
HAL Id: hal-03536031
https://hal.science/hal-03536031v1

Submitted on 19 Jan 2022 (v1), last revised 9 Apr 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining sparse approximate factorizations with
mixed precision iterative refinement

Patrick Amestoy, Alfredo Buttari, Nicholas J Higham, Jean-Yves L’excellent,
Théo Mary, Bastien Vieublé

To cite this version:
Patrick Amestoy, Alfredo Buttari, Nicholas J Higham, Jean-Yves L’excellent, Théo Mary, et al.. Com-
bining sparse approximate factorizations with mixed precision iterative refinement. ACM Transactions
on Mathematical Software, 2023, 49 (1), pp.1-29. �10.1145/3582493�. �hal-03536031v1�

https://hal.science/hal-03536031v1
https://hal.archives-ouvertes.fr

Combining sparse approximate factorizations
with mixed precision iterative refinement
PATRICK AMESTOY,Mumps Technologies, ENS Lyon, France

ALFREDO BUTTARI, CNRS, IRIT, France

NICHOLAS J. HIGHAM, Department of Mathematics, The University of Manchester, UK

JEAN-YVES L’EXCELLENT,Mumps Technologies, ENS Lyon, France

THEO MARY, Sorbonne Université, CNRS, LIP6, France

BASTIEN VIEUBLÉ, INPT, IRIT, France

The standard LU factorization-based solution process for linear systems can be enhanced in speed or accuracy

by employing mixed precision iterative refinement. Most recent work has focused on dense systems. We inves-

tigate the potential of mixed precision iterative refinement to enhance methods for sparse systems based on

approximate sparse factorizations. In doing so we first develop a new error analysis for LU- and GMRES-based

iterative refinement under a general model of LU factorization that accounts for the approximation methods

typically used by modern sparse solvers, such as low-rank approximations or relaxed pivoting strategies. We

then provide a detailed performance analysis of both the execution time and memory consumption of different

algorithms, based on a selected set of iterative refinement variants and approximate sparse factorizations. Our

performance study uses the multifrontal solver MUMPS, which can exploit block low-rank (BLR) factorization

and static pivoting. We evaluate the performance of the algorithms on large, sparse problems coming from a

variety of real-life and industrial applications showing that the proposed approach can lead to considerable

reductions of both the time and memory consumption.

CCS Concepts: •Mathematics of computing→ Solvers;Mathematical software performance; Compu-
tations on matrices; • Computing methodologies→ Linear algebra algorithms.

Additional Key Words and Phrases: iterative refinement, GMRES, linear system, mixed precision, multi-

ple precision, rounding error analysis, floating-point arithmetic, sparse direct solver, multifrontal method,

preconditioning, parallelism

ACM Reference Format:
Patrick Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent, Theo Mary, and Bastien Vieublé.

2022. Combining sparse approximate factorizations with mixed precision iterative refinement. 1, 1 (Janu-

ary 2022), 29 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Direct methods for the solution of sparse linear systems 𝐴𝑥 = 𝑏, where 𝐴 ∈ R𝑛×𝑛 and 𝑥, 𝑏 ∈ R𝑛 ,
are widely used and generally appreciated for their robustness and accuracy. These desirable

Authors’ addresses: Patrick Amestoy, Mumps Technologies, ENS Lyon, 46 Allée d’Italie, Lyon, France, patrick.amestoy@

mumps-tech.com; Alfredo Buttari, CNRS, IRIT, 2 Rue Charles Camichel, Toulouse, France, alfredo.buttari@irit.fr; Nicholas J.

Higham, Department of Mathematics, The University of Manchester, M13 9PL, Manchester, UK, nick.higham@manchester.

ac.uk; Jean-Yves L’Excellent, Mumps Technologies, ENS Lyon, 46 Allée d’Italie, Lyon, France, jean-yves.l.excellent@mumps-

tech.com; Theo Mary, Sorbonne Université, CNRS, LIP6, Paris, France, theo.mary@lip6.fr; Bastien Vieublé, INPT, IRIT, 2

Rue Charles Camichel, Toulouse, France, bastien.vieuble@irit.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

XXXX-XXXX/2022/1-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: January 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Amestoy, Buttari, Higham, L’Excellent, Mary, and Vieublé

properties, however, come at the cost of high operational complexity and memory consumption

and a limited scalability on large scale, parallel supercomputers compared with iterative solvers.

In order to mitigate some of these limitations, we can use various approaches to trade off some

accuracy and robustness for lower complexity and memory consumption or better computational

efficiency and scalability. These include the use of low-rank approximations or relaxed numerical

pivoting. Furthermore, the recent appearance and increasingly widespread adoption of low precision

arithmetics offer additional opportunities for reducing the computational cost of sparse direct

solvers. In the cases where these approaches lead to a poor quality solution, they can be combined

with other lightweight algorithms that attempt to recover the lost accuracy. Arguably the most

well known and oldest of such algorithms is iterative refinement, whose basic idea is to improve

the accuracy of a given computed solution 𝑥 by iteratively repeating three steps:

(1) compute the residual 𝑟 = 𝑏 −𝐴𝑥 ;
(2) solve 𝐴𝑑 = 𝑟 ;

(3) update 𝑥 ← 𝑥 + 𝑑 .
While same precision can be used on all three refinement steps in order to improve numerical

stability [35, 46], multiple arithmetics can be conveniently mixed in order to achieve better accuracy,

robustness, or performance. The method, originally proposed by Wilkinson [49, 50] for fixed-point

arithmetic and later extended by Moler [41] to floating-point computations, uses higher precision

for computing the residuals, which allows the method to converge to a more accurate solution.

Langou et al. [37] and Buttari et al. [15] redefined iterative refinement as a way to accelerate a

direct solver by computing the LU factorization of 𝐴 in single precision instead of double while

keeping a double precision accuracy on the solution.

In recent years, the emergence of lower precision floating-point arithmetic in hardware, in

particular the half precision fp16 and bfloat16 arithmetics, has generated renewed interest in mixed

precision algorithms in general and in mixed precision iterative refinement in particular [33].

Recent work has explored the use of mixed precision iterative refinement methods that employ

a factorization computed in low precision [17]. Furthermore, novel mixed precision iterative

refinement variants [3, 17] that can use up to five different precisions have been proposed, offering

a wide range of options with different tradeoffs between accuracy, robustness, and performance.

Several of these variants of iterative refinement have been implemented on modern hardware,

notably supporting half precision such as GPUs, and have been shown to be highly successful at

accelerating the solution of dense linear systems [26–28, 39]. Unlike for dense systems, there have

been few previous efforts to accelerate sparse direct solvers with iterative refinement, and most

date back to the two-precision variants of the late 2000s [13, 14].

In this article we investigate the potential of mixed precision arithmetic to accelerate the solution

of large sparse linear systems by combining state-of-the-art iterative refinement variants with

state-of-the-art sparse factorizations taking into account the use of numerical approximations. First,

we tackle this subject from a theoretical point of view and extend the error analysis in [3] to the case

of approximate factorizations. Then we address the issues related to a high performance parallel

implementation of mixed precision iterative refinement for sparse linear systems and provide an

in-depth analysis of experimental results obtained on real-life problems.

The article is structured as follows. For the sake of completeness, in section 2 we present relevant

information on sparse direct solvers and approximate factorization methods, and give details on

the different iterative refinement algorithms that we work with. In section 3 we explain how the

specific features of sparse direct solvers influence the behavior of iterative refinement and the

design choices that have to be made when considering which variant to use and what the differences

are with respect to the dense case. We provide, in section 4, an error analysis for iterative refinement

, Vol. 1, No. 1, Article . Publication date: January 2022.

Combining sparse approximate factorizations with mixed precision iterative refinement 3

using a general approximate factorization model with LU factorization or GMRES as the solver

on the update step. In section 5, we illustrate the effectiveness of a subset of modern iterative

refinement variants, with and without numerical approximations, for the parallel solution of large

scale sparse linear systems by implementing them on top of the MUMPS sparse direct solver [7, 8].

This includes a performance analysis of the standard factorization, as well as the use of two types

of approximate factorizations and their combination on problems coming from a variety of real life

industrial and academic applications.

2 BACKGROUND
2.1 Sparse direct methods
Sparse direct solvers compute the solution of a sparse linear system through the factorization of

the associated matrix. In this work we deal with Gaussian elimination types of factorizations, that

is, 𝐿𝑈 , Cholesky or 𝐿𝐷𝐿𝑇 . Computing the factorization of a sparse matrix is made difficult by the

occurrence of fill-in, which is when zero coefficients of the sparse matrix are turned into nonzeros

by the factorization process. Because of fill-in, in general, it is not possible to define the complexity

of a sparse matrix factorization; however, for a 3D cubic problem it can be shown that, if the matrix

is permuted using nested dissection [24], 𝑂 (𝑛2) floating-point operations are required and the size

of the resulting factors is 𝑂 (𝑛4/3) (respectively, 𝑂 (𝑛3/2) and 𝑂 (𝑛 log (𝑛)) for a 2D, square problem),

assuming 𝑛 is the size of the matrix.

In the case of unsymmetric or symmetric indefinite problems, pivoting must be used to contain

element growth and make the solution process backward stable. However, for both dense and sparse

systems, pivoting reduces the efficiency and scalability of the factorization on parallel computers

because it requires communication and synchronizations. In the case of sparse factorizations,

pivoting has the additional drawback of introducing additional fill-in. Moreover, because this fill-in

depends on the unfolding of the factorization it cannot be predicted beforehand, so pivoting requires

the use of dynamic data structures and may lead to load unbalance in a parallel setting. For this

reason, few sparse direct solvers employ robust pivoting techniques. Although in many cases the

overhead imposed by pivoting can be modest, when targeting large scale parallel computers and/or

numerically difficult problems performance may be severely affected.

2.2 Approximate factorizations
In order to improve performance and/or reduce the complexity, sparse direct solvers often compute

approximate factorizations. In this work we mainly focus on two approximate factorization tech-

niques, described in the next two paragraphs, which can be combined. The error analysis presented

in section 4, though, is more general and potentially applies to other approximate factorization

methods.

Block low-rank (BLR). In several applications, we can exploit the data sparsity by partitioning

dense matrices (for example appearing during a sparse matrix factorization) into blocks of low

numerical rank. Sparse direct solvers exploiting this property to accelerate the computations have

been proposed and shown to be highly effective in a variety of applications [5, 7, 25, 43, 45]. We

will in particular focus on the block low-rank (BLR) format [4, 6, 7], which is based on a flat block

partitioning of the matrix into low-rank blocks. The LU factorization of a BLR matrix can be

efficiently computed by adapting the usual partitioned LU factorization to take advantage of the

low-rank property of the blocks (see, for example, [7] for a detailed description of the algorithms).

The use of the BLR method in a sparse direct solver can reduce, at best, the operational complexity

to 𝑂 (𝑛4/3) and the factors size to 𝑂 (𝑛 log𝑛) for a 3D problem (respectively, 𝑂 (𝑛 log𝑛) and 𝑂 (𝑛)
for a 2D problem) [6]. The constants hidden in the big 𝑂 complexities depend on the ranks of the

, Vol. 1, No. 1, Article . Publication date: January 2022.

4 Amestoy, Buttari, Higham, L’Excellent, Mary, and Vieublé

blocks, which are determined by a threshold, 𝜏𝑏 in this article, that controls the accuracy of the

approximations. A larger threshold leads to lower memory and operational costs, but also to lower

accuracy. This makes iterative refinement a particularly attractive method because it allows us to

recover a satisfactory accuracy in the cases where a large threshold is employed to reduce the time

and memory consumption of the factorization.

Static pivoting. Unlike partial pivoting, static pivoting, first proposed by Li and Demmel [38], does

not apply permutations on the rows or columns of the sparse matrix. Instead when a pivot is found

to be too small with respect to a prescribed threshold 𝜏𝑠 ∥𝐴∥∞, it is replaced with 𝜏𝑠 ∥𝐴∥∞. Static
pivoting improves the use of BLAS3 operations and improves parallelism with respect to partial

pivoting, whose scalability suffers from the communications needed to identify the pivots at each

elimination stage. Moreover, the use of static pivoting in a sparse direct solver does not introduce

additional fill-in, as partial pivoting does, and, consequently, is less prone to load unbalance. It must

be noted that static pivoting has a twofold effect on the accuracy and stability of the factorization.

A small value for 𝜏𝑠 makes the factorization more accurate but might lead to large element growth,

while a large value controls element growth but reduces the accuracy of the factorization. Several

previous studies [12, 22, 38] have proposed to remedy the instability introduced by static pivoting

by using fixed precision iterative refinement.

2.3 Iterative refinement
Iterative refinement is an old algorithm, but major evolutions were recently proposed and we

summarize here the most up-to-date forms that are based on the LU factorization of the matrix 𝐴.

Algorithm 1 LU based iterative refinement in three precisions (LU-IR)

Input: an 𝑛 × 𝑛 matrix 𝐴 and a right-hand side 𝑏.

Output: an approximate solution to 𝐴𝑥 = 𝑏.

1: Compute the LU factorization 𝐴 ≈ 𝐿̂𝑈 at precision 𝑢𝑓 .

2: Initialize 𝑥0 (to, e.g.,𝑈
−1𝐿̂−1𝑏).

3: while not converged do
4: Compute 𝑟𝑖 = 𝑏 −𝐴𝑥𝑖 at precision 𝑢𝑟 .
5: Solve 𝐴𝑑𝑖 = 𝑟𝑖 by 𝑑𝑖 = 𝑈 −1𝐿̂−1𝑟𝑖 at precision 𝑢𝑓 .

6: Compute 𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖 at precision 𝑢.
7: end while

Algorithm 2 GMRES based iterative refinement in five precisions (GMRES-IR)

Input: an 𝑛 × 𝑛 matrix 𝐴 and a right-hand side 𝑏.

Output: an approximate solution to 𝐴𝑥 = 𝑏.

1: Compute the LU factorization 𝐴 ≈ 𝐿̂𝑈 at precision 𝑢𝑓 .

2: Initialize 𝑥0 (to, e.g.,𝑈
−1𝐿̂−1𝑏).

3: while not converged do
4: Compute 𝑟𝑖 = 𝑏 −𝐴𝑥𝑖 at precision 𝑢𝑟 .
5: Solve 𝑈 −1𝐿̂−1𝐴𝑑𝑖 = 𝑈 −1𝐿̂−1𝑟𝑖 by GMRES at precision 𝑢𝑔 with matrix–vector products with

𝐴 = 𝑈 −1𝐿̂−1𝐴 at precision 𝑢𝑝 .

6: Compute 𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖 at precision 𝑢.
7: end while

, Vol. 1, No. 1, Article . Publication date: January 2022.

Combining sparse approximate factorizations with mixed precision iterative refinement 5

The historical and most common form of iterative refinement solves the correction equation

𝐴𝑑 = 𝑟 by substitution using the computed LU factors of the matrix in precision𝑢𝑓 . The computation

of the residual is done in precision 𝑢𝑟 and the update is done in working precision 𝑢. We refer to

this kind of iterative refinement as LU-based iterative refinement or LU-IR, which is described

in Algorithm 1. However, the use of low precision arithmetic to accelerate the LU factorization

also restricts substantially the ability of LU-IR to handle moderately ill-conditioned problems. To

overcome this limitation and extend the applicability of low precision factorizations, Carson and

Higham [16] proposed an alternative form of iterative refinement that can handle much more

ill-conditioned matrices by solving the system 𝐴𝑑 = 𝑟 by the GMRES method preconditioned with

the computed LU factors, as described in Algorithm 2. The GMRES carries out its operations in

precision 𝑢𝑔 except the preconditioned matrix–vector products which are applied in a precision

𝑢𝑝 . We refer to this method as GMRES-based iterative refinement or GMRES-IR. As an example,

if the factorization is carried out in fp16 arithmetic, then LU-IR is only guaranteed to converge if

𝜅 (𝐴) ≪ 2× 103, whereas GMRES-IR is guaranteed to converge if 𝜅 (𝐴) ≪ 3× 107 in the case where

the GMRES precisions (𝑢𝑔 and 𝑢𝑝) correspond to double precision arithmetic.

With the rising number of available precisions in hardware, Carson andHigham [17] reestablished

the use of extra precision in the computation of the residual, bridging the gap between traditional

iterative refinement targeting accuracy improvements and iterative refinement targeting a faster

factorization. This leads to the use of up to three different precisions in LU-IR (Algorithm 1). Finally

Amestoy et al. [3] have analyzed Algorithm 2 in five precisions to allow for an even more flexible

choice of precisions and to be able to best exploit the range of arithmetics available in the target

hardware.

3 SPECIFIC FEATURES OF ITERATIVE REFINEMENT WITH SPARSE DIRECT SOLVERS
The most important difference between iterative refinement for dense and sparse linear systems

lies in its practical cost. As explained in section 2.1, a key property of sparse direct solvers is that

they generate fill-in, that is, the LU factors of 𝐴 are typically much denser than 𝐴 itself. Therefore,

as the size of the matrix grows, the storage for 𝐴 becomes negligible compared with that for its LU

factors. Note that this still holds for data sparse solvers despite the reduced asymptotic complexity.

For example, as explained in section 2.2, BLR sparse direct solvers reduce the size of the LU factors

to at best 𝑂 (𝑛 log𝑛) entries, but with the constants hidden in the big 𝑂 , the size of the LU factors

typically remains several orders of magnitude larger than that of the original matrix.

A crucial consequence of the existence of fill-in is that, with a lower precision factorization (𝑢𝑓 >

𝑢), LU-IR (Algorithm 1) can achieve not only higher speed but also lower memory consumption

than a standard sparse direct solver run entirely in precision 𝑢. This is because the LU factors,

which account for most of the memory footprint, need be stored only in precision𝑢𝑓 . We emphasize

that LU-IR does not reduce the memory footprint in the case of dense linear systems, since in this

case the matrix 𝐴 and the LU factors require the same number of entries, and 𝐴 must be stored at

least in precision 𝑢. In fact, since a copy of 𝐴 must be kept in addition to its LU factors, iterative

refinement for dense linear systems actually consumes more memory than a standard in-place LU

factorization in precision 𝑢.

Similar comments apply to the cost of the matrix–vector products 𝐴𝑥𝑖 in the computation of the

residual (step 4 of Algorithms 1 and 2). Whereas for a dense matrix this cost is comparable with that

of the LU triangular solves (step 5 with LU-IR), when the matrix is sparse it becomes, most of the

time, negligible. In particular, this means that we have more flexibility to choose the precision 𝑢𝑟 ,

especially when the target precision 𝑢 is double precision: performing the matrix–vector products

in high precision (𝑢𝑟 = 𝑢2
) does not necessarily have a significant impact on the performance, even

, Vol. 1, No. 1, Article . Publication date: January 2022.

6 Amestoy, Buttari, Higham, L’Excellent, Mary, and Vieublé

for arithmetics usually not supported in hardware, such as quadruple precision (fp128). This is

illustrated and further discussed in section 5.

To summarize, LU-IR is attractive for sparse linear systems because it can lead to memory gains

and because the most costly step of the iterative phase, the triangular solves with the LU factors, is

carried out in the low precision 𝑢𝑓 .

Unfortunately these last points are not guaranteed to be met when using GMRES-IR because the

triangular solves have to be applied in precision𝑢𝑝 < 𝑢𝑓 . As a consequence the cost of the iterations

is higher and the factors need to be casted in precision 𝑢𝑝 . As an extreme case, setting 𝑢𝑝 = 𝑢2
as

originally proposed by Carson and Higham [17] would make the iterative phase significantly costly

compared with the factorization. Therefore, the five-precision analysis of Amestoy et al. [3], which

allows for setting 𝑢𝑝 > 𝑢2
, is even more relevant in the sparse case. In this article, we therefore

focus on variants where 𝑢𝑝 ≥ 𝑢.

Finally, another specific feature of sparse direct solvers is related to pivoting. While partial

pivoting is the most common approach for dense linear systems, sparse direct solvers commonly

use other approaches (for example static pivoting, see section 2.2) that better preserve the sparsity of

the LU factors and limit the communications in parallel contexts. While partial pivoting guarantees

the practical stability of the resolution, these methods do not. However, combined with iterative

refinement, a sparse direct solver can achieve a satisfactory stability under suitable conditions.

4 ERROR ANALYSIS OF ITERATIVE REFINEMENT WITH A GENERAL APPROXIMATE
FACTORIZATION

Carson and Higham [17] provided an error analysis of a general form of iterative refinement

using an arbitrary linear solver. They then specialized this analysis to LU-IR and GMRES-IR,

under the assumption that the LU factors are computed with standard Gaussian elimination with

partial pivoting. However, as explained above, modern sparse direct solvers often depart from

this assumption, because they typically do not implement partial pivoting, and because they take

advantage of data sparsity resulting in numerical approximations. This affects the error analysis of

LU-IR and GMRES-IR and the conditions under which they are guaranteed to converge. For this

reason, in this section we propose a new error analysis under a general approximate factorization

model. Our model can be applied to at least BLR, static pivoting and their combined use, and we

expect it to cover several other approximate approaches used in direct solvers. Moreover, although

in this article we are particularly motivated by sparse applications, the results of this section carry

over to the dense case.

4.1 Preliminaries and notations
We use the standard model of floating-point arithmetic [29, sect. 2.2]. For any integer 𝑘 we define

𝛾𝑘 =
𝑘𝑢

1 − 𝑘𝑢 .

A superscript on 𝛾 denotes that 𝑢 carries that superscript as a subscript; thus 𝛾
𝑓

𝑘
= 𝑘𝑢𝑓 /(1 − 𝑘𝑢𝑓),

for example. We also use the notation 𝛾𝑘 = 𝛾𝑐𝑘 to hide modest constants 𝑐 .

The error bounds obtained by our analysis depend on some constants related to the problem

dimension 𝑛. We refer to these constants as 𝑐𝑘 for 𝑘 = 1, 2, 3 . . . As these constants are known to

be pessimistic [18, 30, 31], for the sake of the readability, we do not always keep track of their

precise value. When we drop constants 𝑐𝑘 from an inequality we write the inequality using “≪”. A

convergence condition expressed as “𝜅 (𝐴) ≪ 𝜃” can be read as “𝜅 (𝐴) is sufficiently less than 𝜃”.

Finally, we also use the notation ≲ when dropping second order terms in the error bounds.

, Vol. 1, No. 1, Article . Publication date: January 2022.

Combining sparse approximate factorizations with mixed precision iterative refinement 7

We consider a sparse linear system 𝐴𝑥 = 𝑏, where 𝐴 ∈ R𝑛×𝑛 is nonsingular and 𝑏 ∈ R𝑛 . We

denote by 𝑝 the maximum number of nonzeros in any row of the matrix [𝐴 𝑏].
The forward error of an approximate solution 𝑥 is 𝜀fwd = ∥𝑥 − 𝑥 ∥/∥𝑥 ∥, while the (normwise)

backward error of 𝑥 is [29, sec. 7.1]

𝜀bwd = min{ 𝜖 : (𝐴 + 𝛥𝐴)𝑥 = 𝑏 + 𝛥𝑏, ∥𝛥𝐴∥ ≤ 𝜖 ∥𝐴∥, ∥𝛥𝑏∥ ≤ 𝜖 ∥𝑏∥ } = ∥𝑏 −𝐴𝑥 ∥
∥𝐴∥ ∥𝑥 ∥ + ∥𝑏∥ .

We also use Wilkinson’s growth factor 𝜌𝑛 defined in [29, p. 165].

Our error analysis uses the ∞-norm, denoted by ∥ · ∥∞, and we write 𝜅∞ (𝐴) = ∥𝐴∥∞∥𝐴−1∥∞
for the corresponding condition number of 𝐴. We use unsubscripted norms or condition numbers

when the constants depending on the problem dimensions have been dropped, since the norms are

equivalent.

4.2 Error analysis
In analyzing iterative refinement we aim to show that under suitable conditions the forward error

and backward error decrease until they reach a certain size called the limiting forward error or

backward error. We informally refer to “convergence”, meaning that errors decrease to a certain

limiting accuracy, while recognizing that the error does not necessarily converge in the formal

sense.

Let us first recall the known results on LU-IR and GMRES-IR from the error analysis in [3, 17],

based on the assumption of a standard LU factorization computed by Gaussian elimination with

partial pivoting. In the case of LU-IR (Algorithm 1) the convergence condition for both the forward

and backward errors is

𝜅 (𝐴)𝑢𝑓 ≪ 1. (4.1)

In the case of GMRES-IR (Algorithm 2) we have instead

(𝑢𝑔 + 𝑢𝑝𝜅 (𝐴))𝜅 (𝐴)2𝑢2

𝑓
≪ 1, (4.2)

for the forward error to converge and

(𝑢𝑔 + 𝑢𝑝𝜅 (𝐴)) (1 + 𝜅 (𝐴)𝑢𝑓)𝜅 (𝐴) ≪ 1, (4.3)

for the backward error to converge. These are both significantly less restrictive conditions than the

LU-IR one (4.1).

Provided the corresponding conditions are met, the forward and backward errors will reach their

limiting values

𝜀fwd ≤ 𝑝𝑢𝑟
∥|𝐴−1 | |𝐴| |𝑥 |∥
∥𝑥 ∥ + 𝑢 (4.4)

and

𝜀bwd ≤ 𝑝𝑢𝑟 + 𝑢, (4.5)

respectively. Note that these limiting values are solver independent (as long as iterative refinement

converges).

We now turn to the main objective of this section, which is to derive conditions analogous to

(4.1), (4.2), and (4.3) under a more general model of an approximate LU factorization. Specifically,

our model makes the following two assumptions.

• The approximate factorization performed at precision 𝑢𝑠 provides computed LU factors

satisfying

𝐴 = 𝐿̂𝑈 + 𝛥𝐴 (1) , |𝛥𝐴 (1) | ≲ 𝑐1𝜖 ∥𝐴∥∞𝑒𝑒𝑇 + 𝑐2𝑢𝑠 |𝐿̂ | |𝑈 |, (4.6)

where 𝑒 is the vector of ones and 𝜖 is a parameter quantifying the quality of the approximate

factorization.

, Vol. 1, No. 1, Article . Publication date: January 2022.

8 Amestoy, Buttari, Higham, L’Excellent, Mary, and Vieublé

• The triangular solve 𝑇𝑦 = 𝑣 , where 𝑇 is one of the approximately computed LU factors,

performed at precision 𝑢𝑠 provides a computed solution 𝑦 satisfying

(𝑇 + 𝛥𝑇)𝑦 = 𝑣 + 𝛥𝑣, |𝛥𝑇 | ≲ 𝑐3𝑢𝑠 |𝑇 |, |𝛥𝑣 | ≲ 𝑐4𝑢𝑠 |𝑣 |. (4.7)

From (4.6) and (4.7), it follows that the solution of the linear system 𝐴𝑦 = 𝑣 provides a computed

solution 𝑦 satisfying

(𝐴 + 𝛥𝐴 (2))𝑦 = 𝑣 + 𝛥𝑣,

|𝛥𝐴 (2) | ≲ 𝑐1𝜖 ∥𝐴∥∞𝑒𝑒𝑇 + (𝑐2 + 2𝑐3)𝑢𝑠 |𝐿̂ | |𝑈 |, (4.8)

|𝛥𝑣 | ≲ 𝑐4𝑢𝑠 (|𝑣 | + |𝐿̂ | |𝑈 | |𝑦 |).

4.2.1 Error analysis for LU-IR. We want to determine the convergence conditions for LU-IR (Al-

gorithm 1). We can apply [17, Cor. 3.3] and [17, Cor. 4.2] respectively for the convergence of the

forward and normwise backward errors of the system 𝐴𝑥 = 𝑏, and for both we need respectively a

bound on the forward and backward errors of the computed solution 𝑑𝑖 of the correction equation

𝐴𝑑𝑖 = 𝑟̂𝑖 . Note that for LU-IR, the factorization (4.6) and the LU solves (4.7) are performed in

precision 𝑢𝑓 .

Considering the solution of the linear system 𝐴𝑑𝑖 = 𝑟̂𝑖 , (4.8) yields

𝑑𝑖 − 𝑑𝑖 = 𝐴−1𝛥𝐴 (2)𝑑𝑖 −𝐴−1𝛥𝑟̂𝑖 .

Taking norms, we obtain

∥𝑑𝑖 − 𝑑𝑖 ∥∞
∥𝑑𝑖 ∥∞

≲ (𝑐1𝜖 + 𝑐4𝑢𝑓)∥𝐴−1∥∞∥𝐴∥∞ + (𝑐2 + 2𝑐3 + 𝑐4)𝑢𝑓 ∥𝐴−1∥∞∥|𝐿̂ | |𝑈 |∥∞.

Using [29, Lem. 9.6]

∥|𝐿̂ | |𝑈 |∥∞ ≤ (1 + 2(𝑛2 − 𝑛)𝜌𝑛) (∥𝐴∥∞ + ∥𝛥𝐴 (1) ∥∞), (4.9)

where 𝜌𝑛 is the growth factor for 𝐴 + 𝛥𝐴(1) . Dropping second order terms finally gives

∥𝑑𝑖 − 𝑑𝑖 ∥∞
∥𝑑𝑖 ∥∞

≲ 𝑐5 (𝜖 + 𝜌𝑛𝑢𝑓)𝜅∞ (𝐴). (4.10)

In the same fashion we can show that

∥𝑟̂𝑖 −𝐴𝑑𝑖 ∥∞ ≲ 𝑐6 (𝜖 + 𝜌𝑛𝑢𝑓) (∥𝐴∥∞∥𝑑𝑖 ∥∞ + ∥𝑟̂𝑖 ∥∞). (4.11)

Dropping constants and applying [17, Cor. 3.3] and [17, Cor. 4.2] using (4.10) and (4.11) guarantees

that as long as

(𝜌𝑛𝑢𝑓 + 𝜖)𝜅 (𝐴) ≪ 1 (4.12)

the forward and the normwise backward errors of the system𝐴𝑥 = 𝑏 will converge to their limiting

values (4.4) and (4.5).

As a check, if we set 𝜖 = 0 (no approximation) and drop 𝜌𝑛 (negligible element growth), we

recover (4.1).

Before commenting in section 4.2.3 on the significance of these new LU-IR convergence conditions,

we first similarly derive the GMRES-IR conditions.

, Vol. 1, No. 1, Article . Publication date: January 2022.

Combining sparse approximate factorizations with mixed precision iterative refinement 9

4.2.2 Error analysis for GMRES-IR. We now determine the convergence conditions of GMRES-IR

(Algorithm 2). We proceed similarly as for LU-IR, seeking bounds on the forward and backward

errors of the computed solution 𝑑𝑖 of the correction equation 𝐴𝑑𝑖 = 𝑟̂𝑖 . One difference lies in the

fact that the GMRES solver is applied to the preconditioned system 𝐴𝑑𝑖 = 𝑠̂𝑖 where 𝐴 = 𝑈 −1𝐿̂−1𝐴

and 𝑠𝑖 = 𝑈 −1𝐿̂−1𝑟̂𝑖 . Our analysis follows closely the analysis of [3, sec. 3.2], so we mainly focus on

the changes coming from the use of a more general approximate factorization model and refer the

reader to that work for the full details.

We first need to bound the error introduced in forming the preconditioned right-hand side 𝑠𝑖
in precision 𝑢𝑝 . Computing 𝑠𝑖 implies two triangular solves (4.7) which differ from the GMRES-IR

original analysis by having an error term on the right-hand side. Adapting [3, Eqs. (3.11)-(3.13)]

with (4.6) and (4.7) and using (4.9) provides the bound

∥𝑠𝑖 − 𝑠̂𝑖 ∥∞ ≲ 𝑐7𝑢𝑝𝜌𝑛𝜅∞ (𝐴)∥𝑠𝑖 ∥∞. (4.13)

As in [3] we compute the error of the computation of the preconditioned matrix–vector product

𝑧𝑖 = 𝐴𝑣̂𝑖 in order to use [3, Thm. 3.1]. We obtain 𝑧𝑖 through a standard matrix–vector product with

𝐴 followed by two triangular solves (4.7) with 𝐿̂ and𝑈 . The computed 𝑧̂𝑖 satisfies 𝑧̂𝑖 = 𝑧𝑖 + 𝑓𝑖 , where
𝑓𝑖 carries the error of the computation. With a very similar reasoning as for deriving [3, Eq. (3.14)],

considering our new assumptions, we obtain the bound

∥ 𝑓𝑖 ∥2 ≲ 𝑐8𝑢𝑝𝜌𝑛𝜅∞ (𝐴)∥𝐴∥𝐹 ∥𝑣̂𝑖 ∥2 . (4.14)

Apart from the constants and the presence of the growth factor 𝜌𝑛 which can be arbitrarily large

without assumptions on the pivoting, (4.14) and (4.13) are similar to [3, Eq. (3.14)] and [3, Eq. (3.13)]

and meet the assumptions of [3, Thm. 3.1] which can be used to compute a bound of ∥𝑠𝑖 −𝐴𝑑𝑖 ∥∞.
We can finally bound the normwise relative backward error of the system 𝐴𝑑𝑖 = 𝑠𝑖 [3, Eq. (3.17)]

by

∥𝑠𝑖 −𝐴𝑑𝑖 ∥∞
∥𝐴∥∞∥𝑑𝑖 ∥∞ + ∥𝑠𝑖 ∥∞

≲ 𝑐9
(
𝑢𝑔 + 𝑢𝑝𝜌𝑛𝜅∞ (𝐴)

)
(4.15)

and the relative error of the computed 𝑑𝑖 [3, Eq. (3.18)] by

∥𝑑𝑖 − 𝑑𝑖 ∥∞
∥𝑑𝑖 ∥∞

≲ 𝑐9
(
𝑢𝑔 + 𝑢𝑝𝜌𝑛𝜅∞ (𝐴)

)
𝜅∞ (𝐴). (4.16)

In addition, the backward error of the original correction equation 𝐴𝑑𝑖 = 𝑟̂𝑖 can be bounded using

𝑟̂𝑖 −𝐴𝑑𝑖 = 𝐿̂𝑈 (𝑠𝑖 −𝐴𝑑𝑖) and (4.15), yielding

∥𝑟̂𝑖 −𝐴𝑑𝑖 ∥∞ ≲ 𝑐9 (𝑢𝑔 + 𝑢𝑝𝜌𝑛𝜅∞ (𝐴)) (∥𝐴∥∞∥𝐴∥∞∥𝑑𝑖 ∥∞ + 𝜅∞ (𝐴)∥𝑟̂𝑖 ∥∞). (4.17)

It is essential to study the conditioning of the preconditioned matrix 𝐴 in order to express the

convergence conditions according to the conditioning of the original matrix 𝜅 (𝐴). Using the same

reasoning as for [16, Eq. 3.2] we obtain

∥𝐴∥∞ ≲ 1 + 𝑐10𝑢𝑓 𝜌𝑛𝜅∞ (𝐴) + 𝑐1𝜖𝜅∞ (𝐴),
𝜅∞ (𝐴) ≲ (1 + 𝑐10𝑢𝑓 𝜌𝑛𝜅∞ (𝐴) + 𝑐1𝜖𝜅∞ (𝐴))2 .

Dropping constants and applying [17, Cor. 3.3] and [17, Cor. 4.2] using (4.16) and (4.17) guarantees

that as long as

(𝑢𝑔 + 𝑢𝑝𝜌𝑛𝜅 (𝐴)) (𝑢𝑓 𝜌𝑛 + 𝜖)2𝜅 (𝐴)2 ≪ 1 (backward error), (4.18)

(𝑢𝑔 + 𝑢𝑝𝜌𝑛𝜅 (𝐴)) ((𝑢𝑓 𝜌𝑛 + 𝜖)𝜅 (𝐴) + 1)𝜅 (𝐴) ≪ 1 (forward error), (4.19)

, Vol. 1, No. 1, Article . Publication date: January 2022.

10 Amestoy, Buttari, Higham, L’Excellent, Mary, and Vieublé

the forward and the normwise backward errors of the system𝐴𝑥 = 𝑏 will converge to their limiting

values (4.4) and (4.5).

As a check, with 𝜖 = 0 and dropping 𝜌𝑛 , we recover (4.2) and (4.3).

4.2.3 Summary of the error analysis and interpretation. We summarize the analysis in the following

theorem.

Theorem 4.1. Let 𝐴𝑥 = 𝑏 be solved by LU-IR (Algorithm 1) or GMRES-IR (Algorithm 2) using an
approximate LU factorization satisfying (4.6)–(4.7). Then the forward error will reach its limiting
value (4.4) provided that

(𝑢𝑓 𝜌𝑛 + 𝜖)𝜅 (𝐴) ≪ 1 (LU-IR), (4.20)

(𝑢𝑔 + 𝑢𝑝𝜌𝑛𝜅 (𝐴)) (𝑢𝑓 𝜌𝑛 + 𝜖)2𝜅 (𝐴)2 ≪ 1 (GMRES-IR), (4.21)

and the backward error will reach its limiting value (4.5) provided that

(𝑢𝑓 𝜌𝑛 + 𝜖)𝜅 (𝐴) ≪ 1 (LU-IR), (4.22)

(𝑢𝑔 + 𝑢𝑝𝜌𝑛𝜅 (𝐴)) ((𝑢𝑓 𝜌𝑛 + 𝜖)𝜅 (𝐴) + 1)𝜅 (𝐴) ≪ 1 (GMRES-IR). (4.23)

We now comment on the significance of this result. Compared with the original convergence

conditions (4.1)–(4.3), the new conditions of Theorem 4.1 include two new terms. The first is the

growth factor 𝜌𝑛 that, without any assumption on the pivoting strategy, cannot be assumed to be

small. This shows that a large growth factor can prevent iterative refinement from converging. The

second is 𝜖 which reflects the degree of approximation used by the factorization. The terms 𝜌𝑛𝑢𝑓 +𝜖
show that we can expect the approximation to impact the convergence of iterative refinement when

𝜖 ≳ 𝜌𝑛𝑢𝑓 (ignoring the difference between the constants in front of each term). It is important to

note that the instabilities introduced by element growth and numerical approximations combine

additively, rather than multiplicatively (there is no 𝜖𝜌𝑛 term). In particular, this means that the

usual wisdom that it is not useful to use a very high precision for an approximate factorization

(𝑢𝑓 ≪ 𝜖) is no longer true in presence of large element growth. This is a key property that we

confirm experimentally in section 5.

Note that the left-hand side quantities in the convergence conditions (4.20)–(4.23) also bound the

convergence rate of the refinement: thus smaller quantities will in general lead to faster convergence.

4.2.4 Convergence conditions for BLR and static pivoting. We now apply the above analysis to the

use of BLR approximations and static pivoting.

The BLR format approximates the blocks of the matrix by replacing them by low-rank matrices.

The ranks are determined by a threshold, 𝜏𝑏 in this article, that controls the accuracy of the

approximations. Higham and Mary [32] have carried out error analysis of the BLR LU factorization

and obtained a backward error bound of order 𝜏𝑏 ∥𝐴∥ + 𝑢𝑓 ∥𝐿̂∥∥𝑈 ∥. One issue is that their analysis
derives normwise bounds, whereas our model (4.6) and (4.7) requires componentwise bounds.

However, we have checked that, at the price of slightly larger constants and a more complicated

analysis, analogous componentwise bounds can be obtained. Therefore, using the componentwise

version of [32, Thm. 4.2] or [32, Thm. 4.3] for (4.6) and of [32, Thm. 4.4] for (4.7), we conclude that

Theorem 4.1 applies with 𝜖 = 𝜏𝑏 .

We now turn to static pivoting, assuming a strategy that replaces pivots smaller in absolute value

than 𝜏𝑠 ∥𝐴∥∞ by 𝜏𝑠 ∥𝐴∥∞, where 𝜏𝑠 is a threshold that controls the accuracy of the factorization.

With such a strategy we are actually solving a perturbed system

𝑀𝑥 = 𝑏, 𝑀 = 𝐴 + 𝐸, (4.24)

, Vol. 1, No. 1, Article . Publication date: January 2022.

Combining sparse approximate factorizations with mixed precision iterative refinement 11

where 𝐸 is a diagonal matrix having nonzero entries equal to 𝜏𝑠 ∥𝐴∥∞ in the positions corresponding

to pivots that were replaced. By applying [29, Thm. 9.3] to (4.24) we meet the condition (4.6) with

𝜖 = 𝜏𝑠 , while condition (4.7) is met since the triangular solves are standard. Therefore Theorem 4.1

applies with 𝜖 = 𝜏𝑠 .

Finally, we can also derive convergence conditions for the case where BLR and static pivoting

are combined. This amounts to using BLR approximations on the perturbed system (4.24), and so

Theorem 4.1 applies with 𝜖 = 𝜏𝑏 + 𝜏𝑠 .

5 PERFORMANCE ANALYSIS
We have implemented a selected set of iterative refinement variants and we analyze in this section

their practical performance for the solution of large scale, real-life sparse problems on parallel

computers.

After describing our implementation details and our experimental setting in section 5.1 and 5.2,

we compare, in section 5.3, five variants with the case of a plain fp64 factorization plus solves.

We then carry out detailed analyses of the time and memory performance of these variants in

sections 5.3.1 and 5.3.2, respectively. In section 5.4 we investigate the use of four BLR, static pivoting,

and BLR with static pivoting variants combined with iterative refinement.

5.1 Implementation details
To perform our experiments we implemented both LU-IR and GMRES-IR for their execution on

parallel architectures. In the following we describe our implementation choices.

For the sparse LU factorization and LU triangular solves, we rely on the MUMPS solver [7, 9],

which implements the multifrontal method [23]. It must be noted that most of our analysis readily

applies to other sparse factorization approaches, such as the right- or left-looking supernodal

method used, for example, in SuperLU [20], PaStiX [34], or PARDISO [44]. The only exception is

the memory consumption analysis (section 5.3.2), where we rely on features of the multifrontal

method. The default pivoting strategy used in the MUMPS solver is threshold partial pivoting [21]

which provides great stability; alternatively, static pivoting (as described in section 2.2) can be used,

where possible, to improve performance. MUMPS also implements the BLR factorization method

described in section 2.2; for a detailed description of the BLR feature of MUMPS, we refer to [4, 7].

For the GMRES solver, we have used an in-house implementation of the unrestarted MGS-GMRES

method. This code does not use MPI parallelism, but is multithreaded; as a result, all computations

are performed on a single node, using multiple cores, except for the solves in the preconditioning

which are operated through a call to the corresponding MUMPS routine which benefits from

MPI parallelism. This also implies that the original system matrix and all the necessary vectors

(including the Krylov basis) are centralized on MPI rank zero. The GMRES method is stopped when

the scaled residual falls below a prescribed threshold 𝜏𝑔.

In the GMRES-IR case, the solves require the LU factors to be in a different precision than what

was computed by the factorization (that is, 𝑢𝑓 ≠ 𝑢𝑝). Two options are possible to handle this

requirement. The first is to make an explicit copy of the factors by casting the data into precision

𝑢𝑝 ; the second is to make the solve operations blockwise, as is commonly done to take advantage of

BLAS-3 operations, and cast the blocks on the fly using temporary storage. This second approach

has the advantage of not increasing the memory consumption (only a small buffer is needed to cast

blocks of the factors on the fly) and may even positively affect performance on memory-bound

applications such as the solve [11]. However this approach requires in-depth modifications of the

MUMPS solve step and we leave it for future work. In this article we thus rely on the first approach,

and assume the cast is performed in-place so as to minimize the storage overhead. In the same

, Vol. 1, No. 1, Article . Publication date: January 2022.

12 Amestoy, Buttari, Higham, L’Excellent, Mary, and Vieublé

fashion as the factors, we also cast the original matrix in precision 𝑢𝑟 to perform the matrix–vector

products in the residual computation.

For the symmetric matrices, we use the 𝐿𝐷𝐿𝑇 factorization. It must be noted that the matrix-

vector product is not easily parallelizable when a compact storage format is used for symmetric

matrices (such as one that stores only the upper or lower triangular part); for this reason, we choose

to store symmetric matrices with a non-compact format in order to make the residual computation

more efficiently parallelizable.

The code implementing the methods has been written in Fortran 2003, supports real and complex

arithmetics, and supports both multithreading (through OpenMP) and MPI parallelism (through

MUMPS). The results presented below were obtained with MUMPS version 5.4.0; the default settings

were used except we used the advanced multithreading described in [40]. We used the Metis [36]

tool version 5.1.0 for computing the fill-reducing permutation. BLAS and LAPACK routines are

from the Intel Math Kernel Library version 18.2 and the Intel C and Fortran compilers version 18.2

were used to compile our code as well as the necessary third party packages. The code was compiled

with the “flush to zero” option to avoid inefficient computations on subnormal numbers; this issue

is discussed in [51]. Since commonly available BLAS libraries do not support quadruple precision

arithmetic, we had to implement some operations (copy, norms) by taking care of multithreading

them.

5.2 Experimental setting
Throughout our experiments we analyze several variants of iterative refinement that use different

combinations of precisions and different kinds of factorization, with and without approximations

such as BLR or static pivoting.

In all experiments, the working precision is set to double (𝑢 = d) and GMRES is used in fixed

precision (𝑢𝑔 = 𝑢𝑝) for a reason explained below. The factorization precision (𝑢𝑓), the residual

precision (𝑢𝑟), and the precisions inside GMRES (𝑢𝑔 and 𝑢𝑝) may vary according to the experiments.

Alongside the text, we define an iterative refinement variant with the solver employed (LU or

GMRES) and the set of precisions 𝑢𝑓 , 𝑢, and 𝑢𝑟 (and 𝑢𝑔, 𝑢𝑝 if GMRES is the solver used). If the

solver employed is LU we refer to it as an LU-IR variant and if it is GMRES we call it a GMRES-IR

variant. We use the letters s, d, and q to refer to single, double, and quadruple precision arithmetic.

We compare the iterative refinement variants to a standard double precision direct solver, namely,

MUMPS, which we refer to as DMUMPS (Double precision MUMPS).

The values of the BLR threshold 𝜏𝑏 and the static pivoting threshold 𝜏𝑠 are specified alongside

the text. For simplicity we set 𝜏𝑔 , the threshold used to stop GMRES, to 10
−6

in all the experiments,

even though it could be tuned on a case by case basis for optimized performance.

We do not cover all combinations of precisions of LU-IR and GMRES-IR; rather, we focus our

study on a restricted number of combinations of 𝑢𝑓 , 𝑢𝑔, and 𝑢𝑝 , all meaningful in the sense of [3,

sect. 3.4]. This is motivated by several reasons.

• Hardware support for half precision is still limited and the MUMPS solver on which we rely

for this study does not currently support its use for the factorization; this prevents us from

experimenting with 𝑢𝑓 = h.

• Setting 𝑢𝑝 = q might lead to excessively high execution time and memory consumption. In

addition, it has been noticed in [3] that in practice this brings only a marginal improvement

in the convergence compared with the case 𝑢𝑝 = d on a wide set of real life problems.

• In our experiments we rarely observed the Krylov basis to exceed more than a few dozen

vectors except in section 5.4 for very high thresholds 𝜏𝑏 and 𝜏𝑠 . Hence setting 𝑢𝑔 > 𝑢𝑝 to

, Vol. 1, No. 1, Article . Publication date: January 2022.

Combining sparse approximate factorizations with mixed precision iterative refinement 13

reduce the memory footprint associated with the Krylov basis is not a priority for this study

and we focused on the case 𝑢𝑔 = 𝑢𝑝 .

In sparse direct solvers, the factorization is commonly preceded by a so called analysis step to

prepare the factorization. We do not report results on this step since:

• Its behavior is independent of the variants and precisions chosen.

• It can be performed once and reused for all problems that share the same structure.

• The fill-reducing permutation can be more efficiently computed when the problem geometry

is known (which is the case in numerous applications).

• The efficiency of this step is very much implementation-dependent.

All the experiments were run on the Olympe supercomputer of the CALMIP supercomputing

center of Toulouse, France. It is composed of 360 bi-processors nodes equipped with 192GB of RAM

and 2 Intel Skylake 6140 processors (2.3Ghz, 18 cores) each. All experiments were done using 18

threads per MPI process because this was found to be the most efficient combination. Depending

on the matrix, we use 2 or 4 MPI processes (that is, 1 or 2 nodes) for the problem to fit in memory;

the number of MPI processes for each matrix is specified in Table 1 and is the same for all the

experiments.

Table 1 shows the matrices coming from the SuiteSparse Matrix Collection [19] (not bold) and

industrial applications provided by industrial partners (bold) that were used for our experiments.

These matrices are chosen such that a large panel of applications and a large range of condition

numbers are covered. The data reported in the last three columns of the table are computed by

the MUMPS solver with the settings described above. As MUMPS applies a scaling for numerical

stability on the input matrix, the displayed condition number is therefore the one of the scaled

matrix.

In all tests the right-hand side vector was set to 𝑏 = 𝐴𝑥 with a generated 𝑥 vector having all its

components set to 1, which also served as the reference solution to compute the forward error.

We give a short description of the matrices provided by our industrial partners:

• ElectroPhys10M: Cardiac electrophysiology model [42].

• DrivAer6M: Incompressible CFD, pressure problem, airflow around an automobile [48].

• tminlet3M: Noise propagation in an airplane turbine [10].

• perf009ar: Elastic design of a pump subjected to a constant interior pressure. It was provided

by Électricité de France (EDF), who carries out numerical simulations for structural mechanics

applications using Code_Aster
1
.

• elasticity-3d: Linear elasticity problem applied on a beam combosed of hereogenous materi-

als [2].

• lfm_aug5M: Electromagnetic modelling, stabilized formulation for the low frequency solu-

tion of Maxwell’s equation [47].

• CarBody25M: structural mechanics, car body model.

• thmgas: coupled thermal, hydrological, and mechanical problem.

5.3 Performance of LU-IR and GMRES-IR using standard LU factorization
In this first set of experiments we analyze the time and memory savings that different iterative

refinement variants without approximate factorization are able to achieve and we show how the

specific features discussed in section 3, the choice of a multifrontal solver, and the matrix properties

can affect the performance of the method.

1
http://www.code-aster.org

, Vol. 1, No. 1, Article . Publication date: January 2022.

14 Amestoy, Buttari, Higham, L’Excellent, Mary, and Vieublé

Table 1. Set of matrices from SuiteSparse and industrial applications used in our experiments. N is the

dimension; NNZ the number of nonzeros in the matrix; Arith. the arithmetic of the matrix (R: real, C: complex);

Sym. the symmetry of the matrix (1: symmetric, 0: general); MPI the number of MPI processes used for

the experiments with this matrix;𝜅 (𝐴) the condition number of the matrix; Fact. flops the number of flops

required for the factorization; Slv. flops the number of flops required for one LU solve.

ID Name N NNZ Arith. Sym. MPI 𝜅 (𝐴) Fact.

(flops)

Slv.

(flops)

1 ElectroPhys10M 1.0E+07 1.4E+08 R 1 4 1E+01 3.9E+14 8.6E+10

2 ss 1.7E+06 3.5E+07 R 0 2 1E+04 4.2E+13 1.2E+10

3 nlpkkt80 1.1E+06 2.9E+07 R 1 2 2E+04 1.8E+13 7.4E+09

4 Serena 1.4E+06 6.4E+07 R 1 2 2E+04 2.9E+13 1.1E+10

5 Geo_1438 1.4E+06 6.3E+07 R 1 2 6E+04 1.8E+13 1.0E+10

6 Chevron4 7.1E+05 6.4E+06 C 0 2 2E+05 2.2E+10 1.6E+08

7 ML_Geer 1.5E+06 1.1E+08 R 0 2 2E+05 4.3E+12 4.1E+09

8 Transport 1.6E+06 2.4E+07 R 0 2 3E+05 1.1E+13 5.2E+09

9 Bump_2911 2.9E+06 1.3E+08 R 1 2 7E+05 2.0E+14 3.9E+10

10 DrivAer6M 6.1E+06 5.0E+07 R 1 2 9E+05 6.5E+13 2.6E+10

11 vas_stokes_1M 1.1E+06 3.5E+07 R 0 2 1E+06 1.5E+13 6.3E+09

12 Hook_1489 1.5E+06 6.1E+07 R 1 2 2E+06 8.3E+12 6.2E+09

13 Queen_4147 4.1E+06 3.3E+08 R 1 2 4E+06 2.7E+14 5.7E+10

14 dielFilterV2real 1.2E+06 4.8E+07 R 1 2 6E+06 1.1E+12 2.3E+09

15 Flan_1565 1.6E+06 1.2E+08 R 1 2 1E+07 3.9E+12 6.2E+09

16 tminlet3M 2.8E+06 1.6E+08 C 0 4 3E+07 1.1E+14 2.1E+10

17 perf009ar 5.4E+06 2.1E+08 R 1 2 4E+08 1.9E+13 1.9E+10

18 Pflow_742 7.4E+05 3.7E+07 R 1 2 3E+09 1.4E+12 2.1E+09

19 Cube_Coup_dt0 2.2E+06 1.3E+08 R 1 2 3E+09 9.9E+13 2.7E+10

20 elasticity-3d 5.2E+06 1.2E+08 R 1 2 4E+09 1.5E+14 5.2E+10

21 fem_hifreq_circuit 4.9E+05 2.0E+07 C 0 2 4E+09 4.3E+11 7.6E+08

22 lfm_aug5M 5.5E+06 3.7E+07 C 1 4 6E+11 2.2E+14 4.7E+10

23 Long_Coup_dt0 1.5E+06 8.7E+07 R 1 2 6E+12 5.2E+13 1.7E+10

24 CarBody25M 2.4E+07 7.1E+08 R 1 2 9E+12 9.6E+12 2.6E+10

25 thmgas 5.5E+06 3.7E+07 R 0 4 8E+13 1.1E+14 3.5E+10

In Table 2 we present the execution time and memory consumption of five iterative refinement

variants and DMUMPS for the set of the test matrices of Table 1. We classify the variants into two

categories; in the first, we have variants that achieve a forward error equivalent to that obtained

with the double precision direct solver DMUMPS (the ones using 𝑢𝑟 = d) and, in the second, those

whose forward error is of order 10
−16

, the double precision unit roundoff (the ones using 𝑢𝑟 = q).

Actually, for the first category, LU-IR and GMRES-IR can provide a better accuracy on the solution

than DMUMPS, which is why we stop their iterations when they reach a forward error of the

same order as the solution obtained with DMUMPS. We denote by a “—” the failure of a method to

converge. For each matrix the best execution time and memory consumption of the three variants

is highlighted in bold.

Some general conclusions can be drawn from the results in this table. The LU-IR variants with

single precision factorization generally achieve the lowest execution times, except for few cases

where iterative refinement underperforms for reasons we will discuss in section 5.3.1 or where

, Vol. 1, No. 1, Article . Publication date: January 2022.

Combining sparse approximate factorizations with mixed precision iterative refinement 15

Table 2. Execution time (in seconds) and memory consumption (in GBytes) of IR variants and DMUMPS for

a subset of the matrices listed in Table 1. The solver and the precisions 𝑢𝑓 , 𝑢𝑟 , 𝑢𝑔 , and 𝑢𝑝 are specified in the

table for each IR variant, 𝑢 is fixed to 𝑢 = d.

Solver LU GMRES LU LU GMRES LU GMRES LU LU GMRES

𝑢𝑓 s s d s s s s d s s

𝑢𝑟 d d q q q d d q q q

𝑢𝑝=𝑢𝑔

D
M
U
M
P
S

— d — — d

D
M
U
M
P
S

— d — — d

ID Time eq. DMUMPS (s) Time eq. 10
−16

(s) Mem eq. DMUMPS (GB) Mem eq. 10
−16

(GB)

1 265.2 154.0 166.5 269.4 155.9 168.2 272.0 138.0 171.3 272.0 138.0 173.5

2 52.7 31.7 33.4 53.7 33.3 36.3 64.8 33.1 46.1 64.8 33.1 46.7

3 31.0 23.1 25.9 31.5 24.8 28.0 28.2 14.2 14.9 28.2 14.2 15.4

4 44.3 31.2 32.8 45.2 32.7 35.4 40.9 20.7 21.9 40.9 20.7 23.0

5 28.2 22.3 27.0 29.0 23.7 27.5 33.4 16.9 19.9 33.4 16.9 21.0

6 2.1 1.7 3.4 2.4 2.1 3.5 1.8 1.0 1.3 1.8 1.0 1.5

7 13.1 9.6 11.0 13.7 11.1 11.7 21.9 11.3 16.4 21.9 11.3 18.2

8 17.2 10.9 12.6 17.6 12.1 12.7 28.1 14.3 21.0 28.1 14.3 21.4

9 205.4 129.3 144.5 208.5 136.3 155.8 135.7 68.4 77.8 135.7 68.4 79.9

10 91.8 67.6 77.9 94.6 75.0 79.2 81.6 41.7 52.9 81.6 41.7 53.7

11 25.3 15.2 16.0 26.0 16.5 17.7 34.1 17.3 25.2 34.1 17.3 25.8

12 15.2 10.7 12.7 15.9 12.2 14.9 19.8 10.2 12.5 19.8 10.2 13.5

13 284.2 165.2 184.7 288.6 177.9 201.4 178.0 89.8 114.5 178.0 89.8 119.7

14 4.2 4.4 5.7 4.7 8.4 7.9 7.1 3.7 4.6 7.1 3.7 5.4

15 10.4 8.4 10.1 11.2 13.6 12.7 18.1 9.3 12.4 18.1 9.3 14.3

16 294.5 136.2 157.9 299.3 180.3 180.22 241.0 121.0 169.9 241.0 121.0 175.1

17 46.1 57.5 52.0 50.6 235.1 73.1 55.6 28.9 38.1 55.6 28.9 41.4

18 5.6 74.8 16.6 6.3 164.3 24.3 6.6 3.5 4.4 6.6 3.5 4.9

19 114.5 68.7 73.8 116.4 74.0 79.2 89.9 45.3 54.0 89.9 45.3 56.1

20 156.7 — 118.6 160.3 — 179.4 153.0 — 103.6 153.0 — 105.5
21 7.5 — 22.9 8.0 — 33.5 8.4 — 6.7 8.4 — 7.3
22 536.2 254.5 269.3 546.9 271.7 307.2 312.0 157.0 187.5 312.0 157.0 188.7

23 67.2 46.6 49.0 70.0 55.1 59.5 52.9 26.7 33.1 52.9 26.7 34.5

24 62.9 — 109.8 71.6 — 170.4 77.6 — 54.3 77.6 — 65.6
25 97.6 65.4 79.8 103.1 90.2 92.2 192.0 97.7 141.7 192.0 97.7 142.3

convergence is not achieved. They also always achieve the lowest memory consumption when they

converge, which comes at no surprise because most of the memory is consumed in the factorization

step.

Since the GMRES-IR variants with single precision factorization typically require more LU

solves to achieve convergence than the LU-IR variants with single precision factorization, they

usually have a higher execution time. Their memory consumption is also higher because in our

implementation the factors are cast to double precision. These variants, however, generally provide

a more robust and reliable solution with respect to the LU-IR (𝑢𝑓 = s) ones. As a result, GMRES-

IR variants can solve problems where LU-IR do not achieve convergence. In such cases, for our

matrix set, their execution time can be higher than that of variants that employ double precision

factorization (DMUMPS or LU-IR with 𝑢𝑓 = d and 𝑢𝑟 = q); however their memory footprint usually

remains smaller.

Overall, Table 2 shows that the GMRES-IR variants provide a good compromise between perfor-

mance and robustness: unlike LU-IR (𝑢𝑓 = s), they converge for all matrices in our set, while still

achieving a significantly better performance than double precision based factorization variants.

, Vol. 1, No. 1, Article . Publication date: January 2022.

16 Amestoy, Buttari, Higham, L’Excellent, Mary, and Vieublé

102 104 106 108 1010 1012

1
0
−

1
7

1
0
−

9
1
0
−

1

fwd cond

LU-IR

fwd cond

GMRES-IR

1

2 3

4 5 6

7

8
9

10

1112
13

14
15

16 17
18

19

20

21

22
23

24

25

κ(A)

fw
d

DMUMPS
LU, uf =s

GMRES, uf =s

Fig. 1. Forward error achieved by three IR variants for the matrices used in Table 2 (denoted by their ID) as a

function of their condition number 𝜅 (𝐴). We fix 𝑢 = 𝑢𝑔 = 𝑢𝑝 = d and 𝑢𝑟 = q. The vertical dashed lines show

the forward convergence condition for LU-IR (𝑢𝑓 = s, 𝑢 = d) and for GMRES-IR (𝑢𝑓 = s, 𝑢 = 𝑢𝑔 = 𝑢𝑝 = d).

It is also worth noting that, with respect to variants with 𝑢𝑟 = d, variants with 𝑢𝑟 = q can achieve

a forward error of order 10
−16

with only a small additional overhead in both time (because the

residual is computed in quadruple rather than double precision and a few more iterations are

required) and memory consumption (because the matrix is stored in quadruple precision). As a

result, these variants can produce a more accurate solution than a standard double precision direct

solver (DMUMPS) with a smaller memory consumption and, in most cases, faster. We illustrate the

accuracy improvement in Figure 1, which reports the forward error achieved by variants DMUMPS

and LU-IR and GMRES-IR with 𝑢𝑟 = q.

In order to provide more insight into the behavior of each variant, we next carry out a detailed

analysis of time and memory consumption in sections 5.3.1 and 5.3.2, respectively.

5.3.1 Detailed execution time analysis. The potential gain in execution time of mixed precision iter-

ative refinement comes from the fact that the most time consuming operation, the LU factorization,

is carried in low precision arithmetic and high precision is only used in iterative refinement steps

which involve low complexity operations. For this gain to be effective, the cost of the refinement

iterations must not exceed the time reduction resulting from running the factorization in low

precision. This is very often the case. First of all, on current processors (such as the model used for

our experiments) computations in single precision can be up to twice as fast as those in double

precision. Additionally, operations performed in the refinement steps have a lower asymptotic

complexity compared with the factorization. Nonetheless, in practice, the overall time reduction

can vary significantly depending on a number of parameters. First of all, the ratio between the

complexity of the factorization and that of the solution phase is less favorable on 2D problems than

on 3D problems (see section 2.1). Second, the single precision factorization may be less than twice

as fast as the double precision one; this may happen, for example, on small problems where the

overhead of symbolic operations in the factorization (data indexing, handling of data structures, etc.)

is relatively high or, in a parallel setting, because the single precision factorization is less scalable

than the double precision one due to the relatively lower weight of floating-point operations with

respect to that of symbolic ones. It must also be noted that although the factorization essentially

, Vol. 1, No. 1, Article . Publication date: January 2022.

Combining sparse approximate factorizations with mixed precision iterative refinement 17

2 4 13 19 20
0

0.25

0.5

0.75

1

EDCBAEDCBAEDCBAEDCBAEDCBA

7
7

13 7

32

5
5

8 6

>
it
m
a
x

4
4

9 4
11

4
4

6 3

>
it
m
a
x

2 2 2 2 2

N
or

m
al

iz
ed

tim
e

by
D

M
U

M
P

S Facto Solves Other

6 17 24
0

0.5

1

2

EDCBAEDCBAEDCBA

9 25

36

5

>
it
m
a
x9

16

24

4

28
>

it
m
a
x

2 2 2

N
or

m
al

iz
ed

tim
e

by
D

M
U

M
P

S
A: LU, uf =s, ur=d B: GMRES, uf =s, ur=d
C: LU, uf =d, ur=q D: LU, uf =s, ur=q

E: GMRES, uf =s, ur=q

aa
aa

aa
aa 49

Fig. 2. Execution time for different LU-IR and GMRES-IR variants normalized by that of DMUMPS, for a

subset of our test matrices (denoted by their ID on the x-axis). Each bar shows the time breakdown into LU

factorization, LU solves, and other computations. We print on top of each bar the total number of calls to LU

solves. We fix 𝑢 = 𝑢𝑔 = 𝑢𝑝 = d. Variants with 𝑢𝑟 = d provide a forward error equivalent to the one obtained

with DMUMPS (A and B), while variants with 𝑢𝑟 = q provide a forward error of order 10
−16

(C, D, and E).

relies on efficient BLAS-3 operations, the operations done in the iterative refinement, in particular

the LU solves, rely on memory-bound BLAS-2 operations and are thus less efficient. Finally, in

the case of badly conditioned problems, iterative refinement may require numerous iterations to

achieve convergence.

Figure 2 shows the execution time of variants encountered in Table 2 normalized with respect

to that of DMUMPS for a selected subset of matrices from our test set; each bar also shows the

time breakdown into LU factorization, LU solves and all the rest which includes computing the

residual and, for the GMRES-based variants, casting the factors, computing the Krylov basis,

orthonormalizing it, etc. The values on top of each bar are the number of LU solve operations; note

that for GMRES-based variants, multiple LU solve operations are done in each refinement iteration.

In the first row of this figure we report problems that behave well, in the sense that all the

parameters mentioned above align in the direction that leads to a good overall time reduction. For

these problems the single precision factorization is roughly twice as fast as the double precision one,

the complexity of the solve is much lower than that of the factorization (three orders of magnitude

in all cases, as reported in Table 1), and relatively few iterations are needed to achieve convergence.

, Vol. 1, No. 1, Article . Publication date: January 2022.

18 Amestoy, Buttari, Higham, L’Excellent, Mary, and Vieublé

For all these problems, the complexity of the matrix–vector product is more than two orders of

magnitude lower than that of the solve (see columns “NNZ” and “Slv.” of Table 1). As a result, the

computation of the residual only accounts for a small portion of the total execution time—even

for variants with 𝑢𝑟 = q, for which it is carried out in slow quadruple precision arithmetic (which

is not supported by our hardware). This is a very desirable property since these variants greatly

improve the forward error with only a modest overhead. The figure clearly shows, however, that

despite their relatively low complexity, the operations in iterative refinement are relatively slow

and, therefore, the gain is considerably reduced when many solves are necessary. This issue is

exacerbated in the case of GMRES-IR variants, because the solves are carried out in double instead

of single precision as for LU-IR variants (𝑢𝑓 = s).

In the second row of Figure 2 we report some cases where mixed precision iterative refinement

does not reduce execution time. Matrix 6 is a relatively small 2D problem where the cost of the

solve and the matrix–vector product relative to that of the factorization is high; as a result, even

for a moderate number of refinement iterations, variant DMUMPS achieves the best execution time

and all other variants are much slower. Matrix 17 is one where the single precision factorization is

only 1.6 times faster than the double precision one and, additionally, it produces little fill-in (as

shown by the small ratio Slv./NNZ in Table 1) and so the relative cost of computing the residual in

quadruple precision is high. Finally, matrix 24 is badly conditioned and variants based on single

precision factorization either do not converge or require so many iterations that the execution

time is higher than that of DMUMPS. It is however worth noting that on these particular matrices

variants based on single precision factorization may be slower than DMUMPS but at a significantly

reduced memory cost (as shown in Table 2).

5.3.2 Detailed memory consumption analysis. One distinctive feature of the multifrontal method

in comparison with left or right-looking ones is in the way it uses memory. In addition to the

memory needed to store the factors which grows monotonically throughout the factorization, the

multifrontal method also needs a temporary workspace which we refer to as active memory. As
a result, the peak memory consumption achieved in the course of the factorization is generally

higher than the memory needed to store the factors. It must also be noted that parallelism does not

have any effect on the memory needed to store the factors but generally increases the size of the

active memory: this is because more temporary data is generated at the same time. For a thorough

discussion of the memory consumption in the multifrontal method we refer the reader to the paper

by Agullo et al. [1].

In the rest of this article we refer to the difference between the peak memory consumption

and the size of factors as active memory overhead. We assume that at the end of the factorization

all the active memory is freed and only the factors are left in memory. It is only at this moment

that the original problem matrix is cast to quadruple precision for computing the residual at each

refinement iteration. Therefore, the active memory overhead and the memory required to store a

quadruple precision version of the matrix do not accumulate. In our implementation, the GMRES-IR

variants with 𝑢𝑝 = 𝑢2 = d also require the factors to be cast to double precision which we do upon

completion of the factorization, when the active memory is freed. We also report the size of the

Krylov basis in the GMRES solver: although in most of our experiments this is completely negligible,

there might be cases (we will show one) where the number of GMRES iterations is sufficiently high

to make the memory consumed by the Krylov basis relevant. Finally, we do not count the memory

consumption of the solution, residual and correction vectors.

All these assumptions lead us to Figure 3 where we present the normalized memory consumption

of certain LU-IR and GMRES-IR variants relative to that of variant DMUMPS for a selected subset of

problems. We do not include variants using 𝑢𝑟 = d because they behave very similarly to variants

, Vol. 1, No. 1, Article . Publication date: January 2022.

Combining sparse approximate factorizations with mixed precision iterative refinement 19

3 4 5 9 19
0

0.25

0.5

0.75

1

CEDCEDCEDCEDCED

N
or

m
al

iz
ed

m
em

or
y

by
D

M
U

M
P

S

Krylov Factors Active Aq

11 21 24
0

0.25

0.5

0.75

1

CEDCEDCED

>
it
m
a
x

>
it
m
a
x

N
or

m
al

iz
ed

m
em

or
y

by
D

M
U

M
P

S

C: LU, uf =d
D: LU, uf =s
E: GMRES, uf =s

Fig. 3. Memory consumption for different LU-IR and GMRES-IR variants normalized by that of DMUMPS,

for a subset of our test matrices (denoted by their ID on the x-axis). The bars show the memory breakdown in

factors memory, active memory overhead, the storage for the Krylov basis (GMRES-IR variant only), and the

storage for the matrix in quadruple precision. Each variant bar is split into two subbars corresponding to

the peak consumption during the factorization and solve phases, respectively (and thus the overall required

memory by the variant is the maximum of the two peaks). We fix 𝑢 = 𝑢𝑔 = 𝑢𝑝 = d and 𝑢𝑟 = q. All the variants

(C, D, and E) provide a forward error of order 10
−16

.

with 𝑢𝑟 = q. For each problem and variant the bar is split in two parts showing the memory

consumption during and after the factorization, respectively.

In the first rowwe report problems that behave well, which corresponds to the most common case

as shown in Table 2. It shows, as expected, that LU-IR with single precision factorization consumes

half as much memory as DMUMPS because the memory needed to store the problem matrix in

quadruple precision does not exceed the active memory overhead. Thus, the highest memory

consumption corresponds to the single precision factorization peak. GMRES-based variant (𝑢𝑝 = d)

casts the factors to double precision which exceeds the peak of the single precision factorization.

Nonetheless, even if on top of this we have to add the memory needed to store the quadruple

precision matrix, the overall consumption is lower than the double precision factorization peak

by a factor which can be almost up to 50% on this set, making the memory consumption of the

GMRES-IR variant almost identical to that of the LU-IR one in a few cases (such as matrices 3 and

4). As for the LU-IR variant with 𝑢𝑓 = d, it clearly does not bring any improvement with respect to

, Vol. 1, No. 1, Article . Publication date: January 2022.

20 Amestoy, Buttari, Higham, L’Excellent, Mary, and Vieublé

DMUMPS but no loss either because the memory for storing the matrix in quadruple precision is

much lower than the active memory overhead.

In the second row of Figure 3 we report problems where the memory reduction is not as good,

for four different reasons, the last two of which are exclusive to GMRES-IR.

(1) In the case of matrix 24, the single precision factorization consumes more than half the

memory of the double precision one (about 55%). This is because the relative weight of the

symbolic data structures, which is counted as part of the active memory overhead and does

not depend on the factorization precision, is high for this matrix.

(2) In the case of matrices 21 and 24 the factorization generates little fill-in which makes the

relative weight of the quadruple precision matrix copy significant compared with the size

of the factors. Here this storage remains less than the active memory overhead and so the

overall memory consumption of LU-IR is not impacted; however, it does impact GMRES-IR,

leading to less memory savings.

(3) In the case of matrices 11 and 21 (and to a lesser extent 24) the active memory overhead

represents a smaller fraction of the total memory, further reducing the memory savings for

GMRES-IR.

(4) Finally, matrix 21 (and to a lesser extent 24) is one of the few matrices having a non-negligible

Krylov basis memory footprint, showing that an increase in the number iterations for the

GMRES to converge diminishes here the potential memory gain.

5.4 Performance of LU-IR and GMRES-IR using approximate factorizations
In this set of experiments we are interested in studying the performance of LU-IR and GMRES-IR

while using BLR, static pivoting, and BLR with static pivoting. For each experiment, we use a

selected set of matrices from Table 1 which are representative of different types of behavior that

can be encountered in practice.

These approximation techniques have two conflicting effects on the performance: if, on the one

hand, they reduce the time and memory of the factorization, on the other hand, they increase the

number of refinement iterations.

5.4.1 BLR factorization. In Table 3 we present the execution time and memory consumption of

four iterative refinement variants using low rank BLR factorization for different values of the

compression threshold 𝜏𝑏 . All variants provide a forward error on the solution equivalent to the one

of DMUMPS. If 𝜏𝑏 = “full-rank”, the factorization is run without BLR, this is a standard factorization

as in section 5.3. It should be noted that in this case the double precision factorization LU-IR variant

is equivalent to DMUMPS and we will refer to it as DMUMPS in the text. We denote by “—” the

cases where convergence is not reached and, for each matrix, the best execution time and memory

consumption is highlighted in bold. We choose to work with the default BLR settings of MUMPS,

in which case the data in the active memory is not compressed with low rank approximations. It

should be noted, however, that MUMPS also offers the possibility to compress the data in the active

memory; this would result in additional memory savings, but will badly affect the execution time

because it adds the compression overhead without reducing the operational complexity.

The experimental results of Table 3 are in good agreement with the theoretical convergence

conditions of Theorem 4.1 developed in section 4. We can clearly see how the robustness of the

presented variants is related to both the condition number 𝜅 (𝐴) of the matrix (specified for each

matrix in Table 1) and the BLR threshold 𝜏𝑏 . Convergence is not achieved for excessively large

values of the BLR threshold; the largest 𝜏𝑏 value for which convergence is achieved depends on the

matrix condition number and, in general, it is smaller for badly conditioned problems. In the case

, Vol. 1, No. 1, Article . Publication date: January 2022.

Combining sparse approximate factorizations with mixed precision iterative refinement 21

Table 3. Execution time (in seconds), memory consumption (in GBytes) and number of LU solve calls of IR

variants for a subset of the matrices listed in Table 1 and depending on the compression threshold 𝜏𝑏 . We fix

𝑢𝑟 = 𝑢 = d.

Solver LU LU GMRES GMRES LU LU GMRES GMRES LU LU GMRES GMRES

𝑢𝑓 d s s s d s s s d s s s

𝑢𝑝=𝑢𝑔 — — d s — — d s — — d s

ID 𝜏𝑏 Time (s) Memory (GB) Nb LU solves

1

full-rank 265.2 154.0 166.5 163.3 272.0 138.0 171.3 138.0 1 3 5 7

1E-10 101.0 70.5 73.7 72.7 158.0 84.5 84.6 84.6 2 3 5 7

1E-08 93.1 70.0 72.8 72.1 157.0 80.6 82.2 82.2 2 3 5 7

1E-06 91.1 64.9 68.2 68.5 149.0 77.8 79.6 79.6 3 3 6 10

1E-04 88.3 66.3 69.3 70.8 143.0 73.6 77.0 77.0 4 4 7 13

1E-02 89.8 71.4 75.0 128.1 147.0 73.6 73.6 73.6 9 9 11 125

1E-01 97.8 73.6 81.0 119.5 147.0 71.8 73.4 73.4 19 18 24 115

5E-01 130.1 92.3 87.1 130.0 139.0 72.8 74.6 74.6 63 58 36 141

16

full-rank 294.5 136.2 157.9 176.3 241.0 121.0 169.9 121.0 1 7 15 56

1E-10 232.9 158.8 174.0 181.2 188.0 118.0 169.9 118.0 2 7 16 55

1E-08 204.9 149.7 165.3 182.7 171.0 114.0 161.9 114.0 3 7 17 79

1E-06 179.0 88.3 98.8 105.5 154.0 82.4 93.8 82.8 5 7 16 54

1E-04 — — 105.6 116.3 — — 70.9 70.9 — — 69 181

17

full-rank 46.1 57.5 52.0 110.0 55.6 28.9 38.1 28.9 1 28 16 92

1E-10 32.9 40.3 36.9 83.1 38.7 20.5 25.6 20.5 2 22 15 94

1E-08 33.6 41.5 37.3 88.0 37.1 19.7 22.8 19.7 4 26 16 107

1E-06 — — 40.9 187.8 — — 20.0 18.6 — — 25 280

1E-04 — — 658.3 — — — 36.6 — — — 949 —

1E-02 — — 2224.1 — — — 98.1 — — — 3338 —

22

full-rank 536.2 254.5 269.3 353.6 312.0 157.0 187.5 157.0 1 4 5 46

1E-10 313.3 199.8 210.0 230.9 240.0 141.0 147.6 144.0 2 4 7 37

1E-08 260.2 119.2 130.1 162.3 218.0 112.0 116.0 116.0 3 4 9 60

1E-06 223.2 100.4 110.1 131.3 199.0 107.0 107.0 107.0 4 4 9 47

1E-04 212.3 95.8 105.4 124.7 200.0 101.0 103.0 103.0 22 20 19 65

1E-02 — — 482.6 1111.0 — — 96.8 96.8 — — 367 1763

24

full-rank 62.9 — 109.8 — 77.6 — 54.3 — 1 — 24 —

1E-10 63.3 — 90.8 — 65.5 — 44.0 — 3 — 23 —

1E-08 68.9 — 91.3 — 64.8 — 41.8 — 6 — 23 —

1E-06 — — 299.4 — — — 55.8 — — — 140 —

25

full-rank 97.6 65.4 79.8 79.6 192.0 97.7 141.7 97.7 1 4 7 10

1E-10 88.9 63.7 75.8 69.5 137.0 70.9 110.5 71.0 2 4 7 7

1E-08 81.3 59.5 66.1 66.7 131.0 67.5 92.1 67.6 3 4 7 7

1E-06 85.1 61.4 65.6 70.8 118.0 61.4 70.4 61.5 8 8 9 13

1E-04 — — 147.5 131.4 — — 53.7 53.7 — — 53 48

1E-02 — — 1043.9 2380.8 — — 45.5 45.5 — — 523 1259

1E-01 — — 3340.5 3155.2 — — 48.9 43.7 — — 1399 1649

5E-01 — — 2746.0 3932.7 — — 49.1 43.7 — — 1403 2094

, Vol. 1, No. 1, Article . Publication date: January 2022.

22 Amestoy, Buttari, Higham, L’Excellent, Mary, and Vieublé

of GMRES-IR variants, which are more robust, the BLR threshold can be pushed to larger values

without breaking convergence.

The use of BLR generally results in substantial reductions of the execution time. As the BLR

threshold increases, the operational complexity and, consequently, the execution time of the

factorization and solve operations decreases; conversely, the number of iterations increases up

to the point where convergence may not be achieved anymore. The optimal BLR threshold value

which delivers the lowest execution time obviously depends on the problem. It must be noted that

even though the GMRES-IR variants achieve convergence for larger 𝜏𝑏 values, this leads to an

excessive number of iterations whose cost exceeds the improvement provided by BLR; as a result,

these variants are slower than LU-IR ones (𝑢𝑓 = s but also 𝑢𝑓 = d) in all cases. Consequently, the

single precision factorization LU-IR variant generally achieves the best execution time on this set

of problems, similarly to what was observed in section 5.3, with a few exceptions. On matrix 17

the double precision factorization LU-IR variant is the best due to the fact that similarly to the full

rank case (see section 5.3.1) the BLR factorization is less than twice as fast when single precision

is used instead of double for the same 𝜏𝑏 value; additionally, a substantial number of iterations is

needed to achieve convergence. It is worth mentioning that on this matrix the GMRES-IR variant

with 𝑢𝑔 = 𝑢𝑝 = d is faster than the single precision factorization LU-IR variant (36.9s versus 40.3s)

and consumes less memory than the double precision factorization LU-IR variant (20.0GB versus

37.1GB). On matrix 24, DMUMPS is the fastest variant as in the full rank case; this is due to the fact

that, on this problem, BLR does not achieve a good reduction of the operational complexity and,

therefore, of the execution time.

As for the storage, the use of BLR leads to a different outcome with respect to the case where

a full-rank factorization is used (see section 5.3) where the single precision factorization LU-IR

variant is the best. This is due to the combination of two factors. First, when BLR is used, the relative

weight of the active memory is higher because it corresponds to data which is not compressed due

to the choice of parameters we have made; consequently, the memory consumption peak is often

reached during the factorization rather than during the iterative refinement. Second, the memory

consumption of the factorization decreases monotonically when the BLR threshold is increased.

As a result of these two effects, the GMRES-IR variants achieve the lowest memory consumption

on this set of problems, because they can preserve convergence for larger values of 𝜏𝑏 than the

LU-IR variants can. For example, on matrix 16 the GMRES-IR variant with 𝑢𝑔 = 𝑢𝑝 = d consumes

almost 15% less memory than the LU-IR one with 𝑢𝑓 = s (70.9GB versus 82.4GB), on matrix 25

the GMRES-IR variant with 𝑢𝑔 = 𝑢𝑝 = d consumes almost 30% less memory than variant LU-IR

with 𝑢𝑓 = s (43.7GB versus 61.4GB), and on matrix 24 the GMRES-IR variant with 𝑢𝑔 = 𝑢𝑝 = d

consumes more than 35% less memory than variant LU-IR with 𝑢𝑓 = d (41.8GB versus 64.8GB). It is

worth pointing out that the value of 𝜏𝑏 for which GMRES-IR achieves the lowest possible memory

consumption is not always the largest value for which convergence is still possible. This is because

for a large number of iterations the memory needed to store the Krylov basis may exceed the

savings obtained with BLR. This problem can be overcome or mitigated by choosing an appropriate

value for the 𝜏𝑔 threshold or, similarly, using a restarted GMRES method; we leave this analysis for

future work.

We finally compare the two GMRES-IR variants 𝑢𝑔 = 𝑢𝑝 = d and 𝑢𝑔 = 𝑢𝑝 = s. When 𝑢𝑔 = 𝑢𝑝 =

s, GMRES-IR avoids the cast of the LU factors from single to double precision, and thus reduces

memory consumption compared with𝑢𝑔 = 𝑢𝑝 = d. However, as explained above, the relative weight

of the factors with respect to the active memory is smaller as 𝜏𝑏 increases, and so the reduction

achieved by GMRES-IR with 𝑢𝑔 = 𝑢𝑝 = s grows smaller until the point where both variants achieve

a similar memory consumption. On our matrix set, for the values of 𝜏𝑏 where the LU-IR with 𝑢𝑓 =

, Vol. 1, No. 1, Article . Publication date: January 2022.

Combining sparse approximate factorizations with mixed precision iterative refinement 23

Table 4. Execution time (in seconds) and memory consumption (in GBytes) of IR variants for a subset of

the matrices listed in Table 1 and depending on the perturbation 𝜏𝑠 . 𝜌𝑛 = max{max |𝐿 |,max |𝑈 |}/max |𝐴| is a
lower bound of the growth factor. We fix 𝑢𝑟 = 𝑢 = d.

Solver LU LU GMRES LU LU GMRES

𝑢𝑓 d s s d s s

𝑢𝑝=𝑢𝑔 — — d — — d

ID 𝜏𝑠 Time (s) Nb LU solves 𝜌𝑛

16

partial 294.5 136.2 157.9 1 7 15 4E2

1E-10 258.1 121.0 141.6 2 9 16 2E4

1E-08 258.1 121.0 141.5 2 9 16 2E4

1E-06 258.1 121.0 144.7 2 9 18 2E4

1E-04 — — 1659.9 — — 985 4E3

22

partial 536.2 254.5 269.3 1 4 5 5E4

1E-10 — — — — — — 2E9

1E-08 508.0 — — 7 — — 2E7

1E-06 490.3 — — 3 — — 2E5

1E-04 499.2 — 773.2 5 — 124 2E3

1E-02 1501.5 780.3 484.9 231 233 59 5E3

s does not converge, GMRES-IR with 𝑢𝑔 = 𝑢𝑝 = s does not achieve significant memory reductions

compared with GMRES-IR with 𝑢𝑔 = 𝑢𝑝 = d (at best 7% on matrix 17, 18.6GB versus 20.0GB).

5.4.2 Static pivoting factorization. We now turn our attention to the use of static pivoting. We

report in Table 4 the execution time and memory consumption of three iterative refinement variants

for different values of the static pivoting threshold 𝜏𝑠 . All variants are stopped when they reach a

forward error on the solution equivalent to the one of DMUMPS. If 𝜏𝑠 = “partial”, the factorization

is run in standard MUMPS threshold partial pivoting. It should be noted that in this case the double

precision factorization LU-IR variant is equivalent to DMUMPS.

Once again the observed convergence behaviors are in good agreement with Theorem 4.1 as

explained below. In the case of static pivoting, the execution time of the factorization does not

depend on 𝜏𝑠 ; in order to minimize the overall solution time, the goal is therefore to achieve the

fastest possible convergence. This is a complex issue: a smaller perturbation 𝜏𝑠 does not always

mean a faster convergence, because the value of 𝜏𝑠 also directly impacts the growth factor 𝜌𝑛 .

Thus, there is an optimal value of 𝜏𝑠 , which is clearly problem dependent, that leads to the fastest

convergence by balancing the 𝑢𝑓 𝜌𝑛 and 𝜏𝑠 terms in the convergence condition. To confirm this,

Table 4 reports 𝜌𝑛 , a lower bound on the true growth factor, that can be used as a cheap, but rough

indicator of the behavior of 𝜌𝑛 (the true 𝜌𝑛 would be extremely expensive to compute for such

large matrices). There is a clear trend of 𝜌𝑛 decreasing as 𝜏𝑠 increases, which explains, for example,

why on matrix 22 convergence is achieved for large 𝜏𝑠 . For many matrices in our set, such as matrix

16 in Table 4, static pivoting slightly accelerates the factorization without excessively deteriorating

the convergence, and so allows for modest time gains overall. However, for some matrices such as

matrix 22, static pivoting requires many iterations and can lead to significant slowdowns compared

with partial pivoting. It is however interesting to note that, on matrix 22, if the use of partial

pivoting is impossible (for instance because the available solver does not support it), the GMRES-IR

variant provides the best overall execution time.

, Vol. 1, No. 1, Article . Publication date: January 2022.

24 Amestoy, Buttari, Higham, L’Excellent, Mary, and Vieublé

Table 5. Execution time (in seconds) and memory consumption (in GBytes) of IR variants for a subset of the

matrices listed in Table 1 and depending on the perturbation 𝜏𝑏 for a fixed 𝜏𝑠 . The chosen 𝜏𝑠 is specified for

each matrices. We fix 𝑢𝑟 = 𝑢 = d.

Solver LU LU GMRES LU LU GMRES

𝑢𝑓 d s s d s s

𝑢𝑝=𝑢𝑔 — — d — — d

ID 𝜏𝑠 𝜏𝑏 Time (s) Nb LU solves

16 partial

1E-10 232.9 158.8 174.0 2 7 16

1E-08 204.9 149.7 165.3 3 7 17

1E-06 179.0 88.3 98.8 5 7 16

1E-04 — — 105.6 — — 69

10
−8

1E-10 196.9 139.9 152.2 2 9 17

1E-08 181.9 133.7 149.8 3 9 21

1E-06 137.9 70.1 80.0 6 12 18

1E-04 — — 90.9 — — 71

22 partial

1E-10 313.3 199.8 210.0 2 4 7

1E-08 260.2 119.2 130.1 3 4 9

1E-06 223.2 100.4 110.1 4 4 9

1E-04 212.3 95.8 105.4 22 20 19

1E-02 — — 482.6 — — 367

10
−2

1E-10 592.9 353.8 218.2 231 233 59

1E-08 525.8 266.6 163.6 231 233 59

1E-06 456.1 247.3 138.1 231 233 59

1E-04 404.6 212.8 123.1 238 238 63

1E-02 — — 879.1 — — 838

10
−6

1E-10 253.5 — — 3 — —

1E-08 200.2 — — 3 — —

1E-06 157.2 — — 4 — —

1E-04 166.4 — — 33 — —

1E-02 — — — — — —

5.4.3 BLR factorization with static pivoting. Finally in Table 5 we present the execution time

and memory consumption of three iterative refinement variants (the same as in section 5.4.2)

for different values of the BLR compression threshold 𝜏𝑏 and a fixed value of the static pivoting

perturbation 𝜏𝑠 . All variants are stopped when they reach a forward error on the solution equivalent

to the one of DMUMPS. If 𝜏𝑠 = partial, the factorization is run in standard MUMPS threshold partial

pivoting and the results are then equivalent to the BLR results of section 5.4.1.

Theorem 4.1 applied to the case where BLR and static pivoting are used together states that the

convergence conditions should be affected by the largest perturbations max(𝜏𝑠 , 𝜏𝑏) and the term

𝜌𝑛𝑢𝑓 which depends on the growth factor. Our experiments confirm this: values of 𝜏𝑠 or 𝜏𝑏 for

which a given variant was not converging with BLR or static pivoting alone still do not converge

when they are combined, and, conversely, variants that were converging for BLR and static pivoting

alone still converge when these two approximations are used together. Matrix 22 with 𝜏𝑠 = 10
−6

illustrates an interesting point of the error bound max(𝜏𝑠 , 𝜏𝑏) + 𝜌𝑛𝑢𝑓 : convergence is only achieved

, Vol. 1, No. 1, Article . Publication date: January 2022.

Combining sparse approximate factorizations with mixed precision iterative refinement 25

Table 6. Best execution time and memory consumption improvements in comparison to DMUMPS amongst

all the presented IR variants (full-rank, BLR, static pivoting, and BLR with static pivoting) for the industrial

partners matrices (bold in Table 1) and matrix 13.

ID DMUMPS Best in time Best in memory

Time (s) Memory (s) Time (s) Memory (s) Time (s) Memory (s)

1 265.2 272.0 51.0 (5.2×) 73.0 (3.7×) 80.7 (3.3×) 71.2 (3.8×)
10 91.8 81.6 37.8 (2.4×) 26.9 (3.0×) 471.3 (0.2×) 22.4 (3.6×)
13 284.2 178.0 60.1 (4.7×) 50.7 (3.5×) 117.5 (2.4×) 50.3 (3.5×)
16 294.5 241.0 70.1 (4.2×) 82.4 (2.9×) 105.6 (2.8×) 70.9 (3.4×)
17 46.1 55.6 30.8 (1.5×) 38.6 (1.4×) 187.8 (0.2×) 18.6 (3.0×)
20 156.7 153.0 56.0 (2.8×) 41.9 (3.7×) 125.3 (1.3×) 39.0 (3.9×)
22 536.2 312.0 95.8 (5.6×) 101.0 (3.1×) 879.1 (0.6×) 91.6 (3.4×)
24 62.9 77.6 62.9 (1.0×) 77.6 (1.0×) 91.3 (0.7×) 41.8 (1.9×)
25 97.6 192.0 50.7 (1.9×) 67.5 (2.8×) 3155.2 (0.0×) 43.7 (4.4×)

for variant A that uses a double precision factorization (𝑢𝑓 = D), even for values of 𝜏𝑏 that are

much larger than the unit roundoff of single precision. This shows that the rule of thumb that the

factorizaton precision should be chosen as low as possible as long as 𝑢𝑓 ≤ 𝜏𝑏 is not true in presence

of large element growth, since a smaller value of 𝑢𝑓 can be beneficial to absorb a particularly large

𝜌𝑛 .

While the reductions in execution time obtained by using static pivoting instead of partial

pivoting were modest for the full-rank factorization, they are larger for the BLR factorization.

Taking matrix 16 as an example, in full-rank the single precision factorization LU-IR variant is

only 1.12 (136s/121s) times faster after the activation of the static pivoting (see Table 4), whereas in

BLR it is 1.26 (88s/70s) times faster than (see Table 3). These better reductions are explained by

the fact that in the BLR factorization, static pivoting also allows the panel reduction operation to

be processed with low-rank operations [7], which leads to a reduction of flops and thus a faster

execution time.

5.5 Performance summary
To summarize the results presented in the previous sections, we report in Table 6 the best execution

time and memory consumption amongst all the previously reviewed iterative refinement variants,

for the industrial partners matrices and matrix 13. All variants are stopped when they reach a

forward error on the solution equivalent to the one of DMUMPS.

We obtain at best on matrix 22 a reduction of 5.6× in time and on matrix 25 a reduction of 4.4×
in memory. A greater variability is observed in the speedup with respect to the memory gains.

This is because numerous parameters affect the execution time which are related to the numerical

properties of the problems as well as to the features of the computer architecture; in some extreme

cases (such as matrix 24) no speedup is observed at all. As the best memory saving is sometimes

obtained for aggressive values of the BLR threshold, the execution time can be deteriorated due to

a high number of iterations. We however note that a balance between the two use cases can be

struck to obtain large memory savings while keeping a reasonable execution time: taking matrix 25

as an example, we can achieve a 3.6× memory reduction (compared with the 2.8× reduction of the

“best in time” variant) while only leading to a 0.7× slowdown (compared with the 0.03× slowdown

of the “best in memory” variant).

, Vol. 1, No. 1, Article . Publication date: January 2022.

26 Amestoy, Buttari, Higham, L’Excellent, Mary, and Vieublé

6 CONCLUSIONS
We have evaluated the potential of mixed precision iterative refinement to improve the solution of

large sparse systems with direct methods. Compared with dense systems, sparse ones present some

challenges but also, as we have explained, some specific features that make the use of iterative

refinement especially attractive. In particular, the fact that the LU factors are much denser than the

original matrix makes the computation of the residual in quadruple precision arithmetic affordable,

and leads to potentially large memory savings compared with a full precision solver. Moreover,

iterative refinement can remedy potential instabilities in the factorization, which modern sparse

solvers often introduce by using numerical approximations or relaxed pivoting strategies. In this

study we have therefore sought to combine recently proposed iterative refinement variants using

up to five precisions with state-of-the-art approximate sparse factorizations employing low-rank

approximations and static pivoting.

From a theoretical point of view, the standard convergence bounds for LU-IR and GMRES-IR,

obtained for a stable factorization with partial pivoting, needed to be adapted. We derived, in

Theorem 4.1, new bounds that take into account numerical approximations in the factorization as

well as a possibly large element growth due to relaxed pivoting. These bounds better correspond

to the typical use of sparse solvers and we have observed them to be in good accordance with

the experimental behavior, at least in the case of BLR approximations, static pivoting, and their

combination.

We then provided an extensive experimental study of several iterative refinement variants

combined with different types of approximate factorization using the multifrontal solver MUMPS.

Our experiments demonstrate the potential of mixed precision arithmetic to reduce the execution

time and memory consumption of sparse direct solvers, and shed light on important features of

these methods. In particular, we have shown that LU-IR with a standard factorization in single

precision is able to reduce the time and memory by up to 2× compared with a double precision

solver. We have found GMRES-IR to usually be more expensive, but also more robust, which allows

it to converge on very ill-conditioned problems and still achieve gains in memory, and sometimes

even in time. Moreover, we have combined single precision arithmetic with BLR and static pivoting

and analyzed how the convergence of iterative refinement depends on their threshold parameters.

Overall, compared with the double precision solver, we have obtained reductions of up to 5.6×
in time and 4.4× in memory all while preserving double precision accuracy. Moreover, we have

shown that memory consumption can be even further reduced at the expense of time, by using

GMRES-IR with more aggressive approximations.

These results open up promising avenues of research as half precision arithmetic becomes

progressively available in hardware and supported by compilers.

ACKNOWLEDGMENTS
We thank our industrial partners and the EoCoE project for providing some of the test problems.

All the experiments were performed on the Olympe supercomputer of the CALMIP center (project

P0989).

REFERENCES
[1] Emmanuel Agullo, Patrick R. Amestoy, Alfredo Buttari, Abdou Guermouche, Jean-Yves L’Excellent, and François-Henry

Rouet. 2016. Robust Memory-Aware Mappings for Parallel Multifrontal Factorizations. SIAM J. Sci. Comput. 38, 3
(2016), C256–C279. https://doi.org/10.1137/130938505 arXiv:https://doi.org/10.1137/130938505

[2] Hussam Al Daas, Laura Grigori, Pierre Jolivet, and Pierre-Henri Tournier. 2021. A Multilevel Schwarz Preconditioner

Based on a Hierarchy of Robust Coarse Spaces. SIAM J. Sci. Comput. 43, 3 (2021), A1907–A1928. https://github.com/prj-

/aldaas2019multi

, Vol. 1, No. 1, Article . Publication date: January 2022.

https://doi.org/10.1137/130938505
https://arxiv.org/abs/https://doi.org/10.1137/130938505
https://github.com/prj-/aldaas2019multi
https://github.com/prj-/aldaas2019multi

Combining sparse approximate factorizations with mixed precision iterative refinement 27

[3] Patrick Amestoy, Alfredo Buttari, Nicholas J. Higham, Jean-Yves L’Excellent, Theo Mary, and Bastien Vieublé. 2021.

Five-Precision GMRES-based Iterative Refinement. MIMS EPrint 2021.5. Manchester Institute for Mathematical Sciences,

The University of Manchester, UK. 21 pages. http://eprints.maths.manchester.ac.uk/id/eprint/2807

[4] Patrick R. Amestoy, Cleve Ashcraft, Olivier Boiteau, Alfredo Buttari, Jean-Yves L’Excellent, and Clément Weisbecker.

2015. Improving Multifrontal Methods by Means of Block Low-Rank Representations. SIAM J. Sci. Comput. 37, 3 (2015),
A1451–A1474. https://doi.org/10.1137/120903476 arXiv:https://doi.org/10.1137/120903476

[5] Patrick R. Amestoy, Romain Brossier, Alfredo Buttari, Jean-Yves L’Excellent, Théo Mary, Ludovic Métivier, Alain

Miniussi, and Stéphane Operto. 2016. Fast 3D frequency-domain full waveform inversion with a parallel Block

Low-Rank multifrontal direct solver: application to OBC data from the North Sea. Geophysics 81, 6 (2016), R363 –
R383.

[6] Patrick R. Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, and Theo Mary. 2017. On the Complexity of the Block Low-

Rank Multifrontal Factorization. SIAM J. Sci. Comput. 39, 4 (2017), A1710–A1740. https://doi.org/10.1137/16M1077192

arXiv:https://doi.org/10.1137/16M1077192

[7] Patrick R. Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, and Theo Mary. 2019. Performance and Scalability of the

Block Low-Rank Multifrontal Factorization on Multicore Architectures. ACM Trans. Math. Software 45 (2019), 2:1–2:26.
Issue 1.

[8] Patrick R. Amestoy, Iain S. Duff, J. Koster, and Jean-Yves L’Excellent. 2001. A Fully Asynchronous Multifrontal Solver

Using Distributed Dynamic Scheduling. SIAM J. Matrix Anal. Appl. 23, 1 (2001), 15–41.
[9] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko Koster. 2001. A Fully Asynchronous Multifrontal

Solver Using Distributed Dynamic Scheduling. SIAM J. Matrix Anal. Appl. 23, 1 (2001), 15–41. https://doi.org/10.1137/

S0895479899358194 arXiv:https://doi.org/10.1137/S0895479899358194

[10] Bernard Van Antwerpen, Yves Detandt, Diego Copiello, Eveline Rosseel, and Eloi Gaudry. 2014. Performance im-
provements and new solution strategies of Actran/TM for nacelle simulations. https://doi.org/10.2514/6.2014-2315

arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2014-2315

[11] Hartwig Anzt, Jack Dongarra, Goran Flegar, Nicholas J. Higham, and Enrique S. Quintana-Ortí. 2019. Adaptive

Precision in Block-Jacobi Preconditioning for Iterative Sparse Linear System Solvers. Concurrency Computat. Pract.
Exper. 31, 6 (2019), e4460. https://doi.org/10.1002/cpe.4460

[12] Mario Arioli, Iain S. Duff, Serge Gratton, and Stephane Pralet. 2007. A Note on GMRES Preconditioned by a Perturbed

𝐿𝐷𝐿𝑇 Decomposition with Static Pivoting. SIAM J. Sci. Comput. 29, 5 (2007), 2024–2044. https://doi.org/10.1137/

060661545 arXiv:https://doi.org/10.1137/060661545

[13] Marc Baboulin, Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julie Langou, Julien Langou, Piotr Luszczek, and

Stanimire Tomov. 2009. Accelerating Scientific Computations with Mixed Precision Algorithms. Comput. Phys. Comm.
180, 12 (2009), 2526–2533. https://doi.org/10.1016/j.cpc.2008.11.005

[14] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Piotr Luszczek, and Stanimir Tomov. 2008. Using Mixed Precision for

Sparse Matrix Computations to Enhance the Performance While Achieving 64-Bit Accuracy. ACM Trans. Math. Softw.
34, 4, Article 17 (July 2008), 22 pages. https://doi.org/10.1145/1377596.1377597

[15] Alfredo Buttari, Jack Dongarra, Julie Langou, Julien Langou, Piotr Luszczek, and Jakub Kurzak. 2007. Mixed Precision

Iterative Refinement Techniques for the Solution of Dense Linear Systems. Int. J. High Perform. Comput. Appl. 21 (11
2007). https://doi.org/10.1177/1094342007084026

[16] Erin Carson and Nicholas J. Higham. 2017. A New Analysis of Iterative Refinement and its Application to Accurate

Solution of Ill-Conditioned Sparse Linear Systems. SIAM J. Sci. Comput. 39, 6 (2017), A2834–A2856. https://doi.org/10.

1137/17M1122918

[17] Erin Carson and Nicholas J. Higham. 2018. Accelerating the Solution of Linear Systems by Iterative Refinement in

Three Precisions. SIAM J. Sci. Comput. 40, 2 (2018), A817–A847. https://doi.org/10.1137/17M1140819

[18] Michael P. Connolly, Nicholas J. Higham, and Theo Mary. 2021. Stochastic Rounding and Its Probabilistic Backward

Error Analysis. SIAM J. Sci. Comput. 43, 1 (Jan. 2021), A566–A585. https://doi.org/10.1137/20m1334796

[19] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Software
38, 1 (Dec. 2011), 1:1–1:25. https://doi.org/10.1145/2049662.2049663

[20] JamesW. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and JosephW. H. Liu. 1999. A Supernodal Approach

to Sparse Partial Pivoting. SIAM J. Matrix Anal. Appl. 20, 3 (1999), 720–755. https://doi.org/10.1137/S0895479895291765

arXiv:https://doi.org/10.1137/S0895479895291765

[21] Iain S Duff, Albert Maurice Erisman, and John Ker Reid. 1986. Direct methods for sparse matrices. Oxford University

Press.

[22] Iain S. Duff and Stéphane Pralet. 2007. Towards Stable Mixed Pivoting Strategies for the Sequential and Parallel

Solution of Sparse Symmetric Indefinite Systems. SIAM J. Matrix Anal. Appl. 29, 3 (2007), 1007–1024. https://doi.org/

10.1137/050629598 arXiv:https://doi.org/10.1137/050629598

, Vol. 1, No. 1, Article . Publication date: January 2022.

http://eprints.maths.manchester.ac.uk/id/eprint/2807
https://doi.org/10.1137/120903476
https://arxiv.org/abs/https://doi.org/10.1137/120903476
https://doi.org/10.1137/16M1077192
https://arxiv.org/abs/https://doi.org/10.1137/16M1077192
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/S0895479899358194
https://arxiv.org/abs/https://doi.org/10.1137/S0895479899358194
https://doi.org/10.2514/6.2014-2315
https://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.2014-2315
https://doi.org/10.1002/cpe.4460
https://doi.org/10.1137/060661545
https://doi.org/10.1137/060661545
https://arxiv.org/abs/https://doi.org/10.1137/060661545
https://doi.org/10.1016/j.cpc.2008.11.005
https://doi.org/10.1145/1377596.1377597
https://doi.org/10.1177/1094342007084026
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/20m1334796
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1137/S0895479895291765
https://arxiv.org/abs/https://doi.org/10.1137/S0895479895291765
https://doi.org/10.1137/050629598
https://doi.org/10.1137/050629598
https://arxiv.org/abs/https://doi.org/10.1137/050629598

28 Amestoy, Buttari, Higham, L’Excellent, Mary, and Vieublé

[23] Iain S. Duff and John K. Reid. 1983. The multifrontal solution of indefinite sparse symmetric linear systems. ACM
Trans. Math. Software 9 (1983), 302–325.

[24] J. Alan George. 1973. Nested dissection of a regular finite-element mesh. SIAM J. Numer. Anal. 10, 2 (1973), 345–363.
[25] Pieter Ghysels, Xiaoye S. Li, François-Henry Rouet, Samuel Williams, and Artem Napov. 2016. An Efficient Multicore

Implementation of a Novel HSS-Structured Multifrontal Solver Using Randomized Sampling. SIAM J. Sci. Comput. 38,
5 (2016), S358–S384. https://doi.org/10.1137/15M1010117

[26] Azzam Haidar, Ahmad Abdelfattah, Mawussi Zounon, Panruo Wu, Srikara Pranesh, Stanimire Tomov, and Jack

Dongarra. 2018. The Design of Fast and Energy-Efficient Linear Solvers: On the Potential of Half-Precision Arithmetic

and Iterative Refinement Techniques. In Computational Science—ICCS 2018, Yong Shi, Haohuan Fu, Yingjie Tian,

Valeria V. Krzhizhanovskaya, Michael Harold Lees, Jack Dongarra, and Peter M. A. Sloot (Eds.). Springer, Cham,

Switzerland, 586–600. https://doi.org/10.1007/978-3-319-93698-7_45

[27] Azzam Haidar, Harun Bayraktar, Stanimire Tomov, Jack Dongarra, and Nicholas J. Higham. 2020. Mixed-Precision

Iterative Refinement Using Tensor Cores on GPUs to Accelerate Solution of Linear Systems. Proc. Roy. Soc. London A
476, 2243 (2020), 20200110. https://doi.org/10.1098/rspa.2020.0110

[28] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J. Higham. 2018. Harnessing GPU Tensor Cores for

Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis (SC18 (Dallas, TX)). IEEE, Piscataway,
NJ, USA, 47:1–47:11. https://doi.org/10.1109/SC.2018.00050

[29] Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (second ed.). Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA. xxx+680 pages. https://doi.org/10.1137/1.9780898718027

[30] Nicholas J. Higham and Theo Mary. 2019. A New Approach to Probabilistic Rounding Error Analysis. SIAM J. Sci.
Comput. 41, 5 (2019), A2815–A2835. https://doi.org/10.1137/18M1226312

[31] Nicholas J. Higham and Theo Mary. 2020. Sharper Probabilistic Backward Error Analysis for Basic Linear Algebra

Kernels with Random Data. SIAM J. Sci. Comput. 42, 5 (2020), A3427–A3446. https://doi.org/10.1137/20M1314355

[32] Nicholas J. Higham and Theo Mary. 2020. Solving Block Low-Rank Linear Systems by LU Factorization is Numerically

Stable. IMA J. Numer. Anal. (2020), 1–30. https://doi.org/10.1093/imanum/drab020

[33] Nicholas J. Higham and Theo Mary. 2021. Mixed Precision Algorithms in Numerical Linear Algebra. MIMS EPrint

2021.20. Manchester Institute for Mathematical Sciences, The University of Manchester, UK. 66 pages. http://eprints.

maths.manchester.ac.uk/2841/ To appear in Acta Numerica.

[34] Pascal Hénon, Pierre Ramet, and Jean Roman. 1999. A Mapping and Scheduling Algorithm for Parallel Sparse Fan-In

Numerical Factorization. 1059–1067. https://doi.org/10.1007/3-540-48311-X_148

[35] M. Jankowski and H. Woźniakowski. 1977. Iterative Refinement Implies Numerical Stability. BIT 17 (1977), 303–311.

https://doi.org/10.1007/BF01932150

[36] George Karypis. 2013. MeTiS – A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and
Computing Fill-Reducing Orderings of Sparse Matrices – Version 5.1.0. University of Minnesota.

[37] Julie Langou, Julien Langou, Piotr Luszczek, Jakub Kurzak, Alfredo Buttari, and Jack Dongarra. 2006. Exploiting the

Performance of 32 bit Floating Point Arithmetic in Obtaining 64 bit Accuracy (Revisiting Iterative Refinement for

Linear Systems). In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. https://doi.org/10.1109/SC.2006.30
[38] Xiaoye S. Li and JamesW. Demmel. 1998. Making Sparse Gaussian Elimination Scalable by Static Pivoting. In Proceedings

of the 1998 ACM/IEEE Conference on Supercomputing. IEEE Computer Society, Washington, DC, USA, 1–17.

[39] Florent Lopez and Theo Mary. 2021. Mixed Precision LU Factorization on GPU Tensor Cores: Reducing Data Movement

and Memory Footprint. http://eprints.maths.manchester.ac.uk/2782/ MIMS EPrint 2020.20, Manchester Institute for

Mathematical Sciences, The University of Manchester, UK, September 2020..

[40] Jean-Yves L’Excellent and Wissam M. Sid-Lakhdar. 2014. A study of shared-memory parallelism in a multifrontal

solver. Parallel Comput. 40, 3 (2014), 34–46. https://doi.org/10.1016/j.parco.2014.02.003

[41] Cleve B. Moler. 1967. Iterative Refinement in Floating Point. J. ACM 14, 2 (April 1967), 316–321. https://doi.org/10.

1145/321386.321394

[42] StevenA. Niederer, Eric Kerfoot, Alan P. Benson,Miguel O. Bernabeu, Olivier Bernus, Chris Bradley, ElizabethM. Cherry,

Richard Clayton, Flavio H. Fenton, Alan Garny, Elvio Heidenreich, Sander Land, Mary Maleckar, Pras Pathmanathan,

Gernot Plank, José F. Rodríguez, Ishani Roy, Frank B. Sachse, Gunnar Seemann, Ola Skavhaug, and Nic P. Smith.

2011. Verification of cardiac tissue electrophysiology simulators using an 𝑁 -version benchmark. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 1954 (2011), 4331–4351.

https://doi.org/10.1098/rsta.2011.0139 arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2011.0139

[43] Grégoire Pichon, Eric Darve, Mathieu Faverge, Pierre Ramet, and Jean Roman. 2018. Sparse supernodal solver using

block low-rank compression: Design, performance and analysis. Journal of Computational Science 27 (2018), 255–270.
https://doi.org/10.1016/j.jocs.2018.06.007

, Vol. 1, No. 1, Article . Publication date: January 2022.

https://doi.org/10.1137/15M1010117
https://doi.org/10.1007/978-3-319-93698-7_45
https://doi.org/10.1098/rspa.2020.0110
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/18M1226312
https://doi.org/10.1137/20M1314355
https://doi.org/10.1093/imanum/drab020
http://eprints.maths.manchester.ac.uk/2841/
http://eprints.maths.manchester.ac.uk/2841/
https://doi.org/10.1007/3-540-48311-X_148
https://doi.org/10.1007/BF01932150
https://doi.org/10.1109/SC.2006.30
http://eprints.maths.manchester.ac.uk/2782/
https://doi.org/10.1016/j.parco.2014.02.003
https://doi.org/10.1145/321386.321394
https://doi.org/10.1145/321386.321394
https://doi.org/10.1098/rsta.2011.0139
https://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2011.0139
https://doi.org/10.1016/j.jocs.2018.06.007

Combining sparse approximate factorizations with mixed precision iterative refinement 29

[44] Olaf Schenk, Klaus Gärtner, and Wolfgang Fichtner. 2000. Efficient Sparse LU Factorization with Left-Right Looking

Strategy on Shared Memory Multiprocessors. BIT 40 (03 2000), 158–176. https://doi.org/10.1023/A:1022326604210

[45] Daniil Shantsev, Piyoosh Jaysaval, Sébastien de la Kethulle de Ryhove, Patrick R. Amestoy, Alfredo Buttari, Jean-Yves

L’Excellent, and Théo Mary. 2017. Large-scale 3D EM modeling with a Block Low-Rank multifrontal direct solver.

Geophysical Journal International 209, 3 (2017), 1558–1571.
[46] Robert D. Skeel. 1980. Iterative Refinement Implies Numerical Stability for Gaussian Elimination. Math. Comp. 35, 151

(1980), 817–832. http://www.jstor.org/stable/2006197

[47] Rita Streich, Christoph Schwarzbach, Michael Becken, and Klaus Spitzer. 2010. Controlled-source Electromagnetic

Modelling Studies – Utility of Auxiliary Potentials for Low-frequency Stabilization. Conference Proceedings, 72nd EAGE
Conference cp-161-00065 (2010). https://doi.org/10.3997/2214-4609.201400657

[48] Pascal Theissen, Kirstin Heuler, Rainer Demuth, Johannes Wojciak, Thomas Indinger, and Nikolaus Adams. 2011.

Experimental Investigation of Unsteady Vehicle Aerodynamics under Time-Dependent Flow Conditions - Part 1. In

SAE 2011 World Congress & Exhibition. SAE International. https://doi.org/10.4271/2011-01-0177

[49] James H. Wilkinson. 1948. Progress Report on the Automatic Computing Engine. Report MA/17/1024. Mathematics

Division, Department of Scientific and Industrial Research, National Physical Laboratory, Teddington, UK. 127 pages.

http://www.alanturing.net/turing_archive/archive/l/l10/l10.php

[50] James H. Wilkinson. 1963. Rounding Errors in Algebraic Processes. Notes on Applied Science No. 32, Her Majesty’s

Stationery Office, London. vi+161 pages. Also published by Prentice-Hall, Englewood Cliffs, NJ, USA. Reprinted by

Dover, New York, 1994.

[51] Mawussi Zounon, Nicholas J. Higham, Craig Lucas, and Françoise Tisseur. 2022. Performance Impact of Precision

Reduction in Sparse Linear Systems Solvers. PeerJ Comput. Sci. 8 (Jan. 2022), e778(1–22). https://doi.org/10.7717/peerj-

cs.778

, Vol. 1, No. 1, Article . Publication date: January 2022.

https://doi.org/10.1023/A:1022326604210
http://www.jstor.org/stable/2006197
https://doi.org/10.3997/2214-4609.201400657
https://doi.org/10.4271/2011-01-0177
http://www.alanturing.net/turing_archive/archive/l/l10/l10.php
https://doi.org/10.7717/peerj-cs.778
https://doi.org/10.7717/peerj-cs.778

	Abstract
	1 Introduction
	2 Background
	2.1 Sparse direct methods
	2.2 Approximate factorizations
	2.3 Iterative refinement

	3 Specific features of iterative refinement with sparse direct solvers
	4 Error analysis of iterative refinement with a general approximate factorization
	4.1 Preliminaries and notations
	4.2 Error analysis

	5 Performance analysis
	5.1 Implementation details
	5.2 Experimental setting
	5.3 Performance of LU-IR and GMRES-IR using standard LU factorization
	5.4 Performance of LU-IR and GMRES-IR using approximate factorizations
	5.5 Performance summary

	6 Conclusions
	References

