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In this paper, we tackle estimation and prediction at the non-visted sites in a spatial semi-functional linear regression model with derivatives that combines a functional linear model with a nonparametric regression model. The parametric part is estimated by a method of moments and the other one by a local linear estimator. We establish the convergence rate of the resulting estimators and predictor. A simulation study and application to ozone pollution prediction at the non-visted sites are proposed to illustrate our results.

RÉSUMÉ.

Dans cet article, nous abordons l'estimation et la prédiction à des sites non-visités dans un modèle de régression linéaire semi-fonctionnelle avec dérivées, qui combine un modèle linéaire fonctionnel avec celui de la régression non paramétrique. La partie paramétrique est estimée par une méthode des moments et l'autre par un estimateur linéaire local. Nous établissons la vitesse de convergence des estimateurs et prédicteur résultants. Une étude de simulation et une application à la prédiction de la pollution d'ozone à des sites non-visités, sont proposées pour illustrer nos résultats.

Introduction

For two decades, there has been increased interest in statistical modelling of functional data. Among the methods allowing to deal with such data, the functional linear regression constitutes an essential tool and has a large number of applications in several fields (see, e.g., [START_REF] Ramsay | Functional data analysis[END_REF]). The corresponding model has seen some recent developments. Indeed, in order to enhance prediction power, [START_REF] Mas | Functional linear regression with derivatives[END_REF] added a component that includes a derivative. Furthermore, other works considered the so-called semi-functional partially linear regression model that combines a functional linear model with a nonparametric regression model. Estimation based on this previous class of models has been investigated (see [START_REF] Ling | Semi-functional partially linear regression with responses missing at random[END_REF], [START_REF] Zhou | Spline estimators for semi-functional linear model[END_REF], [START_REF] Zhou | Polynomial spline estimation for partial functional linear regression models[END_REF], and [START_REF] Zhu | Estimation and inference in semi-functional partially linear measurement errors models[END_REF]), but only for purely non-spatial data. Despite the interest of processing spatial data, there are few works dealing with this type of data, compared to those of non-spatial data. However, [START_REF] Giraldo | Ordinary kriging for function-valued spatial data[END_REF] proposed a methodology to make spatial linear predictions at non-data locations when the data are functions, which is applied to predict a curve of temperature; and [2] considered spatial functional regression model with a derivative, which can be applied to predict the ozone pollution at the non-visited sites. On the other hand, fixed design nonparametric regression has also received a special attention in the field of spatial literature (see [START_REF] Bouka | Estimation of the trend function and auto-covariance for spatial models[END_REF], [START_REF] El-Machkouri | Asymptotic normality of kernel estimates in a regression model for random fields[END_REF], [START_REF] Wang | Estimation of the trend function for spatio-temporal models[END_REF]). Some results from this class of model can be applied to image analysis (see for instance [START_REF] El-Machkouri | Asymptotic normality of kernel estimates in a regression model for random fields[END_REF]). However, to the best of our knowledge, a small attention has been taken for the estimation in semi-functional linear regression model for spatially dependent observations (see for instance [START_REF] Hu | Estimation in Partial Functional Linear Spatial Autoregressive Model[END_REF], [START_REF] Li | Semi-functional partial linear spatial autoregressive model[END_REF] and [1]).

Consider G := L 2 [0, 1] and the Sobolev space H = {x ∈ G, x ∈ G}, where x is the first derivative of x; these are Hilbert spaces with inner products ., . H and ., . G defined by:

f, g G = 1 0 f (t)g(t)dt, f, g H =< f, g > G + < f , g > G .
We are interested with the model:

Y i = φ, X i H + γ, X i G + r i 1 n 1 + 1 , • • • , i d n d + 1 + i , (1) 
where i = (i 1 , • • • , i d ) ∈ I n = {i = (i 1 , • • • , i d ) ∈ Z d : 1 ≤ i k ≤ n k , k = 1, • • • , d}, d ≥ 2
, φ and γ are functions, r(.) is a nonparametric spatial function defined on [0, 1] d to be estimated by local linear smoothing, the errors i are spatially correlated, with a covariance function as assumed in Assumption 7. The random functions X i and X i are assumed to be centered and independent of the noise i which is also centered. The triplet (X i , Y i , X i ) has the same probability distribution than the random vector (X, Y, X ). We are interested in the prediction at a non-visited site obtained from the estimation of the unknown parameter (φ, γ, r) defined in (1). The special case with φ = 0 and γ = 0 is considered in [START_REF] El-Machkouri | Asymptotic normality of kernel estimates in a regression model for random fields[END_REF], [START_REF] Bouka | Estimation of the trend function and auto-covariance for spatial models[END_REF], whereas that with r = 0 is studied in [2]. The article is organized as follows. Our estimation procedure is given in Section 2. Section 3 is devoted to the assumptions and the main results. In Section 4, a simulation study is presented whereas an application to ozone pollution forecasting at the non-visited sites is presented to Section 5. Proofs are postponed in Section 6.

Estimation

Our estimation procedure is an association between the method of moments proposed in [START_REF] Mas | Functional linear regression with derivatives[END_REF] and the one based on local linear approximation used in [START_REF] Bouka | Estimation of the trend function and auto-covariance for spatial models[END_REF]. For estimating the pair (φ, γ), we adopt a method similar to that of [START_REF] Mas | Functional linear regression with derivatives[END_REF]. We first multiply both members of (1) by X i , . H and take the expectation of the obtained term. Secondly, we reproduce this procedure by multiplying by X i , . G . Since X i and X i are assumed to be centered, we finally obtain the following system:

∆ = Γφ + Γ γ ∆ = (Γ ) * φ + Γ γ , (2) 
where

Γ = E(X ⊗ H X), Γ = E(X ⊗ G X), Γ = E(X ⊗ G X ), ∆ = E(Y X), ∆ = E(Y X ), (Γ ) *
is the adjoint of Γ , and where ⊗ H (resp. ⊗ G ) denotes the tensor product defined by

(u ⊗ H v)(h) = u, h H v (resp. (u ⊗ G v)(h) = u, h G v). The solution of the system (2) is given by φ = S -1 φ ∆ -Γ Γ -1 ∆ and γ = S -1 γ ∆ -Γ * Γ -1 ∆ , where S φ = Γ -Γ Γ -1 Γ * , S γ = Γ -Γ * Γ -1 Γ .
Considering the empirical versions of these operators and functions given by

Γ n = 1 n i∈In X i ⊗ H X i , Γ n = 1 n i∈In X i ⊗ G X i , ∆ n = 1 d k=1 (n k -1) i∈I 1 n Y i X i , Γ * n = 1 n i∈In X i ⊗ H X i , Γ n = 1 n i∈In X i ⊗ G X i , ∆ n = 1 d k=1 (n k -1) i∈I 1 n Y i X i ,
where

I 1 n = d k=1 {2, • • • , n k }, n = (n 1 , • • • , n k ), n = d k=1 n k . We write n -→ +∞ if min 1≤k≤d (n k ) -→ +∞ and we assume that n j n k ≤ C for 1 ≤ j, k ≤ d and 0 < C < ∞.
The invertible empirical operators are obtained by regularization method:

Γ -1 n = (Γ n + w n I) -1 , Γ -1 n = (Γ n + w n I) -1 ,
where w n and ψ n are two sequences from N d to R decreasing to zero and I denotes the identity operator, we put

S n,φ = Γ n -Γ n ( Γ -1 n )Γ * n , S n,γ = Γ n -Γ * n ( Γ -1 n )Γ n , u n,φ = ∆ n -Γ n ( Γ -1 n )∆ n , u n,γ = ∆ n -Γ * n ( Γ -1 n )
∆ n , and we estimate (φ, γ) by the pair ( φ n , γ n ) given, as in [2], by:

φ n = (S n,φ + ψ n I) -1 u n,φ , γ n = (S n,γ + ψ n I) -1 u n,γ .
Secondly, for estimating the nonparametric regression function, we rewrite (1) as

T i = r i n + 1 + ξ i , (3) 
where

i n + 1 = i 1 n 1 + 1 , • • • , i d n d + 1 , T i = Y i -φ n , X i H -γ n , X i G and ξ i = i + φ -φ n , X i H + γ -γ n , X i G ,
and we locally approximate r by a linear regression function by using Taylor expansion in the neighbourhood of

s 0 ∈ [0, 1] d i.e. r( i n+1 ) ≈ β 0 + β T 1 ( i n+1 -s 0 )
, where β 0 = r(s 0 ) and β 1 = ∇r(s 0 ) is the gradient vector of r at s 0 . From model defined in (3), an estimator of β 0 is given by the solution of the following least squares minimization problem:

min β0,β1 i∈In T i -β 0 -β T 1 i n + 1 -s 0 2 1 h d K i n+1 -s 0 h ,
where K : R d -→ R + is a kernel function and h is a bandwidth, and u T is the transpose of u. Then, a local linear estimator r of r on s 0 ∈ [0, 1] d is given, as in [START_REF] Bouka | Estimation of the trend function and auto-covariance for spatial models[END_REF], by:

r(s 0 ) = (1, 0 T ) 1 n X T W 0 X -1 1 n X T W 0 Y = S T s0 Y,
where (1, 0 T ) ∈ R d+1 , X , Y and W 0 are, respectively, the n × (d + 1), n × 1 and n × n matrices given by:

X =               1    1 n + 1 -s 0 h    T . . . . . . 1    n n + 1 -s 0 h    T               , Y = (T 1 , • • • , T n ) T ,
where

1 = (1, • • • , 1) ∈ R d , n = (n 1 , • • • , n d ) and W 0 = diag      1 h d K    1 n + 1 -s 0 h    , • • • , 1 h d K    n n + 1 -s 0 h         .

Assumptions and results

We first make assumptions needed for establishing our results. For β > d/4, L > 0 and M > 0 we denote by H(β, L) (resp. G(L)) the Hölder class (resp. the class) of functions

f satisfying |f (x)-f (y)| ≤ L x -y β ∞ (resp. |f (x)-f (y)| ≤ L x -y ∞ ),
and we consider the class:

Σ(β, L, M ) =    {f ∈ H(β, L) : f ∞ ≤ M } if d 4 < β ≤ 1 {f ∈ G(L) : f ∞ ≤ M, ∇f ∞ ≤ M } if β > 1
.

Assumption 1 The function r belongs to Σ(β, L, M ) with β > d/4, L > 0 and M > 0.
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Assumption 2 Ker(Γ) = Ker(Γ ) = {0}, where Ker(A) = {x : Ax = 0}.

Assumption 3 (φ, γ) / ∈ {(f, g) ∈ H × G : f + D * g = 0}
where D * is the adjoint of the ordinary differential operator D.

Assumption 4 Γ -1/2 φ H < +∞, (Γ ) -1/2 γ G < +∞, where • H and • G are the norms induced by < •, • > H and < •, • > G respectively. Assumption 5 The process {Z i = (X i , Y i , X i ), i ∈ Z d } is α-mixing dependent. That is lim m→+∞ α 1,∞ (m) = 0, where α 1,∞ (m) = sup {i},E⊂Z d ,ρ(E,{i})≥m { sup A∈σ(Z i ),B∈σ(Z j ;j∈E) {|P(A ∩ B) -P(A)P(B)|}}, (4) 
ρ is the distance defined for any subsets

E 1 and E 2 of Z d , by ρ(E 1 , E 2 ) = min{ i-j , i ∈ E 1 , j ∈ E 2 } with i -j = max 1≤s≤d |i s -j s |. Assumption 6 X i H ≤ C a.s.
where C is some positive constant. Remark 1 Assumptions 2-6 are technical conditions to guarantee consistency of φ n and γ n (see [2]). However, Assumption 6 can be replaced by E X 8 H < C (see [START_REF] Mas | Functional linear regression with derivatives[END_REF]), but this assumption on finite moment would lead us to longer and more intricate methods of proof. Assumptions 7 et 8 are conditions needed to establish consistency of the estimator r of r; they have also been used in [START_REF] Francisco-Fernandez | Smoothing parameter selection methods for nonparametric regression with spatially correlated errors[END_REF] and in [START_REF] Bouka | Estimation of the trend function and auto-covariance for spatial models[END_REF]. However, spatial covariances models such that Matern?s spatial covariance model or Gaussian covariance model can be also

Assumption 7 Cov( i , j ) = σ 2 exp(-a i -j ) for all i, j ∈ I n ,
used. It is shown in [2] that if (v j ) j≥1 is a sequence of eigenfunctions associated with a sequence of eigenvalues (λ j ) j≥1 of the operator Γ with λ j = O(u j ), 0 < u < 1, j ≥ 1, then E φ -φ n 2 Γ = O ψ 2 n w 2 n + O (log n) 2 w 2 n ψ 2 n n and E γ -γ n 2 Γ = O ψ 2 n w 2 n + O (log n) 2 w 2 n ψ 2 n n
, where . Γ := Γ 1/2 (.) H and . Γ := Γ 1/2 (.) G are two semi-norms.

It remains to obtain bounds of the estimator r of r. The following theorem gives bounds of the bias and of the variance.

Theorem 1 Assume that Assumptions 1-8 are satisfied with α 1,∞ (t) = O(t -θ ), θ > 2(d + 1). Moreover, assume that eigenvalues λ j of the operator Γ are such that

λ j = O(u j ) with 0 < u < 1, j ≥ 1, that h → 0 and min k=1,••• ,d {n k }h → +∞ as n → +∞. Then: (i) sup s0∈[0,1] d [E( r(s 0 )) -r(s 0 )] 2 = O h 4 + O (log n) 2 w 2 n ψ 2 n n + O ψ 2 n ; (ii) sup s0∈[0,1] d V ar( r(s 0 )) = O log n nh d .
Remark 2 An immediate consequence of Theorem 1 is for all

s 0 ∈ [0, 1] d , | r(s 0 ) -r(s 0 )| = O p (log n) 2 w 2 n ψ 2 n n + h 4 + ψ 2 n + log n nh d
and so the optimal bandwidth h is controlled by the trade-off between the variance and the square of the bias. If

ψ n ∝ (log n) 1/2 n 2/(4+d) , h = 1 n 1/(4+d) with d ≥ 2, and 1 w 2 n ∝ log n, then for all s 0 ∈ [0, 1] d , we have | r(s 0 ) -r(s 0 )| = O p max (log n) 2 n d/(4+d) , log n n 4/(4+d)
which is, with d ≥ 4, the optimal convergence rate in spatial nonparametric regression setting when data are α-mixing dependent and the correlation of errors is long-range, and for d ≥ 3, it is better than O p log n n 4/(4+d) 1/2

given in [START_REF] Carbon | Kernel regression estimation for random fields[END_REF], and is quite close from the one of [START_REF] Carbon | Kernel regression estimation for random fields[END_REF] with d = 2. Besides, when the correlation of errors is short-range, the optimal convergence rate from r to r is O p 1 n 4/(4+d) [12, p. 36].

In addition, from Remark 1, Theorem 1, Lemma 4 (see Section 5) and Theorem 3.1 of [2], we deduce the following Corollary.

Corollary 1 Under Assumptions of Theorem 1, we have for each i 0 ∈ I n+1 \ I n that:

E Y i0 -Y * i0 2 = O ψ 2 n w 2 n + (log n) 2 w 2 n ψ 2 n n + h 4 + log n nh d ,
where

Y i0 = φ n , X i0 H + γ n , X i0 G + r i 0 n + 1 and Y * i0 = φ, X i0 H + γ, X i0 G + r i 0 n + 1 .

Remark 3

The methodology proposed in this paper can also be applied when the design of the non-parametric regression function is random. That is

Y i = 1 0 φ(t)X i (t)dt + 1 0 γ(t)X i (t)dt + r(Z i ) + i , i ∈ I n ,
where Z i is a random vector independent of X i and X i . An estimator r of r is obtained by considering, in our estimation procedure (see Section 2), the product kernels (see [15,

chapter 3]) K 1 x s0 -Z i h 1 K 2 s 0 -i (n + 1)h 2 instead of K    i n + 1 -s 0 h   . Besides,
if the correlation of errors is short-range with Cov( i , j ) = σ 2 exp(-a n ij ), then refer to [START_REF] Francisco-Fernandez | Smoothing parameter selection methods for nonparametric regression with spatially correlated errors[END_REF] or [START_REF] Liu | Kernel smoothing for spatially correlated data[END_REF] for the convergence from r to r. Moreover, if γ = 0, we obtain a model which extends to spatial case that considered in [START_REF] Zhou | Spline estimators for semi-functional linear model[END_REF] with independent data.

A simulation study

In this section, we present a simulation study for illustrating our method. We consider an equivalent definition to the model (1) given by

Y i = 1 0 φ(t)X i (t)dt + 1 0 γ(t)X i (t)dt + r i n + 1 + i , (5) 
where d = 2, n 1 = n 2 = n and i ∈ {1, • • • , n} 2 . By using the lexicographic order in Z 2 , we simulated a sample {(X i , Y i )} 1≤ ≤n 2 such that:

X i (t) = 15 k=1 Λ i ,k F k (t)
where F 1 , • • • , F 15 are the 15-th first elements of the Fourier basis,

(Λ i1,k , • • • , Λ i n 2 ,k
) T is a random vector obtained from a multivariate truncated normal distribution with zero mean, n 2 × n 2 covariance matrix Σ 1 with general term Σ 1 ij = exp(-a i i -i j 2 ), where a = 0.1, 1, 3, 200, and with lower truncation limit (0,

• • • , 0) ∈ R n 2 and upper trun- cation limit (1, • • • , 1) ∈ R n 2
. When a = 200, there is approximately no spatial autocorrelation in the process. The process is said strongly correlated when a = 0.1, 1 and weakly correlated when a = 3. The process Y i is obtained from the model [START_REF] Deo | A note on empirical processes of strong mixing sequences[END_REF], in which X i is computed by the function "fdata.deriv" of the R fda package,

φ(t) = [sin(2πt 3 )] 3 , γ(t) = (0.6 -t) 2 , t ∈ [0, 1], r(x) = exp(-x ∞ ), x ∈ [0, 1] 2 ,
integrals are approximated by the rectangular method applied at the 366 equispaced points of the interval

[0, 1], ( i1 , • • • , i n 2 ) T is a random vector having a normal distribution N (0, Σ 2 ) where Σ 2 is a n 2 × n 2 covariance matrix with general term Σ 2 ij = 0.01Σ 1 ij for i = j and Σ 2 ii = Σ 1
ii . The estimate ( φ n , γ n ) of the pair (φ,γ) depends of the regularization sequences ψ and w, which are selected by minimizing the mean standard error of prediction from 10-folds cross validation, that is minimizing:

CV M SEP (ψ, w) = 1 n 2 n 2 =1 Y i -Y (-κ( )) i (ψ, w) 2 , where κ : {1, • • • , n 2 } -→ {1, • • • , 10}
is an indexing function which indicates the partition to which observation i is allocated, and Y

(-κ( )) i (ψ, w) = φ n , X i G + γ n , X i G
with φ n and γ n computed with the κ( )-th part of the removed data. The estimate r of r depends on the bandwidth h which is selected by minimizing the following generalized cross validation (GCV) function [START_REF] Francisco-Fernandez | Smoothing parameter selection methods for nonparametric regression with spatially correlated errors[END_REF]:

GCV (h) = 1 n 2 n 2 =1 T i -r i n ; h 1 -1 n 2 tr (SC) 2 ,
where

T i = Y i -φ n , X i G -γ n , X i G
with φ n and γ n computed from the optimal regularization parameters ψ opt and w opt , r i n ; h is computed from Epanechnikov kernel defined by K(x) = 2 π max (1 -x 2 2 ), 0 , S is the n 2 × n 2 matrix whose th row is equal to S T i /n and C is the correlation matrix of the observations. We assess performance of our method through calculation of the Mean Squared Error (M SE 1 and M SE 2 ), based on 100 replications with n = 5, 10 and a = 0.1, 1, 3, 200, and defined by:

M SE 1 = 1 n 2 n j=1 n i=1 r i n + 1 , j n + 1 -r i n + 1 , j n + 1 2 , M SE 2 = 1 n 2 n j=1 n i=1 φ -φ n , X (i,j) G + γ -γ n , X (i,j) G +r i n + 1 , j n + 1 -r i n + 1 , j n + 1 2 .
We denote by m the mean and by sd the standard deviation. The results are postponed in the Table 1. ) have a decreasing general tendency as the sample size increases. Thus our estimation procedure well fits to spatial semi-functional linear regression model with derivatives. Also, for each fixed n, values of each error criterion for weakly correlated processes (a = 3) are similar to those approximatively non-correlated processes (a = 200), whereas those of strongly correlated processes (a = 0.1, 1) decrease as a increases, so showing the interest to consider spatially dependent observations in this study. Besides, for each fixed n, M SE 1 and M SE 2 are similar for values of a ≥ 1. This means that the presence of functional data 

Application to ozone pollution forecasting at the non-visited sites

In this section, our methodology is applied to predict the level of ozone pollution at the non-visited sites of California state. The used data are available on internet site https://www.epa.gov/outdoor-air-quality-data. The explicative functional variables 

{X si (t), t = 1, • • • , 100, s i = (Latitude, Longitude) i , i = 1, • • • , 51}
Y si = 1 0 φ(t)X si (t)dt + 1 0 γ(t)X si (t)dt + si +r Latitude max j=1,••• ,51 (Latitude[j]) , Longitude min j=1,••• ,51 (Longitude[j])
.

For evaluating the performances of our method, we compare prediction error obtained from SSFLRD model with the spatial functional linear regression model with derivatives (SFLRD) studied in [2] and defined by

Y si = 1 0 φ(t)X si (t)dt + 1 0 γ(t)X si (t)dt + si ,
where X i standing for the first derivative of X i is computed from the function "fdata.deriv" of the R fda package. So, we predict from both methodologies

{Y si , s i = (Latitude, Longitude) i , i = 36, • • • , 51},
which would correspond to the measurements ozone concentration at the date of the April 13th, 2021 on these 16 others sites assumed non-visited at this same date. q q q q q q q q q qq q q q q q -0. 

SSFLRD

Measured ozone concentration

Predicted ozone concentration q q q q q q q q q qq q q q q q -0. 

P E = 51 i=36 Y si -Y si 2 .
We see a very small advantage for prediction obtained from model SSFLRD studied in this paper.

Conclusion

In this paper, we propose to study asymptotic properties of a prediction at non-visited site computed from a estimator of nonparametric regression function in a spatial semifunctional linear regression model with derivatives, that combines a functional linear model with a nonparametric regression model. The originality of the proposed method is to consider spatially dependent data in this new model. We established the convergence rates of the estimation and prediction errors, when considered processes are α-mixing dependent. The main contribution of this work is on the estimator r of r constructed from α-mixing dependent data satisfying the general model defined in (1). Its convergence rate

O p max (log n) 2 n d/(4+d) , log n n 4/(4+d)
, where n

= d k=1 n k , is optimal with d ≥ 4,
is better than the one of [START_REF] Carbon | Kernel regression estimation for random fields[END_REF], i.e. O p log n n 4/(4+d) 1/2 with d ≥ 3, and is quite close from the one of [START_REF] Carbon | Kernel regression estimation for random fields[END_REF] with d = 2. Besides, the simulation study revealed that the presence of functional data in the SSFLRD model does not modify the convergence rate of the estimated nonparametric regression function, and application to ozone pollution revealed that the proposed prediction fits well to the spatial semi-functional linear regression model with derivatives. Moreover, the SSFLRD model produces equivalent predictions with the SFLRD model. However, the presented methodology in this paper has a very minor advantage than that of SFLRD.
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Proofs

Technical Lemmas

The proof of the following Lemma 1 is similar to the one of Lemma 1 in [START_REF] Deo | A note on empirical processes of strong mixing sequences[END_REF].

Lemma 1 Assume that (4) holds. Let L r (A) be the class of A-measurable random function X satisfying X r = (E(|X| r ))

1/r . Let r, s, h be positive constants such that

r -1 + s -1 + h -1 = 1, X ∈ L r (B(S)) and Y ∈ L r (B(S )). Then |E(XY ) -E(X)E(Y )| ≤ K X r Y s {α 1,∞ (ρ(S, S ))} 1/h .
The following Lemma 2 adapts Proposition 8 in [START_REF] Mas | Functional linear regression with derivatives[END_REF].

Lemma 2 We have:

(S n,φ + ψ n I) -1 ∞ ≤ 1 ψ n , where R ∞ = sup x∈H Rx H x H .
From Lemmas 9, 10 of [START_REF] Mas | Functional linear regression with derivatives[END_REF] together with Corollary 3.1 of [2], we obtain the following Lemma 3.

Lemma 3

We have:

u n,φ -u φ L 2 (HS) = O log n w n n 1/2 and S n,φ -S φ L 2 (HS) = O log n w n n 1/2 ,
where HS stands for the space of Hilbert-Schmidt operators endowed with the inner product R, T HS = +∞ i=1 R(w i ), T (w i ) H where w i is a basis of H, and

R L 2 (HS) = E R 2 HS 1/2 . Lemma 4
We have:

φ n -φ H = O p (1) and γ n -γ G = O p (1); Proof Putting u φ = ∆ -Γ Γ -1 ∆ , we have φ n -φ = (S n,φ + ψ n I) -1 (u n,φ -u φ ) + (S n,φ + ψ n I) -1 (S φ -S n,φ -ψ n I)φ.
From Lemma 2, we obtain

φ n -φ 2 H ≤ 3 u n,φ -u φ 2 H (S n,φ + ψ n I) -1 2 ∞ +3 φ 2 H S φ -S n,φ 2 
∞ (S n,φ + ψ n I) -1 2 ∞ +3ψ 2 n φ 2 H (S n,φ + ψ n I) -1 2 ∞ ≤ 3 ψ 2 n u n,φ -u φ 2 H + S φ -S n,φ 2 ∞ φ 2 H + 3 φ 2 H
For M > 0, from Markov inequality, we have

P φ n -φ H > M = P φ n -φ 2 H > M 2 ≤ P 3 ψ 2 n u n,φ -u φ 2 H + S φ -S n,φ 2 ∞ φ 2 H + 3 φ 2 H > M 2 ≤ P 3 ψ 2 n u n,φ -u φ 2 H > M 2 3 + P 3 φ 2 H ψ 2 n S φ -S n,φ 2 ∞ > M 2 3 + P 3 φ 2 H > M 2 3 ≤ 9E u n,φ -u φ 2 H M 2 ψ 2 n + 9 φ 2 H E S φ -S n,φ 2 ∞ M 2 ψ 2 n + 1I ]0,3 φ H [ (M ),
where 1I ]0,3 φ H [ (.) is the indicator function. Finally, from Lemma 3, we conclude that

∀δ > 0, ∃τ ≥ 3 φ H , N δ ∈ N such that ∀n > N δ 1, P φ n -φ H > τ ≤ δ,
where n > N δ 1 means that min 1≤k≤d {n k } > N δ . Similarly, we obtain that γ n -γ G = O p (1).

Proof of Theorem 1

Proof

Put K i := 1 h d K    i n + 1 -s 0 h   , Γ(i) := i n + 1 -s 0 T r (s 0 ) i n + 1 -s 0 ,
where r (s 0 ) stands for the matrix of second order partial derivatives of r at s 0 ,

A n = 1 n X T W 0 X =     1 n i∈In K i 1 n i∈In i n+1 -s0 h T K i 1 n i∈In i n+1 -s0 h K i 1 n i∈In i n+1 -s0 h i n+1 -s0 h T K i    
and

B n := 1 n X T W 0 Y =       1 n i∈In K i T i 1 n i∈In    i n + 1 -s 0 h    K i T i       , W n := B n -A n β 0 hβ 1 .
We have

lim n→+∞ A n = 1 0 T 0 uu T K(u)du = 1 0 T 0 ν 2 I d = A,
and det(A) = ν 2 = 0; then A is invertible and 

A -1 = 1 0 T 0 ν -1 2 I d Therefore, putting A -1 n = u n
∈ [0, 1] d , we have r(s 0 ) -r(s 0 ) = (1, 0 T )A -1 n W n and E ( r(s 0 ) -r(s 0 )) = (1, 0 T )A -1 n       1 n i∈In K i (Γ(i) + E( * i )) 1 n i∈In    i n + 1 -s 0 h    K i (Γ(i) + E( * i ))       , where E( * i ) = E φ -φ n , X i H + E γ -γ n , X i G . Since E (S n,φ + ψ n I) -1 φ, X H → E S -1 φ φ, X H < +∞,
from Assumption 6 and from Lemmas 2 and 3, we have

E φ n -φ, X H = E (S n,φ + ψ n I) -1 (u n,φ -u φ ), X H -E (S n,φ + ψ n I) -1 φ, ψ n X H +E (S n,φ + ψ n I) -1 (S φ -S n,φ )φ, X H = O log n w n ψ n n 1/2 + O (ψ n ) .
Therefore,

1 n i∈In K i E φ -φ n , X i H 2 = O (log n) 2 w 2 n ψ 2 n n + O ψ 2 n .
Similarly, we have

1 n i∈In K i E [ γ -γ n , X i G ] 2 = O (log n) 2 w 2 n ψ 2 n n + O ψ 2 n and    1 n i∈In    i n + 1 -s 0 h    K i E( * i )    2 = O (log n) 2 w 2 n ψ 2 n n + O ψ 2 n .
Besides, we have

1 n i∈In K i Γ(i) = O(h 2 ) and 1 n i∈In    i n + 1 -s 0 h    K i Γ(i) = O(h 2 ). Thus sup s0∈[0,1] d E r(s 0 ) -r(s 0 ) 2 = O h 4 + O (log n) 2 w 2 n ψ 2 n n + O ψ 2 n . (ii) Since T i -β 0 -    i n + 1 -s 0 h    T hβ 1 -Γ(i) = ξ i and putting k n (i) = u n 11 + u n 12    i n + 1 -s 0 h   , we obtain for all s 0 ∈ [0, 1] d that r(s 0 ) -E ( r(s 0 )) = 1 n i∈In K i (ξ i -E (ξ i )) k n (i) = 1 nh d i∈In K    i n + 1 -s 0 h    (ξ i -E (ξ i )) k n (i).
Also, since from Lemma 4, we have E(ξ

2 i ) = O(1), it follows that E r(s 0 ) -E (r(s 0 )) 2 ≤ C 1 ( nh d ) 2 i∈In K    i n + 1 -s 0 h    2 k 2 n (i) + F,
where C 1 is some positive constant and

F = 1 ( nh d ) 2 i =j K    i n + 1 -s 0 h    K    j n + 1 -s 0 h    k n (i)k n (j)Cov (ξ i , ξ j ) .
Since the sequences (u n 11 ) n and (u n 12 ) n are bounded,

   i n + 1 -s 0 h    ≤ 1, and 
Cov (ξ i , ξ j ) = Cov ( i , j ) + Cov * i , * j , A R I M A
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where

* i = φ -φ n , X i H + γ -γ n , X i G , it follows that F = F 1 + F 2 ,
where

F 1 = 1 ( nh d ) 2 i =j K    i n + 1 -s 0 h    K    j n + 1 -s 0 h    k n (i)k n (j)Cov ( i , j ) ; F 2 = 1 ( nh d ) 2 i =j K    i n + 1 -s 0 h    K    j n + 1 -s 0 h    k n (i)k n (j)Cov * i , * j .
Under Assumption 8, we have

nh d F 1 ≤ c nh d i =j K    i n + 1 -s 0 h    -K    j n + 1 -s 0 h    K    j n + 1 -s 0 h    × |Cov ( i , j ) | + c nh d i =j   K    j n + 1 -s 0 h       2 |Cov ( i , j ) | ≤ cσ 2 nh d j∈In K    j n + 1 -s 0 h    i∈In i-j >0 i n + 1 - j n + 1 h exp(-a i -j ) + cσ 2 nh d j∈In   K    j n + 1 -s 0 h       2 i∈In i-j >0
exp(-a ij ) V ar ( r(s 0 )) ≤ c 2 K 2 (u)du < +∞. 

nh d F 2 ≤ c nh d i =j K i n+1 -s 0 h -K j n+1 -s 0 h K j n+1 -s 0 h |Cov * i , * j | + c nh d i =j K j n+1 -s 0 h 2 |Cov * i , * j | ≤ c 2 nh d j∈In K j n+1 -s 0 h     i∈In i-j >Q i n+1 -j n+1 h [α 1,∞ ( i -j )] 1 2 + Q 2d min k=1,••• ,d (n k )h

where a and σ 2 are known positive constants. Assumption 8

 8 The kernel function K(.) is symmetric, Lipschitz, continuous and bounded. The support of K(.) is [-1, 1] d , K(u)du = 1, uK(u)du = 0, uu τ K(u)du = ν 2 I d , where I d is the d × d identity matrix and ν 2 = 0.

  Prediction in a spatial regression model 9 in the model (1) does not modify the convergence rate of the estimated nonparametric regression function as stated in[START_REF] Zhou | Spline estimators for semi-functional linear model[END_REF] Remark 2].

  correspond to the measurements of ozone concentration measured the p = 100 firsts days, from January 1st, 2021 to April 12th, 2021 on each of n 2 = 51 sites. The response variables{Y si , s i = (Latitude, Longitude) i , i = 1, • • • , 35}correspond to the measurements of ozone concentration measured the April 13th, 2021 on each of 35 firsts stations. {Y si , s i = (Latitude, Longitude)i , i = 1, • • • , 35} and {X si (t), t = 1, • • • , 100, s i = (Latitude, Longitude) i , i = 1, • • • , 35}are related through the spatial semi-functional linear regression model with derivatives (SSFLRD) defined by

Figure 1 :

 1 Figure 1: Centered predicted values of ozone concentration versus the centered measured values.

≤ cσ 2 t

 2 nh d min k=1,••• ,d (n k )h d-1 e -at -→ c 1 σ 2 K 2 (u)du,where c and c 1 are positive constants. On the other hand, taking Q = (log n) 1/d and applying Lemma 1 together with Lemma 4, we have

  by replacing Q by its value, we obtainnh d F 2 ≤ c 2 nh d min k=1,••• ,d (n k )h j∈In K j n+1 -s 0 h +∞ t=1 t -(θ-2d)/2 + (log n) θ-2d+2)/2 + log n ,where c 2 is some positive constant. Finally, we conclude that lim

[ 1 ]

 1 M. BENALLOU, M.K. ATTOUCH, T; BENCHIKH, O. FETITAH, " Asymptotic results of semifunctional partial linear regression estimate under functional spatial dependency", Communication in Statistics-Theory and Methods, 2021. DOI: 10.1080/03610926.2020.1871021. [2] S.BOUKA, S. DABO-NIANG, G.M. NKIET, " On estimation in a spatial functional regression model with derivatives ", C. R. Acad. Sci. Paris Sér. I , vol. 356, 558-562, 2018.

Table 1 :

 1 The mean (m) and standard deviation (sd) of M SE 1 and M SE 2 , based on 100 replications; n = 5, 10 and a = 0.1, 1,3, 200. 

			a = 0.1	a = 1	a = 3	a = 200
	n 2 error criterion	m	sd	m	sd	m	sd	m	sd
	25	M SE 1	0.51 0.58 0.29 0.17 0.16 0.10 0.20 0.09
		M SE 2	0.98 1.24 0.31 0.18 0.18 0.11 0.21 0.11
	100	M SE 1	0.38 0.40 0.12 0.08 0.07 0.04 0.05 0.03
		M SE 2	0.62 0.73 0.15 0.10 0.06 0.03 0.06 0.03
	In this Table 1, the two kinds of error criterion (M SE 1 , M SE 2	

Table 2 :

 2 

		SSFLRD SFLRD
	Prediction error (PE)	0.0320	0.0334

Prediction error computed from both models with h = 0.32, ψ = 0.01, w = 0.28.

  Both last graphics of Figure1present a very minor different and it is confirmed by computation (see table 2) of prediction error (PE) given by

					SFLRD		
		0.03					
		0.02					
	Predicted ozone concentration	-0.01 0.00 0.01					
		-0.02					
		-0.03					
		03	-0.02	-0.01	0.00	0.01	0.02	0.03
				Measured ozone concentration