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Global Descriptors for Visual Pose Estimation

of a Non-Cooperative Target in Space

Rendezvous

Anthea Comellini, Jerome Le Ny, Senior Member, IEEE, Emmanuel Zenou,

Christine Espinosa, and Vincent Dubanchet

Abstract

This paper proposes methods based on global descriptors to estimate the pose of a known object

using a monocular camera, in the context of space rendezvous between an autonomous spacecraft and

a non-cooperative target. These methods estimate the pose by detection, i.e., they require no prior

information about the pose of the observed object, making them suitable for initial pose acquisition and

the monitoring of faults in other on-board estimators. An approach is presented to fully retrieve the

object’s pose using a pre-computed set of invariants and geometric moments. Three classes of global

invariant features are analyzed, based on complex moments, Zernike moments and Fourier descriptors.

The robustness of the different invariants is tested under various conditions and their performance is

discussed and compared. The method offers a fast and robust solution for pose estimation by detection,

with a low computational complexity that is compatible with space-qualified processors.

I. INTRODUCTION

During an autonomous space rendezvous (RDV) with a non-cooperative target, i.e., a target that

does not assist the chaser spacecraft (S/C) in acquisition, tracking and rendezvous operations [1],
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the S/C must estimate the target’s state on-board autonomously. Autonomous RDV operations

require accurate, up-to-date measurements of the relative pose (i.e., position and attitude) of the

target. Since passive camera sensors have a small form factor and a low power consumption,

they can be easily integrated on a S/C, without affecting its design and its power budget. For

this reason, the combination of camera sensors with tracking algorithms can provide a cost

effective solution. In this article, we will assume to rely on a single camera (i.e., monocular

vision) for the pose estimation. Indeed, monocular vision has advantages compared to stereo-

camera configurations, because single camera systems are less complex and have a much larger

operational range, which is not limited by the size of the platform.

Image-based pose estimation methods can be classified into non-model-based and model-

based techniques [2]. Non-model-based techniques do not assume any a priori knowledge of

the tracked object’s shape, texture and other visual attributes. They simultaneously estimate the

object’s pose while reconstructing its visual model [3], [4], [5]. On the other hand, model-based

techniques take advantage of a priori knowledge about the object whose pose is to be estimated.

This knowledge can be in the form of visual features such as markers, or in the form of a

3D geometric description of the object. Since in the majority of rendezvous scenarios the target

spacecraft is a known object, we focus here on model-based techniques. Model-based 3D tracking

methods can be classified as frame-by-frame tracking or tracking-by-detection [6]. In frame-by-

frame tracking, the object’s pose retrieved from a frame is used as a prior for a local search of

the pose in the following frame. This recursive approach makes image feature identification and

matching relatively easy [6]. However, these methods require initialization and can diverge in the

presence of local minima. For this reason, a recursive tracking algorithm must be complemented

with a tracking-by-detection algorithm to enable initial pose acquisition and fault detection. In

a tracking-by-detection algorithm, the pose is retrieved by exploiting a-priori information on the

geometry and appearance of the tracked object, but with no knowledge of the pose at previous

instants. Since space-qualified microprocessors have relatively low computational resources, the

tracking-by-detection algorithm must be computationally inexpensive. Moreover, it has to cope

with the peculiarities of the RDV problem, such as harsh illumination conditions or the presence

of textureless and reflective materials on the target.
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A. Monocular Tracking-by-Detection

Monocular pose estimation by detection can be performed using geometric methods or by

template matching. In geometric methods, the observed 2D features in the input image are

matched with a database of features computed offline. Then the pose is retrieved by solving

the Perspective-n-Point (PnP) problem. Geometric approaches based on local feature are pro-

posed for S/C pose acquisition in [7], [8], [9]. However, methods relying on feature detection

lack robustness in the adverse illumination conditions encountered by spaceborne systems. In

template matching approaches, a training set of views of the object is acquired offline to

generate a database of templates that are compared at run-time with the input image. Classical

template matching approaches compare the pixels intensities of the templates and the input

image according to similarity measures or alignment functions [10]. However, these methods are

computationally expensive and lack robustness to illumination changes [10]. Other approaches

rely on templates of local features, such as image gradient orientations (e.g., [11], [12]) or

binary templates of the extracted edges. An edge-based template matching approach relying on

a similarity measure derived from Chamfer Matching [13] and on an unsupervised clustering

technique is proposed for S/C pose estimation in [10]. The template matching approaches

described are computationally complex because of the evaluation of a large number of possible

pose hypotheses and real-time may not be achievable on space qualified processors. They might

be appropriate for pose initialization, but cannot be used as a backup algorithm to help detecting

divergence in the recursive tracking algorithm. For this reason, recent work has focused on using

Convolutional Neural Networks (CNNs) for pose estimation directly from greyscale images in

a end-to-end fashion [14], [15]. However, the reported accuracy is currently still lower than that

of geometric methods [7]. Hybrid approaches, where CNNs are used to extract keypoints (i.e.,

local features) from the image while the PnP solver is used to compute the pose, have recently

shown very good accuracy with synthetic images [16]. However, this still raises the issue of

relying on local feature detection.

The approach proposed in this paper is to rely on template matching with global features

instead of local ones. Global features such as image moments or Fourier descriptors provide

a low-dimensional representation of the target’s silhouette on a binary image. As for a typical

appearance-based template approach, this representation can be matched to its nearest neighbor

in a database constructed offline from a sufficiently rich sample of possible poses. However, due
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to the small amount of data stored for each view, the search for the optimal matching remains

computationally inexpensive, resulting in a fast estimation procedure that can be run in parallel

of a frame-to-frame tracking algorithm. If global features are computed from binary silhouette

images, they become independent from illumination conditions. However, in this case, the pose

estimation algorithm should be complemented with a segmentation algorithm, especially when

complex background such as the Earth is present in the image.

B. Pose Estimation with Global Descriptors

Early attempts to use global features for shape recognition were motivated by aircraft iden-

tification applications and relied on Hu’s moment invariants [17], [18], [19], [20] and Fourier

descriptors [21], [18], [22], [19]. Dudani proposed in [17] to use these features not only for

aircraft recognition but also for pose estimation, inspiring follow-up work in [18], [22], [19],

[20]. Unfortunately, Hu’s invariants, although very commonly used, are now known to form an

incomplete set, see Section IV, which results in limited discrimination capabilities. During the

past two decades, progress in pattern recognition led to the development of more powerful sets

of rotation-invariant global features, which however were never tested for the pose estimation

problem. In this paper, we consider complex moments (CMs), Zernike moments (ZMs) and

Fourier descriptors (FDs). CMs directly improve on Hu’s invariants [23], see Section IV-A. ZMs

form a set of orthogonal moments, see Section IV-B, with advantages in terms of information

redundancy and image representation capabilities [24], [25]. Some authors claim that Pseudo-ZM

[26] are more robust than ZM with respect to additive noise, but their independence (see Section

IV) is considered questionable [23]. ZMs were used in [27] to determine the orientation of a S/C

from silhouette images, as we do here. However, the authors did not fully exploit the power of

the ZMs since they do not use the rotation invariance to reduce the complexity of the problem,

as we explain in Section III. In [28] the amplitude of ZMs up to the 29th order is used as rotation

invariant to estimate the pose of airplanes, but the use of only amplitudes leads to an incomplete

set of descriptors, which results in limited discrimination capabilities, as we explain in Section

IV-B. Moreover, in [28] the in-plane rotation (see Section III) is retrieved by comparing the

phase of the ZMs in the database with the phase of the ZMs computed on the observed image.

This approach leads to a doubling of the dimension of the descriptor database. In Section III, we

describe a method to retrieve the in-plane rotation that requires storing only one descriptor for

each database view. The amplitude of the Pseudo-ZMs is also used as rotation invariant in [29],
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but this work proposes a method to compute only two of the six degrees-of-freedom (DOF) of

the pose. Finally, Pseudo-ZMs are used in [30] for aircraft pose estimation from contour images.

First, the authors determine with Pseudo-ZMs two of the three attitude angles of the observed

object. Then, shape context descriptors are used to retrieve the remaining DOF. However, as we

details in Section III, the remaining DOF can be computed using geometric moments, resulting

in a simpler and faster estimation method.

Moment-based invariants are generally computed using the whole silhouette of the observed

object, since the performance of boundary moments quickly deteriorates in the presence of noise

and discretization effects on the images [18], [31]. Thus CMs and ZMs are generally sensitive

to the distribution of the “mass” in the image silhouette. On the other hand, FDs are computed

only from the contours of the observed object, hence are more sensitive to changes in the object

boundaries [18]. This motivates our goal of comparing Fourier descriptors and moment-based

invariants. The contributions of this paper can be summarized as follows. After presenting the

problem statement in Section II, we develop in Section III a tracking-by-detection algorithm for

the pose estimation of a S/C of known geometry, based on global features computed from a

single binary image. First, the method determines two of the three Euler angles that describe the

attitude of the S/C using rotation invariant features. Then, the remaining degrees of freedom, i.e.,

the relative translation and the in-plane rotation, are retrieved using geometric moments (GMs).

In Section IV the theory underlying the computation of rotation invariants based on CMs, ZMs

and FDs is recalled, and we propose a novel method to compute rotation invariant FDs. Then,

Section V analyzes and compares the performance of these three sets of global descriptors,

characterizing their behavior in different conditions typically encountered in operational RDV

scenarios. To the best of our knowledge, no prior work provides such an evaluation of the

performance of modern global descriptors for the problem of detecting and estimating the pose

of a 3D object.

II. PROBLEM STATEMENT

The problem considered in this paper is to estimate the pose of an object of known geometry

from a single bi-dimensional image. No prior information about the object’s pose is known. We

assume that the input of the estimation procedure is a binarized image of the object’s silhouette

and we do not address in this paper the task of foreground-background segmentation. However,

for operational scenarios such as a RDV with a space debris, the object can be approached
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Fig. 1. Schematic representation of the pose estimation problem using a monocular image

from a lower orbit, keeping the Earth out of the field of view (FOV) of the camera. Then,

the silhouette of the object can be easily retrieved from a multi-spectral image after a simple

thresholding. Fig. 1 shows a schematic representation of the pose estimation problem. Let P t be

the coordinates of a point P expressed in the target reference frame (RF) t, which is centered

at the target center of mass (COM). The coordinates of P , expressed in the camera RF, are:

P c = [xc, yc, zc]T = Rc−t P
t + tcOc−Ot . (1)

The vector tcOc−Ot corresponds to the translation from the origin Oc of the camera RF to the

origin Ot of the target RF, expressed in the camera RF. According to the classical pinhole camera

model, the point P c is projected on the image plane as follows:

p = [up, vp] =

[
xc

zc
f + Cx,

yc

zc
f + Cy

]
, (2)
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where f denotes the focal length of the camera and (Cx, Cy) the principal point of the image.

We assume that the camera optical axis zc is always pointing towards the target’s COM.

During the pose acquisition phase of a RDV, the camera will likely be pointing towards the

observed silhouette centroid instead of the target COM. It may be also be the case that, for

some operational reasons such as the need for aligning chaser and target docking interfaces,

pointing exactly toward the COM cannot be done. However, we demonstrate in Section V-A5

that the proposed pose estimation method is robust to the presence of such pointing errors. Under

the assumption of perfect pointing, the degrees of freedom of the problem pass from 6 to 4, since

no translation in the camera plane (Oc, xc, yc) is present, i.e., tcOc−Ot = [tcx , t
c
y , t

c
z] = [0 , 0 , d].

The objective of the method that we propose is to estimate the quantities d and the Euler angles

ϕ, ϑ, ψ, using a single binary image of the target projected on the image plane.

III. PROPOSED METHOD

The interest in using global features such as Fourier descriptors or image moments is that

these features can be made invariant to translation, to scaling, and most importantly to rotation.

If a bi-dimensional shape is described by such invariant features, the value of the features will

not depend on the position of the shape centroid (translation invariance), on the shape dimension

(scaling invariance), and on the rotation of the shape in the image plane (rotation invariance).

With regard to the problem described in Section II, if global invariant features are used do

describe the S/C silhouette at a given pose, the value of the features will depend only on the roll

and pitch angles ϕ ∈] − π, π] and ϑ ∈] − π/2, π/2] of the matrix Rt−c. In fact, ψ only affects

the rotation of the projected shape in the plane image, as seen on Fig.1. On the other hand, the

distance d slightly affects the shape of the projected silhouette at a given attitude. However this

contribution is negligible if the target’s size is considerably smaller than the distance d, as is the

case during the pose acquisition phase of a RDV. Thus, it is possible to assume that d affects

only the scale. In Section V we analyze the influence of this approximation on the performance

of the algorithm.

The principle of the pose estimation algorithm that we propose is the following. During an

off-line process, a set of synthetic views of the target, referred to as training images in the

following, is generated for a sufficiently large number of discrete values of the pairs (ϕ, ϑ) ∈

] − π, π] × ] − π/2, π/2]. When generating the database, the yaw angle ψ and the camera-

target distance d remain fixed, with ψ = ψtrain set to zero. The choice of distance d = dtrain
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can in fact affect the performance of the pose estimation, as we discuss in Section V-A.

For a given pair (ϕ, ϑ), the position of the camera expressed in the target RF is ttOt−Oc =

dtrain · [sinϑ, −cosϑ sinϕ, −cosϑ cosϕ]T . Under the assumption that the camera’s optical axis

is pointing towards the target’s COM, the locus of the points ttOt−Oc(dtrain, ϕ, ϑ) is represented

by the sphere of radius dtrain centered at the target COM. Thus, the relative attitudes used to

generate the training images can be assigned by selecting Nw random points on the sphere. In

order to avoid oversampling of the polar zone, which would be the result of a uniform sampling

of ϕ and ϑ, the points are assigned using the algorithm suggested in [32] ϕ = 2π randϕ − π

ϑ = asin(1− 2randϑ)
(3)

where randϕ and randϑ are two independent random variables uniformly distributed in the interval

]0, 1]. Note that although random attitude sampling was used here for benchmarking the different

sets of global descriptor, a deterministic sampling may be more adequate for the nominal pose

estimation solution. In that case, a spiral scheme could be used to generate uniformly distributed

samples on the unit sphere [33].

Once the images corresponding to the Nw viewpoints are generated, the global invariant de-

scriptors are computed for each view. The size of the resulting database is Nw × Nf , with Nf

the dimension of the feature vector. At run-time, when the camera acquires a new image of the

target (referred to as test image in the sequel), the algorithm computes the descriptor vector

associated to the resulting view and finds in the database the pair (ϕmeas, ϑmeas) with the closest

descriptor vector (minimizing the Euclidean distance), i.e., performs a nearest neighbor search.

The two remaining degrees of freedom, i.e., the yaw angle ψ and the relative camera-target

distance d, are estimated using geometric moments (GMs), according to the procedure described

in the following.

From a mathematical point of view, moments are projections of a function into a polynomial

basis [23]. GMs rely on the most intuitive power basis ppq(x, y) = xpyq. The general definition

for a geometric moment of an image is:

mpq =

∫ ∞
−∞

∫ ∞
−∞

xpyqf(x, y) dx dy , (4)

where f(x, y) is a function equal to the intensity level of the image in correspondence of the

point (x, y). When binary images such as object silhouettes are considered, f(x, y) is equal to

1 inside silhouette and 0 elsewhere. For binary images, the lower order geometric moments are
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associated with geometrical properties of the observed silhouette. For example, m00 is the area,

while m10/m00 = xc and m01/m00 = yc are the x and y coordinates of the silhouette’s centroid.

Geometric moments can be easily made translation and scale invariant. Translation invariance is

obtained by computing the central geometric moments µpq, according to:

µpq =

∫ ∞
−∞

∫ ∞
−∞

(x− xc)p(y − yc)qf(x, y) dx dy . (5)

Scale invariance is obtained by dividing the central geometric moments by an appropriated power

of the area:

νpq =
µpq
mw

00

, with w =
p+ q

2
+ 1 . (6)

From a given image, the yaw angle ψ ∈] − π, π] of Rc−t can be retrieved using the second

order central moments, as follows. First, the inclination ψ̃0 ∈ ]− π/2, π/2] of the major axis of

inertia of the silhouette on the image is given by [23]

ψ̃0 =
1

2
atan

(
2µ11

µ20 − µ02

)
. (7)

However, to recover the full in-plane angle of rotation ψ0 ∈ ] − π, π] of the silhouette, we still

need to determine a specific direction along the axis of inertia, i.e., distinguish between ψ0 = ψ̃0

or ψ0 = ψ̃0 − π. For this, the third order GMs can be used, since they change sign under a

rotation of π [34]. Central moments in the image frame rotated by an angle ψ̃0 are given by

µ′pq =

p∑
l1=0

q∑
l2=0

rl111r
l2
21r

p−l1
12 rq−l211 µl1+l2,p+q−(l1+l2), (8)

where r11 = r22 = cos(ψ̃0), r12 = −r21 = sin(ψ̃0). Then, as a convention, we define the in-plane

rotation ψ0 to be the direction for which the moment µ′30 after rotation by ψ0 is positive, i.e.,

ψ0 =

 ψ̃0 if µ′30 > 0 ,

ψ̃0 − π if µ′30 < 0 .
(9)

The ambiguity can be resolved only if the silhouette is not rotationally symmetric. In the case of

a silhouette having an N-fold rotation symmetry (N-FRS) (i.e., if it repeats itself after rotation

around its centroid by 2πj/N , for all j = 1, ..., N ), N solutions are possible. In such case, only

an observation of the target pose on a set of consecutive frames could help solve the ambiguity.

Once ψ0test is determined for the current image, we can deduce the measured yaw angle ψmeas

of the camera frame by

ψmeas = ψ0test + (ψtrain − ψ0train). (10)
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where ψ0train is the major axis of inertia (precumputed and stored in the database) of the training

view that best matches the current view, and ψtrain = 0 by construction.

Finally, we obtain a measure dmeas of the relative camera-target distance along the optical

axis from the zeroth order moment m00test of the current silhouette image, namely

dmeas =
√
m00train/m00test · dtrain, (11)

where m00train is the zeroth order moment for the best matching training view, which again can

be precomputed and stored in the database.

The requirement of perfect pointing introduced in Section II can be relaxed under the hypoth-

esis of a weak perspective model, i.e., when the depth of the object along the line of sight is

small compared to the distance from the camera, or when the FOV is relatively small [10]. These

are indeed conditions that are met during the pose acquisition phase. In the weak perspective

model it is assumed that all points on a 3D object are at the same distance d from the camera

without significant errors in the projection with respect to the full pinhole perspective model.

Under this approximation, the contribution to the silhouette shape of the relative position and

the relative attitude can be decoupled at the cost of an acceptable degradation of the estimation

performance. Recalling (2) and exploiting the fact that d =
√

(tcx)
2 + (tcy)

2 + (tcz)
2 ∼ tcz, the

components tcx and tcy can be approximated by
tcx =

d

f
(xctest − Cx)

tcy =
d

f
(yctest − Cy)

(12)

where (xctest , yctest) are the coordinate of the observed silhouette centroid. The identities (12)

can be used to ensure camera pointing even before the target’s full pose has been acquired.

By using rotation invariants, we can drastically reduce the dimension of the database that

needs to be stored and increase the speed of the search. For example, if the library were built

using a uniform discretization of 5 deg for the Euler angles, the database table would contain

Nw = 72× 36× 72 = 186624 synthetic views if ψ were included in the search space, but only

Nw = 72× 36 = 2592 synthetic views if rotations invariants are used. In Sections IV-A, IV-B,

and IV-C we provide details about the computation of invariant global features using CMs, ZMs,

and FDs.
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Fig. 2. Structure of the proposed pose estimation algorithm.

IV. COMPUTATION OF THE INVARIANT GLOBAL FEATURES

While designing translation and scale invariants based on moments is generally straightforward,

see (5) and (6), rotation invariance is more difficult to obtain. In a seminal paper [35], Hu

introduced a set of 7 rotation invariants based on combination of second and third order geometric

moments. Unfortunately, Hu’s approach cannot be generalized, so that only invariants up to the

third order can be derived, limiting the descriptive power of these features. On the other hand,

by choosing other polynomial basis functions to compute the moments, as for CMs and ZMs,

one can derive general rules for the computation of rotation invariants of up to any order. In

particular, a set of invariants up to a given order r must be independent and complete [23]. A

set is independent if none of its elements can be expressed as a function of the other elements.

It is complete if any rotation invariant up to the order r can be expressed as a function of the set

elements only. A complete set contains both true invariants and pseudo-invariants. True invariants

are invariants that do not change sign under reflection, while pseudo-invariants (also known as

skew-invariants) do [23]. The capability of pseudo-invariants to detect mirror reflections is very

important for the pose estimation problem, since a mirrored image corresponds to a different

S/C attitude.

A. Rotation Invariants with Complex Moments

CMs are computed by projecting the image function on the basis ppq(x, y) = (x+iy)p(x−iy)q,

where i is the imaginary unit. The complex moment cpq of order p+q is defined by the following
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formula:

cpq =

∫ ∞
−∞

∫ ∞
−∞

(x+ iy)p(x− iy)qf(x, y) dx dy . (13)

Translation and scaling invariance can be obtained as for the standard geometric moments,
replacing m00, m10 and m01 in (5) and (6) by c00, Re(c10) and Im(c10) respectively. CMs carry
the same amount of information as GMs, but are more convenient to derive an independent and
complete set (also referred to as a basis) of rotational invariants up to any order, as shown by
Flusser [36]. The key points of the approach are recalled here. If the complex moments are
expressed in polar coordinates (x = r cos θ, y = r sin θ), (13) becomes:

cpq =

∫ ∞
0

∫ 2π

0

(r cos θ + ir sin θ)p(r cos θ − ir sin θ)qf(r, θ) r dr dθ

=

∫ ∞
0

∫ 2π

0

rp+q+1ei(p−q)θf(r, θ) dr dθ .

(14)

From (14) we can see that the complex conjugate of a CM satisfies c∗pq = cqp and that a pure

rotation of the image around the origin by an angle α changes CMs according to

c′pq = e−i(p−q)αcpq , (15)

which shows that the magnitude of a CM is a rotation invariant. However CM magnitudes do

not generate a complete set. Instead, considering complex moments up to the order r ≥ 2, we

construct the following basis of rotation invariants [36]

Br =
{

Φpq := cpq c
p−q
q0p0
| p ≥ q and p+ q ≤ r

}
, (16)

where p0 and q0 that can be arbitrary chosen such that p0 + q0 ≤ r, p0 − q0 = 1, q0 6= 0, and

cq0p0 6= 0. Rotation invariance follows from

c′pqc
′p−q
q0p0

= e−i(p−q)αcpq ·
(
cq0p0e−i(q0−p0)α

)p−q
= cpqc

p−q
q0p0

.

The exponents p0, q0 are generally chosen as small as possible, e.g., p0 = 2 and q0 = 1, because

high order moments are more sensitive to noise [25]. Each basis element Φpq such that p 6= q,

except Φp0q0 , provides two real-valued invariants, corresponding to the real and imaginary parts

of Φpq. It can be proven that the real part is a true invariant, while the imaginary part is a

pseudo-invariant. Hu’s 7 invariants can be expressed from the 6 elements of B3, implying that

Hu’s set is not independent. Moreover, one element of B3 cannot be expressed as a function of

Hu’s invariants, implying that Hu’s set is incomplete [23].

Note that if an object has an N-FRS, then all its complex moments with non-integer (p−q)/N

are equal to zero. In [37] Flusser provide an extension of (16) for N-FR symmetric objects.
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For our pose estimation algorithm, CM invariants up to order 10 (i.e., Nf = 62) are computed

and stored in the database. The elements Φ00 = c00 and Φ10 = c10c12 are not included in the

set because c00 and c10 are already used to achieve scaling and translation invariance. Because

high-order moments have much higher magnitude than low order moments, the components of

the feature vector must be normalized before applying the minimum Euclidean distance criterion.

This issue, which is already present with Hu’s invariants, has been addressed in the literature

using different approaches, e.g., using z-score normalization [17], [20] or variance balancing

[18], [29]. Here, we follow the approach suggested in [38] of replacing each feature F by

Fn = sign(F ) · log(|F |), which was found to provide the best recognition capabilities for CM-

based invariants.

B. Rotation Invariants with Zernike Moments

ZMs are a family of orthogonal moments, i.e., the corresponding polynomial basis satisfies∫∫
Ω

ppq(x, y) · pjk(x, y) dxdy = 0 (17)

for all q 6= j, p 6= k, where Ω is called the region of orthogonality and must contain the support

of the image f , which must therefore typically be rescaled. For ZMs, Ω is taken to be the unit

disk. Given an image expressed in polar coordinates, ZMs are defined by [23]

Anl =
n+ 1

π

∫ 2π

0

∫ 1

0

V ∗nl(r, θ)f(r, θ) r drdθ (18)

where n is a nonnegative integer called the order, l ∈ {−n,−n+2, . . . , n} is called the repetition

(note that the difference n− |l| is always even), and Vnl denotes the Zernike polynomials

Vn,l(r, θ) = Rn,l(r)eilθ (19)

with radial part

Rn,l(r) =
(n−|l|)/2∑
s=0

(−1)s (n−s)!
s!((n+|l|)/2−s)!((n−|l|)/2−s)!r

n−2s . (20)

The radial functions satisfy Rn,−l(r) = Rnl(r), so that An,−l = A∗nl and ZMs with repetition

l = 0 are real valued moments.

Different methods have been proposed to normalize the image to the unit disk. In [39], each

shape is resized so that its zeroth order GM m00 is set to a predetermined value, while in [27] a
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fixed-dimension bounding box is used instead of the zeroth order moment. In this paper, we sim-

ply transform the coordinates of the points belonging to the object’s silhouette to normalized cen-

tral polar coordinates, i.e., θ = atan ((x− xc)/(y − yc)) and r =
√

(x− xc)2 + (y − yc)2/rmax,

with rmax the maximum value among the radii of the considered silhouette. This approach, also

in [29], ensures that all the points in the object’s silhouette are used to compute the moments,

and also provides translation invariance. Scaling invariance is obtained by dividing Anl by the

zeroth order moment A00, as suggested by [23].

Teague [40] was the first to propose a set of rotation invariants based on ZMs, up to the eighth

order, but gave no general rule to derive invariants of higher order. As for CMs, some authors

[29], [39], [28] use only the magnitude |Anl|, but this provides an incomplete set of invariants

because the information carried by the pseudo-invariants is lost. Wallin [41] noted that ZMs,

which are complex valued moments, behave as CMs under rotation, so that rotation invariance

can be obtained by multiplying ZMs by an appropriate phase-cancellation term, see (15) and

the discussion below. As suggested by [23], this term has to be searched among the ZMs with

repetition 1, starting from A31. Similarly to CMs, these moments are equal to zero for objects

having a rotational symmetry. In this case, the normalization moment should be searched within

the ZMs having repetition 2. Given the normalizing moment Anrlr , the normalized ZM Znl is

Znl = Anle−ilφ, with φ =
1

lr
atan

[
Im(Anrlr)

Re(Anrlr)

]
. (21)

Each Znl leads to two real-valued invariants, except for Znrlr and for the moments with repetition

l = 0. Z00 and Z10 are not included in the set. In fact, A00 is already used to obtain scaling

invariance, while A10 is always zero when central coordinates are used. For the pose estimation

algorithm, ZM invariants up to the 10th order (i.e., Nf = 62) are computed and stored in

the database. Unlike GMs and CMs, ZMs values have a smaller dynamic range [23], which

simplifies the process of feature matching in the database. Some authors claim that the presence

of factorial terms in the radial polynomials increases the computation time needed to compute

ZMs, especially for higher order moments, and methods to speed up the computation of the

moments are proposed in [42], [43], [44]. However, as discussed in Section V, the optimal

performance of the ZM-based pose estimation algorithm is obtained with moments up to the

seventh and ninth order. For such relatively low orders, the radial polynomial coefficients can

be stored and thus do not need to be computed on-line.
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C. Rotation Invariants with Fourier descriptors

FDs provide a representation of the boundary of a two-dimensional shape. Indeed, since a

closed curve can be represented by a periodic function of a continuous parameter, it admits a

Fourier transform, whose coefficients can be used as global descriptors both for shape recognition

and shape retrieval [45]. Different definitions of FDs exist [46], but the most popular starts by

defining the complex central coordinate position sequence

z(n) = (x(n)− xc) + i(y(n)− yc), for n = 1, . . . , Np, (22)

with Np the number of points belonging to the contour and the coordinates of the contour’s
centroid given by xc = 1

Np

∑Np
n=1 x(n), yc = 1

Np

∑Np
n=1 y(n). The FDs are defined by computing

the discrete Fourier transform (DFT) of z using the fast Fourier transform (FFT)

Z(ω) =

Np∑
n=1

z(n) exp

(
−i2π(n− 1)

Np
ω

)
, for ω = 0, . . . , Np − 1. (23)

Scaling invariance is obtained by dividing the DFT sequence by |Z(1)|. Translation invariance

is obtained by discarding the coefficient Z(0), which is indeed equal to 0 when complex central

coordinates are used to define the position sequence.

The behavior of FDs under rotation is similar to that of CMs and ZMs, see (15). However,

the Fourier transform depends also on the starting point used to describe the contour. If this

starting point is shifted by m positions, the resulting transform Z̃(ω) is

Z̃(ω) = Z(ω) exp

(
2πi

Np

ωm

)
. (24)

A solution is to use only the magnitude of the transform |Z(ω)| as descriptor, as in [47], [48],

[49], [31], since it is invariant to rotation and independent of the choice of initial point. However

the resulting feature set will be incomplete, since every harmonic Z(ω) provides in fact two

invariants, i.e., its magnitude and phase or alternatively real and imaginary parts. As with CMs

and ZMs, the imaginary parts of FDs are pseudo-invariants [47]. In [50], the rotation and starting

point are determined by a search for the best matching through all the possible shapes, but this

procedure increases the computational time of the nearest neighbor search.

In this paper, we propose a method to achieve simultaneously rotation invariance and inde-

pendence with respect to the choice of initial point. First, using the GMs of the contour, the

in-plane rotation angle ψ0 is computed as described in Section III. By convention, the initial

point of the contour is taken to be the intersection of the contour with the half line originating

from the figure centroid and with direction ψ0. In the case of multiple intersections, we select the
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farthest one from the centroid. The sequence X = [x1 + iy1, ..., xj + iyj, ..., xNp + iyNp ]
T is then

rearranged starting from the selected initial point and following the contour counterclockwise.

Then, the coordinates of the points are rotated by an angle −ψ0, i.e., we let

Xr = X e−iψ0 . (25)

and compute the DFT of the sequence Xr. This procedure is similar to the approach used in

[51] and [22], where the ellipse described by the first harmonic phasor is used instead of the

inertia ellipsoid. Note that none of these methods can be applied when ellipse degenerates into

a circle, i.e., when the object’s silhouette has an N-FRS. Note that curves presenting a N-FRS

have zero amplitude harmonics for all indices that are not integral multiples of N [47]. For

the pose estimation algorithm, FDs up to the 99th harmonic (i.e., Nf = 198) are computed and

stored in the database.

V. APPLICATION AND PERFORMANCE ANALYSIS

In this section, the performance of the method presented in Section III is characterized for

different invariants and conditions. We aim to provide guidelines for choosing the type and

number of descriptors (choice of order) among ZMs, CMs and FDs that provide the best trade-

off between pose estimation accuracy and computation time. The geometry of the target S/C used

�

�

�

Fig. 3. Geometry and body reference frame of the target spacecraft.
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in the simulations is inspired from the structure of the Iridium-NEXT satellites and shown in

Fig. 1. The synthetic views are generated with Thales Alenia Space rendering engine SpiCam.

The target has a size of 4 × 3 × 1 meters and the views are generated for a camera with a

FOV of 30◦ and image size of 1024 × 1024 pixels, i.e., on Fig. 1 we have Cx = Cy = 512

and f = Cx/ tan(FOV/2) = 1911. The target dimensions, translated in pixel, correspond to a

projected size of 191×143×48 pixels at 40 m, 255×191×64 pixels at 30 m, 382×287×96 pixels

at 20 m, and 764×573×191 pixels at 10 m. Figure 4 shows the silhouette of the target at these

distances for a given attitude. The main structure of the S/C, composed of the central body and

(a) (b) (c) (d)

Fig. 4. Silhouette of the target satellite at 40 m (Fig.4(a)), 30 m (Fig.4(b)), 20 m (Fig.4(c)), 10 m (Fig.4(d)), for a 1024×1024

pixel camera with FOV of 30◦. The attitude of the S/C is ϕ = 70.41◦, ϑ = 66.92◦, ψ = −29.58◦

the lateral solar arrays, has two symmetry planes, (Ot, xt, zt) and (Ot, yt, zt), see Fig. 3. Some

elements on the central body such as antennas and a docking fixture break the symmetry but are

relatively small and visible only for a restricted range of attitudes. The ambiguity of determining

the pose of a symmetric body was already noted in previous work on aircraft pose estimation and

classification [17], [22], [20]. With the method of [20], for any triplet of Euler angles [ϕ, ϑ, ψ],

8 possible solution are possible. Two solutions are due purely to the presence of a symmetry

plane, i.e., [ϕ, ϑ, ψ] and [−ϕ, −ϑ, ψ − π]. Then, two more solutions, i.e., [π − ϕ, −ϑ, ψ]

and [π + ϕ, ϑ, ψ − π], are due to the impossibility of distinguishing between mirror images

using Hu’s invariants. Moreover, for all of the 4 solutions described, the method in [20] cannot

disambiguate the in-plane rotation between [ϕ, ϑ, ψ] and [ϕ, ϑ, ψ − π]. In contrast, by using

a complete set of invariants containing also pseudo-invariants, as discussed in Section IV, and

by estimating the in-plane rotation as proposed in Section III, we need only to consider the

two potential solutions [ϕ, ϑ, ψ] and [−ϕ, −ϑ, ψ − π] for every output of the pose estimation

algorithm.
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In order to characterize the intrinsic performance of the descriptor without including the

problem of distinguish between two symmetric attitudes, the tests described in this Section are

done using training images and test images corresponding to attitudes in the semi-sphere where

ϕ ≥ 0. The training database has a size of Nw = 5000 and the methods are tested on 2000

images. Both the training and the test attitudes are generated by modifying the sampling scheme

(3) to consider only nonnegative values of ϕ, i.e., with ϕ = π randϕ. For the test attitudes, ψ is

also randomly generated such that ψ = 2π randψ−π, where randψ is a random variable uniformly

distributed in the interval ]0, 1]. Test images are generated with perfect camera pointing (i.e.,

tcOc−Ot = [0, 0, d]), except for the images used in Sec.V-A5, where the algorithm is tested in the

presence of camera pointing errors.

Even if the object is symmetric, the number of rotation symmetries of the projected silhouette

is always smaller or equal to 1. It is equal to 1 if the projected shape has one axis of reflection

[52]. This implies that the invariants proposed in Section IV-A and Section IV-B can be used,

except for attitudes corresponding to a camera position close to the sphere poles, i.e., ϑ ∼ 0 and

ϕ ∼ 0 or ϕ ∼ π. For these attitudes, the projected S/C shape has a 2-FRS and a different set of

invariants should be computed to enable recognition. Nevertheless, according to [23], the order

of the normalizing moment used to obtain rotation invariance should be kept as low as possible

to improve the performance of the recognition, as higher order moments are more sensitive

to noise. In order to avoid degrading the global performance of the algorithm for the sake of

improving the recognition of just two isolated orientations, the rotation-normalizing moments

are kept equal to c12 for CMs and A31 for ZMs. Moreover, in correspondence of the polar

attitudes, the rule for the determination of the in-plane angle of rotation ψ0 described in Section

III will provide two solutions. However, this ambiguity can be resolved by imposing a continuity

constraint between two consecutive pose estimates.

A. Simulation Results

We describe in this section the results of four different simulation experiments. In Paragraph

V-A1, our aim is to characterize the degradation of the pose estimation performance when the

S/C in the test images is at a distance dtest different from the distance dtrain used to build the

database. Pararagraph V-A2 compares the performance of the different global descriptors when

the resolution of both test and training images changes. In Paragraph V-A3, the robustness against

the resizing of the test images is investigated, while Paragraph V-A4 studies the influence of the
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database size Nw on the estimation error. Finally, in Paragraph V-A5, the robustness to camera

pointing errors is analyzed.

For any test image, we compute the estimation error in the axis-angle representation using unit

quaternions. If qc−ttrue is the true relative attitude quaternion associated with the camera-target

pose in a test image, and qc−tmeas the relative attitude quaternion estimated by the algorithm, the

error δϕϑψ is computed as:

δq = q∗c−ttrue ⊗ qc−tmeas

δϕϑψ = 2 atan
(∣∣∣∣√δq2

1 + δq2
2 + δq2

3/δq0

∣∣∣∣) (26)

where quaternions are written q = q0 + q1i+ q2j + q3k, with q0 denoting the scalar part, and q∗

denotes the quaternion conjugate q∗ = q0 − (q1i + q2j + q3k). The quantity δϕϑψ represents the

smallest rotation that aligns the measured quaternion with the true one, and its value is always in

the interval [0, 180◦]. We assume that a test image has found an acceptable match if δϕϑψ < 20◦.

Indeed, when using a frame-to-frame tracking algorithm, a pose estimation error in this range

can typically be corrected, while outside of this range the matching result can be rejected as

outlier, as done in [53]. Finally, we record as performance indices: i) the accuracy (also denoted

% < 20◦), defined here as the percentage of detections with an estimation error lower than 20◦;

ii) the mean of the error δϕϑψ over all the test samples such that δϕϑψ < 20◦; and iii) the mean

of the measured distance dmeas computed using all the test samples.

A baseline test is performed using a database built with dtrain = 20 m and test images taken

at the same distance. Table I shows the performance of the CM, ZM, and FD invariants as a

function of the moment or harmonic order. The best accuracy for CMs is 90.45%, obtained with

invariants of the 5th order, with a mean angular error of 2.67◦. The best accuracy of ZM-based

invariants is 96.95%, obtained with moments up to the 9th order, with a mean angular error of

1.74◦. However, little performance improvement is observed beyond the 7th order. The optimal

performance of FDs is obtained using coefficients up to the 10th harmonic, with an accuracy of

85.05% and a mean angular error of 3.03◦, and no improvements is observed for higher order

harmonics. In general, even when the accuracy of CM, ZM, and FD invariants is comparable

(e.g., 4th order CMs, 3rd order ZMs and 10th harmonic FDs), the mean angular error using ZMs

is lower. The descriptors show a comparable performance in the estimation of the distance dmeas.

1) Effect of a variation of the test distance with a constant training distance: The descriptors

based on ZMs, CMs, and FDs are theoretically invariant on a continuous image, but this
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TABLE I

PERFORMANCE FOR dtrain = 20 M, dtest = 20 M.

Complex moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

% < 20 deg 84.15 86.65 90.45 89.55 88.40 88.20 86.95 88.50

δϕϑψ mean [deg] 2.95 2.99 2.67 2.75 2.83 2.92 2.92 3.15

dmeas mean [m] 20.14 20.13 20.15 20.13 20.09 20.08 20.05 20.02

Zernike moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

% < 20 deg 85.35 91.85 95.25 95.45 96.40 96.25 96.95 96.80

δϕϑψ mean [deg] 2.12 1.86 1.80 1.74 1.75 1.73 1.74 1.76

dmeas mean [m] 20.07 20.01 20.01 20.01 20.02 20.01 20.01 20.01

Fourier descriptors

harmonic: 3rd 4th 5th 7th 9th 10th 20th 99th

% < 20 deg 53.65 74.65 81.50 84.30 84.95 85.05 85.05 85.00

δϕϑψ mean [deg] 4.65 3.34 3.23 3.01 3.01 3.03 3.05 3.05

dmeas mean [m] 20.13 20.21 20.12 20.04 20.03 20.01 19.98 19.98

invariance degrades for a digital image due to pixel discretization [54], [31]. Thus, if the

descriptors for a test image with the target at distance dtest are compared to a database of

descriptors computed with the target at a different distance dtrain, the quality of the matching

may be reduced in practice. Moreover, below a certain value of d, it is no more possible to

assume that the distance affects only the scale: its contribution to the shape of the projected

silhouette may entail an additional degradation of the performance.

To investigate this issue and understand if one can use a database with a single distance to

estimate the S/C pose at different distances or if it is necessary to store views covering a wide

range of relative distances, we use the same training database built with dtrain = 20 m and

the same test attitudes, but perform tests with different values of dtest. Results are shown in
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TABLE II

EFFECT OF A VARIATION OF THE TEST DISTANCE WITH A CONSTANT TRAINING DISTANCE (dtrain = 20 M)

Complex moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

dtest = 30 m

% < 20 deg 73.95 77.55 83.95 85.80 83.00 83.15 81.40 82.45

δϕϑψ mean [deg] 5.19 4.94 5.03 4.90 5.26 5.21 5.88 5.64

dmeas mean [m] 30.45 30.39 30.53 30.36 30.21 30.25 30.01 30.02

dtest = 40 m

% < 20 deg 66.55 71.35 75.65 78.40 71.40 73.65 71.00 74.05

δϕϑψ mean [deg] 6.29 6.25 6.46 6.23 6.80 6.72 7.35 7.19

dmeas mean [m] 40.56 40.59 40.71 40.67 40.15 40.24 39.52 39.78

dtest = 10 m

% < 20 deg 57.20 60.65 64.85 67.45 63.30 64.65 64.60 64.60

δϕϑψ mean [deg] 7.93 7.84 8.69 8.40 8.92 8.72 8.86 8.82

dmeas mean [m] 9.79 9.70 9.75 9.79 9.71 9.70 9.72 9.71

Zernike moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

dtest = 30 m

% < 20 deg 78.85 86.90 93.00 92.50 93.95 93.20 94.85 94.40

δϕϑψ mean [deg] 3.06 2.57 2.55 2.42 2.42 2.37 2.41 2.45

dmeas mean [m] 30.19 30.11 30.11 30.11 30.12 30.12 30.12 30.12

dtest = 40 m

% < 20 deg 71.40 80.20 89.35 89.65 90.95 89.40 91.35 91.25

δϕϑψ mean [deg] 3.90 3.19 3.29 3.02 3.03 2.96 3.02 3.11

dmeas mean [m] 40.28 40.22 40.21 40.22 40.22 40.22 40.23 40.22

dtest = 10 m

% < 20 deg 62.20 72.90 80.80 84.80 87.00 86.65 87.70 87.35

δϕϑψ mean [deg] 5.04 4.64 4.62 4.11 4.12 4.15 4.20 4.28

dmeas mean [m] 9.87 9.89 9.89 9.88 9.87 9.88 9.87 9.87

Fourier descriptors

harmonic: 3rd 4th 5th 7th 9th 10th 20th 99th

dtest = 30 m

% < 20 deg 43.80 61.80 69.50 72.10 72.7 72.65 72.85 72.75

δϕϑψ mean [deg] 5.69 4.29 4.2 3.70 3.76 3.75 3.82 3.82

dmeas mean [m] 30.53 30.48 30.32 30.10 30.05 29.99 29.92 29.90

dtest = 40 m

% < 20 deg 34.45 48.80 57.80 60.40 61.10 61.25 61.00 60.95

δϕϑψ mean [deg] 6.58 5.10 5.00 4.42 4.48 4.50 4.58 4.63

dmeas mean [m] 41.08 40.76 40.53 40.16 40.07 40.01 39.91 39.90

dtest = 10 m

% < 20 deg 45.65 80.80 84.60 90.70 92.25 91.25 90.25 90.00

δϕϑψ mean [deg] 6.95 5.31 5.14 4.13 4.15 4.14 4.22 4.23

dmeas mean [m] 9.75 9.77 9.66 9.85 9.86 9.84 9.83 9.83
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Table II for dtest = 30 m, dtest = 40 m and dtest = 10 m. At 30 m, the maximal accuracy

is obtained for CMs up to the 6th order (85.80%), for ZMs up to the 9th order (94.85%), and

for FDs up to the 20th harmonic (i.e., 72.85%). Zernike invariants are the most stable, with an

accuracy loss of only 2.1% compared to the baseline test. The mean angular error is increased

for all the methods. Trends are confirmed when the test distance increases. At 40 m, FDs are

the most affected (best accuracy equal to 61.25% for the 10th harmonic), followed by CMs (best

accuracy equal to 78.40% with moments up to the 6th order). Zernike invariants confirm their

higher stability, with the best performance obtained for the 9th order. The accuracy of 91.35%

for ZMs is still higher than the best performance of CM and FD in the baseline test, and the

mean angular error of 3.02◦ is comparable. On the other hand, if the test distance is decreased

with respect to the training distance, as illustrated in Table II for dtest = 10 m, the moment-based

descriptors (CMs and ZMs) show a substantial performance degradation. The best accuracy for

CM invariants (67.45%) is obtained with moments up to the 6th order, with a mean angular

error of 8.40◦. The degradation of ZM invariant is smaller (accuracy = 87.70%, mean angular

error = 4.20◦ for the 9th order), but higher than the degradation incurred at 40 m. This relatively

large performance loss can be attributed to the fact that at 10 m the distance starts having a

non-negligible contribution to the shape of the projected silhouette. On the other hand, FD

shows an opposite trend, with a accuracy of 92.25% for the 9th harmonic, a value which is even

higher than the one obtained in the baseline test. The trends are summarized in Fig. 5, which

shows as a function of dtest the evolution of best performance obtained for each set of descriptors

(attained for 6th order CMs, 9th order ZMs, and 10th harmonic for FDs). The measured distance

dmeas tends to be underestimated when dtest < dtrain, and overestimated when dtrain < dtest, as

a consequence of the effect of d on the shape of the projected silhouette.

2) Effect of a variation in the resolution of both the test and the training images: In order to

better isolate in the previous tests the true effect of a mismatch between dtest and dtrain from a

potential degradation in performance simply due to a lower silhouette resolution as the distance

increases, we performed additional simulation experiments assuming dtest = dtrain, with this

distance equal to 10 m and 40 m, complementing the baseline test at 20 m. The numerical

results are shown in Table III and Fig. 6 displays the performance indices of the 6th order CMs,

the 9th order ZMs, and the 10th harmonic FDs as a function of the test distance. The accuracy

of CMs and ZMs is only slightly affected by the distance. For ZM invariants up to the 9th

order, the accuracy and mean angular error are only slightly affected by the distance, going from
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Fig. 5. Effect of a variation of the test distance with a constant training distance dtrain = 20 m.
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Fig. 6. Effect of a variation in the resolution of both the test and the training images (dtest = dtrain).

97.15% and 1.75◦ at 10 m to 95.25% and 1.98◦ at 40 m respectively. On the other hand, the

mean angular error of both CMs and FDs degrades more clearly for a lower image resolution.

The mean angular error of CM invariants up to the 6th order is equal to 2.57◦ at 10 m and

3.41◦ at 40 m, and the mean angular error of FD invariant up to the 10th harmonic is equal

to 2.86◦ at 10 m and 3.87◦ at 40 m. An interesting result is the trend in the accuracy of FDs,

which monotonically increases as the image resolution increases, with a maximum of 96.65%
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TABLE III

EFFECT OF A VARIATION OF THE RESOLUTION OF BOTH THE TEST AND THE TRAINING IMAGES (dtrain = dtest)

Complex moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

dtest = 40 m

% < 20 deg 82.00 84.65 90.75 90.40 89.30 89.45 88.15 89.15

δϕϑψ mean [deg] 4.07 3.77 3.54 3.41 3.54 3.72 3.83 3.92

dmeas mean [m] 40.29 40.19 40.19 40.20 40.09 39.99 40.02 40.10

dtest = 10 m

% < 20 deg 82.90 85.05 89.45 88.55 87.55 86.60 85.65 85.70

δϕϑψ mean [deg] 2.7 2.69 2.56 2.57 2.78 2.91 3.01 3.17

dmeas mean [m] 10.08 10.04 10.03 10.04 10.02 10.01 9.99 10.00

Zernike moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

dtest = 40 m

% < 20 deg 84.35 86.70 93.40 92.95 94.90 94.50 95.25 94.75

δϕϑψ mean [deg] 2.41 2.03 2.04 1.97 1.98 1.98 1.98 1.96

dmeas mean [m] 40.07 40.03 40.04 40.02 40.03 40.02 40.03 40.02

dtest = 10 m

% < 20 deg 85.50 93.05 95.90 96.20 96.80 97.05 97.15 97.20

δϕϑψ mean [deg] 1.96 1.87 1.80 1.76 1.73 1.74 1.75 1.77

dmeas mean [m] 10.03 10.01 10.01 10.00 10.00 10.01 10.00 10.01

Fourier descriptors

harmonic: 3rd 4th 5th 7th 9th 10th 20th 99th

dtest = 40 m

% < 20 deg 38.45 51.35 59.25 61.85 62.90 62.15 62.35 62.25

δϕϑψ mean [deg] 5.65 4.35 4.07 3.80 3.93 3.87 3.90 3.88

dmeas mean [m] 41.01 40.61 40.29 39.69 39.69 39.64 39.60 39.59

dtest = 10 m

% < 20 deg 62.55 89.20 92.10 96.30 96.50 96.65 96.05 95.85

δϕϑψ mean [deg] 4.53 3.30 3.14 2.79 2.85 2.86 2.85 2.85

dmeas mean [m] 10.05 9.93 9.93 10.00 10.00 10.00 10.00 10.00

(10th harmonic) at a distance of 10 m. This performance is comparable to the accuracy of ZM

invariants, even though the error obtained with ZMs remains always lower.

3) Effect of a resizing of the test images: The largest contributor to the algorithm latency is the

time needed to compute moment invariants (see Sec.V-C). The execution time increases linearly

with the number of pixels to be processed, and this may suggest to resize the acquired image
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before computing the descriptors. In this paragraph we test the performance of the invariants

at dtrain = dtest = 20 m, where the test images have been resized from 1024 × 1024 pixels

to 256 × 256 and 512 × 512 pixels using OpenCV resize() function [55]. When computing

descriptors from the resized images, (11) needs to be corrected to allow computing the correct

value of dmeas:

dmeas =
√
m00train/m00test · dtrain ·

√
npixelR/npixel0 , (27)

where npixelR is the total number of pixel in the resized image and npixel0 is the total number of

pixel in the original image. The results are displayed in Table IV. Moment invariants show an

accuracy comparable to the baseline test, and a slightly increased angular error. ZM invariants

show a higher degradation in the estimation of the distance with respect to CMs. However,

this issue can be overcome using the original image to compute m00, and the resized image to

compute rotation invariants. The performance of the FD is very poor. However, as discussed in

Sec.V-C, the very low time needed to compute FDs suggests that image resizing is unnecessary

when working with Fourier invariants.

4) Effect of the database size Nw: Increasing Nw typically leads to a smaller distance between

a given target orientation and its nearest neighbor in the database, and hence to a smaller

estimation error on average. However, a larger database requires more memory as well as more

computation time for matching, although as we discuss below the latter is typically much smaller

than the time needed to compute the invariants. The effect of reducing the database size Nw is

evaluated for dtrain = dtest = 20 m. Table V shows the results for Nw = 1000 and Nw = 3000,

in addition to the baseline scenario with Nw = 5000. The estimated average distance is not

displayed in the table as no appreciable differences with respect to the baseline test were found.

Fig. 7 compares the performance indices as a function of the ZM-based invariants’ order for the

different values of Nw. As expected, both the accuracy and mean angular error improve with

larger values of Nw. However, the marginal improvement also decreases as Nw becomes large,

so that above a certain threshold, the performance gains may not be worth the higher storage

and computational costs.

5) Effect of a pointing error: While the database is constructed by centering the image at

the target’s COM, during the pose acquisition phase in a real RDV the camera will likely

point at the silhouette’s centroid, causing a small pointing error. In some scenario, it may be

even impossible to keep the target in the center of the FOV, causing a larger pointing error.
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TABLE IV

EFFECT OF A RESIZING OF THE TEST IMAGE. (dtrain = dtest = 20 M)

Complex moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

256× 256

% < 20 deg 78.30 82.75 87.40 87.55 86.25 86.25 85.40 86

δϕϑψ mean [deg] 3.85 3.69 3.49 3.52 3.58 3.63 3.74 3.9

dmeas mean [m] 20.02 19.99 19.99 19.98 19.96 19.92 19.91 19.86

512× 512

% < 20 deg 81.9 84.70 89.90 88.90 87.00 87.10 86.30 87.30

δϕϑψ mean [deg] 3.53 3.43 3.16 3.15 3.30 3.41 3.52 3.64

dmeas mean [m] 19.98 19.97 19.99 20.00 19.96 19.93 19.84 19.86

Zernike moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

256× 256

% < 20 deg 78.55 89.65 94.20 94.30 95.25 95.55 95.95 95.90

δϕϑψ mean [deg] 3.52 2.84 2.70 2.49 2.46 2.42 2.38 2.41

dmeas mean [m] 20.02 19.92 19.91 19.91 19.90 19.90 19.90 19.89

512× 512

% < 20 deg 83.05 91.40 94.55 94.60 95.60 95.55 96.55 96.35

δϕϑψ mean [deg] 2.66 2.20 2.11 1.98 1.95 1.95 1.96 1.98

dmeas mean [m] 19.94 19.89 19.88 19.87 19.87 19.87 19.87 19.87

Fourier descriptors

harmonic: 3rd 4th 5th 7th 9th 10th 20th 99th

256× 256

% < 20 deg 25.50 40.35 45.45 48.40 48.75 48.65 48.75 48.80

δϕϑψ mean [deg] 7.44 5.98 5.74 5.30 5.39 5.35 5.37 5.40

dmeas mean [m] 20.39 20.12 20.10 19.55 19.52 19.47 19.40 19.41

512× 512

% < 20 deg 37.4 55.15 60.70 63.35 63.80 63.65 63.60 63.70

δϕϑψ mean [deg] 5.88 4.46 4.26 4.01 4.03 4.05 4.15 4.16

dmeas mean [m] 20.24 20.12 20.04 19.71 19.68 19.64 19.61 19.60

The presence of this error affects not only the position of the image’s centroid (which does

not influence the invariants), but also the projected shape of the S/C, because of the camera’s

perspective projection. It is therefore important to understand whether the presence of such

pointing errors affects the algorithm. To do this, we added angular offsets to the camera RF

around the xc and yc axis and tested the algorithm at a distance of 20 m, using the database
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Fig. 7. Performance of the ZM invariants for different database sizes Nw.

(a) (b)

Fig. 8. Silhouette of the target satellite at 20 m, at a relative attitude of ϑ = −35.02◦, ψ = 87.99◦. In Fig.8(a) the pointing

error is ∆γ = 1.43◦, in Fig.8(b) it is ∆γ = 5.85◦.

built with dtrain = 20 m. Two sets of 2000 images were generated. In the first one, each image

is generated adding a total pointing error ∆γ such that ∆γ ∈ [1.42◦, 2◦] (see Fig.8(a)). In the

second set, the error is ∆γ ∈ [4.25◦, 6◦] (see Fig.8(b)). For these tests we collect also the

performance on the estimation of the relative position vector tcOc−Otmeas . In particular, the mean
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TABLE V

EFFECT OF DATABASE SIZE Nw . WITH dtrain = dtest = 20 M.

Complex moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

Nw = 1000 m
% < 20 deg 71.80 74.10 77.95 77.30 76.70 75.10 74.70 75.95

mean [deg] 4.82 4.94 4.92 5.05 5.27 5.26 5.17 5.22

Nw = 3000 m
% < 20 deg 80.30 82.95 86.85 86.80 85.65 85.75 84.10 84.75

mean [deg] 3.35 3.44 3.23 3.36 3.51 3.54 3.50 3.68

Zernike moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

Nw = 1000 m
% < 20 deg 75.35 79.95 86.15 87.55 89.60 89.50 90.85 90.25

mean [deg] 3.70 3.49 3.53 3.40 3.42 3.34 3.35 3.35

Nw = 3000 m
% < 20 deg 82.65 89.25 93.75 94.40 95.25 95.15 95.85 95.45

mean [deg] 2.44 2.23 2.21 2.15 2.13 2.14 2.13 2.14

Fourier descriptors

harmonic: 3rd 4th 5th 7th 9th 10th 20th 99th

Nw = 1000 m
% < 20 deg 49.50 68.70 75.30 77.90 79.20 78.95 79.10 79.05

mean [deg] 5.36 4.56 4.46 4.29 4.37 4.41 4.48 4.49

Nw = 3000 m
% < 20 deg 53.15 73.20 80.55 82.75 83.15 83.35 83.40 83.20

mean [deg] 4.86 3.68 3.56 3.33 3.34 3.38 3.42 3.42

of the absolute errors ∆tcx, ∆tcy, ∆tcz, is shown. The results are displayed in Table VI and show

that all the methods are relatively robust to pointing errors. The accuracy of the invariants remains

almost the same as for the baseline test, while the mean angular errors increase slightly. It is

interesting to see how the attitude error grows almost linearly with the pointing error ∆γ. ZM

based invariants show lower angular errors and position errors than the other sets of invariants.

B. Discussion of the results

From the tests described in this section, the following important conclusions can be drawn.
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TABLE VI

EFFECT OF A POINTING ERROR. dtrain = dtest = 20 M

Complex moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

∆γ ∈ [1.41◦, 2◦]

% < 20 deg 83.00 86.35 90.40 89.80 88.85 88.50 87.65 88.50

δϕϑψ mean [deg] 3.57 3.55 3.36 3.43 3.53 3.62 3.65 3.80

∆tcx mean [cm] 4.75 4.67 4.63 4.65 4.71 4.65 4.74 4.74

∆tcy mean [cm] 4.89 4.83 4.80 4.78 4.69 4.75 4.88 4.81

∆tcz mean [m] 0.605 0.537 0.499 0.521 0.539 0.563 0.638 0.624

∆γ ∈ [4.25◦, 6◦]

% < 20 deg 80.30 84.70 88.05 87.65 85.80 85.95 85.70 86.25

δϕϑψ mean [deg] 6.08 6.01 5.84 5.83 5.89 5.93 6.17 6.26

∆tcx mean [cm] 6.70 6.20 6.32 6.05 6.36 6.20 6.64 6.62

∆tcy mean [cm] 6.82 6.18 6.11 5.96 6.42 6.54 6.59 6.53

∆tcz mean [m] 0.701 0.577 0.587 0.553 0.654 0.641 0.691 0.690

Zernike moment invariants

order: 3rd 4th 5th 6th 7th 8th 9th 10th

∆γ ∈ [1.41◦, 2◦]

% < 20 deg 85.40 91.85 95.70 95.70 96.65 96.85 97.35 97.15

δϕϑψ mean [deg] 2.77 2.57 2.54 2.47 2.45 2.47 2.47 2.47

∆tcx mean [cm] 4.49 4.39 4.39 4.38 4.37 4.37 4.38 4.37

∆tcy mean [cm] 4.53 4.46 4.46 4.46 4.45 4.46 4.46 4.45

∆tcz mean [m] 0.292 0.162 0.156 0.156 0.156 0.157 0.157 0.157

∆γ ∈ [4.25◦, 6◦]

% < 20 deg 84.25 90.70 94.90 94.60 95.90 96.05 97.10 96.65

δϕϑψ mean [deg] 5.47 5.29 5.27 5.24 5.20 5.21 5.21 5.22

∆tcx mean [cm] 5.07 4.54 4.56 4.53 4.52 4.50 4.50 4.50

∆tcy mean [cm] 5.16 4.71 4.68 4.66 4.65 4.63 4.63 4.63

∆tcz mean [m] 0.318 0.176 0.176 0.169 0.168 0.166 0.167 0.168

Fourier descriptors

harmonic: 3rd 4th 5th 7th 9th 10th 20th 99th

∆γ ∈ [1.41◦, 2◦]

% < 20 deg 53.45 74.15 80.65 84.15 84.80 84.60 84.55 84.50

δϕϑψ mean [deg] 4.99 3.88 3.62 3.48 3.48 3.49 3.51 3.51

∆tcx mean [cm] 6.84 5.67 5.53 4.72 4.70 4.71 4.72 4.72

∆tcy mean [cm] 6.56 5.63 5.45 4.86 4.88 4.89 4.89 4.89

∆tcz mean [m] 2.211 1.235 1.088 0.586 0.593 0.599 0.610 0.613

∆γ ∈ [4.25◦, 6◦]

% < 20 deg 53.05 75.00 81.00 84.10 84.45 84.60 84.45 84.45

δϕϑψ mean [deg] 6.81 6.05 5.78 5.74 5.75 5.77 5.79 5.77

∆tcx mean [cm] 13.26 8.66 8.04 5.82 5.81 5.84 5.93 5.91

∆tcy mean [cm] 14.08 9.10 8.69 6.27 6.28 6.31 6.29 6.28

∆tcz mean [m] 2.189 1.166 1.038 0.562 0.566 0.571 0.584 0.585
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1) If the target is close, the shape of its projected silhouette can change significantly with the

distance, resulting in a significant decrease in performance for moment-based invariants. This

phenomenon depends on the camera sensor properties and on the target geometry. In our

experiments, it starts occurring for a distance of about 10 m, i.e., about two-hand-a-half times

the maximum dimension of the target. FDs, on the other hand, suffer less from this issue.

2) The accuracy of moment-based invariants is only mildly affected by the image resolution, see

Fig. 6, and by the image resizing, see Par. V-A3. Thus, images could be sub-sampled before

computing moments in order to decrease the computation time of the algorithm. This results

in a small performance loss, which might be acceptable if the algorithm is only used to detect

the divergence of a classical iterative tracking algorithm.

3) ZM invariants up to the 4th order (i.e., 13 features) always perform better than CM and FD

invariants of any order or harmonic. The accuracy for FDs is comparable to that of ZMs only

for high resolution images.

4) The accuracy of FDs is highly affected by the test distance, and the accuracy always increases as

the test distance decreases, regardless of the training distance. This can be explained as follows.

The majority of the spectral content of the projected S/C silhouette, which is a relatively simple

shape, is contained in the first 10 harmonics. For a low resolution image, the rasterization effect

shifts some of the spectral content of the S/C shape to be to higher frequencies, resulting in loss

of information. On the other hand, for high resolution images, the spectral content is correctly

distributed in the first harmonics and the matching accuracy is enhanced. This feature is also

very interesting because for short distances the computation time for the silhouette’s moments

increases due to the large number of pixels to be processed. The computation of FDs on the

other hand needs less time, since only contour points have to be processed. Thus, it could be

useful to switch from moment-based descriptors to FDs as the test distance becomes sufficiently

small.

5) The distance is always correctly recovered using (11), even when δϕϑψ is higher than 20◦.

Hence, even in the case of an incorrect matching, the best match is an image having a “mass”

distribution similar to the one of the S/C silhouette. This provides a method to estimate the

camera-target distance d using monocular vision, even when it is not possible to estimate the

attitude correctly.

It should be noted that all the tests have been carried out using perfect binary images, and that

a degradation should be expected when using real images of the target spacecraft. When using
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real images, the extracted binary silhouettes are very likely to be affected by segmentation errors.

However, the design or choice of robust background subtraction and segmentation algorithms

are out of the scope of this study.

C. Computation Time and Memory Requirements
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Fig. 9. Computation time normalized with respect to the 10th order ZM invariant computation time

Fig.9 shows the evolution of the computation time needed to compute the descriptors, as a

function of the invariants’ order, averaged over the images of the test set at 20 m. The times are

normalized with respect to the time needed to compute ZM invariants up to the 10th order. Using

MATLAB on a 2.70 GHz Intel Core i7 processor, this time is equal to 649.95 milliseconds. Note

however that this absolute computation time is mostly indicative, since the implementation could

be optimized and would be done in a statically compiled programming language or directly in

hardware on a real system, which can lead to significant improvements.

For ZMs and CMs, the total computation time of the algorithm is the sum of the time needed to

compute the nth order invariants and the time needed to compute the in-plane rotation angle ψ0.

For FDs, the computation time includes the time needed to extract the edges from the silhouette’s
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image (using the OpenCV function findContours() [56]), as well as the time to compute the in-

plane rotation. In fact, for FDs, ψ0 must be calculated before computing the Fourier transform.

The FFT computes all the harmonics up to the size of the input sequence simultaneously, hence

the computation time does not depend on the invariants’ order.

We see that the computation time for CMs and ZMs is comparable, while FDs are much

faster to compute than moment-based descriptors. Note that the computation of the 7th order

ZM invariants requires only half of the time needed to compute the 10th order ones, and that

in every test, these invariants have shown an accuracy very close to the optimal one (which

was always obtained for the 9th or 10th order) as well as similar mean angular errors. Hence,

7th order ZM invariant offer a good compromise between computational cost and estimation

performance. CM invariants offer no particular advantage, as they are always outperformed by

ZM invariants and take essentially the same amount of time to compute. Finally, the size of the

database affects only moderately the overall computation time of the algorithm, since the time

necessary for the nearest neighbor search is largely dominated by the descriptor computation

time. For example, with a database of size Nw = 5000, matching requires less than 0.1% of

the time needed to compute the 10th order ZM invariants. Thus, the choice of the value of Nw

should be driven only by the memory available to store the database and by the precision required

for the algorithm. Note again that since the size of the database grows exponentially with the

number of parameters to discretize, this analysis relies crucially on the fact that the distance

and yaw angles are not included in the matching process, thanks to the invariance properties

of the descriptors. The memory needed for the descriptor database storage can be computed

by multiplying the value of 8 bytes (i.e., the dimension of a double type variable) by the total

number of doubles in the database, which is given by Nw × (Nf + 4) (i.e., the number of the

rotation invariant Nf , plus m00train , ψ0train , ϕtrain, and ϑtrain). A database of ZMs invariants

up to the 9th order (i.e., Nf = 53) with Nw = 5000 has a size of 2.28 Mbytes. A navigation

solution using two databases of ZMs invariants up to the 7th order (i.e., Nf = 34) computed

respectively for dtrain = 40 m and dtrain = 20 m, and a database of FDs up to the 10th harmonic

(i.e., Nf = 18) computed at dtrain = 10 m, requires a size of 3.93 MBytes if Nw = 5000, and

2.353 MBytes if Nw = 3000. These requirements are compatible with the resources available

on typical space qualified avionics.
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VI. CONCLUSION

This article proposes a template matching method to estimate the pose of a non-cooperative

target during space rendezvous from a single binary image capturing the target’s silhouette. The

method is suitable for initial pose acquisition and for detecting faults and deviations in other

on-board trackers, and represents a novel approach for the pose estimation of a spacecraft in a

rendezvous. Three types of global descriptors, based on complex moments, Zernike moments, and

Fourier descriptors, are introduced and compared in order to match the silhouette in a database of

pose-dependent feature vectors generated offline. By exploiting the scale and rotation invariance

of these descriptors, the approach requires discretizing only two pose angles to construct the

database, leading to fast computation times appropriate for real-time implementations. Our

performance analysis on simulated images shows that Zernike moment invariants provide the

highest accuracy and robustness in off-nominal conditions. Fourier descriptors show comparable

performance with a much lower computational cost, but only on for high resolution images or

short target distances. This suggests that these two types of descriptors are complementary and

could be used in combination. Future work will focus on the post-processing of the algorithm

outputs to detect outliers and discriminate between symmetric attitudes.
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