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Agricultural Classes Using a Convolutional

Autoencoder Applied to Temporal
SAR Signatures

Thomas Di Martino , Graduate Student Member, IEEE, Régis Guinvarc’h ,

Laetitia Thirion-Lefevre , and Élise Colin Koeniguer

Abstract— We present a fully unsupervised learning pipeline,
which involves both a projection method and a clustering algo-
rithm dedicated to the pixel-wise classification of multitemporal
SAR images. We design a Convolutional Autoencoder as the
method to project our time series onto a lower dimensional
latent space, where semantically similar temporal signals are
placed close together. The additional use of convolutional layers as
feature extraction steps allows us to exploit the sequential nature
of time series, exhibiting higher representation performance than
fully connected layers. The extracted clusters can encapture
different semantic levels to either separate classes or extract
outlying temporal signals. The application of this method to crop-
types mapping enables the extraction of major crop-types within
a scene, without supervision. In a labeled context, this method
also allows for the extraction of outlying profiles which can lead
to the discovery of mislabeled time series.

Index Terms— Agriculture, autoencoder, machine learning,
SAR, time series, unsupervised classification.

I. INTRODUCTION

THE temporal analysis of SAR backscattering signal has
proven itself useful in a wide variety of applications such

as urban ([1], [2]), forest ([3], [4]), cryosphere [5], or agri-
culture monitoring ([6]–[8]). Statistics specific to the temporal
behavior of radal signals can be used for scene characterization
and discrimination, an example of which being the coefficient
of variation for crop area classification [9].

Crop monitoring, in particular, has benefited from various
studies leveraging the potential of SAR time series for clas-
sification and segmentation tasks. Blaes et al. [10] combines
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ERS-2, RADARSAT-1, and optical images, and demonstrates
the capability of SAR time series to identify crop-types in a
multisensor context. Radar-only methods are explored by [11]
where the authors classify crops using a Random Forest
model evaluated on RADARSAT-2 quad-polarimetric C-band
images. The explanatory ability of the tree-based methods pro-
vided a better understanding of the contribution and temporal
acquisition of each band to the final classification process,
highlighting the utility of each of them in the multitemporal
analysis of SAR data.

However, quad-polarization is not always an option: [12]
carry out an analysis of the potential of Sentinel-1 images
for agricultural land cover measurements, demonstrating the
individual and mutual usefulness of both VV and VH polar-
izations. The short time interval between acquisitions, up to
six days with Sentinel-1 imagery, is proven crucial for
efficient parcel monitoring. Additionally, both copolariza-
tion and cross-polarization play a determinant role in the
classification, which agrees with the observations made by
Deschamps et al. [11].

Nevertheless, these studies were all based on labeled data,
which can come with several issues.

1) In Machine Learning applications, the quality of an algo-
rithm is highly dependent on the quality of the supplied
data as studied by Sessions and Valtorta [13], where
the impact of mislabeled data on Bayesian Networks
performance has been explored and proven detrimental.

2) Additionally, the obtention of correctly labeled data
from trusted sources can be a difficult task in some
remote-sensing contexts. For example, the issue of crop-
type mapping without labels has been explored by
Wang et al. [14].

3) Finally, the framework that classes impose on the data
can sometimes dismiss phenomenons that could other-
wise have been detected, such as intraclass variance.
The presence of labels assumes a causal or correlated
relationship between the recorded data and the classes,
which might not always be the case. For instance, [15]
present the impact of different levels of label semantic
on classification algorithms, expliciting the limit that
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single-level data labeling can have to encapture the
nuances hidden within remote-sensing data.

Hence, carrying out SAR time-series analysis using an
unsupervised paradigm can bypass these potential problems.
Lavreniuk et al. [16] present a study where a sparse autoen-
coder architecture is used to classify crops temporal profiles.
However, in this study, the autoencoder architecture was only
used as a pre-training tool, and the entire network was fine-
tuned for the in situ classification task. Additionally, the archi-
tecture used, a sparse autoencoder, did not exploit the prior
sequential properties of an SAR time-series, which implies
that the temporal analysis of an SAR signal was not fully
leveraged.

Building on this line of work, we add convolutional layers
as feature extractors for the autoencoder architecture in a
fully unsupervised training paradigm. Temporal convolutional
neural networks have shown their potential for supervised
classification of satellite image time series ( [17], [18]).

In this article, we evaluate an unsupervised deep learning
method to perform pixel-wise classification of SAR time
series. The absence of labels in the training phase help to
tackle the issues mentioned above. Our main contributions are
as follows.

1) We design a convolutional autoencoder (CAE) as an
unsupervised method for learning low-dimensional rep-
resentation of SAR time-series that can then be useful in
a wide variety of contexts. This model takes advantage
of the sequential nature of SAR time series for its
representation task.

2) We present a meta-algorithm to perform unsupervised
pixel-wise classification of Multitemporal SAR images
by exploiting the latent representation extracted from our
CAE model with a k-Means clustering algorithm.

3) We compare the CAE method to other projection func-
tions used in the literature, such as the principal compo-
nent analysis (PCA) or the stacked autoencoder (Stacked
AE). We show that our method achieves higher classifi-
cation performance than the aforementioned approaches,
manifesting its higher sensibility to interclass variance.

4) Finally, we explore the capabilities of our method to
extract outlying temporal profiles within a class-bounded
context, and we show its ability to project SAR time
series onto latent spaces retaining a larger amount of
information than other projection methods, illustrating
its sensibility to intraclass variance.

II. METHODOLOGY

A. Context

Given a series of T coregistered SAR images, acquired at
regular time interval, we define this stack of images as a
flattened list of time-series l = {pi,∀i ∈ �1, N�} where N
is the number of pixels in a single image. Each of these time
series can then be written as pi = [p(1)

i , p(2)
i , . . . , p(T )

i ], where
p(t)

i can be a vector of values: in our context of incoherent
Sentinel-1 time series, p(t)

i contains the respective backscatter
values of both VV and VH polarizations, modeling pi as a
bimodal time series.

Fig. 1. Illustration of the semantic hierarchy studied by our method. The first
semantic level, in blue, models interclass variance while the second, in orange,
models intraclass variance.

Our objective is to extract major temporal profiles from l.
For that matter, we present a methodology that works on two
levels, drawing out both:

1) the major time series profiles from SAR multitempo-
ral images. We explicit here what we call Interclass
Variance.

2) and variants of the major profiles found within the
groups of time series, as mentioned above. These vari-
ants correspond to what we call Intraclass Variance: they
explicit differences of smaller magnitude within classes
that might otherwise be overlooked.

This idea of a hierarchy of labels is presented in a remote-
sensing context by Shin et al. [19] for target detection with
four different semantic levels. We aim to explicit with our
method only two semantic levels within a dataset of SAR time
series, as presented in Fig. 1. The notions of class and subclass
are placeholders for different degrees of variation in data that
are extracted in an unsupervised manner and hence, are not
necessarily aimed at illustrating handmade labels.

Our methodology, as described in Fig. 2, consists of multiple
steps with the ultimate objective of performing pixel-wise
unsupervised classification by exploiting the temporal profile
of SAR time series.

1) We first project SAR time series onto a lower dimension
space, with higher data separability, using a CAE.

2) We normalize the newly learned representation to a
range of values of 0–1.

3) We run a clustering algorithm, such as k-Means, on these
representations.

B. SAR Time-Series Projection With CAEs

While the presence of labels can prove itself detrimental in
some contexts, it still fits a wide variety of applications and
algorithms. Working with an unsupervised paradigm implies
the use of other strategies, gaining insights entirely from
data. In a big-data context with large regions covered, deep
learning solutions provide the representational tools to extract
discriminating information from data.

An example of such tools is the autoencoder: presented
initially as equivalent to a Nonlinear PCA by Kramer [20],
it consists of a three-layer neural network. It is first tasked
with projecting the input data onto a lower dimension plane
and then, reconstructing the original input using its projected
self.

This process can be written down as

p̃ = d(e(p)) (1)
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Fig. 2. Description of our pixel-wise classification method.

where

1) e : R
n → R

t is the encoder function, charged with
mapping the input data X onto a latent representation
of lower dimension (n > t);

2) d : R
t → R

n is the decoder function, charged with
reconstructing the original input using X ’s latent repre-
sentation created by e;

3) p̃ is the reconstructed version of input p.

The gradient backpropagation [21] from the reconstruction
task will train the network to map input data onto a lower
representational space with as little information loss as pos-
sible while also getting rid of potential noise. The newly
learned representation, also called embeddings, are dense in
information. The absolute value of the embedding has mean-
ing only to the network itself. However, data samples with
relative similarities will have close embedding values, making
these learned representations exploitable in any distance-based
unsupervised algorithm such as k-Means clustering.

Autoencoders, as illustrated in Fig. 3, are a popular
method for unsupervised problems in a remote-sensing context
([22]–[24]). Their capabilities to project similar data objects
onto similar latent spaces is the main reason for their use.
As described in (1), a shallow autoencoder architecture is made
of two components: the encoder and decoder. Given a set of
(1, T )-sized vectors l = {pi,∀i ∈ �1, N�}, we can define each
of these components as consisting of two sets of learnable
weights.

1) A Weight Matrix W: We for the encoder, with a size
of (T, Temb) and Wd for the decoder, with a size of
(Temb, T ).

2) A Bias b: be for the encoder, with a size of (1, Temb)
and bd for the decoder, with a size of (1, T ).

The equations of a forward-pass through an autoencoder are
described in (2) and (3) where the dimension of the projected
version of p, written ε, is (1, Temb)

ε = e(p) = σe(p ·We + be) (2)

p̃ = d(ε) = σd(ε · Wd + bd). (3)

In addition to the weight matrices and the biases,
the encoder and decoder are also endowed with an activation
function σ , allowing the autoencoder to learn a nonlinear
lower-dimensional mapping, therefore improving reduction
performance over PCA [25].

The autoencoder’s weights are learned using backpropaga-
tion through a mean square error objective, presented in (4),

Fig. 3. Autoencoder architecture.

computed between the input vector p and its reconstructed
version p̃

L(p, p̃) = 1

T

T∑
i=1

(p(i) − p̃(i))2. (4)

We train the network to minimize the reconstruction error,
that we call L. This strategy incentivizes the preservation
and encoding of the discriminating features of the original
time series, while getting rid of potential noise. Hence, when
working with the learned representation of the input data
pemb, we observe improved separability between data objects
considered different. The degree of difference that our model
is sensible to is relative to each dataset: thus, this method
can be applied to separate profiles with different scale of
variations.

However, a fully connected network does not exploit the
potential internal structure of data (e.g., the spatial coherence
between pixels in images). Hence, we can encode a prior
regarding the data structure to decide the type of model
used. In our case, time series have a sequential property,
thus fitting deep learning models that acknowledge concepts
of spatial or temporal neighbors such as convolutional neural
networks [26]. Therefore, our model is slightly changed with
extra modules added to the original autoencoder architecture,
as described in Fig. 4.

First, a stack of 1-D convolutional layers precedes the linear
layer: its objective is to extract relevant temporal features
from the time series. In an agricultural context, it can, for
example, be helpful to extract temporal events such as peaks
in the temporal signal of a crop area. This aggregate of
features, extracted by the convolutional layers, no longer has
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Fig. 4. CAE architecture.

any structure, and it can be passed on to the same linear layers
as with the usual autoencoder, presented above in Fig. 3.

Finally, the reconstruction process uses a linear layer to map
the embedding to the original time series.

In the context of SAR, the latent representation of a radar
time series, as the output of the encoder function, has the
potential to model similar data samples as similar latent
vectors: the concept of similarities can include similarities in
periodicity, in values or, in the event. These similarities can
then be exploited by a distance-based clustering algorithm,
such as k-Means.

C. Clustering of SAR Time-Series’ Embeddings Using
k-Means Algorithm

As a result of the application of the CAE algorithm,
we transform our initial list of time series l into a list of
embeddings lemb = {e(pi),∀i ∈ �1, N�}. The lower dimension
of the encoding allows for easier computation of the k-Means
algorithm, as detailed by MacQueen et al. [27]. The Lloyd’s
variation of the k-Means algorithm, described by Lloyd [28],
has an order of complexity proportional to the dimension of
the data: a reduction of a factor r of the dimension of the input
time series accelerates the k-Means algorithm by r times.

Additionally, the initial time series may have redundancy
of information, which will be removed by projecting it onto a
lower dimensional latent space.

The result of the application of the k-Means algorithm on
lemb is a list of cluster affectations lc = {ci ,∀i ∈ �1, N�}
where ci ∈ �1, k�, with k being the number of clusters, set as
a parameter of k-Means.

III. APPLICATION TO A SIMULATED ENVIRONMENT

Our method’s performance depends on the representational
capabilities of the model used to project our time-series
onto lower-dimension vectors, which are then exploited by
k-Means, as described in Section II-B. As a matter of demon-
stration, we design an experimental environment to demon-
strate the CAE’s capabilities at this task, compared with the
temporal mean, a PCA, and a standard Stacked AE.

Fig. 5. Temporal Profiles of the nine artificially generated targets, without
speckle. The first row of profiles, in shades of blue, aims at modeling
a seasonal component. The second row of profiles, in red/orange/yellow,
represents an ephemeral change of similar magnitude, happening at different
point in time. The last row of profiles, in shades of green, represents different
seasonalities all being subject to the same permanent change.

A. Experimental Design

1) Synthetic Data Generation: We compute a simulated
multitemporal SAR image: it consists of 240 dates modeled
as two-channels SAR images of 300 × 300 pixels. These
240 dates can be translated into two years of SAR data,
if considering a three-day revisit time.

In addition to that, nine square-shaped targets, each
of 30 × 30 pixels, are present on an empty background
designed to have a constant temporal response of −30 dB.

The targets in question model different temporal behavior,
as displayed in Fig. 5, with a focus on seasonality, ephemeral,
and permanent changes. These three types of temporal changes
have been used in the literature to map different profiles
of environment: for instance, seasonality can be used to
map vegetated areas [29], ephemeral change can indicate the
presence of target objects [30], and permanent changes are
often used as signs of urban expansion [31].

Thus, we design the behaviors of the nine targets to consti-
tute a hierarchical structure: we define a higher level degree
of separation between the signals for representing seasonality,
the ones that model an ephemeral change, and the ones that
model a permanent change. In addition to that, we define a
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Fig. 6. Three-level class separation hierarchy for our generated artificial
profile. The first level corresponds to the extraction of targets from a static
background; the second level corresponds to the differentiation of the three
main classes of targets; the third and last level corresponds to the split of each
of these classes.

lower level degree of separation within each class: for instance,
we consider the difference in seasonality strength between the
first three signals as a discriminating feature.

In that way, we can define a three-level label hierarchy
as presented in Fig. 6. The first level, (extraction of targets
on a static background) is considered trivial in our situa-
tion as the difference in backscatter value between targets
and the background is in a matter of 15 dB. We consider
the second level of differentiation (i.e., seasonal, ephemerous,
and permanent) as a representation of the aforementioned
interclass variance while the third level explicits intraclass
variance.

We add speckle to the multitemporal scene by generating
its amplitude signal using a Rayleigh–Nakagami distribution,
according to [32], which probability density function is pro-
vided in the following equation:

RN[μ, L](u) = 2

μ

√
L

�(L)

(√
Lu

�(L)

)2L−1

e
−

(√
(L)
μ u

)2

. (5)

The two parameters μ and L of the distribution, respectively,
control the scale and spread of the sampled values. For that
matter, we tuned these parameters to make the original signal
harder to perceive while retaining the original signal’s shape.
We parameterize the speckle of our multitemporal scene using
μ = 0.5 and L = 1.

As a matter of illustration of the generated data, Fig. 7
presents the state of the scene at the 60th timestep, where the
nine targets are identifiable as squares laid out on a 3×3 grid.

2) Training Protocols: We designed all the previously
mentioned methods to perform the same transformation f :
R

T×2 → R
2, projecting multimodal SAR time series onto a

lower dimensional space of size 2. The choice of the dimension
derives from several reasons: on the one hand, to push the
candidate methods to their representation limits, while, on the
other hand, to facilitate visualization of the projected data.

The designs of the Stacked AE and CAE model used in our
experiments are presented in Fig. 8. The CAE architecture

Fig. 7. Image extracted from the temporal stack acquired at the 60th timestep,
with pixel values expressed in decibel. The assigned classes, from the top-left
square to the bottom-right are: 1, 2, 3, 4, 5, 6, 7, 8, and 9. The first row
corresponds to seasonal behavior, the second to ephemerous change, and the
third to permanent change.

TABLE I

TRAINING PARAMETERS FOR EACH METHOD

reuses exactly the same fully connected architecture than the
Stacked AE and adds feature extractors beforehand.

The hyperparameters used for training our three models
(PCA, Stacked AE, and CAE) are shown in Table I where
we see similar setup for both the Stacked AE and the CAE
models.

3) Evaluation: Through the scope of this simulation, our
objective is to demonstrate the capabilities of our method
to take into account interclass and intraclass variance. For
the former, we expect the CAE to project the three types
of components (seasonal, ephemeral, and permanent change)
further away from each other. For the latter, we expect
to find a separation within each of these three types,
between their varying elements. The degree of separation
between component types must be higher than the separation
between their elements to respect the established semantic
hierarchy.

For that matter, we use the silhouette score evaluation,
initially introduced by Rousseeuw [33] and presented in Fig. 9.
The objective of this metric is to measure the sparsity of the



Fig. 8. Presentation of the stacked (a) AE and (b) CAE architectures.

Fig. 9. Definition of the parameters involved in the silhouette score.

low-dimension embedding space regarding the input classes.
This objective is split in two subobjectives: 1) the closer
together data samples of same classes are, the better the
silhouette score will be and 2) the further away from one
another data samples of different classes are, the better the
silhouette score will be. For these two task, we introduce the
following concepts to define the silhouette score:

1) an element i ∈ Rt , resulting from the encoder function;
2) a function a that retrieves the average distance of i with

the other elements of its own cluster;
3) and a function b that retrieves the distance between i

and the closest cluster centroid.

To explore the unsupervised separation of classes, we use true
labels as cluster affectation. Thus, spread-out class represen-
tations will be penalized, while compact representations will
be valorized. For each projected element i , we can define the

Silhouette score s using the following equation:

s(i) = b(i)− a(i)

max(a(i), b(i))
. (6)

The silhouette score function lower-bound value is −1
and upper-bound value is 1. A value close to −1 is a sign
of overlapping classes, meaning that the projection method
cannot separate elements of distinct classes. On the other hand,
a value close to 1 is a sign of well-separated and tightly
modeled classes.

In our case, we apply the silhouette score to the output of
the projection methods. Hence, to measure the performance
of a projection method f , we compute the average silhouette
score s f of over the whole projected dataset as shown in the
following equation:

s f = 1

N

N∑
i=1

s( f (pi)). (7)

To measure the sensitivity of each method to interclass and
intraclass variance, we will evaluate the silhouette score in
two contexts.

1) We calculate the silhouette by considering the label
of second level; that is, the seasonal, ephemeral, and
permanent classes.

2) We then proceed to evaluate, within each of these
second-level class, the silhouette score between their
respective three subclasses. We then obtain three average
silhouette score depicting the sensibility to intraclass
variance, one per second-level label.
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Fig. 10. Scatter plot of the projected dataset for each of the four candidate
methods at projecting simulated SAR time series with display of true labels.

TABLE II

SILHOUETTE SCORE OF EVALUATED METHODS TO ASSESS

THEIR SENSIBILITY TO INTERCLASS VARIANCE

B. Experimental Results

For this experiment, we run our four candidate methods
(Temporal Mean, PCA, Stacked AE, CAE) on our 90 000 sim-
ulated temporal profiles and we evaluate the resulting embed-
ding using the aforementioned silhouette score. The results of
these runs, displayed in Fig. 10, explicit, to different degrees,
the PCA and temporal mean’s limitations at representing
discriminative descriptor from the SAR time series. These
results in overlapping clusters (i.e., classes 7 and 8 for the
PCA). However, this overlapping phenomenon is present with
a small subset of points, generating a noticeable but moderated
decrease of the silhouette score.

Concerning the Stacked AE and CAE, while they both per-
form well in the separation of each class into distinct clusters,
we notice that the clusters for the ephemeral change class
resulting from the Stacked AE are completely overlapping.
While some overlap exists with the CAE representation, it is
to a lesser extent.

As a matter of fact, we can note that both autoencoder
architectures display signs of sensibility to interclass and
intraclass variance. We notice that classes of similar temporal
behavior (represented with various shades of the same color)
are projected onto latent spaces close to one another. How-
ever, the tendency to have more spread out cluster that we
find in the Stacked AE architecture show lesser performance
when projecting similar temporal profiles onto the embedding
space.

Fig. 11. Illustration of the BXII Sector (36◦59 N 6◦06 W) and Reference
crop types data over a Sentinel 1 σ0 VH polarization image acquired in orbit
74 on the January 3, 2017.

Quantitative results of these methods are presented
in Tables II and III, which corroborates qualitative observa-
tions regarding the higher performance of the CAE architec-
ture at projecting SAR time series onto more separable latent
space, without the need for labels for training. On average,
we see that the CAE architecture is the most sensible to both
interclass and intraclass variance with the highest silhouette
score when evaluating the former and two out of three highest
when evaluating the latter. A noticeable improvement from
the CAE over the Stacked AE projection performance is done
on detecting the intrinsic variations of the ephemeral class:
while the Stacked AE method mixed the representations of
the subclasses, the CAE was able to separate them to a much
higher degree, as testifies their difference in silhouette score
in this category (0.151 against 0.698).

While our method displays higher representational capabil-
ities on synthetic data, we still need to validate its use on
real-life data examples.

IV. APPLICATION TO REAL-LIFE DATA

A. Environment Description

Originally introduced by Mestre-Quereda et al. [34],
the test site illustrated in Fig. 11 is an agricultural area
located in the comarca of Bajo Guadalquivir, close to
Seville, Spain, entitled BXII Sector. The dataset consists
of T = 60 Sentinel-1 images of 2017 cropped over the
study area. This stack of Single-Look Complex images was
preprocessed as presented by Mestre-Quereda et al. [34]. The
characteristics of the Sentinel data used in this study can be
found in Table IV.

Once reduced to a list of time series, the scene is made of
N = 1 786 356 data points, corresponding to a 10 × 10 m
resolution cell. Each of these data points is a time series of
σ0 incoherent backscatter coefficient, expressed in decibel, for
both VV and VH polarizations.

In addition to Sentinel-1 imagery, reference data covering
the different crop types of the scene is available. Each of
these time-series pi , ∀i ∈ �1, N�, is labeled with yi , where
yi ∈ �0, C� with C = 16 and 0 being the label of unlabelled
time-series (e.g., paths among the crops). The available classes



TABLE III

SILHOUETTE SCORE OF EVALUATED METHODS TO ASSESS THEIR SENSIBILITY TO INTRACLASS VARIANCE

TABLE IV

SENTINEL 1 DATA ACQUISITION CHARACTERISTICS USED FOR THE

STUDY OF THE SECTOR BXII CROP TYPES, IN 2017

are Wheat, Maize, Fallow, Sunflower, Chickpea, Alfalfa, Cot-
ton, Sugar beet, Potato, Sweet Potato, Pepper, Onion, Carrot,
Pumpkin, Tomato, and Quinoa.

Once we average between the temporal signal of every
element of each class, we can define a standard signature for
each label, as presented in Fig. 12. Multiple classes exhibit
signs of similarities in temporality, such as Tomato and Pepper,
for instance.

B. Interclass Variance: Unsupervised Learning for Crop
Types Classification

To illustrate our method’s representational capabilities,
we apply our unsupervised pixel-wise classification algorithm
to the provided Seville data and assess its ability to extract
class-specific information solely from data.

To make our results comparable with the traditional super-
vised learning strategy used by Mestre–Quereda et al. [34],
we performed the following procedures.

1) Restricting the time series to use the same ones as [34],
thus excluding the class of rice for this comparison.

2) Splitting our dataset into a training and a test set using a
50% ratio, where the split data is used for training both
our projection methods and our clustering algorithm.

In addition to comparing our method to a supervised strategy,
we also compare the abilities of the PCA and the Stacked
AE to generate class-discriminant representations through the
scope of k-Means clustering. For the supervised learning
algorithm, we opt for a Random Forest, initially introduced

TABLE V

TRAINING PARAMETERS FOR EACH METHOD, APPLIED TO SEVILLE DATA

by Breiman [35]. The hyperparameters for the three studied
methods are detailed in Table V. For the sake of performance
comparability with experimentation on artificial data, only the
number of epochs was changed and set from 50 to 100, as the
dataset size also increased.

In addition, we adapted the architecture of our Stacked
AE and CAE architectures to the context data, as pre-
sented in Fig. 13(a) and (b). The main differences are the
removal of one convolution block (Conv1D + MaxPool1D+
BatchNorm1D + ELU) in the CAE’s encoder as well as a
fully-connected layer in both Stacked AE and CAE’s encoder
and decoder. Once trained, we use each method to generate
a lower dimension version of our time series that we then
cluster using the k-Means algorithm. Finally, we affect a class
to each of these clusters using a voting majority strategy.
We then measure the performance of this affectation process
using an accuracy metric. Hence, the better the projection
method, the higher the final classification accuracy is. The
whole classification process is presented in Algorithm 1.

Data labels are never used in a training sequence (neither
when training the projection method nor when generating
clusters), but only as a means to assess the level of class-
specific discrimination that each method can capture from
an SAR time series. As illustrated in Table VI, it appears
that the CAE method is the best at projecting SAR time
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Fig. 12. Average time-series of σ0 backscattering coefficient, in decibel, for VV and VH channels of each class, with the addition of class-specific standard
deviation, for each acquisition, as a solid thick line.

Algorithm 1 Classification Algorithm for a Given Projection
Method f , Using a List of Time-Series l and a List of Labels
y
1: function UNSUPERVISED CLASSIFICATION(l, y, k)
2: lemb ← f (l) � Data projection
3: lc ← kmeans(lemb, k) � Clusters generation
4: for cluster = 1 to k do
5: cluster_class ← maxcount (lc, cluster, y)
6: ypred[lc == cluster ] ← cluster_class
7: end for
8: return accuracy(y, ypred)
9: end function

series onto spaces where their true labels are separable by
clustering algorithms such as k-Means. As expected, the

TABLE VI

COMPARISON OF THE REPRESENTATIONAL ABILITIES OF

EACH METHOD THROUGH A CLASSIFICATION TASK

worst-performing reduction method is the PCA, followed by
the Stacked AE and the CAE architecture.



Fig. 13. Presentation of the stacked (a) AE and (b) CAE architectures for the task of modeling S1 σ0 time series over Sector BXII.

Additionally, we see that the performance of unsupervised
methods is not far off from supervised algorithms, and they
seem to show a higher transferability of performance between
the training and the test set.

The classification results of the methods, once mixing
training & testing predictions is visually displayed in Fig. 14.
For a more detailed analysis of classification performance,
we display, respectively, the training and testing confusion
matrices for our four methods in Figs. 15 and 16.

When comparing the three unsupervised methods, we find
that the CAE architecture is able to isolate more different
temporal profiles. For example, while not being perfectly
predicted, some samples from the carrot class are correctly
predicted and isolated into a specific clusters when using the
CAE architecture. When looking at both the Stacked AE and
PCA methods, we observe no prediction for the carrot class,
implying that its profile was not extracted as different. The
same observation can be made, for a lesser extent, about the
onion class.

However, a lot of classes are missed by our method such as
the pumpkin class, predicted as being either cotton or tomato.
We notice that this misclassification also happens with our
supervised algorithm, as displayed in Fig. 16(d): this can be
linked to the bell-shaped curve of the VV and VH average
temporal profiles, shown in Fig. 12, of the pumpkin class being
similar to the profiles of the two aforementioned majority
classes. Hence, as expected, our unsupervised training strategy
has similar limits than supervised algorithms at extracting

temporal classes from a scene, but without the use of any
training labels for the generation of the clusters, acting as
pseudo-classes.

Other misclassified samples belong to class with highly
different temporal profiles. For example, in the CAE training
phase displayed in Fig. 15(c), we notice more surprising
classification errors with around 5000 time series of cotton
crops (approx. 2% of all the class training population) wrongly
classified as sugar beet and 4000 of sugar beet (approx.
3% of all the class population) wrongly classified as cotton
crops. However, the average temporal profiles of each class are
widely different, as shown in Fig. 12. These misclassifications
are very likely to be signs of out-of-distribution samples.
Thus, carrying an unsupervised learning analysis of a supplied
training set allows for the detection of such outlying profiles.
To better evaluate the potential of our method at this task of
outlier extraction, we investigate the embeddings of the cotton
class.

C. Intraclass Variance: Detecting Temporal Variations Within
the Cotton Class

1) Extraction of Intraclass Variations: We show in
Section IV-B the sensibility of the CAE architecture to inter-
class variance such that, when combined with a k-Means
algorithm, we can retrieve class information within the gen-
erated clusters. Nonetheless, as mentioned above in Section I,
the presence of labels can limit the analysis of SAR time-
series and disregard class-intrinsic variability. Elements such



DI MARTINO et al.: BEETS OR COTTON? BLIND EXTRACTION OF FINE AGRICULTURAL CLASSES

Fig. 14. Visual comparison of each method’s classification performance.

as outliers will disappear under the higher semantic level of
labels but can be retrieved when working with unsupervised
algorithms. For instance, a manifestation of said class-wise
outliers is shown in Section IV-B with cotton-labeled crops
being classified as sugar beet, despite their difference in
average temporal profile.

To investigate the CAE architecture’s potential at detecting
intraclass variations of SAR time series of crops, we consider
its representation of the most common class: cotton.

Illustrated in Fig. 17, we see the respective scatter plots of
our three studied methods. The x- and y-axis, respectively,
correspond to the first and second components of each low-
dimension time-series representation. While the representa-
tions extracted by the PCA and the Stacked AE result in a
cluttered configuration, we observe more sparsity in the CAE
representations, with what appear to be four groups of data,
separated by gaps in data.

TABLE VII

CARDINALITY OF EACH CLUSTER EXTRACTED FROM THE
CAE EMBEDDINGS OF THE COTTON CLASS

When we isolate each of these clusters and compute their
average multipolarization temporal profile, we obtain the
results of Fig. 18. According to Table VII, we observe that
the major temporal behavior of cotton crops correspond, for
95% of the crops, to the profile of Cluster 4.



Fig. 15. Confusion matrices of each method, applied to training data, normalized and sorted by class cardinality. (a) PCA confusion matrix. (b) Stacked AE
confusion matrix. (c) CAE confusion matrix. (d) RF confusion matrix.

TABLE VIII

CROP CALENDAR OF SECTOR BXII FOR CLASS OF INTEREST

We cross-reference in Fig. 19 the temporal changes within
the fourth Cluster with Sector BXII’s crop calendar pre-
sented in Table VIII and we observe a visual correlation
between the cotton crop calendar and the average temporal
profile of Cluster 4. For instance, the progressive increase
in VV and VH signal spans over the period between the
sowing month (April) and the senescence month (September).
A decrease in signal over October is consistent with the
harvesting period of cotton. Additionally, within the fourth
cluster, the dates with the highest standard deviation between
different cotton crops, represented in Fig. 18 using thick lines,
are at the end of the time series, in the second half of
December. This period, acting as a transition between annual
crop types, can be a source of variation in the temporal signal
of parcels.

Apart from the time series represented in cluster 4, outlying
temporal profiles are retrieved within clusters 1, 2, and 3.
The increasing degree of difference between each cluster
average temporal profile and the cotton class shows through
the topology of the scatter plot, where the cluster 3, having a
temporal signature the most similar to cotton, out of the three
clusters, appears to be the closest to the regular cotton cluster,
represented by the cluster 4.

We see that we can detect intraclass outlying profiles by
exploiting their projected representation, especially within
the context of mislabeled data points. We now want to
check if we can draw similar insights from other projection
methods.

In Fig. 20, we notice that while the elements of the different
clusters display a significant difference between their temporal
characteristics, only the CAE architecture achieves to project
them onto a more sparse latent space, where we observe a
clear frontier. For instance, if we take the example of cluster 1,
we notice that despite being on the edge of both the PCA and
the Stacked AE clutters, it is still visibly close to the rest of
the embeddings. This behavior illustrates the difference in the
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Fig. 16. Confusion matrices of each method, applied to unseen data, normalized and sorted by class cardinality. (a) PCA confusion matrix. (b) Stacked AE
confusion matrix. (c) CAE confusion matrix. (d) RF confusion matrix.

Fig. 17. Comparison between each method projection results. X-axis: First component of the 2-D vector resulting of the application of each method. Y -axis:
Second component of the 2-D vector resulting of the application of each method.

projection capabilities of the various methods and the greater
sensitivity of the CAE architecture to temporal outliers.

2) Investigation of the Extracted Clusters: The appar-
ent separation of data within the cotton class into four

aforementioned clusters can be linked to mislabelled data.
To support this claim, we investigate the similarity of the
potentially mislabeled crops with the other temporal profiles of
the scene. For that matter, we evaluate the average distance of



Fig. 18. (Left) Scatter plot of the CAE Embeddings with cluster-specific color coding. (Right) Plots of the average 2017 S1 temporal profiles for each of
the four clusters extracted from the CAE Embeddings of the cotton class with per-date standard deviation modeled using a thick line centered around the
average temporal profile.

Fig. 19. Display of the cotton crop calendar of 2017 over Cluster 4 average temporal profile in VV and VH polarization.

these outlying clusters to the average temporal profile of each
class using a similarity metric. For that matter, we compute the
normalized per-class average Euclidean distance between the
time series of the outlying cotton data points and the average
time series of the class, computed using data samples from
the training set, as presented in (8) where �ts(cluster, class)
corresponds to the normalized Euclidean distance between a

given cluster and a given class

�ts(cluster, class) =
√∑T

i=0

(
pclass

(i) − pcluster
(i)
)2∑nclass

c=0 �ts(cluster, c)
. (8)

We write pclass the average temporal profile of a given class
and pcluster

(i) the average temporal profile of a given cluster.
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Fig. 20. Comparison between each method projection results with visualization of Fig. 18 clusters.

TABLE IX

DISTANCES BETWEEN EACH CLUSTER CENTROID TIME SERIES AND

EVERY CLASS AVERAGE TEMPORAL PROFILE

The result of the distance calculation for each of the four
clusters is displayed in Table IX.

Table IX shows the results of the distance computation.
We can make two interpretations from these distances:

1) A first observation regards the fact that it is highly
unlikely for the data samples of the first three clusters
to be cotton crops because of their respective distance
with the cotton class being higher than most of the other
classes.

2) We make a second observation, regarding their actual
true label. We can suppose that their respective real
label correspond to the class with the average temporal
profile the closest to each cluster’s temporal profile.
Hence, we can map them, respectively, to the sugar beet,
the fallow and the tomato class.

The data samples of cluster 1, being the most separated from
other usual cotton crops embedding, are also the ones with the
greater distance toward the cotton class. Additionally, we can
link the elements of this cluster with the cotton class data

TABLE X

CROP CALENDAR OF SECTOR BXII FOR SUGAR BEET CROPS

samples classified as sugar beet in Figs. 15(c) and 16(c).
These observations favor the idea of mislabelled examples.
To ultimately support this observation, we will visually
explore the potentially mislabeled parcels with the help of
Sentinel-2 multitemporal RGB images, acquired over the same
2017 period. As a crop type with high physiological and
growth process differences with cotton, we expect the sugar
beet class to be distinguishable from cotton through optical
observations.

3) Cross-Referencing Suspected Mislabelled Data With
Sentinel-2 Optical Imagery: To differentiate sugar beet from
cotton using optical imagery, we exploit two dates where crops
of the respective category are in different state.

When comparing the state in time of cotton, as presented
in Table VIII and of sugar beet, as presented in Table X, two
months appear to be ideal to distinguish the two classes.

1) During the month of April, cotton crops are being sowed
while the beets are already in a state of full cover.

2) During the end of the month of August, where cotton
crops are at the end of their growth process and sugar
beets are already harvested.

Presented in Figs. 21 and 22, the outlying cotton-labeled
crops of the aforementioned Cluster 1 are displayed as white
pixels over Sentinel 2 RGB imagery.

As expected, we notice visual difference between the data
samples of Cluster 1 and other cotton-labeled data points for
both months. In the month of April, displayed in Fig. 21,
cotton fields are expected to have just been seeded and hence,
should not contain any leaves, contrarily to what can be seen
in Fig. 21(a). On another hand, sugar beets crops are in a state
of full cover, as presented in Table X. In the month of August,
displayed in Fig. 22, we observe the opposite situation: while
cotton crops are in a state of full cover, displaying a deep
green color, sugar beets crops have already been harvested and
hence, are left fallow. Cluster 1 pixels are visibly dissimilar to
other cotton crops as they bear visual resemblance with sugar



Fig. 21. Display of the potentially mislabeled cotton crops using Sentinel-
2 RGB imagery for mid-April. (a) Sentinel 2 RGB Composite (R:H4, G:H3,
B:H2) of the 12th of April. (b) Cluster 1 pixels (in white) displayed over
Sentinel 2 RGB Composite of the 12th of April. (c) Supplied ground-truth
labels over Sentinel 2 RGB Composite of the 12th of April. (d) Display of
the potentially mislabeled cotton crops using Sentinel-2 RGB imagery for
mid-April.

Fig. 22. Display of the potentially mislabeled cotton crops using Sentinel-
2 RGB imagery for the end of August. (a) Sentinel 2 RGB Composite (R:H4,
G:H3, B:H2) of the 30th of August. (b) Cluster 1 pixels (in white) displayed
over Sentinel 2 RGB Composite of the 30th of August. (c) Supplied ground-
truth labels over Sentinel 2 RGB Composite of the 30th of August. (d) Display
of the potentially mislabeled cotton crops using Sentinel-2 RGB imagery for
the end of August.

beet-crops. This visual similitude between Cluster 1 pixels
and sugar beet-crops strengthens our hypothesis that we are
dealing with mislabeled pixels.

Fig. 23. Display of our version of the corrected labeling over the studied
subregion of the Sector BXII. (a) Sentinel 2 RGB Composite (R:H4, G:H3,
B:H2) of the 30th of August. (b) Our proposed local correction of the ground
truth over Sentinel 2 RGB Composite of the 30th of August.

When looking at CAE class predictions, shown
in Figs. 21(d) and 22(d), we notice multiple difference with
the supplied ground truth, shown in Figs. 21(c) and 22(c).

1) A sunflower field, appearing in yellow in the ground
truth image, has been classified by our method as being
tomatoes. When cross-referencing each class’s temporal
average shown in Fig. 12, we observe a high temporal
similarity between sunflower crops and tomato crops.
In addition, when observing Fig. 16, we notice that our
CAE method misclassifies 88% of sunflower crops as
tomato crops, because of their closeness. The supervised
algorithm employed in comparison to our method also
mistakens 25% of sunflowers for tomatoes, showing the
underlying difficulty in the task of differentiating them.

2) The field extracted by Cluster 1 pixels wrongly classified
as sugar beets while supposedly consisting of cotton
crops.

3) A sugar-beet field, located on the right of cluster 1’s
field, is classified as cotton by our method. When analyz-
ing the crops in question, we observe visual resemblance
with surrounding cotton fields, which leads toward the
idea of another mislabeled field, with, this time, sugar-
beet pixels that might actually be cotton pixels.



DI MARTINO et al.: BEETS OR COTTON? BLIND EXTRACTION OF FINE AGRICULTURAL CLASSES

When looking at the layout of the two neighboring crops
with potential mislabelled pixels, we suppose a mistake was
made with each crop’s label being inverted. Our supposedly
corrected ground truth labels are displayed in Fig. 23 where
we exchange back the position of two crop labels to their
supposedly corrected location.

D. Discussion

The conjointed use of CAE and clustering algorithms enable
the extraction of different level of semantics, and we foresee
the potential for a variety of application.

1) We see that in a fully unsupervised scheme, our
methodology was able to retrieve class-specific semantic
embedded within our extracted clusters. This possibility
to perform unsupervised classification benefit from the
scalability of our CAE architecture, which contains only
19.8 k parameters and trains in under an hour, using a
RTX 3090, to cluster 12 × 106 m2 worth of Sentinel-
1 time series.

2) We also show how the use of our unsupervised method-
ology, despite the presence of labels, helps to assess
the quality of data labeling, and to correct potential
mistakes.

V. CONCLUSION

This work investigates and presents the potential of using
a combination of a CAE deep learning architecture and a
clustering algorithm to classify every time series of a mul-
titemporal SAR image without the need for training labels.
This combination’s ability to extract relevant classes relies on
the CAE model’s ability to project time series onto a lower
dimension latent space that captures as much relevant semantic
information from the original SAR time-series as possible.
By doing so, the model represents semantically similar time
series as vector representations close to one another in the
embedding space. We then compare the performance of the
CAE architecture at extracting relevant information to other
commonly used dimension reduction methods: the PCA and
the Stacked AE.

First, we use artificial data with different semantic sep-
arability levels to show the higher sensibility of the CAE
architecture to what we define as interclass and intraclass
variance. Using the silhouette score, we show that the CAE
architecture can project simulated SAR time-series onto a
latent space with less clutter and higher separability between
classes while transferring the classes’ semantic hierarchy to
the latent space.

Then, we exploit a labeled multitemporal Sentinel-1 dataset
of a Spanish crop area to develop our initial observations.
There, we first evaluate our full pipeline’s ability (projection
method + k-Means) to retrieve clusters corresponding to the
provided classes. For this task, we compare the performance of
each three methods using a final prediction accuracy over the
k-Means clusters of embeddings. We show that using a CAE
method as a projection function provides higher representation
potential, which leads to higher prediction accuracy. While
not reaching the performance of a supervised method, we also

show that it still ends up being around 10% less performant,
which allows our pipeline to retrieve most of the class-
level semantic information from a multitemporal SAR image.
In addition to that, we also demonstrate our network’s ability
to extract intraclass variance, which can lead, as seen with
cotton fields, to the extraction of outlying temporal profiles.
Under the supposition that an outlying group of cotton SAR
time series was mislabeled, we showed that the representations
generated by the PCA and the Stacked AE were too cluttered
to extract this information of intraclass dissimilarities. Thus,
it points out CAE architectures’ ability to extract temporal
outliers from a multitemporal SAR image and to, potentially,
extract mislabeled data samples from a labeled training set.

Finally, we establish that future research could exploit
the CAE architecture’s representational capabilities for per-
turbation detection over vegetated areas, where a standard
temporal profile would be learned by the CAE model and
times series with anomalies would be projected away from
normal ones. Following this line of work, large-scale anomaly
mapping could be performed, with the generation of categories
of anomalies while retaining a fully unsupervised learning
training paradigm.
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