic mean are able to
achieve clean wins on 35.71%, 2.38%, 19.05% and 1.19% of
the data sets in the time domain, respectively. In general, in the
latent space, the classification results depicts the multi-tasking
autoencoder is able to extract compact representations and
achieve comparable results to the state of the art (DTAN). The

1https://github.com/tsegaterefe/Time-Series-Averaging-Using-Multi-
Tasking-Autoencoder

TABLE II: Summary of one nearest centroid classification
wins and ties.

No. Avg. Method Wins Ties
1. MT.Enc.Lat 27 1
2. MT.Enc.Time 2 1
3. Enc.Lat 2 0
4. Enc. Time 1 0
5. DTAN 30 4
6. DBA 2 1
7. SDBA 16 1
8. Arth.Mean 1 0

results also show that the basic autoencoder fails to capture
a separable per class features. This is better demonstrated in
Figure 4. In the figure, we have made the t-SNE projection
of the FaceUCR data sets having 14 class labels. Figure
4a shows the projection of the time domain test data set,
whereas Figure 4b and Figure 4c show the latent space
projection of the test data set using the basic and multi-
tasking autoencoders, respectively. We have only used class
labels for the sake of depiction. The projections show that the
multi-tasking autoencoder is learning a separable and compact
per class latent features. Hence, with these features, we are
able to compute non overlapping latent arithmetic means with
superior performance in both the latent space and time domain.
Furthermore, to give a feel of what the time domain projections
look like, we have presented examples of estimated means
using an arithmetic mean, DBA, SDBA and our multi-tasking
autoencoder in Figure 5. However, we have not made the
graphical comparison with DTAN since we were unable to
run their implementation due to code dependencies. We have
selected the ECG200 (top) and ECGFiveDays (bottom) data
sets from the UCR repository. For the multi-tasking-based
estimation, we have used a trained network to project the
train data set into the latent space. We then have taken the
arithmetic mean of the latent features as an estimate of the
mean. Following this, we have projected the estimation to
the time domain using the decoder. On the contrary, the
arithmetic mean of the train time domain data set is taken for
the arithmetic mean plots. Figure 5d shows the efficiency of
the multi-tasking autoencoder at capturing peak values, trends
and shapes observed in the original data set as compared to a
time domain arithmetic mean shown in Figure 5a. To compute
the DBA and SDBA means we have executed their respective
algorithm for 100 epochs. Figure 5b and Figure 5c shows how
DBA and SDBA better capture peak values and overall shape
trends than the multi-tasking autoencoder on time domain.

2) Hypothesis Test: In addition to latent space graphical
representations and win and tie analysis, we have conducted
Wilcoxon signed rank hypothesises test [27]. The test is sum-
marized in the critical diagram shown in Figure 7. The diagram
shows that the latent space classification using the multi-
tasking autoencoder (MT.Enc.Lat) is a similar hypothesis as
DTAN. Thus, in the latent space we are indeed mimicking
alignment and an arithmetic mean is a good representative

https://github.com/tsegaterefe/Time-Series-Averaging-Using-Multi-Tasking-Autoencoder
https://github.com/tsegaterefe/Time-Series-Averaging-Using-Multi-Tasking-Autoencoder
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Fig. 4: t-SNE projections of the FacesUCR data set. Input features are time series (a), encoded time series using a simple
autoencoder (b) and encoded time series using our multi-tasking autoencoder. (c)
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Fig. 5: Comparison of four estimated means using an arith-
metic mean (a), DBA (b), SDBA (c) and our multi-tasking
autoencoder (d).

of the features. Moreover, it also shows that the projected
latent mean (MT.Enc.Time) of the multi-tasking autoencoder
outperforms an arithmetic mean. However, since the basic
autoencoder (Enc.Lat) is incapable of providing a separable
and compact latent representation, as shown in Figure 4, its
performance is inferior as compared to the other averaging
heuristics. Nevertheless, it still outperforms an arithmetic
mean in the latent space. However, its time domain projec-
tion (Enc.TIME) behaves as an arithmetic mean.

3) Impact of regularization: We have also analyzed the
impact of the regularization on winning a classification task.
To this end, we have observed which regularization setup wins
a classification task for a given data set. In this regard,in
the latent space, the multi-tasking autoencoder with zero L2
regularization running for 600 epoch wins on 27 (32.53%) data
sets as compared to the other regularization setups. The 2nd to
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Fig. 6: Accuracy comparison between our multi-tasking au-
toencoder and an arithmetic mean (a), DBA (b), SDBA (c)
and DTAN (d).

Fig. 7: Comparison of different averaging methods.

5th regularization setups given in Table I wins on 16 (19.28%),
19 (22.89%), 15 (18.07%) and 6 (7.23%) data sets respectively.
In general, if the intention is to win latent space classification,
we advise to initially test zero L2 regularization and move to
the third regularization setup. However, in terms of achieving
better classification accuracy on the overall data set, the second
L2 regularization setup given in Table I performs better.

In general, the latent space performance of the multi-tasking
autoencoder achieved its desired objective of mimicking mul-
tiple alignment. However, the performance of the projected
means are inferior as compared to the state of the art. This can
be explained by the non continuous nature of the latent space.



This is because, for an autoencoder performing reconstruction,
the encoder is expected to map each input time series to a
specific latent space representation. To this end, the latent
space becomes discrete. Thus, if we are intending to use the
basic autoencoder as a generative model, then the decoder
is forced to reconstruct an unseen latent features as in the
case of the arithmetic means. Hence, the resulting projections
will not be optimal in most cases. Moreover, the classifier
and the autoencoder are competing for the encoder’s attention,
hence there is a high probability that a feature learned for one
task to be a non natural response for the other. Hence, further
investigation is needed on the matter.

V. CONCLUSION

In this paper, we have investigated the use of a generative
neural model for time series averaging. To meet this objective,
we proposed to mimic multiple alignment in the latent space
of a basic and multi-tasking convolutional autoencoders. Our
latent space outcomes show that an autoencoder optimizing
the right cost function, i.e., the multi-tasking autoencoder, can
indeed achieve the desired objective. Moreover, the projected
latent means give superior results as compared to a time do-
main arithmetic mean. However, their performance is inferior
to the latent space due to the fact that the decoder is only able
to observe limited examples of the latent space. To overcome
this limitation, we intend to investigate continuous latent space
by leveraging variational autoencoders with Gaussian mixture
models. Additionally, we also intend to give a more extensive
investigation on the impact of filter and pooling kernel sizes,
classifier architecture and network size on the quality of the
projected means.
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