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Abstract 

The main objective of this paper is to develop a numerical model susceptible to solve the 

numerical locking problems that may appear when applying the conventional solid and shell 

finite elements of ABAQUS. This model is based on an hexahedral solid shell element. The 

formulation of this element relay on the combination of the Enhanced Assumed Strain (EAS) 

and Assumed Natural Strain (ANS) methods with modified FSDT. The developed element is 

implemented into the ABAQUS user element (UEL) interface. The performance of this element 

is demonstrated by different benchmark tests from literature. Our contribution consists on 

applying a single solid shell element through the thickness direction to predict the low velocity 

impact behavior on FGM circular plates. 

Key-words: Solid shell element, free-locking, FGM, low velocity impact  

1. Introduction  

In mechanical engineering, the finite element method is well employed to solve thin structure 

problems. Therefore, the choice of the finite element must be reliable and robust to obtain 

accurate results. The conventional finite elements present almost various numerical locking 

problem, for instance shear and membrane locking when using shell elements [1,2]. For the 

case of solid element, we distinguish shear, Poisson thickness and volumetric locking [3,4]. 

To solve these numerical problems, an alternative solid shell element is proposed by Klinkel[5] 

and Tan and Vu-Quoc[6]. The formulation of this developed element is based on the coupling 

of the Assumed Natural Strain (ANS) and the Enhanced Assumed Strain (EAS) methods. The 

ANS method was derived by Bathe and Dvorkin [7] in order to solve transverse shear locking 

problem. While the EAS method was derived by Simo and Rifai [8] to overcome Poisson 

thickness and volumetric locking. According to the literature, solid shell element is frequently 

implemented into home codes [9–11]. Nonetheless, solid shell element is rarely implemented 

into the finite element commercial code ABAQUS. Li [12] implemented into the VUEL 

interface of ABAQUS a free-locking and mixed solid shell element with B-bar formulation to 

simulate nonlinear shell problems. 

Actually, composite materials are employed in several engineering applications thanks to their 

enhanced properties. Nonetheless, conventional composite materials, present a source of 

delamination and discontinuities because of their multilayered structures. The FGMs are known 

as heterogeneous composites prepared by combining ceramic and metal in which material 

properties vary continuously and gradually in the thickness direction. Recently, several 

numerical studies have been developed to focus on FG shell structure problems [13–21].  

However, the FE discretization of the FGM shell structure applying solid shell element remains 

scarce. Hajlaoui [22] developed an hexahedral solid shell element with nine EAS parameters to 

study the buckling behavior of FGM structures. Reinoso and Blázquez [23] integrated an 

https://www.researchgate.net/lab/Electro-Mechanical-System-Laboratory-Chedly-Bradai?_sg=PI_TkI1U0haSLgQAYi4vMEkWP4mCT2hG9-FhWm4mE6RwQwzBIJ-udmJWoABANNJnYD0eGSiwluAoXt5aBw4ohBwUwA
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hexahedral solid shell element in the interface UEL of ABAQUS to model FGM. The 

development of this element is based on mixed formulation adopting only seven incompatible 

modes.  While Chalal and Abed-Meraim [24] implemented hexahedral solid shell elements 

SBH5, SBH15 and SBH20 in the commercial finite elements code ABAQUS to simulate FGM 

structures. Nevertheless, these elements are only suitable for static problems. 

In the literature, three shear deformation theories are proposed to study shell structures: The 

Kirchhoff-Love approach is derived by Dhatt [25]. In this classical theory, the transverse shear 

deformation is assumed neglected. To improve this theory, Mindlin [26] develop a First Order 

Shear Deformation Theory (FSDT) in which a constant effect of transverse shear strain is 

considered along the thickness direction with a shear correction factor (5/6 in the case of 

isotropic materials). To overcome the limitations of the Reissner-Mindlin theory, a High Order 

Shear Deformation Theory (HSDT) is derived [27]. In this theory, a parabolic distribution of 

the transverse shear strain is considered along the thickness direction. In order to obtain the 

performance of the HSDT with optimal simulation time, a modified FSDT was proposed 

[28,29] with parabolic shear correction function. In these papers, shell finite elements were 

employed. However, to the knowledge of authors the modified FSDT theory is not yet 

developed using solid shell element. 

Because of the wide application field of the FGM in biomedical engineering, transportation and 

aerospace, various structures a subjected to low velocity impact. The impact solicitation is 

defined as a brief contact between a projectile or concentrated mass and a beam or a plate. 

Recently, several studies are developed to predict the elasto-plastic behavior of the FGM when 

using various methods of homogenization: The Tamura-Tamota-Ozowa (TTO) model is widely 

used [30–33]. This method is based on the plastic response of the metal phase. In addition to 

the TTO method we distinguish the incremental method [34], the second order method [35] and 

the self-consistent method [36]. Mori-Tanaka method [37] and the rule of mixture [38] are 

developed to predict the elastic properties of the inhomogeneous composites. 

Numerical and experimental studies of low velocity impact are widely developed [39–42].  

Nevertheless, very limited investigations of the low velocity impact response on FGM 

structures are depicted in literature. Gunes [43] studied the behavior of FGM circular plates 

under low velocity impact. The used FGM was composed of aluminum alloy (Al 6061) and the 

ceramic SiC. An elastoplastic behavior of FGM was considered with isotropic hardening. The 

homogenization was carried out via the user material UMAT interface of the finite element 

code ABAQUS. The formulation was based on Mori-Tanaka model and self-consistent 

methods to predict the FGM elastoplastic behavior. The impact finite element model was 

considered as 2D axisymmetric in which the circular plate was discretized with 10 CAX4 

elements in the thickness direction. In [44], numerical and experimental investigations were 

realized to predict the effect of low velocity impact on Al/SiC FGM circular plates. The FGM 

homogenization was based on the Mori-Tanaka model to identify the elastic properties and also 

based on the TTO method in order to describe the plastic part. Simulations were conducted 

using the finite element code LS-DYNA. Solid element with eight nodes was applied for the 

discretization of the FG circular plate. To validate the numerical results with experimental 

works, the authors applied 40 elements in the thickness direction. However, the study of the 

low velocity impact of the FGM circular plate using only one solid shell finite element through 

the thickness direction is not yet developed. 

The contribution of this paper is to numerically implement a free-locking hexahedral solid shell 

element into the commercial code ABAQUS using user element (UEL) FORTRAN 

subroutines. The formulation of the developed element is based on the coupling between the 

ANS method with modified FSDT and the EAS method with optimal number of parameters. 

The performance and the robustness of this element are assessed using benchmark tests with 
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various geometries and materials. In this work, the scope of this element is extended to expect 

elastoplastic contact problems such as low velocity impact on functionally graded material 

(FGM). The simulations are conducted using ABAQUS/Standard. The finite element model 

consists of a rigid impactor and a circular plate meshed with a single solid shell element though 

out the thickness direction. 

2. Functionally graded material   

In this paper, the subscript “m” and “c” will be referred to metal and ceramic materials. The 

volume fraction of ceramic phase varies through the thickness direction as presented in the 

following expression [45]: 

1
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2.1 Elastic FGM properties  

In this work, The Mori-Tanaka method [37] is applied to predict the elastic properties of the 

FGM circular plates. The effective bulk modulus ( )k z  and the effective shear modulus ( )z  
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Then, the Poisson’s ratio and the Young’s modulus of the homogenized FGM are written as 

follows  

( )
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The FGM mass density is expressed, using the mixtures rule, as following 

( ) ( ) ( )m m c cz V z V z  = +    (5) 

2.2 Elastoplastic FGM properties  

In this work, the metal behavior is assumed as elastoplastic with isotropic hardening. The 

Ludwik power plastic hardening law is considered [37]. The matrix stress 
m takes the 

following expression 

mn

m Y m mK r = +    (6) 

Y m ,
mK  and

mn are respectively the matrix yield strength, strength coefficient and strain 

hardening exponent. r  is the plastic strain. The FGM has an elastoplastic behavior of the matrix 

with the Ludwik power plastic hardening law: 
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n
Y K r = +    (7) 

  is the stress, r  is the plastic strain, ( )Y MPa  is the yield strength, ( )K MPa  is the effective 

strength coefficient and n  is the effective strain hardening exponent. Several models were 

developed to estimate the ( , , )Y K n parameters. In this study, we considered the self-consistent 

model [36] in which Y , K  and n  are expressed as  
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3. Elastoplastic constitutive equations  

The Green-Lagrange strain tensor is decomposed into two parts, elastic eE and plastic pE as:  

e p= +E E E     (9) 

The elastic and plastic parts are decoupled. This hypothesis is not only valid for the case of 

small deformations, but also it is used in large deformation with an updated Lagrangian 

formulation.Thus, the Green-Lagrange strain tensor E and the Piola-Kirchhoff stress tensor S  

are noted respectively in this section by  and  . 

The stress tensor is decomposed also into two parts, the first one is spherical m I and the second 

is deviatoric, as: 

m + = I S    ;   
1

( )
3

m trace =     (10) 

The stress field is related on the elastic strain tensor as: 

e=σ D ε:    (11) 

where D  represents the tangent modulus. In this work, we focus on the Von-Mises 2J  plastic 

criterion with isotropic hardening. The plastic surface f is defined in function of the yield and 

deviatoric stresses 
y and S  as [46,47]: 

3 / 2 0yf = − S    (12) 

Thus, the plastic strain takes the following form: 
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Here  is the plastic multiplier, which is defined in function of the loading conditions. 

3.1 Numerical resolution  

The considered numerical scheme in this study is the Euler (implicit) approach in which the Eq 

(13) is integrated as the following expression 
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The decomposition of the stress tensor Eq (10) and the elasticity relation Eq (11), give: 

( )1 1

p

n n n.+ += −D      (15) 

1 12 3 / 2trial

n n + += −  n     ;  1 12 3 / 2trial
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https://en.wikipedia.org/w/index.php?title=Strength_coefficient&action=edit&redlink=1
https://en.wikipedia.org/wiki/Strain_hardening_exponent
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Referring to the Eq (12), the equation to solve takes the following form 

3
3 0

2

trial

yf  = −  − =S    (17) 

The resolution of this equation is via the Newton-Raphson method. Considering the consistence 

condition of the tangent modulus, we obtain 
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Where  
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Thus, the Eq (16) is linearized as the following form  
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Finally, the expression of the tangent modulus is  
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4. Solid shell finite element formulation 

The derived solid shell element (SS) is an eight nodes hexahedral element with three degree of 

freedom at each node. The variational principle with enhanced assumed strain (EAS) is applied. 

The EAS method [8] is used in the enhancement of compatible part of Green-Lagrange stain 
c

E  with an enhanced strain E to obtain the total Green-Lagrange strain tensor, as following:  

c= +E E E         (23) 

The three field Hu-Washizu (FHW) variational principle is: 

( ) ( )( , , ) ( ) : . .
f

c

V S
V V V V

dV dV dV dA


 = + − − −   u E S E E S E F u F u        (24) 

Where  is the Helmotz strain energy function. u , E ,S  are the independent tensorial quantities 

which are respectively the displacement vector, the incompatible strain and the independent 

part of Piola-Kirchhoff stress tensor, respectively. VF and sF are the body and the surface forces. 

By introducing the orthogonality condition, one can reduce two independent variables, u and E  

: 0
V

dV = S E        (25)  

The weak form of the reduced fields FHW functional obtained by the derivation of   takes the 

following form:  
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( , ) : ( ) . . 0
f

c

V S
V V V

G dV dV dA   


= + − − =  u E S E E F u F u        (26)  

S  is the second Piola-Kirchhoff stress tensor, is defined as: 


=


S

E
       (27) 

4.1 Finite element approximations  

The position vectors X  and x relative respectively to reference and current configurations are 

expressed using the curvilinear coordinates as: 
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Where  IX and Ix are the nodal coordinates, N I are the isoparametric shape functions:  

1
N (1 . ).(1 ).(1 )

8
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 In the same manner, the displacement vector, its variation and increment are respectively 

interpolated as: 
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4.2 ANS method 

The compatible Green-Lagrange strain tensor is written in the vectoriel following form: 
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configurations, are the position vector derivations with the parametric vectors. 

In order to avoid transverse shear locking, the transverse shear strains, 
13 23,c cE E are modified 

according to the ANS method  [7]: 
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Where F(z) is the parabolic distribution of the modified FSDT [29].  
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As depicted in figure 1, A (-1,0,0), B (0, -1,0), C (1,0,0), D (0,1,0),are the interpolation points 

computed in the mid-surface of the hexahedral element ( 0 = ).  

The transverse strain 
33

cE is modified as represent the following expression: 

( )( )
33

4

33

1

1
1 1

4

c L

L L

L
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=

= + +    (35) 

L= A1 (-1,-1,0), A2 (1,-1,0), A3 (1,1,0), A4 (-1,1,0) are the four interpolation points as presented 

in figure 1. 

 

Figure 1. Transverse shear and transverse strain interpolations 

Then using finite element approximations, the compatible stain tensor, its variation and 

increment are interpolated as: 
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sT  is the strain transformation matrix from parametric to cartesian coordinates, written in the 

following form: 
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In which .ij i jt = G T and iT (i=1,2,3) are the vectors of local orthonormal base. 

4.3 EAS method  

The enhanced strain [8] is expressed in function of the independent parameters vector α  as : 

( ), ,  =E M α  ; ( ), ,    =E M α  ; ( ), ,   = E M α    (39) 
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 1 2 3, ,=J G G G is the Jacobian matrix, 0J and 0

ST are the Jacobian and the transformation 

matrices at the element center. 

According to the orthogonality condition (eq 25), the interpolation matrix ( ), ,  M  can be 

written in the following form: 
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5
M , 7

M , 9
M are the interpolation matrices with respectively 5,7 and 9 parameters. 

4.4 Weak form linearization  

The weak form G  presents nonlinear terms. For that reason, the Newton Raphson method is 

applied for the linearization of equation (26), as follows: 

.( , )
T ext int

e

eG DG  
    − 

+   = −       −     

UK L f f
u α U α

αL H h
   (44) 

Where h , int
f and ext

f  are given by: 

 
e

T

e
V

dV= h M S  ;   
e

int T

e
V

dV= f B S  ;   
e f e

ext T T

V e S
V V

dV dA


= + f N F N F    (45) 

 K , L and H are expressed as following: 

D G= +K K K  ;  
e

T

e
V

dV= L M DB ;  
e

T

e
V

dV= H M DM    (46) 

Where 


=


S

E
D  is the material tangent moduli. DK  is the material stiffness tensor, defined: 

 
e

T

D e
V

dV= K B DB    (47) 

and GK  is the geometric stiffness matrix, relative to (I, J) nodes couple: 

   IJ

G IJ IJ IJ
V

diag G G G dV= K     (48) 

( )( )

( )( ) ( )( )

( )( ) ( )( )

,1 ,1

,2 ,2

4

1
,3 ,34

1

,1 ,2 ,2 ,1

1
,1 ,3 ,3 ,1 ,1 ,3 ,3 ,12

1
,2 ,3 ,3 ,2 ,2 ,3 ,3 ,22

N N

N N

1 1 N N

N N N N

1 N N N N 1 N N N N

1 N N N N 1 N N N N

I J

I J

L L

L L I J
T T L

IJ s

I J I J

B B B B D D D D

I J I J I J I J

A A A A C C C C

I J I J I J I J

G

   

 

 

− =

 
 
 
 

+ + 
 =
 +


 − + + + +  


  − + + + +
  


S T






   (49) 

Then, applying the static condensation procedure, the strain parameters vector α  is given by: 

( )1

e

− = − + α H h L U    (50) 

The stiffness matrix and the residual vector are expressed at the element level as following: 

1T

e

−= −K K L H L  ; 1T ext int

e

−= + −R L H h f f    (51) 

5. Numerical results  

In this part, numerical simulations are carried out in order to assess the robustness and the 

performance of the solid shell finite element. The SS element was implemented into the user 

element (UEL) interface via FOTRAN user subroutines. Various benchmark linear and 

nonlinear tests are presented in section 5.1 using isotopic standard material and FGM. In section 

5.2, we consider the analysis of FG shells under low velocity impact. Simulations of the contact 
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problem are performed adopting a single element in the thickness direction. Table 1 describes 

the different finite elements applied in this section. 

Table  1. Description of different finite element 

Element Description 

C3D8 Hexahedral solid element of ABAQUS 

C3D8I Incompatible hexahedral solid element of ABAQUS 

SS5 Solid shell element enhanced with 5 incompatible modes 

SS7 Solid shell element enhanced with 7 incompatible modes 

SS9 Solid shell element enhanced with 9 incompatible modes 

5.1 Solid shell element validation 

5.1.1 Distorted plate test  

The purpose of this benchmark problem is to demonstrate the robustness of solid shell element 

and to validate the linear static formulation implemented in ABAQUS. This test consists of a 

square clamped plate subjected to a concentrated load F (figure 2). The geometric properties, 

described in figure 3, are proposed by Klinkel [48]. The plate material behavior is considered 

elastic with the following properties: 
4

10 MPaE =  and 0.3 = . Considering the symmetry of 

problem, only one quarter of the plate is discretized by 2x2 elements. 

The objective of this test is to predict the evolution of displacement in function of the element 

distortion. The obtained numerical result are compared to the analytical displacement derived 

by Timoshenko and Woinosky-Krieger [49] as:  

2
2

3

12(1 )
0.0056 1exactW FL mm

Eh

−
= =     (52) 

One can notice that the solid shell result is well correlated with the analytical result. This can 

be explained by the fact that the ANS method avoids transverse shear locking. 

 

 

 

 

 

Figure 2. Description of the distorted plate test with hexahedral elements 
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Figure 3. Plate deflection in function of distortion 

5.1.2 Dynamic test of a spherical cap under a concentrated load  

In this section, we consider the test of spherical cap in order to demonstrate the solid shell 

element performance under dynamic problems. It consists on a spherical shell clamped and 

subjected in the center to a concentrated force. 100F =  [50]. The geometrical and material 

properties are the following: 4.76R = , 0.01576h = , 10.9 = , 0.000245 = . Owning to the 

shell symmetry, only one quarter of the problem is studied (figure 4). 

 

Figure 4. Description of spherical cap test 

 

The time increment is fixed to t 0.2 s = . The dynamic responses of the deflection for the 

linear and nonlinear case are shown in Figures 5 and 6.  Results are compared with ABAQUS 

solid finite elements and numerical results of Duarte Filho and Awruch [50]. All results show 

a good correlation except for C3D8 which require further discretization and more element for 

accurate solution.  
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Figure 5. Dynamic and linear response of the spherical cap 

 

Figure 6. Dynamic and nonlinear response of the spherical cap 

5.1.3 Pulled cylinder test   

The pulled cylinder test consists on short cylinder subjected at the middle to two pinching forces 

F. The geometrical properties are defined by the cylinder radius 4.953R = , the length 

10.35L =  and the thickness h=0.094,as illustrated in figure 7. The concentrated load 
6

max 5 10F =  is subjected to the point A. The FGM is considered with elastic behavior and the 

material properties of metal are 
90.7 10mE =  , 0.3m = . While, the ceramic properties are 

91.51 10cE =  , 0.3c = .Owning to the cylinder symmetry, only one eight of this problem is 

studied. The present test was widely treated by [18, 24, 48, 49] 
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Figure 7. Initial and deformed configuration of the metallic cylinder 

The obtained results, the cylinder deflection with different power law index at different point 

A, B and C are presented in the figures 8, 9 and 10. For all simulations, the used mesh is 16x16 

with a single element solid shell element with five EAS (SS5) parameters and ten gauss 

integration points through the thickness direction. These results are well correlated with those 

of Mars et al [18]. In this reference the mixture law was applied to predict the elastic properties. 

However, Mori-Tanaka model is adopted in the present work, which can explain the small 

difference between the present results and those obtained by Mars et al [18]. 

 

Figure 8. Cylinder deflection at point A (WA) 
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Figure 9.Cylinder deflection at point B (-UB) 

  

 

Figure 10.Cylinder deflection at point C (-UC) 

5.2 Numerical results of low velocity impact  

The aim of this section is to apply the developed solid shell element to simulate using 

ABAQUS/Standard the low velocity impact problem. Two tests are carried out: the objective 

of the first one is to apply the impact problem on aluminum circular plates and to compare the 

obtained results with the experimental works of Chen [53] In the second test, the validated 

model is applied to predict the low velocity impact responses on AL/SiC FGM circular plate. 

5.2.1 Validation of low velocity impact finite element model  

The model of low velocity impact is composed of an aluminum clamped circular plate impacted 

by a cylindrical projectile with hemispherical nose. The circular plate has a radius R=60mm 

and thickness h=1mm. This plate is meshed with 4888 solid shell elements with five EAS 

parameters SS5. Only one element is applied along the thickness direction and the mesh is 

refined along the contact zone. The impactor is considered rigid body with radius Rp=6.35mm 

and mass mp=54.4g. This impactor is subjected to an initial velocity V0=29.9m/s. The contact 

between the aluminum circular plate and the projectile is considered ‘node to surface contact’. 

Due to the symmetric of the impact model, only one quarter of this model is considered (see 
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Figure 11). The aluminum behavior is assumed elastic perfectly plastic with the following 

material properties: 69E GPa= , 0.3 =  , 290y MPa =  and 32600 /kg m = . 

The main objective of this test is to determine the temporal responses of the history output 

contact force.  The obtained results are compared with experimental and numerical data of Chen 

[53], as illustrated in Figure 12. 

To improve the robustness and the efficiency of our model, two tests are carried out. In the first 

one, five hexahedral solid element C3D8 of ABAQUS were applied along the thickness 

direction to mesh the impact circular plate. While, in the second test, only one solid shell 

element SS5 was applied in the thickness direction. The aim of these simulations is to compare 

the CPU time and to compare the contact force response of both models (see Figure 12). The 

obtained CPU time are depicted in Table 2. We can conclude that the developed solid shell 

element allows to save more than 10 times of computational time.  

 

Figure 11. 3D finite element model of low velocity impact 

 

 

Figure 12. Temporal contact force of aluminum low velocity impact (V0=29.9m/s) 
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Table  2. CPU time when applying solid shell element and solid element 

 C3D8 SS5 

CPU time(min) 407.47 36.295 

 

5.2.2 Low velocity impact on FGM circular plates 

The matrix is on aluminum with elastoplastic behavior. While, the ceramic SiC is assumed 

elastic. The volume fraction of this ceramic varies along the thickness direction from 0% to 

70% when the z varies respectively from –h/2 to h/2. This volume fraction is expressed as a 

function of the power law index as 

               ( )( )( ) 0.7 1 0.5
p

cV z z h = − −
  

    (53)

The matrix and ceramic material properties and elastoplastic parameters are illustrated in Table 

3. 

Table  4. AL and SiC material properties and elastoplastic parameters [44] 

 Young 

modulus 
( )E GPa  

Poisson’s 

ratio   

Density  
3( / )kg m  

Yield 

stress 

( )y GPa  

k n   

AL 6061 67 0.33 2702 80.10-3 237.33 0.3878 

SiC 302 0.17 3100 –– –– –– 

 

Low velocity impact simulations are carried out via ABAQUS/Standard to predict the impact 

solicitations to Al/SiC clamped circular plates. we consider the mass of the impactor 

mp=5.54Kg subjected to three values of initial velocities V0=1m/s, 2 m/s and 3 m/s. To predict 

the effect of the power law index of the FGM circular plate, three values are considered 0.1, 1.0 

and 10.0. The aim of this simulations is to determine the temporal contact force responses as a 

function of the power law index (see Figures 13, 14 and 15). 

 

Figure 13. Contact force response of FGM low velocity impact (V0=1m/s) 
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One can notice that for all values of power lax index the maximum contact force and impact 

time increase as a function of the impact initial velocity. For the case of V0=2m/s, the plate 

displacement, the impactor velocity and the kinetic energy of the FGM circular plate applying 

different power law index are respectively depicted in Figures 16, 17.and 18. We can conclude 

that the increasing the power law index causes the increase of impactor velocity and the plate 

kinetic energy and the decrease of plate deflection. 

To predict the impactor initial velocity on the impact response, the history contact force curves 

are illustrated in Figure 19 adopting three values of velocities V0= 1m/s, 2m/s and 3m/s and 

fixing p to 10.0. It can be conclude that for a constant value of power law index, the increase of 

impactor initial velocity generates the increase of maximum contact force value and the 

decrease of the impact time. 

 

 

 

Figure 14. Contact force response of FGM low velocity impact (V0=2m/s) 

 

Figure 15. Contact force response of FGM low velocity impact (V0=3m/s) 
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Figure 16. Temporal displacement responses for different power law index (V0=2m/s) 

 

Figure 17. Temporal velocity responses for different power law index (V0=2m/s) 

 

Figure 18. Temporal kinetic energy responses for different power law index (V0=2m/s) 
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Figure 19. History contact force response for different velocities and p=10.0 

6. Conclusion  

In this work, a robust free-locking solid shell finite element is implemented in the interface 

UEL of ABAQUS  in order to avoid numerical locking problems caused by conventional solid 

and shell elements. The formulation of the developed element is based on the coupling of ANS 

and EAS methods. To obtain current results, a modified FSDT with parabolic shape function 

was adopted..  Various benchmark tests are carried out with different geometries and materials 

to demonstrate the performance of the solid shell element. The application field is extended to 

analyze contact low velocity impact problem of FGM circular plates. 
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