
HAL Id: hal-03534685
https://hal.science/hal-03534685v1

Submitted on 19 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Underwater Noise Estimation with General Regression
Neural Network

Belhedi Wiem, François Rioult, Achraf Drira, Medjber Bouzidi

To cite this version:
Belhedi Wiem, François Rioult, Achraf Drira, Medjber Bouzidi. Underwater Noise Estimation with
General Regression Neural Network. IEEE 17th International Conference on Intelligent Computer
Communication and Processing (ICCP 2021), Oct 2021, Cluj-Napoca, Romania. �hal-03534685�

https://hal.science/hal-03534685v1
https://hal.archives-ouvertes.fr


Underwater Noise Estimation with General
Regression Neural Network

1st Belhedi Wiem*, François Rioult*,Achraf Drira**, Medjber Bouzidi**
*Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen

**Department of Innovation, Underwater Acoustics Unit, SINAY
{wiem.belhedi, francois.rioult}@unicaen.fr, achraf.drira, medjber.bouzidi}@sinay.fr

Abstract—With growing exploration and utilization of the
ocean by human beings, sound pollution increases accordingly
and significantly. Hence, the impact of noise on marine organisms
has become one of the most important research topics. In order
to assess the impact of these activities on marine fauna, and
especially on marine mammals, underwater noise propagation
should be estimated. It is in this context that the proposed work
is situated. In fact, the aim of this project is to study how
neural network techniques can speed up these computations for
estimating underwater noise propagation. For this, experimental
data from practical investigations/experiments were used to train
the GRNN for estimating noise level caused by each boat. The
predicted values using GRNN closely followed the experimental
ones with a root mean square error scores (RMSE) that is
equal to 0.7. Results showed that the GRNN model had good
prediction results during the testing process in terms of both
RMSE scores and training times. To evaluate the model accuracy,
the propagation distance from the source in the horizontal plane
was set at 150 km. At this distance, the predicted loss of acoustic
energy resulted in noise levels which were comparable to the
reference values. Several parameters was used in order to build
an accurate model. These parameters include: the propagation
distance, the depth, the transmission frequency, the kinematic
bathymetry, and the sediment nature. The proposed model
therefore estimated the noise level until 150 km from the noise
source with high accuracy and high speed computation without
complex procedures. Moreover, the use of GRNN made it possible
to avoid remaking the expensive computations for each sub-zone:
it estimated the noise levels with a very reduced time compared
to the state-of-the art methods such as RAM.

Underwater noise prediction GRNN neural network
function approximation

I. INTRODUCTION

With growing exploration and utilization of the ocean by
human beings, sound pollution increases accordingly and
significantly. Hence, the impact of noise on marine organisms
has become one of the most important research topics. In order
to assess the impact of these activities on marine fauna, and
especially on marine mammals, underwater noise propagation
should be estimated. To do so, several propagation models
were proposed in the literature, among which the Parabolic
Equation model. In fact, separating the wave equation (or
Helmholtz equation) into incoming and outgoing solutions,
leads to the Parabolic Equation (PE) [25]. The solution for
the PE is then derived from the wave equation in which
only the out-going wave is considered. Several underwater
sound propagation toolboxes make the use of PE in order
to estimate/assess the noise level. One successful example is

the Range-dependent Acoustic Modeling (RAM) which is a
parabolic equation implementation that models propagation at
large angles from the horizontal plane.

However, simulating sound pollution starting from boat
locations using the RAM toolbox requires intensive compu-
tations that increase with the square of frequency. It is in this
context that the proposed work is situated. In fact, the aim
of this project is to study how neural network techniques can
speed up these computations.

Regression is a learning algorithm that, from an input
dataset, predicts an output that can be quantitative/continuous
[18].

A widely used neural network regression model is the
General Regression Neural Network (GRNN) [18]. GRNN is
used to approximate functions and can be used to perform a
regression where the linearity constraint is relaxed. According
to several benefits of GRNN respect to several regression
models, this method will be used in this study in order to esti-
mate/predict the underwater noise propagation. GRNN widely
used tool that was applied in medical diagnosis [8], pattern
identification [9], measuring pressure loss of Herschel–Bulkley
drilling fluids in oil drilling [10], three-dimensional modeling
[11], chemical engineering [12], and function approximation
[13].

The proposed GRNN architecture is here a five-layer net-
work (input layer, 3 hidden layers and 1 output layer). The
first and last hidden layers are composed of 10 neurones each,
the one has 100 neurones.

Experimental data from practical investigations/experiments
were used to train the GRNN for estimating noise level caused
by each boat. The predicted values using GRNN closely
followed the experimental ones with a root mean square error
scores (RMSE) that is equal to 0.7. Results showed that the
GRNN model had good prediction results during the testing
process in terms of both RMSE scores and training times.

The rest of this paper is organized as follows: In Section
2, the proposed approach is detailed. In Section 3, extensive
evaluation is reported. Section 4 concludes the work by
summarizing findings and giving directions for future work.

II. PROPOSED APPROACH

A. Theory

Environmental data are the drivers of underwater noise
propagation. Hence, as indicated in Table I, the environmental
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TABLE I
ENVIRONMENTAL TOGETHER WITH THE ASSIGNED LAYER.

Environmental data Layer
Propagation distance (rr) Input
Depth (rd) Input
Frequency (F) Input
Kinematic Bathymetry (Cr) Input
Temperature(T) Input
Salinity(S) Input
Sediment nature(Sn) Input
Attenuation(TL) Output

data are set to the inputs and are:
• the propagation distance: up to 150km starting from the

noise source;
• the propagation depth: set to 200m starting from the noise

source level;
• the frequency: each source has 6 several transmission

frequencies varying in the range of 63Hz to 125Hz;
• the kinematic bathymetry: in which noise speed profile,

the water temperature, and the water salinity intervene;
• the sediment nature: also referred to by the Geoacoustic

model, in which several parameters intervene and are
the number of layers, the density, and the attenuation of
compressional waves.

In this study, the propagation distance starting from the
source in the horizontal plane was set at 150Km. The propaga-
tion distance is associated to the horizontal resolution that was
set to 100m. Hence, the noise estimates were given for each
100m up to the maximum distance resulting in 1500 estima-
tions. This number is multiplied by the angular resolution (set
to 1o) to compute the total number of observations that will
be used in the training/test process. Hence the total number of
observations is 540000 (obtained as: 360/1 *1500).

The kinematic Bathymetry (Cr) is a function of the depth,
the water salinity, and the temperature as follows [5], [16]:

Cr = 1449.2 + 4.6 ∗ T − 0.0551 ∗ T 2 + 0.00029 ∗ T 3

+(1.34− 0.01 ∗ T ) ∗ (S − 35) + 0.016 ∗ rd (1)

where T is the temperature, S is the salinity, rd is the depth.
Figure 1 illustrates the kinematic bathymetry profile. In this
study, for simplicity, the temperature and the salinity were
supposed to be constants. In a general case, however, these
variables should be collected from monitoring stations over a
set period [14].

The sediment nature has a major effect on noise propa-
gation. In fact, the influence of the interaction of sea with
frontiers and obstacles of the bottom is much more important
than that of the surface. This is due to several phenomena
occuring simultaneously: 1) penetration of the incident wave
in the sediment due to the low impedance contrast between
water and sediment, 2) the sound attenuation in sediment is
much stronger than in water, and 3) the sound speed. Here,
geo-acoustic properties were obtained from geological and
geomorphological mappings that permitted the identification

Fig. 1. Example of kinematic Bathymetry profile.

Fig. 2. Map of seafloor geological nature.

of the sediment nature and therefore selecting the relative co-
efficients. In Figure 2, a map indicating the seafloor geological
nature is given. Hence, knowing the source position, values of
the sea-bottom acoustic properties can be assigned to each
point [15], [17].

B. Underwater noise estimation using GRNN

The proposed approach consists of General regression neu-
ral network (GRNN) to estimate the noise level depending on
several inputs. GRNN is a type of supervised network and
has been proposed by Specht [18]. GRNN is able to produce
continuous value outputs. As indicated in Table I, the GRNN
has an input layer, 3 hidden layers, and 1 output layer.

Firstly, the input data should be vectorized and fed into the
network. A series of matrix operations is operated on the input
data layer by layer through the 3 hidden layers. Each input
sample is multiplied by weights and added to bias that are
updated after every epoch. An epoch describes the number of
times the regression algorithm sees the entire training dataset.
Finally, the activation functions are applied to the result. The
use of the activation functions is crucial. In fact they introduce
non-linearities to the network, making it able to do universal
function approximation. Several activation functions have been
introduced in literature including the Sigmoid function, the
Hyperbolic tangent (Tanh) function, and the Rectified linear



unit (ReLU) function [20] [24]. ReLU function is proved
to learn faster and to avoid the vanishing gradient problem.
Hence, this latter was used in this work.

After applying the activation function, the output is passed
to the next layer to do the same thing. This operation is
repeated until the last layer is reached where the output value
is our prediction T̂L. The estimation is then optimized by
computing the error (e = TL − T̂L) between the predicted
output T̂L and the expected output TL. The error e is used to
calculate the partial derivative with respect to the weights, and
each layer goes backwards in order to update the weights with
these values. This process is repeated until the error value is
minimized.

GRNN was trained based on experimental data. As indicated
in Table I, the variables that were set as independent inputs are
the: propagation distance (rr), the depth (rd), the frequency
(F ), the sediment nature and the kinematic Bathymetry (Cr),
while the attenuation was set as the output (target y). Using
the attenuation (TL), the Noise level in the frequency (F ) at
each point of the matrix is:

Lp(F ) = SL(F )− TL(F ) (2)

where Lp noise level, SL is the source level, and TL is the
attenuation level calculated at this frequency.

In order to find the total noise level on all the frequencies,
we added up the pressure levels as:

LpS =

F2∑
F=F1

10(Lp(F )/10) (3)

where F1 and F2 are the first and last central frequencies of
the third octave, respectively.

The final summed noise level is then converted to dB as:

LpSdB
= 10 ∗ log10(LpS). (4)

III. EVALUATION OF THE PROPOSED APPROACH

This section is devoted to the evaluation of the performance
of the estimation. This evaluation consists to quantitatively
evaluate GRNN estimation performance in terms of RMSE.
As well, we quantify the proposed improvement compared
to state-of-the art model that are namely ANN [23] and
BPNN [23]. To do so, we estimated a noise card of 150km
length starting from the boat (source) location. Figure 3
illustrates the attenuation in 3D as well as the source position
(using a green circle).

A 2D-view of the attenuation profile that will be reproduced
is illustrated in Figure 4. The depth of the card is of 200m and
the propagation distance is 150Km. The corresponding noise
level is illustrated in Figure 5.

The RMSE quantifies the mean deviation/error of estimated
data compared to the measured data. The RMSE score can be
calculated as follows [19]:

RMSE =

√∑n
i=1(yi − ŷi)2

N
(5)

TABLE II
DESCRIPTION AND RMSE FOR EACH ALGORITHM.

Algorithm Description RMSE
GRNN 3 hidden layers 0.7405
ANN 3 hidden layers 22.4606
BPNN 3 hidden layers 4.6526

where yi is the measured value, ŷi denotes the predicted value,
and N is the number of samples. Description and the RMSE
scores are given for each algorithm are illustrated in Table III.
The lowest RMSE score presents the more accurate estimation.

The underwater noise level was predicted using GRNN
model as described above.

The neural network was trained on experimental data. The
used training samples cover the whole range 0-150 km. In
fact, we used the available data between 0 and 150 km with
a step of 2kms. In this study, the depth is ranging from 0
to 200 meters along the experimental track. For simplicity, we
supposed that the water depth does not change with directions.

In Figure 5, the predicted noise level values were compared
with the experimental ones for the training set of 60% ran-
domly chosen data from the whole dataset. In fact, The whole
data set is divided into training and test sets. The training and
test data sets were randomly chosen as 60% vs 40%. In turn,
10% of the training set was used as validation set.

The training is conducted through 10,000 epochs, where
an epoch corresponds to a learning on all the data i.e. an
iteration of the learning algorithm on the whole database.
The larger the number epochs, the better the accuracy. In this
work, the number of epochs was chosen to satisfy the trade-
off between the estimation accuracy and the training time that
did not exceed 17 minutes. In fact, after all the iterations, the
model was not overfitted because the evaluation loss never
exhibit a significant change in direction toward an increasing
value. Hence, making predictions could be done safely based
on the test dataset and assess how the model does as predicting
underwater noise level.

To test and evaluate the network, the test set was used. The
comparison of estimations of the network with the measured
values for the test data set (population of 40% of the whole
dataset) is shown in Figure 5. As well, a performance compar-
ison of the predicted values using GRNN and those given by
ANN or BPNN model is given in Table III. The GRNN RMSE
score is 0.7, indicating a very satisfactory model performance.
These results, therefore, verify the success of neural networks
to recognize the implicit relationships between input and
output variables. GRNN is then accurately able to predict
underwater noise level with high accuracy without complex
procedure.

IV. CONCLUSION AND FUTURE WORK

GRNN was applied to predict underwater noise caused
by boats. The input layer had six neurons including the
propagation distance, the depth, the transmission frequency,
the kinematic bathymetry, and the sediment nature. Hidden



Fig. 3. Attenuation in 3D and the source position

Fig. 4. Attenuation (TL) in the studied area.

Fig. 5. Noise Level

layer had multiple neurons with activation function in all
neurons and the output layer had one neuron.

The predicted noise level was close to the experimental
values: the root mean square error (RMSE) was equal to 0.7.
Hence, evaluation results showed that the GRNN model had
good prediction accuracy during the testing process in terms
of both RMSE scores and training times.

The GRNN model therefore estimated the noise level until
150 km from the noise source with high accuracy and high
speed computation without complex procedures. Moreover,
the use of GRNN made it possible to avoid remaking the
expensive computations for each sub-zone: it estimated the
noise levels with a very reduced time compared to the state-
of-the art methods such as RAM.

The effectiveness of the GRNN model in predicting un-
derwater noise level could be more generalized by testing on

other areas and periods. Future work may address including
detailed ship characteristics which could be a great step toward
increasing the accuracy of the predicted underwater noise
distributions.

ACKNOWLEDGMENTS

This work is supported by the European Project
FEDER/FSE AIMS: Acoustic Integrated Monitoring System.

REFERENCES

REFERENCES

[1] STOJANOVIC, Milica et PREISIG, James. Underwater acoustic com-
munication channels: Propagation models and statistical characteriza-
tion. IEEE communications magazine, 2009, vol. 47, no 1, p. 84-89.

[2] ERBE, Christine. Underwater noise of whale-watching boats and poten-
tial effects on killer whales (Orcinus orca), based on an acoustic impact
model. Marine mammal science, 2002, vol. 18, no 2, p. 394-418.

[3] WITTEKIND, Dietrich Kurt. A simple model for the underwater noise
source level of ships. Journal of Ship production and design, 2014, vol.
30, no 1, p. 7-14.

[4] NEDWELL, J., LANGWORTHY, J., et HOWELL, D. Assessment
of sub-sea acoustic noise and vibration from offshore wind turbines
and its impact on marine wildlife; initial measurements of underwater
noise during construction of offshore windfarms, and comparison with
background noise. Subacoustech Report ref: 544R0423, published by
COWRIE, 2003.

[5] ERBE, Christine, LIONG, Syafrin, KOESSLER, Matthew Walter, et al.
Underwater sound of rigid-hulled inflatable boats. The Journal of the
Acoustical Society of America, 2016, vol. 139, no 6, p. EL223-EL227.

[6] IKPEKHA, Oshoke. Underwater acoustics propagation analysis and
modelling of sound emitting devices. 2017. Thèse de doctorat. Dublin
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