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Abstract—In this paper, an unsupervised deep learning ap-
proach is proposed to solve the constrained and non-convex
Shannon rate maximization problem in a relay-aided cognitive
radio network. This network consists of a primary and a sec-
ondary user–destination pair and a secondary full-duplex relay
performing Decode-and-Forward. The primary communication
is protected by a Quality of Service (QoS) constraint in terms
of tolerated Shannon rate degradation. The relaying operation
leads to non-convex objective and primary QoS constraint, which
makes deep learning approaches relevant and promising. For
this, we propose a fully-connected neural network architecture
coupled with a custom and communication-tailored loss function
to be minimized during training in an unsupervised manner.
A major interest of our approach is that the required training
data contains only system parameters without the corresponding
solutions to the non-convex optimization problem, as opposed to
supervised approaches. Our numerical experiments show that our
proposed approach has a high generalization capability on unseen
data without overfitting. Also, the predicted solution performs
close to the brute force one, highlighting the high potential of
our unsupervised approach.

Index Terms—Unsupervised deep learning, full-duplex relay-
ing, Decode-and-Forward, cognitive radio

I. INTRODUCTION

The ever increasing number of communicating devices and
data-hungry applications are challenging the existing technolo-
gies and drive the transition to the next generation of wireless
communications. Future communication systems target highly
ambitious objectives [1] and among the promising candidate
technologies envisioned to reach them are: cognitive radio,
cooperative communications and full-duplexing [2].

On the one hand, cognitive radio and full-duplexing are
promising technologies to enhance the network’s spectral
efficiency. In cognitive radio, a non-licensed network – the
secondary or opportunistic network – is allowed to communi-
cate in under-utilized licensed bands, provided that the impact
on the licensed network – the primary network – is kept below
acceptable levels [3]–[6]. Full-duplex nodes are capable to
simultaneously transmit and receive information, having the
potential to duplicate the spectral efficiency [2].

On the other hand, cooperative communications aim at
improving the network capacity by taking advantage of the
wireless medium, which makes signals sent by a source
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available at all receivers within range [7]. In this setting, some
nodes called relays can enhance other nodes’ communications
by exploiting its non-intended received signals and, hence,
increase the overall network capacity.

The simultaneous blend of all the above techniques holds
the potential to improve both the spectral efficiency and net-
work throughput while providing optimal resource allocation
policies. In this paper, we consider a relay-aided cognitive
radio network similarly to [8], where the opportunistic network
is assisted by a full-duplex relay performing Decode-and-
Forward (DF). Our objective is to find the optimal power allo-
cation policy maximizing the opportunistic achievable Shan-
non rate under a primary quality of service (QoS) constraint by
exploiting machine (deep) learning. The secondary transmitter
and the relay have individual power constraints unlike in [8],
where an overall power constraint was assumed.

Related works: Because of the non-linear and complex
relay operations, the resulting power allocation problems in
such relay-aided cognitive networks are non-convex and can be
solved in closed-form only in special cases, such as: negligible
interference links [5], negligible opportunistic direct links [9],
Compress-and-Forward relaying [8]. Outside these very spe-
cific cases, such power allocation problems become difficult to
tackle and even intractable using traditional techniques based
on convex optimization and game theory.

More recently, machine learning techniques based on deep
learning have been exploited to solve various resource al-
location problems [10]–[16]. In [10], a convolutional neural
network is trained to maximize the spectral and the energy
efficiency of a wireless network composed of several inter-
fering single antenna transceiver pairs under individual power
constraints. The authors of [11] developed a deep neural net-
work (DNN) approach for distributed antenna systems, which
learns the nonlinear mapping between channel realizations
and power allocation schemes of the traditional sub-gradient
algorithm to maximize both the spectral and energy efficiency.
In [12], power control policies based on DNNs in multi-
user wireless networks were proposed. In [13], the authors
maximized via deep learning the sum rate of a fading multi-
user network under minimum rate constraints. In [14], the
authors first solved a general convex functional optimization
problem with stochastic constraints via DNNs and then applied



the general solution to maximize the rate of a point-to-point
additive white Gaussian noise (AWGN) channel and of an
interference channel. Unfortunately, the problem under study
in this paper is not convex and the approach in [14] cannot
be applied. The authors of [15] exploited DNNs based on
autoencoders to solve the sum-rate maximization with respect
to the sub-band power allocation in a downlink multi-cell
network. In [16], the authors studied the power allocation and
relay selection problem maximizing the energy efficiency of an
Amplify-and-Forward relay channel with the help of a DNN.

In the context of cognitive radio networks, various resource
allocation problems have also been tackled via deep learning
[17]–[19]. In [17], the authors have proposed a deep learning
approach for resource allocation problems in cognitive radio
networks maximizing the spectrum and energy efficiency. In
[18], a DNN is used to determine the power allocation over
multiple channels of the opportunistic users. At last, in [19],
a deep reinforcement learning approach is applied to solve a
distributed resource allocation problem.

None of the above works consider jointly cooperative com-
munications (via relaying) and cognitive radio networks, which
significantly increases the difficulty of the problem under
study. Also, these existing methods cannot be readily applied
in our setting.

Our main contributions: In this paper, we propose to
exploit the high potential of deep neural networks to solve non-
convex power allocation problems to maximize the opportunis-
tic achievable Shannon rate under a primary quality of service
(QoS) constraint and individual device power constraints. To
the best of our knowledge, machine learning techniques have
not been employed yet to derive optimal power allocation
policies for relay-aided cognitive radio networks.

More specifically, we leverage unsupervised learning and
design a novel neural network architecture able to solve
the non-convex constrained resource allocation problem. Our
experimental results show that the proposed DNN architecture
is able to minimize a customized loss function that takes
into account both the secondary rate and the primary QoS
constraint, without any overfitting effect while ensuring good
generalization properties over the validation set. Furthermore,
the secondary rate predicted by our proposed DNN for unseen
system parameters (i.e., in the test data) is close to the optimal
one obtained by exhaustive search (or brute force) while
meeting the primary QoS constraint.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system under study, depicted in Fig. 1, is composed of
a primary user or transmitter UP and its destination DP ; a
secondary full-duplex relay; and a secondary user US and its
destination DS , similarly to [5], [8], [9]. The received signals
at the relay, primary and secondary destinations write as

YR = hPRXP + hSRXS + ZR (1)
Yi = hRiXR + hiiXi + hjiXj + Zj , (2)

where i ∈ {P, S}, j ∈ {P, S}\i; XP , XS and XR, of average
power PP , PS and PR respectively, denote the message

Fig. 1. Cognitive relay-aided network.

send by the primary user, the secondary user and the relay
respectively; ZR and Zi denote the AWGN at the relay and at
destination Di of variance NR and Ni respectively. Without
loss of generality, we assume that all noise processes are of
unit variance NR = NS = NP = 1 or equivalently consider
channel gains normalized by the receiver noise variance,
defined as gij =

h2
ij

Nj
. Furthermore, we assume that the channel

gains follow a common fading and path-loss model given as
gij ∼

N (0,σ2
g)√

1+dγij
, where dij denotes the distance between the

nodes i and j and γ is the path loss factor [20]. We let
g , (gij ,∀i,∀j) denote the vector collecting all channel gains
in the network. We assume that the relay performs full-duplex
decode-and-forward (DF) and that the relay can cancel out any
self-interference as in [5], [8], [9]. Also, the messages sent
by the secondary user and the relay are treated as additional
noise at the primary destination; and the primary message is
treated as additional noise throughout the secondary network.
Let Ri, i ∈ {P, S} denote the achievable rate of the primary
and secondary user respectively; and RP denote the primary
achievable rate in the absence of the secondary transmission:

RP =
1

2
log2(1 + gPPPP ).

The primary network allows the opportunistic communica-
tion provided that the following minimum QoS constraint is
met in terms of achievable primary rate [5], [8], [9]:

RP ≥ (1− τ)RP , τ ∈ [0, 1]. (3)

As shown in [8], under DF relaying, the primary achievable
rate is expressed as

RP = C

(
gPPPP

gRPPR + gSPPS + 2α
√
gSP gRPPSPR + 1

)
,

where C(x) = 1
2 log2(1 + x) denotes the capacity of the

point-to-point AWGN channel and α ∈ [0, 1] comes from
the used superposition coding technique and represents the
tradeoff between sending the message from the previous block
and sending a new one. Hence, the QoS constraint in (3) can
be rewritten as Q(g, α, PS , PR) ≤ A, with

Q(g, α, PS , PR) = gSPPS + gRPPR + 2α
√
gSP gRPPSPR,

A =
gPPPP

(1 + gPPPP )1−τ
− 1.
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Fig. 2. Our proposed DNN architecture.

Our main objective is to maximize the opportunistic achiev-
able rate RS , when both the relay and secondary user are
constrained by a maximum power expressed as PR and PS
respectively. The achievable rate region is discussed in details
and provided in [8]. Contrarily to [8], we consider here
individual power constraints on each secondary device, i.e.
secondary user and relay. To sum up, the resulting optimization
problem under study writes as

(OP) max
PR,PS ,α

min {fR(g, α, PS , PR), fS(g, α, PS , PR)}

s.t. Q(g, α, PS , PR) ≤ A, (C1)

0 ≤ PS ≤ PS , 0 ≤ PR ≤ PR, (C2)

0 ≤ α ≤ 1, with (C3)

fR(g, α, PS , PR) =
gSR(1− α2)PS
gPRPP + 1

,

fS(g, α, PS , PR) =
gSSPS + gRSPR + 2α

√
gRSgSSPSPR

gPSPP + 1
.

In the above, the objective function follows from the achiev-
able rate of the secondary user:

RS(g,α,PS ,PR)=C(min{fR(g,α,PS ,PR),fS(g,α,PS ,PR)}) ,

as shown in [8]; constraint (C1) is the primary QoS constraint;
constraints (C2) correspond to the individual power constraint
of the relay and secondary user; constraint (C3) follows from
superposition coding.

III. DEEP LEARNING POWER ALLOCATION POLICY

A close analysis of the problem (OP) reveals a non-convex
objective function coupled by a non-convex QoS constraint
(C1), this is due to the non-linear operations performed by the
relay. Hence, solving the non-convex (OP) is a very challeng-
ing task. For this, we propose an unsupervised approach based
on deep neural networks (DNN). At the opposite, a supervised
approach would require computing a labeled training dataset
containing the solutions to the non-convex problem (OP) for
a large number of sampled system parameters. This would
be too computationally heavy and, henceforth, we opt for an
unsupervised approach relying on a training dataset composed
of only samples of the inputs (i.e., system parameters) of our
DNN and exploits a specifically tailored communication loss
to perform the training in an unsupervised manner.

A. Custom loss function

A key component of our proposed approach is the loss
function that the network will be trained to minimize. Solv-
ing constrained optimization problems with DNNs is highly
non-trivial, unless the constraints are of box-type such as
(C2), (C3). This is not the case of the QoS constraint (C1)
which is a difficult non-convex constraint. Nevertheless, as
opposed to the power constraints (C2), the primary QoS
constraint is not a physical (hard) constraint but rather a
requirement, which can be relaxed and included as a penalty
in the objective function below

L =

N∑
`=1

(
−RS(g`, α, PS , PR) + λ[Q(g`, α, PS , PR)−A]+

)
,

with [x]+ = max{0, x} and N denoting the total number of
channel realizations g`, ` ∈ {1, . . . , N} in the training dataset.

The hyperparameter λ denotes the unit price in bits/Watt of
the primary QoS violation. A small value of λ will result in
maximizing the achievable opportunistic rate without taking
into account the primary QoS constraint; whereas large values
of λ will strictly satisfy the primary QoS constraint but at the
cost of opportunistic rate. This tradeoff between opportunistic
rate and primary QoS will be further investigated via numerical
results.

B. Proposed DNN architecture

Our proposed DNN architecture to solve (OP) is composed
of four fully connected hidden layers and is depicted in Fig. 2.
The input consists of the channel gains vector g which is
used to predict the outputs: (α̂, P̂R, P̂S), i.e., the solution of
(OP). The fully connected architecture is justified because of
its generality and given that there is no a priori structural
or temporal information within the input vector g to be
exploited via more specific architectures such as convolutional
or recurrent networks.

The four hidden layers are composed of M−2M−2M−2M
neurons with M = 128 and are followed by a rectified linear
unit (ReLU) activation function due to its low computational
complexity. This specific architecture is chosen based on ex-
tensive empirical experiments, as we discuss in the numerical
section.

The final layer is followed by sigmoid activation functions:
a standard one sgmα(x) = 1/(1+e−x) to map the predicted α
into its feasible set [0, 1], and two modified ones sgmPi(x) =
Pi/(1 + e−x), i ∈ {S,R}, to map the predicted powers PR
and PS into [0, PR] and [0, PS ] respectively. This final layer
ensures that the hard constraints (C2), (C3) are met.



IV. NUMERICAL SIMULATIONS

Below, we discuss our numerical setup and DNN train-
ing procedure as well as the performance evaluation of our
approach. Complete details and source codes of our exper-
iments are available online at https://github.com/yacine074/
USDNN-to-solve-powerallocation-problems-in-CRAN.git.

A. Experimental setup1

We consider a square cell of dimension 10×10 m in which
the relay is positioned in the center whereas both primary
and secondary user positions are uniformly distributed in the
cell, unless specified otherwise. The path loss factor is set to
γ = 3 and the channel gain variance σ2

g = 7. We assume that
PP = PR = PS = 10 W and set the threshold τ = 0.25 for
the maximum primary rate degradation.

Dataset: To the best of our knowledge, the majority
of related works exploiting DNNs use simulated data [12],
[13], [17], [18], given the lack of real data that is available
and open access. Thus, to train and test our proposed DNN
architecture, we use a dataset composed of: i) a training set
containing 106 channel realizations g`, out of which 20 %
is used for validation, i.e., to evaluate the generalization
capability of our proposed DNN during training; ii) a test
set containing 2× 105 channel realisations g`, as well as the
optimal resource allocation policy (α∗, P ∗R, P

∗
S) obtained by

brute force (or exhaustive search) to evaluate the optimality
gap of our predicted solution.

DNN training: In our numerical simulations, we used the
ADAM optimizer [21] to iteratively update the weights of our
DNN. The batch size is set to 4096, the learning rate to 10−4;
these values allows the DNN weights optimization to converge
within 1000 epochs.

Performance metrics and benchmark: We define here the
relevant performance metrics used for the evaluation purpose.
First, we define the relative gap between the predicted achiev-
able rate via our DNN and the achievable rate obtained by
brute force, our ideal benchmark, as follows:

G =
1
N

∑N
`=1 R̂S,` −R∗S,`

1
N

∑N
`=1R

∗
S,`

(4)

where R̂S,` = Rs(g`, α̂, P̂S , P̂R) denotes the secondary
achievable Shannon rate obtained based on our DNN pre-
diction for the `-th sample in the dataset and R∗S,` denotes
the optimal rate for the `-th sample in the dataset obtained
via brute force or exhaustive search. We chose brute force
as benchmark thanks to its implementation simplicity and be-
cause it approximates the optimal solution with an adjustable
precision.

Second, the degradation of the primary achievable rate
caused by the opportunistic interference is defined as:

∆` = 1− R̂P,`/RP,`, (5)

1Our proposed DNN architecture in Fig. 4 is robust to changes within this
experimental setup. Although the training needs to be relaunched for different
setups, our core conclusions carry over in general.

where R̂P,` = RP (g`, α̂, P̂S , P̂R) denotes the achievable
primary rate of our predicted allocation. Based on this metric,
we can also define the empirical outage as the proportion of
samples in the dataset (or channel settings) for which the target
primary QoS constraint is not met and the average primary rate
degradation when in outage:

Outage =
1

N

N∑
`=1

I [∆` > τ ] , (6)

∆out =

∑N
`=1 I [∆` > τ ]×∆`∑N

`=1 I [∆` > τ ]
, (7)

where I [x] equals 1 when x is true and 0 otherwise.

B. DNN architecture choice
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Fig. 3. Impact of the number of layers and number of neurons on the
prediction performance.

To choose the architecture in Fig. 2, we have performed
extensive simulations. In Fig. 3, we report the most significant
results. On the left, we analyze the impact of the number
of layers and compare four different architectures composed
of one up to four hidden layers as follows: M , M − 2M ,
M − 2M − 2M , and M − 2M − 2M − 2M , with M = 128.
We see that there is a significant gain in secondary rate when
increasing the number of layers from 1 to 3; moving to 4 layers
helps to decrease the outage. Hence, a 4-layer architecture is
a good compromise between performance and computational
cost. Now, on the right, we compare three different such four-
layer DNNs, by varying the number of neurons per layer
M ∈ {64, 128, 256}. We see that increasing M from 64 to 128
neurons leads to a significant gain in secondary rate; increasing
further the number of neurons does not seem justified given
the incurred computational cost. For these reasons, we choose
M = 128 coupled with the 4-layer architecture in Fig. 2
henceforth.

C. No overfitting: performance on train and validation sets

In Fig. 4, we plot the evolution of our custom loss function
L over the number of epochs within the training and validation
sets for λ ∈ {100.5, 102}. First, notice that the DNN training
converges within 1000 epochs. The superposed performance
obtained within the training and validation sets highlights
the high generalization capability of our proposed DNN. In
addition, no overfitting effects can be noticed, since the loss
function does not increase within the validation set. Finally,
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the convergence of optimizing the weights of the DNN is much
faster for relatively small values of λ. Indeed, when λ is small,
the custom loss is mainly rate-driven and not much emphasis is
put on the primary QoS constraint; this leads to a much easier
optimization problem to solve without (C1). At the opposite,
for larger values of λ, the custom loss puts an emphasis on
satisfying (C1), which leads to a more difficult problem. Of
course, this parameter needs to be tuned whenever the system
parameters change significantly.

D. Prediction performance on the test set

Henceforth, we evaluate the performance of our predicted
solution (α̂, P̂R, P̂S) obtained with new samples (i.e., test data)
unseen during the training or validation phases.

Choice of the hyperparameter λ: In Fig. 5, the relative
gap in (4) and the outage in (6) are depicted as functions
of λ. For small values of λ (rate-driven custom loss), the
relative gap G is positive, which means that the secondary
rates obtained via the DNN are larger than the optimal ones
via brute force. The reason is that the primary QoS constraints
are not necessarily met by our DNN solutions, as illustrated
by the high outage levels. At the opposite, for large values of
λ (primary QoS-driven custom loss), the outage goes to zero
as expected at a cost in terms of secondary rates. Indeed, our
predicted secondary rates are smaller than the optimal ones
(negative relative gain G), but this gap is kept below 10 %.

In Fig. 6, we investigate closer the impact of λ on the pri-
mary rate degradation within the test set. For this, we plot the
average and maximum values of the primary rate degradation
as well as the average degradation when in outage ∆out in (7)

in Fig. 6(a). Also, in Fig. 6(b), we illustrate the histogram
of the primary rate degradation (∆) for λ ∈ {100.5, 102}.
The mean primary rate degradation falls quickly below the
threshold τ = 25 %. For small values of λ, the worst case
primary degradation can reach up to 90 %. Nevertheless, such
extreme degradation is obtained only for a small number of
out-layer data points. This is indicated by the curve ∆out

hitting the 25 % threshold reasonably fast as well as by the
histogram of the degradation in Fig. 6(b).

To sum up, the hyperparameter λ highlights the tradeoff
between achievable secondary rate and primary QoS degra-
dation and has to be carefully tuned depending on the target
application and primary network tolerance.

Impact of the relay position: We will now assume that
the position of the primary and secondary user/destination
pairs are fixed: US(5, 2.5), DS(7.5, 5), UP (2.5, 5), DP (5, 7.5)
as in Fig. 7; and that the relay position (xR, yR) varies
within the cell. All simulation results are averaged over 104

channel realizations and λ = 100.5, as this value achieves
a good tradeoff between the achievable secondary rate and
the primary QoS degradation. More specifically, in Fig. 7(a),
Fig. 7(b), and Fig. 7(c), we illustrate the average primary rate
degradation, the average predicted relay power P̂R and the
average secondary rate R̂S , respectively as functions of the
relay position (xR, yR).

In Fig. 7(a), we see that the average degradation in the
primary rate always falls below the fixed threshold of τ =
25 % irrespective from the relay position. When the relay is
very close to the primary nodes, the degradation drops below
20 %, since very little power is allocated to the relay as shown
in Fig. 7(b). The worst case degradation arises when the relay
lies between the secondary nodes, since the secondary rate
improvement overcomes the damage the relay causes to the
primary link. At last, in Fig. 7(b), we also notice that more
power is allocated to the relay when it is close to the secondary
user. This is to be expected since DF relaying is known to
perform well in terms of achievable rate in these cases, which
is indeed confirmed in Fig. 7(c).

V. CONCLUSIONS

In this paper, we investigated the power allocation problem
in a cognitive radio network where the secondary user is
assisted by a full-duplex relay node performing Decode-and-
Forward. Because of the complex relaying operations, neither
the secondary rate nor the primary QoS constraint are convex,
leading to a difficult constrained Shannon rate maximization
problem. To this aim, we proposed an unsupervised deep
learning method based on fully connected architectures and a
communication-tailored loss function modeling the secondary
rate and the primary QoS constraint. We evaluated the perfor-
mance of our approach via extensive numerical simulations.
Our results show the high generalization capability of our
DNN solution on unseen data and without overfitting. More
importantly, we highlighted the tradeoff between the secondary
rate and satisfying the primary QoS constraint. The primary
QoS constraint is satisfied on average even though some out-
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layer points can be observed for secondary rate-driven losses.
At last, Decode-and-Forward relaying was found to perform
well when the relay is close to the secondary user.
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