
HAL Id: hal-03535831
https://hal.science/hal-03535831

Submitted on 19 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Harmonic Internal Models for Structurally Robust
Periodic Output Regulation

Daniele Astolfi, Laurent Praly, Lorenzo Marconi

To cite this version:
Daniele Astolfi, Laurent Praly, Lorenzo Marconi. Harmonic Internal Models for Structurally
Robust Periodic Output Regulation. Systems and Control Letters, 2022, 161, pp.105-154.
�10.1016/j.sysconle.2022.105154�. �hal-03535831�

https://hal.science/hal-03535831
https://hal.archives-ouvertes.fr


Harmonic Internal Models for Structurally Robust Periodic Output Regulation I

Daniele Astolfia, Laurent Pralyb, Lorenzo Marconic
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cCASY-DEI, University of Bologna, Bologna 40123, Italy

Abstract

This note deals with the problem of output regulation for nonlinear systems in presence of periodic exogenous signals. We inves-
tigate the asymptotic properties of a controller given by an internal model designed by adding harmonics on the regulation error,
and a static state feedback stabilizing the augmented system of the plant and of the internal model. The solution mimics internal
model-based structures adopted for linear systems by showing the asymptotic properties that are guaranteed in the nonlinear case
in presence of “generic” plant variations. Forwarding technique is adopted in the design of the stabilizer. We shed also light on the
linear case by presenting a new easy-to-check condition under which the regulator equations admit a robust solution.

Keywords: Robust regulation, Nonlinear Control, Forwarding, Uncertain dynamic systems

1. Introduction

The problem of tracking desired references while reject-
ing disturbances in spite of model uncertainties is generically
known as robust output regulation. In this context, the exoge-
nous variables (i.e. the references and the disturbances) are usu-
ally supposed to be generated by a known autonomous system.
In the context of linear dynamics such a problem was indepen-
dently addressed and solved around the ’70s in the set of works
[1], [2], in which the so-called internal model principle was in-
troduced. The principle states that the problem is solved as long
as the regulator “incorporates a suitably reduplicated model of
the dynamic structure of the disturbance and reference signals”.
The solution to the problems lies therefore in the design of a
regulator composed of two components: an internal model unit,
containing a copy of the model of the exosystem, and a stabi-
lizer unit selected so that to guarantee overall closed-loop sta-
bility.

Preliminary and consistent results in nonlinear output regu-
lation were early made in [3] where necessary conditions were
studied. The problem can be formalized in the context of non-
linear systems of the form

ẋ = f̃ (x,w, u),
e = h̃(x,w, u) (1)

where x ∈ Rn is the state, u ∈ Rm the control input, e ∈ Rp is
the output to be regulated, and w ∈ Rρ represents the exogenous
variables. The anchor point of the discussion is the solution of
the regulator equations, that is, a trajectory, possibly not unique,
(w(t), πx(t), ψ(t)) fulfilling

π̇x(t) = f̃ (πx(t),w(t), ϕ(t)) 0 = h̃(πx(t),w(t), ψ(t))
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for all t ≥ 0. Such regulator equations describe the desired
asymptotic behavior of the system (1) on which the regulated
output is constantly zero. The function πx represents the steady-
state for the state x and while ψ is the steady-state for the control
input u. The relevance of these equations in a general “non-
equilibrium” output regulation context was studied in [4]. The
main difficulties in the regulator design lie in the intrinsic inter-
dependency between the internal model unit (intuitively respon-
sible for the generation of the steady-state control input ψ(t))
and the stabilizing unit (intuitively having the role of making
the trajectory πx(t) attractive), whose design, unlike the linear
case, can be hardly kept disjoint and accomplished in separate
design stages. We recall that a crucial observation in such a con-
text, early made for instance in [5], is the fact that in a general
nonlinear context, the internal-model unit needs to incorporate
more dynamics than the one generated by the exosystem be-
cause of nonlinear deformation phenomenon. The design of a
nonlinear stabilizer itself may contribute to such a phenomenon.
These difficulties lead to a “chicken-egg dilemma” highlighted
in [6] that makes the design of the units intertwined and hard to
be accomplished in practice. The problem is also particularly
evident when there are measurements available (and sometimes
needed) for stabilization that are not vanishing in steady-state
([7]), as in a state feedback scenario. This justified why most of
the contributions in literature consider error feedback solutions
in which the stabilizer, having only e as available measurement,
has the origin as a natural steady-state. In these scenarios, the
design of the two units can be decoupled. Typical design ap-
proaches follow a “friend-centric” perspective, namely the in-
ternal model unit is tailored by assuming that ψ(t), often re-
ferred to as the “friend” of πx(t), falls into a specific class of
signals, and making “immersion” assumptions asking that the
signals in that class are generated as output of a dynamic sys-
tem (which is used as core of the internal model unit) fulfilling
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some observability properties (see, e.g., [8], [9], [10]). The in-
ternal model unit, placed on the input of the regulated plant,
then originates an extended system that, written in appropriate
error coordinates, lends itself to be stabilized at the origin by an
error feedback stabilizing unit. In this respect, high-gain design
techniques ([8]) and KKL observers ([9]) have been shown to
be effective for the class of regulated plants that are minimum-
phase with respect to the error. Semi-global [9, 8] or global
[11, 12, 13] results can be obtained for minimum-phase systems
with incrementally stable inverse dynamics, based on combina-
tions of high-gain arguments, backstepping techniques or pas-
sivity.

The robustness issue is typically dealt with by assuming that
variations in the actual process reflect into “fluctuations” of
the friend within the same class of signals that, in turn, are
mapped in appropriate structured parameterizations of the in-
ternal model unit ([14, 15]). This friend-centric perspective,
however, leads to “fragile” regulators that are not able to han-
dle “generic” variations in the plant. Generic unstructured vari-
ations in the plant, in fact, could reflect in substantial changes
on the friend exiting the class around which the internal model
unit is shaped and, thus, loosing the internal model property. As
conjectured in [16, 17] a finite dimensional nonlinear regulator
that is able to achieve asymptotic regulation in face of generic
plant variations doesn’t exist and practical, rather than asymp-
totic, regulation is claimed to be the right target. In [16, 17],
in particular, it is introduced a new topological definition of ro-
bustness, which is linked to desired asymptotic properties to be
enforced in face of plant variations within the fixed topology.
Such desired asymptotic proprerties can be potentially different
from the more-standard objective “regulation error asymptoti-
cally vanishing”. Along these lines, an attempt to design ro-
bust practical regulators handling “generic” uncertainties can be
found in [18]. As for the cases in which measurements not van-
ishing in steady-state are available, the literature is definitely
much less rich. A recent attempt was done in [7] in which a de-
sign procedure based on “washing out” the steady-state of the
non-vanishing measurements to enforce a zero steady-state in
the stabilizer was proposed. The washout filter, however, still
relies on immersion assumptions of the same kind recalled be-
fore and thus the asymptotic properties are easily lost in case of
“generic” plant variations.

1.1. Objectives and contributions

This article aims to explore a design methodology that is not
tailored around a specific “friend” so that to decouple the de-
sign of the internal-model from the stabilizer. We focus on the
case in which the exogenous signal w ∈ Rρ is not supposed to
be generated by an exosystem. Instead, it is supposed that it
is any bounded C1 T -periodic signal, with T being known. In
the spirit of [19, 20], the ideal, but fragile, property “regula-
tion error asymptotically vanishing” is replaced by the property
“Fourier coefficients linked to the frequencies copied in the in-
ternal model are canceled on the asymptotic error” that is how-
ever preserved without hard restrictions on topologies govern-
ing the plant variations. As shown in many applications, e.g.,

[21, 19, 22, 23] and references therein, such a desirable prop-
erty is often satisfactory from a practical point of view.

The targeted regulator follows the design principle “add har-
monics on the regulation error and stabilize the extended sys-
tem”, namely consists of a linear internal model unit obtained
by simply embedding an harmonic at the corresponding fre-
quency 2π

T of the periodic signal w and a certain number of
higher order harmonics, and of a nonlinear stabilizing unit
which is designed following the so-called forwarding technique
introduced for the stabilization of cascade systems in the 90’s,
see, e.g. [24] [25] and references therein. It is shown that in
presence of periodic exosignals w of “small” magnitude, the
closed-loop system trajectories converge to a periodic steady-
state on which the desired harmonic regulation objective is ob-
tained. The domain of attraction of such a periodic steady-state
is semi-global in the set of initial conditions of the plant. Such
a property is also robust to (small) arbitrarily variations of the
plant’s dynamics. It is worth noting that this work can be seen
as an extension of principles introduced [25] where the simpler
case of constant perturbations were addressed, combined with
our preliminary conference result [20].

The proposed approach is then specialized to the class of bi-
linear systems. It is worth recalling that despite many engi-
neering applications of practical interest can be modeled with
bilinear dynamics (see, e.g., [26, 27]), the literature on output
regulation for such a class of systems is quite scarce. To the
best of the author’s knowledge, only the case of constant dis-
turbances has been partially investigated (see, e.g. [28]) while
most of existing approaches cannot include these systems in
their theory because the relative degree is generically not de-
fined and a canonical normal form cannot be obtained (see, e.g.
[9, 8]).

Finally as a by-product of the proposed forwarding-based
framework, we also present a new easy-to-check condition for
the existence of the linear regulator equations which is equiva-
lent to the standard non-resonance condition. We recall that the
non-resonance condition is shown to be necessary for the exis-
tence of a solution to the linear robust output regulation problem
[1, 2].

The rest of the paper is organized as follows. In Section 2, we
formalize the nonlinear problem we aim at addressing and the
main result concerning the design of the regulator is presented.
New insights in linear output regulation, resulting as a byprod-
uct of the tools employed in the nonlinear setting, are given in
Section 3. The special case of bilinear systems is addressed in
Section 4 as illustration. Conclusions are drawn in Section 5

2. Main Results

Consider a multi-input multi-output nonlinear system with
nominal dynamics taking the form

ẋ = f (x,w) + g(x,w)u
e = h(x,w) (2)

where x ∈ Rn, u ∈ Rm, e ∈ Rp. We consider the particular,
yet relevant, case in which the exogenous signal w ∈ Rρ is
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any bounded C1 T -periodic signal, with T being known. The
following assumptions are made.

Assumption 1 (Stabilizability) There exists a C1 function α :
Rn → Rm, α(0) = 0, such that the system ẋ = f (x, 0) +

g(x, 0)α(x) is asymptotically and locally exponentially stable
with domain of attraction an open setA ⊆ Rn.

Assumption 2 (Non-resonance condition) There exists a posi-
tive integer ν > 0 so that following matrix(

A − λI B
C 0

)
has independent rows for each λ = ik 2π

T , k ∈ {0, 1, . . . , ν}, with
the triplet (A, B,C) defined as

A :=
∂ f
∂x

(0, 0) , B := g(0, 0) , C :=
∂h
∂x

(0, 0) . (3)

Assumption 1 asks for the existence of a stabilizer for the ori-
gin of the nominal system (2) in absence of perturbations, with
some desired domain of attractionA. In the linear context such
an assumption simply coincides with the stabilizability of the
system (see below in Section 3) and it is shown to be necessary
[1, 2]. For nonlinear systems, it can be obtained via different
techniques (e.g., high-gain feedback, backstepping, forwarding,
passivity, Lyapunov-based) for which we will now enter in the
merit.

The second Assumption 2 ask for the standard non-resonance
condition to hold, although only locally around the origin.
Again, such an assumption is shown to be necessary in the lin-
ear context [1, 2].

By following the paradigm “add harmonics on the regulation
error and stabilize the extended system”, the internal model unit
is immediately chosen as

ξ̇ = Φξ + Γe (4)

where ξ = col(ξ1, . . . , ξp), ξk ∈ R1+2ν, k = 1, . . . , p,

Φ = blkdiag(φ, . . . , φ︸   ︷︷   ︸
p times

), Γ = blkdiag(G, . . . ,G︸    ︷︷    ︸
p times

),

with

φ = blkdiag
(
0, φ1, . . . , φρ

)
, φk =

(
0 k 2π

T
−k 2π

T 0

)
, (5)

and G = col(γ,G, . . .G), with γ a positive scalar and G ∈ R2×1

chosen so that the pairs (φk,G), k = 1, . . . , ν, are controllable.
Without loss of generality we can take γ = 1 and G = (0 1)>.
The following result shows a first preliminary property of a
regulator having the structure (4) in closed-loop with a state-
feedback stabilizing unit of the form

u = K(x, ξ). (6)

Proposition 1 Suppose there exists a C1 function K : Rn ×

R(2ν+1)p → Rm such that system (2), (4), (5) in closed loop with
(6), with w being a bounded C1 T-periodic function, admits a
C1 T-periodic solution (x◦, ξ◦). Then, this periodic solution is
such that the Fourier coefficients of e◦ = h(x◦,w) associated to
the frequencies 2kπ/T, with k = 0, 1, . . . , ν, are zero, namely

0 =

∫ T

0

sin(k 2π
T t)

cos(k 2π
T t)

 e◦i (t)dt
i = 1, . . . , p,
k = 0, 1, . . . , ν.

Proof: The result comes from the fact that the internal model
unit is linear and embeds the exosystem frequencies. As a mat-
ter of fact, the periodic trajectory fulfills

ξ̇◦i = φξ◦i + Ge◦i

for i = 1, . . . , p, and, by letting ξi = col(ξi0, ξi1, . . . , ξiν) and us-
ing the block diagonal structure of φ, the different components
of ξi fulfill

ξ̇◦i0 = γ e◦i ,
ξ̇◦ik = φk ξ

◦
i0 + Ḡ e◦i , k = 1, . . . , ν .

Integration of the first component yields

ξ◦i0(T ) = ξ◦i0(0) + γ

∫ T

0
e◦i (t)dt

which, by using T -periodicity of ξ◦i0(t) and the fact that γ is not
zero, implies ∫ T

0
e◦i (s)ds = 0

namely the first Fourier coefficient of eo
i (t) is zero, i.e. it pos-

sesses a zero DC-component. As for the other components,
integration of the generic k-th component yields

ξ◦ik(T ) = exp(φkT )ξ◦ik(0) +

∫ T

0
exp(φk(T − t))Ḡe◦i (t)dt .

Observing that

exp(φkt) =

 cos(k 2π
T t) sin(k 2π

T t)

− sin(k 2π
T t) cos(k 2π

T t)

 ,
which in particular implies that exp(φkT ) = I, and using the
fact that ξ◦i0(t) is T -periodic and the definition of Ḡ, yields∫ T

0

sin(k 2π
T t)

cos(k 2π
T t)

 e◦i (t)dt = 0

from which the claim of the proposition follows. �
Motivated by the previous proposition we look now for a

control law (6) able to enforce a T -periodic trajectory that is
locally asymptotically stable. This, in turn, will guarantee that
the closed-loop trajectory will reach a steady-state in which the
first ν Fourier coefficients of the regulation error are zero.

The cascade structure of (2) with (4) suggests to use forward-
ing techniques, see, e.g., [24, 25]. We approach the problem by
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considering the nominal plant (2) with w = 0 and we show how
the plant stabilizer introduced in Assumption 1 can be com-
pleted to include also the (critically stable) internal model unit.

To this end, we first introduce the following function

M(x) := lim
t→∞

∫ t

0
exp(Φs) Γ h(ϕx(x, s), 0)ds (7)

in which ϕx(x, s) is the trajectory of ẋ = f (x, 0) + g(x, 0)α(x)
at time s with initial condition x at time s = 0. The following
result holds.

Lemma 1 Under Assumption 1, the function M : A → Rνp

defined in (7) is C2 and solution of

∂M

∂x
(x) ( f (x, 0) + g(x, 0)α(x)) = ΦM(x) + Γh(x, 0) . (8)

Moreover, if Assumption 2 holds, then the pair (B>M>,Φ) is
observable, where B is defined in (3) and

M :=
∂M

∂x
(0).

Proof: The fact that (7) is a solution to (8) can be established
by following [24, Lemma IV.2]. Then, in order to show the
observability of the pair (B>M>), linearize the PDE (7) around
the origin. We obtain

M(A + BN) = Φ M + Γ C

where N = ∂α
∂x (0). In light of Assumption 1, the matrix A+BN is

Hurwitz. Recall that the matrix Φ is neutrally stable. Therefore,
the solution of the previous Sylvester equation is unique since
the spectra of (A + BN) and Φ are disjoint.

Then, let −λ be an eigenvalue of Φ and let v be its associated
eigenvector, i.e. −λv = Φv. Since Φ is skew-symmetric also λ is
an eigenvalue of Φ. Furthermore, Φ = −Φ>. As a consequence

(−λv)> = (Φv)> = v>Φ> = −v>Φ =⇒ λv> = v>Φ .

By pre-multiplyig equation (20) by v>,

v>M(A + BN) = v>ΦM + v>ΓC

which implies

v>M(λI − A − BN) + v>ΓC = 0 .

Let assume that v is the in kernel of M>B>, namely B>M>v = 0
and therefore v>MB = 0. By collecting the previous relations,
and by using the fact that v>MBN = 0, we get(

v>M v>Γ
) (λI − A B

C 0

)
= 0.

But this contradicts the Assumption 4. As a consequence there
is no non-zero vector v satisfying(

λI − Φ

B>M>

)
v = 0

and therefore the PBH observability test

rank
[
λI − Φ

B>M>

]
= n ∀ λ ∈ σ(Φ)

where σ(Φ) denotes the spectrum of Φ, is satisfied, concluding
the proof. �

The functionM is the seed to design a state-feedback stabi-
lizer of the form (6) for the system (2), (4) with w = 0. For
this, recall that, in view of Assumption 1, a converse Lyapunov
function (see, for instance, [29]) can be used to establish the ex-
istence of a C1 function V : A → R which is positive definite
and proper on A and a positive definite function W : A → R
quadratic around the origin such that

∂V
∂x

(x) f (x, 0) ≤ −W(x) ∀ x ∈ A . (9)

Then, let θ : A× Rν → Rm

θ(x, ξ) := −b
(
∂V(x)
∂x g(x, 0)

)>
+

(
∂M(x)
∂x g(x, 0)

)>
Λ(ξ −M(x))

(10)
where b,Λ are degree-of-freedom that can be used to tune the
performances of the control law, with b > 0 and Λ > 0 being
any matrix satisfying ΛΦ+Φ>Λ = 0. The following result then
holds.

Theorem 1 Let Assumptions 1 and 2 hold. Then, the origin of
the system (2), (4) with w = 0 controlled by (6) with

K(x, ξ) = α(x) + θ(x, ξ), (11)

where α is given by Assumption 1 and θ is selected as (10), is
asymptotically and locally exponentially stable withA×Rνp as
domain of attraction.

Proof: For compactness, in the rest of this proof we will denote
f (x) := f (x, 0), g(x) := g(x, 0), h(x) := h(x, 0). Consider the
function U : Rn × Rνp → R defined as

U(x, ξ) := b V(x) + 1
2 (ξ −M(x))>Λ(ξ −M(x)) .

In view of the properties of V andM, such a function U satisfies

a
(
|x|

[
1 +

1
d(x, ∂A)

]
+ |ξ|

)
≤ U(x, ξ), ∀ x ∈ A,

for some class-K∞ function a which is quadratic near the ori-
gin, and with d(x, ∂A) denoting the distance of x from the set
boundary of the closure of the set A, see for instance [9, Ap-
pendix A]. Moreover, U is proper onA×Rνp. Now, by deriving
U, and by using (8), (9), and by recalling that ΛΦ + Φ>Λ = 0,
the following holds

U̇ ≤ b ∂V
∂x ( f (x) + g(x)(α(x) + θ(x, ξ)))

+(ξ −M(x))>Λ
[
Φξ + Γh(x) − ∂M

∂x f (x)

− ∂M
∂x g(x)(α(x) + θ(x, ξ))

]
≤ −bW(x) +

(
b ∂V
∂x − (ξ −M(x))>Λ ∂M

∂x

)
g(x)θ(x, ξ)

≤ −bW(x) − θ(x, ξ)>θ(x, ξ) .
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By La Salle arguments the solution then converges to the largest
invariant set I contained in the set

{(x, ξ) ∈ Rn × Rνp : W(x) = 0 , θ(x, ξ) = 0 } .

By using the fact that W(x) = 0 if and only if x = 0, that
∂V
∂x (0) = 0 and thatM(0) = 0, the previous set reduces to{

(x, ξ) ∈ Rn × Rνp : x = 0 , B>M>Λ ξ = 0
}
,

with B defined in (3) and M defined in Lemma 1. Hence, by us-
ing the fact that the pair (B>M>,Φ) is observable (see Lemma
1), we conclude that the set I is the origin. Therefore the origin
is asymptotically stable with a domain of attraction A × Rνp.
Locally exponentially stability immediately follows from As-
sumption 1 from linearization of the closed-loop system at the
origin. �

It is worth observing that the design of θ in (10) relies on the
exact knowledge of the function V,M, but alternative designs
of a stabilized feedback law based on the approximation of V
and/orM are possible, see, for instance [24], [25, Section III]
and references therein.

The proposed state feedback stabilizer succeeds in making
the origin of the nominal system asymptotically and locally ex-
ponentially stable when w = 0 by preserving the domain of
attraction enforced by the stabilizer of the regulated plant and
globally with respect of the initial state of the internal model
unit. The next theorem, which is the main result of the paper,
shows the property of the stabilizer when applied to the real
process (1) and when the exosystem signal w(t) is injected in
the loop. It is shown that the trajectory of the system origi-
nated by an arbitrary large compact set contained in A × Rνp

are asymptotically attracted by a T -periodic trajectory provided
that the real process is “sufficiently” close to the nominal plant
and the amplitude of the exosystem is sufficiently small. Close-
ness of the real process to the nominal model is expressed in
terms of the following functions

∆ f (w, x, ξ) := f̃ (w, x,K) −
(
f (w, x) + g(w, x)K

)
∆h(w, x, ξ) := h̃(w, x,K) − h(w, x)

∆∂x f (w, x, ξ) :=
∂ f̃
∂x

(w, x,K) −
(
∂ f
∂x

(w, x) +
∂g
∂x

(w, x)K
)

∆∂u f (w, x, ξ) :=
∂ f̃
∂u

(w, x,K) − g(w, x)K

∆∂xh(w, x, ξ) :=
∂h̃
∂x

(w, x,K) −
∂h
∂x

(w, x)

∆∂uh(w, x, ξ) :=
∂h̃
∂u

(w, x,K)

in which, for easy of notation, we set K = K(x, ξ).

Theorem 2 Let Assumptions 1 and 2 hold and let K(xξ) be
fixed as in Theorem 1. Let X × Ξ ⊂ A × Rνp be an arbitrary
compact set and let S ⊂ A × Rνp be the forward invariant set

containing the trajectories of (2), (4) with w = 0 originating
from initial conditions in X×Ξ ⊂ S . Then, for all compact sets
X′ ⊂ X and Ξ′ ⊂ Ξ there exist positive δ and w̄ such that for
any C1 T-periodic trajectory satisfying ‖w(t)‖ ≤ w̄ for all t ≥ 0
and any real process satisfying

‖∆ f (w, x, ξ) + ∆h(w, x, ξ)‖ ≤ δ∥∥∥∥∥∥
(

∆∂x f (w, x, ξ) ∆∂u f (w, x, ξ)
∆∂xh(w, x, ξ) ∆∂uh(w, x, ξ)

)∥∥∥∥∥∥ ≤ δ
for all (x, ξ) ∈ S and ‖w‖ ≤ w̄, the actual closed-loop system
(1), (4), (6) has a C1 T-periodic solution (x◦(t), ξ◦(t)) which
is asymptotically stable with a domain of attraction contain-
ing X′ × Ξ′. As a consequence, the Fourier coefficients of the
regulation error e(t) associated to the frequencies 2kπ/T, with
k = 0, 1, . . . , ν, are asymptotically vanishing.

Proof: Consider the closed-loop system (2), (4), (6) with w = 0.
Following the same line of [25, Proposition 3], direct applica-
tion of [25, Lemma 5] establishes, for some sufficiently small
δ > 0, the existence of an equilibrium x◦, ξ◦ (possibly differ-
ent from the origin) which is locally exponentially stable and
asymptotically stable with a domain of attraction containing S,
for the closed-loop system (1), (4), (6). Rewriting the system
closed-loop system (1), (4), (6) in the error coordinates x − x◦

and ξ◦ allows to apply Theorem 3 given in the Appendix to
show the existence of a periodic solution which is asymptoti-
cally stable with a domain of attraction including X′ × Ξ′. Ap-
plying Proposition 1 on such steady-state periodic solution, the
proof concludes. �

Remark 1 The control law proposed in Theorem 1 and 2 is
based on the full knowledge of the state x. When x is not
fully available, an output-feedback approach can be pursued by
means of state-observers. We refer to [25] for further details. y

We remark that the proof of Theorem 2 is based on a (conser-
vative) “total-stability” result that involves the stability margin
of the closed-loop system. Such a stability margin may in gen-
eral decrease with the number of oscillators. As a consequence,
the admissible size w̄ of the exosignals w may in principle de-
crease to zero by letting the number of oscillators ν go to in-
finity. However, as shown in the technical result [30] for the
particular case of minimum-phase systems, this is not the case.
In other words, one can chose an arbitrary number of oscilla-
tors, by preserving the same properties with respect to the size
w̄ of the exosignal w, and at the same by improving the L2 norm
of the asymptotic output error e, namely improving the approx-
imate output regulation objective in the following sense

lim
ν→∞

lim sup
t→∞

e(t) = 0.

3. New insights on linear output regulation

In this section we revise the design procedure proposed in
section 2 for linear systems of the form

ẋ = Ax + Bu + Pw
e = Cx + Qw. (12)
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In this linear context, we follow the standard paradigm of output
regulation [1, 2] by supposing that that w is generated by an
autonomous system of the form

ẇ = S w (13)

with w ∈ Rρ. In this context, the Assumptions 1 and 2 read
as follow. Recall that they are necessary and sufficient for the
existence of a robust regulator.

Assumption 3 (Stabilizability) The pair (A, B) is stabilizable.

Assumption 4 (Non-resonance condition) The following ma-
trix (

A − λI B
C 0

)
has independent rows for each λ which is an eigenvalue of S .

The internal model unit is simply designed by adding p
copies of the exosystem dynamics on the regulation error as
in (4), where (φ,G) is a controllable pair with φ such that it’s
characteristic polynomial coincides with the minimal polyno-
mial of S . The control law (6) is then selected in this context
as

u = Kxx + Kξξ (14)

making the resulting closed loop system asymptotically stable
when w = 0, namely so that the matrix

Acl :=
(

A + BKx BKξ

ΓC Φ

)
(15)

is Hurwitz. The regulator given by (4), (14) solves the asymp-
totic output regulation problem. As a matter of fact, by letting
the closed-loop dynamics

ẇ = S w
ẋe = Aclxe + Pclw

in which xe := col(x, ξ) and Pcl is an appropriately defined ma-
trix, the fact that Acl is Hurwitz guarantees that xe(t) asymptoti-
cally reaches a steady-state of the form Πew(t) with Πe solution
of the Sylvester equation

ΠeS − AclΠe = Pcl . (16)

Furthermore, by partitioning Πe as Πe = col(Πx, Πξ) coherently
with the definition of xe, the fact that the characteristic polyno-
mial of φ coincides with the minimal polynomial of S can be
used to prove that

CΠx + Q = 0 , (17)

namely the regulation error converges to zero asymptotically.
Note that this property is robust to small parametric uncertain-
ties affecting the matrices in (12), see [1, 2]. In addition, it
is immediately realized that the matrices (Πx,Πξ), whose exis-
tence is guaranteed by Acl Hurwitz, fulfill the relation

ΠxS = AΠx + BΨ + P (18)

with Ψ := KxΠx + KξΠξ. The set of equations (17)-(18), inter-
preted as equations in the unknowns Πx and Ψ, are recognized
to be the “regulator equations” linked to (12) and (13), express-
ing the desired steady-state for the state x(t), which is Πxw(t),
and for the input u(t), which is Ψw(t). Stabilizability of the ex-
tended system (12), (4) with w = 0, namely Assumptions 3 and
4, are thus sufficient conditions to solve the regulator equations
(17)-(18) for any instance of the pair (P,Q). Related to this, it’s
a well known fact (see, e.g., [31, Lemma 1.4,2]) that (17)-(18)
admit a solution (Πx,Ψ) for all possible set of matrices (P,Q) if
and only if the non resonance condition expressed by Assump-
tion 4 holds.

Now, the tools presented in Section 2 can be clearly special-
ized to the case of linear systems (12) by obtaining a possible
design strategy for the linear stabilizer (14), namely of the ma-
trices Kx and Kξ. The strategy can be summarized in a few steps
as follows. By using Assumption 3, let N be a matrix such that
A + BN is Hurwitz and let P = P> > 0 be the solution of the
Lyapunov equation

P(A + BN) + (A + BN)>P = −2aI (19)

with a > 0. Then, let M be the solution of the following
Sylvester equation (see (8))

M(A + BN) = ΦM + ΓC . (20)

Since the spectra of (A+BN) and Φ are disjoints, such a solution
is well defined and unique. Then, with an eye to (10), (11),
select the matrices Kx and Kξ of (14) as

Kx = N − bB>P − B>M>ΛM, Kξ = B>M>Λ, (21)

where b > 0 and Λ > 0 are degree-of-freedom with Λ satisfying
ΛΦ + Φ>Λ = 0. If Assumption 4 holds, then the closed-loop
system matrix (15) is Hurwitz (see Theorem 1 specialized to
the linear case), and the output regulation problem is solved.

The next proposition establishes a deep connection between
the non-resonance condition of Assumption 4, the existence of
a solution to the regulator equations (18), (17), and the observ-
ability property of the pair (BT MT ,Φ), showing that these con-
ditions are indeed equivalent.

Proposition 2 Consider system (12) with exosystem (13). Sup-
pose S is neutrally stable, and Assumptions 3 hold. Then, the
following sentences are equivalent.

(i) There exist matrices Πx,Ψ solution of the regulator equa-
tions (17), (18) for any matrices P,Q.

(ii) Assumption 4 holds.

(iii) Let Φ,Γ be selected as in (4), let N be any matrix such that
σ(A + BN) ∩ σ(Φ) = ∅ and let M be solution of (20). The
pair (B>M>,Φ) is observable.

Proof: The implications (i) ⇔ (ii) are given in [31, Lemma
1.4.2]. Therefore, we will prove only the implications (i) ⇔
(iii).
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First, we prove that (iii)⇒ (i). To this end, select u as in (14)
with Kx = N − B>M>M>M and Kξ = B>M>. Applying the
linear change of coordinates ξ 7→ η := ξ − Mx the closed-loop
system (15) reads

ẇ = S w
˙̃xe = Ãcl x̃e + P̃clw

with x̃e = col(x, η) and

Ãcl :=
(
A + BN BB>M

0 Φ − MBB>M

)
and some appropriate defined matrix P̃. Since the matrix Φ

is neutrally stable and the pair (B>M>,Φ) is observable, the
matrix Φ − MBB>M> is Hurwitz (this can be shown by us-
ing LaSalle like arguments). Hence, due to the block-triangular
structure, the fact that the spectrum of A+BN and S are disjoint,
and Φ − MBB>M> is Hurwitz, we conclude that the spectrum
of Ãcl and S are disjoint. Since the matrix Ãcl and Acl are sim-
ilar, for any (P,Q) the Sylvester equation (16) admits a unique
solution. Controllability of the pair (Φ,Γ) implies (17) and with
Ψ = KxΠx + KξΠξ we obtain (18) concluding the first part of
the proof.

We prove now that (i)⇒ (iii) by contradiction. In particular,
assume a solution to the regulator equations (17), (18) exists.
Let N be any matrix such that the spectra of Φ and (A+ BN) are
disjoints. This is always possible by Assumption 3 and the fact
that Φ is neutrally stable. Let the pair (Φ,Γ) controllable and
M solution to (20). Now, by adding and subtracting the term
BNΠx, and by pre-multiplying by M equation (18) we get

MΠxS = M(A + BN)Πx + MB(Ψ − NΠx) + MP
0 = CΠx + Q .

By using (20), we further obtain

MΠxS = (ΦM + ΓC)Πx + MB(Ψ − NΠx) + MP
0 = CΠx + Q ,

and therefore, by multiplying the second equation by Γ, it yields

MΠxS = ΦMΠx + (MP − ΓQ + MB(Ψ − NΠx)) . (22)

Now let −λ be an eigenvector of Φ and suppose the pair
(B>M>,Φ) is not observable, namely there exists v satisfying

Φv = −λv , B>M>v = 0 .

By using skew symmetry of Φ, it follows that v also satisfies
v>Φ = λv>. Since Φ and S have the same spectrum, there
exists a w , 0 satisfying S w = λw. As a consequence, by pre-
multiplying (22) by v> and by post-multiplying by w we get

v>MΠxS w = v>ΦMΠxw
+v>(MP − ΓQ + MB(Ψ − NΠx))w

and

v>(MΠx)λw = λv>(MΠx)w
+v>(MP − ΓQ + MB(Ψ − NΠx))w .

and v>(MP − ΓQ)w = 0. The latter can be expressed as∑
j,k,`

v j M j,k Pk,` w` −
∑
j,k,`

v j Γ j,k Qk,` w` = 0 .

By differentiating the previous equality with respect to P`,` we
obtain

∂

∂P`,`

∑
j,k,`

v j M j,k Pk,` w` −
∑
j,k,`

v j Γ j,k Qk,` w`

 =∑
j,k,`

v jM j,kw` = 0,

for all k, `. Similarly, by differentiating with respect to Qk,`, we
obtain

∂

∂Qk,`

∑
j,k,`

v j M j,k Pk,` w` −
∑
j,k,`

v j Γ j,k Qk,` w`

 =∑
j,k,`

v j Γ j,k w` = 0,

for all k, `. Now let ` be such that w` , 0. From the previous
expressions we get v> M = 0 and v> Γ = 0. By using the fact
that v>Φ = λv> we have

v>
[
Γ ΦΓ · · · Φ(r×p)−1Γ

]
= v>

[
Γ λΓ · · · λ(r×p)−1Γ

]
= 0,

which contradicts the fact that the pair (Φ,Γ) is controllable.
Hence, the pair (B>M>,Φ) must be observable and this con-
cludes the proof. �

The novelty and the interest of Proposition 2 is that, under
the stabilizability Assumption 3, we can ensure the existence
of a regulator solving the output regulation problem for linear
systems, with a new set of necessary and sufficient conditions,
expressed by the item (iii), which can be checked by means
of simple and standard computational tools, namely the resolu-
tion of a Sylvester equation. Although this result may not be
always useful in the finite-dimensional linear context1, such a
result may be of large interest for other classes of systems for
which the computations of the invariant zeros is not an easy
task. For instance, in the context of infinite dimensional sys-
tems, the computation of the range of an operator (i.e. the
equivalent condition in terms of the rank of a matrix) or the
characterization of its spectral properties are not always easy
(see, e.g., [33, Assumption 2.2]). In this case, checking the ob-
servability property may result to be an easier task. This is what
happens, for instance, in the context of the use of an integral ac-
tion via forwarding feedback for open-loop exponentially stable
PDEs, see, e.g. [34, Section III].

4. Bilinear Systems

As a special case of the system (2), consider the class of
single-input single-output bilinear systems that can be written

1As a matter of fact, algorithms for the computation of invariant zeros of a
linear system are well known, see, e.g. [32].
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in the form

ẋ = Ax + (Dx + B)u + Pw
e = Cx + Qw (23)

where x ∈ Rn, u, e ∈ R, and A, B,C,D,R,Q are matrices of
appropriate dimensions. Note that, generically, bilinear systems
have not a well-defined relative degree since the term Dx + B
may posses some singularities and vary its rank. Hence, we
cannot put the system in the canonical normal form employed
in standard output regulation problems such as [8, 9]. In this
section, we follow the recipe given in Section 2.

For the sake of simplicity, we suppose that the matrix A is
Hurwitz. With respect to Assumption 1, we have α(x) = 0. It
is worth recalling that numerous control engineering applica-
tions satisfy such an “open-loop stability” assumption, see for
instance the case of heat-exchangers [26] or power converters
[27]. We define P as the solution to the Lyapunov matrix in-
equality

PA + PA> ≤ −2aI ,

so that the inequality (9) is satisfied with V = x>Px and
W = −2a|x|2. Then, we suppose that the triplet (A, B,C) sat-
isfies Assumption 2. We design a regulator of the form (4),
(5). Therefore, the functionM in Lemma 1 is a linear function
obtained as solution to the Sylvester equation

MA = ΦM + ΓC

and the state-feedback law (10) reads

θ(x, ξ) = −2b(Dx + B)>Px + (Dx + B)>M>Λ(ξ − Mx). (24)

As a numerical example, we consider system (23) with nominal
parameters A, B,C,D given by

A =

(
−1 1
0 −2

)
, B =

(
1
1

)
, D =

(
0.1 0.2
−0.2 0.3

)
, C =

(
1 0

)
,

and P,Q any non-zero matrices of unitary norm. We finally
consider the internal-model based regulator (4), (5), (24). In the
simulations, we consider w(t) = w0 + w1 sin(2πt) with |w0| ≤ 1,
|w1| ≤ 1. In particular w0 = 0.5 and w1 =

√
2/2. In simula-

tions we considered different scenarios by varying the number
of oscillators ν from 1 to 6. In Table 1, we reported the asymp-
totic value of the regulated output e, confirming the fact that,
when augmenting the number of oscillators, the approximated
regulation objective is improved. Figure 1 shows transient be-
haviors with initial conditions x(0) = (10,−7), ξ(0) = 0, and
with the number of oscillators ν selected as ν = 6. Note that, in
order to improve the transient behavior (which is very slow due
to the presence of the oscillators), one may use the technique
proposed in [35].

The obtained simulations confirm the preliminary results in
[20] for the special class of bilinear systems, and show similar
results to those obtained for the class of minimum-phase sys-
tems in [30].

ν lim supt→∞ |e(t)|

1 10−2

2 9.9 · 10−4

3 1.2 · 10−4

4 2.2 · 10−5

5 1.3 · 10−5

Table 1: Asymptotic value of the regulated output e in (23) depending on the
number of oscillator ν.
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Figure 1: Behavior of the regulated output of system (23)-(24) with an internal
model unit compose of 6 oscillators.

5. Conclusions

We investigated the problem of output regulation for multi-
input multi-output input-affine nonlinear systems in presence of
periodic exogenous trajectories. Following the linear paradigm,
we proposed an internal model approach which lies on the de-
sign principle “add harmonics on the regulation error and sta-
bilize the extended system”. A simple state-feedback design
based on forwarding approach is then proposed. The asymp-
totic behavior of the closed-loop trajectories in presence of ar-
bitrarily small perturbations of the plant’s model is analyzed
and it is shown that harmonic regulation is obtained, namely the
Fourier coefficients linked to the frequencies copied in the in-
ternal model are canceled on the asymptotic error. The stability
properties of the closed-loop system are semi-global in the size
of the initial conditions of the plant but only local in the size
of the perturbation, i.e., its magnitude has to be small enough.
A dependence between the size of the exosignals and the num-
ber of oscillator is not completely clear. However, the technical
results [36, 30] developed in in the context of minimum-phase
systems suggest that this is not always the case, namely aug-
menting the number of oscillators has no influence on the ad-
missible size of the perturbation and/or references. We conjec-
ture that in order to achieve global results, incremental stability
properties may need to be ensured. Preliminary results in this
direction for the simple case of integral action have been inves-
tigated in [37].

Finally, as a by-product of the proposed forwarding ap-
proach, we shed light on the linear case by presenting a new
necessary and sufficient condition under which the linear ro-
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bust output regulation problem can be solved. The proposed
condition doesn’t rely on the so-called non-resonance assump-
tion and it is easy to check from the computational point of
view.

AppendixA. Existence of stable periodic solutions

The following result concerns the existence and stability of a
periodic solution to nonlinear system forced by a periodic input.

Theorem 3 Let be given a C1 function ϕ : Rn ×Rρ → Rn such
that the origin of

ẋ = ϕ(x, 0) (A.1)

is asymptotically, locally exponentially, stable with a domain
of attraction A ⊆ Rn. Then, for any compact set X ⊂ A,
there exists ε > 0 such that, for any C1 T-periodic function
w : R→ Rρ satisfying sup

s∈[0,T ]
|w(s)| ≤ ε, the system

ẋ = ϕ(x,w) (A.2)

admits a unique T-periodic solution x◦ which is asymptotically
stable with a domain of attraction that includes X.

Proof: Although we could not find in literature any reference
containing the exact statement of Theorem 3, we stress that
such a theorem is a direct consequence of well known results
on the existence and stability of periodic solutions (see, e.g.,
[38], [39], [40] or [41, Chapter 4]). We just sketch its proof for
completeness.

First, by using the fact that the origin of (A.1) is asymptoti-
cally stable, it can be shown that for any compact set X ⊂ A,
there exists ε? > 0, and for any ε ∈ [0, ε?) there exists a positive
real number x̄(ε) ≥ 0, such that solutions to system (A.2) start-
ing from X, with w satisfying |w(t)| ≤ ε for all t ≥ 0, are com-
plete forward in time and moreover limt→∞ |x(t)| ≤ x̄(ε). Fur-
thermore such an ultimate bound satisfies limε→0 x̄(ε) = 0. This
can be established, for instance, by combining the arguments of
[42, Theorem 10.2.1] and [9, Theorem 4 and Lemma 1]. The
main idea consists in using a converse Lyapunov theorem for
system (A.1) and selecting the value of ε? > 0 small enough
according to the Lipschitz constant of ϕ(x,w) − ϕ(x, 0) on the
set X.

Next, we can show that there exists r > 0 small enough such
that, for any C1 T -periodic signal w satisfying sups∈[0,T ] |w(s)| ≤
r, system (A.2) admits a unique C1 T -periodic solution satisfy-
ing sups∈[0,T ] |x(s)| ≤ r which is asymptotically stable with a
domain of attraction which includes the set {x ∈ Rn : |x| ≤ 2r}.
This can be shown by rewriting (A.2) as

ẋ = Ax + ∆(x,w), ∆(x,w) := ϕ(x,w) − Ax,

where the matrix A := ∂ f
∂x (0, 0) is Hurwitz due to the locally

exponential stability properties of system (A.1), and using stan-
dard arguments in differential equations analysis such as in [40,
§8, Theorem 5.1, Theorem 6.2]. The main idea consists in con-
structing the periodic solution by using the constant variation
formula and applying Banach fixed point theorem to show that,

thanks to the exponential stability, the obtained operator is a
contraction. Finally, selecting ε small enough so that x̄(ε) < 2r,
ensures the statement of the theorem. �
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