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Abstract

We propose a modal logic of belief and nondeterministic ac-
tions, where sensing is in terms of test actions. It is not supposed
that the action laws are known by the agent.

We propose successor state axioms, which in the case of deter-
ministic actions allow for regression.

For the case where sensing is inconsistent with the agent’s be-
liefs we propose a new solution that does not resort to orderings
of plausibility.
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1 Introduction
Intelligent agents have two fundamental abilities: perception and action.
Since the beginning of the 90ies, research in reasoning about actions has
analyzed perception in terms of actions. Such perception actions have
been studied as part of a larger class of actions, called sensing actions
[16, 11], which can be defined as actions involving perception. Actions
not involving perception are non-sensing actions. Perception actions are
thus ‘pure’ sensing actions: they do not modify the environment.

It is noted in several places (e.g. [20, footnote 10], [16]) that actions
can be decomposed into a sequence of non-sensing actions and perception
actions. For example, the action of tossing a coin is the non-sensing
action of tossing without observing the result – eyes shut –, followed by
the perception action of checking the result.

The simplest perception action we can think of is testing whether
some proposition is true: checking whether the light in some room is on,
whether tossing a coin resulted in heads or tails, etc. We call such actions
test actions.

In this paper we study a logic where atomic actions are restricted
to be either non-sensing actions or test actions, and shall thus study
the simplest logic of actions allowing for sensing. It will turn out that
both classes of actions obey the same principles. These principles have
been called successor state axioms in reasoning about actions, and it has
been shown that they enable simple reasoning mechanisms [13]. The
extension to non-sensing actions requires introducing mental attitudes
into the language such has knowledge [16, 22] and goals [19]. In almost
all approaches successor state axioms are formulated in terms of a modal
operator of knowledge. Knowledge being viewed as true belief, it follows
that if perception is correct then surprises are impossible: if an agent
knows that A then he can never perceive that ¬A. (Indeed, as A was
known before, A must be true, and given that perception doesn’t change
the environment, A still holds after the perception action; as perception
is correct ¬A cannot be perceived.) It follows that to reason about the
dynamics of knowledge we only need two operations: KM-updates [9] to
take into account non-sensing actions, and AGM-expansions [1] to take
into account perception actions.

This is an idealisation: perception often contradicts what is held to
be true. I might be convinced that I have a coin in my pocket, but on
checking I find out I don’t, I think my watch is waterproof but when

1



trying it out it isn’t, etc. It is therefore rather the notion of belief that
is appropriate here:.

It is non trivial to extend the above solutions in order to handle belief.
Expansion operations do not suffice to take into account the effects of
perception on belief: we need belief revision operations Ã la AGM. The
only proposal up to now is that of Shapiro et al. [20], which is based on
orderings of plausibility. Our proposal does without such a device, and
differs in several ways. Most importantly, in [20] it is supposed that while
beliefs about contingent facts might be wrong, beliefs about action laws
are correct. We go beyond that and suppose that action laws as believed
by agents might differ from the ‘real’ action laws. Aiming at a logic that
is as simple as possible, we propose a logic that is based on a Dynamic
Logic solution to the frame problem [2].

In Sect. 2 we introduce a logic for belief, action, and time. Then we
focus on non-sensing and testing actions and the corresponding action
laws (Sect. 3), and show how the frame problem can be solved (Sect. 4).
Finally we discuss related work, in particular the recent Situation Calcu-
lus based approaches of Shapiro et col. (Sect. 5).

2 Dynamic Doxastic Logic
Here we describe a basic logic, which is similar to that of [18, 17], aug-
mented with a temporal operator.

We suppose that our language contains a modal operator of belief
Bel . The formula BelA is read “the agent believes A”. BelIfA reads “the
agent knows1 whether A is true or not”, and can be defined as BelIfA def.

=
BelA ∨ Bel¬A.

We adopt the modal logic KD45 as the logic of belief, i.e. we suppose
agents do not entertain inconsistent beliefs, and are aware of their beliefs
and disbeliefs.

We use a simple version of PDL [6] to speak about actions. To each
action a there is associated a modal operator Aftera. An example of a
formula is Bel¬Aftera⊥ ∧ Aftera⊥, expressing that the agent believes
that a can be executed, while this is not the case. The operator Feasiblea
is introduced as an abbreviation: FeasibleaA

def.
= ¬Aftera¬A.

We adopt the standard axiomatics of PDL, which for our fragment is
1We use the term “knows” here because “the agent believes whether A” sounds odd.
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nothing but the multimodal logic K. (Aftera corresponds to the Dynamic
Logic operator [a], and Feasiblea to ⟨a⟩.)

We finally suppose our language contains a temporal operator Always .
AlwaysA is read “A is always true.” We adopt the principles of S4 for
Always , plus

AlwaysA→ AfteraA

It follows that AlwaysA → Aftera1 . . .AfteranA, and also AlwaysA →
AfteraAlwaysA.

Note that that we do not suppose that AlwaysA → BelA. Hence
Always is not as powerful as the universal modal operator [12].

We adopt the standard possible worlds semantics, with models hav-
ing a set of states or possible worlds W , and accessibility relations RBel ,
RAlways , and Ra respectively associated to the modal operators Bel , Always ,
and Aftera.

RBel is reflexive, transitive and euclidean. In a state w ∈ W , the set
of states {u ∈ W : wRBelu} is called the belief state of the agent in w.

RAlways is reflexive and transitive, and contains every accessibility re-
lation Ra associated to the action a. Hence RAlways contains the reflexive
and transitive closure of the accessibility relations associated to the ac-
tions. (We might have supposed it is identical, but this is not necessary
here.) Hence Always allows to quantify over the states that are reachable
by sequences of actions.

The Ra are not necessarily functions, hence actions might be nonde-
terministic.

3 Action laws
Action laws describe action types, as opposed to action instances. We
suppose that to each action type a there is associated a set of effect laws
and a set of executability laws. Basically, the former are of the form
A → AfteraC and the latter are of the form A → Feasibleα⊤ where A
and C do not contain action operators.

3.1 Laws, not axioms

In most of the related approaches [16, 20, 22] it is supposed that actions
laws are known by all agents. We do not make that hypothesis here,
and admit that agents can entertain wrong beliefs not only about facts,
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but also about action laws. I might e.g. consider that action a is always
executable, while a is in fact executable only in context A; I believe that
a coin is biased, and that toss deterministically results in Heads, while in
fact toss is non-deterministic.

Then what is the logical status of action laws? On the one hand,
they are ‘eternal’ in the sense that they remain true after every action
execution. On the other hand, we want to allow for false beliefs about
laws. We therefore cannot expect action laws to be global axioms in the
standard sense [4], because we do not want necessitation by Bel to be
applied to them.

It is the modal operator Always which helps us out. AlwaysA ∧
¬BelA is consistent, and thus action laws might be ignored by agents.
Nevertheless we have AlwaysA→ AfteraAlwaysA, i.e. laws keep on being
true after actions have been executed.

Given an action law A, we can now distinguish objective action laws
of the form AlwaysA from subjective action laws of the form BelAlwaysA.
For tossing with a biased coin we have the objective AlwaysAfter toss(Heads∨
Tails), and the subjective BelAlwaysAfter tossHeads.

3.2 Non-sensing actions

A non-sensing action does not involve perception, and has no effect on
beliefs others than those stipulated by the law itself. Its objective and
subjective effect laws respectively take the form

Always(A→ AfteraC)

BelAlways(A→ AfteraC)

where C must be factual, i.e. without any modal operator.
Take the action of tossing a coin eyes shut. As the agent cannot

observe the effects of toss, he predicts them in an a priori way, according
to his mental state and the action laws he assumes. The agent can thus
be said to ‘mentally execute’ toss. Suppose the agent believes that toss is
not biased. Then one of the subjective effects of toss is that both heads
and tails are possible outcomes. Hence BelAlwaysAfter toss¬BelIf Heads.

Note that actions might have doxastic preconditions, such as knowing
my phone number to be able to call me.
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3.3 Test actions

Perception actions leave the environment unchanged. They can therefore
be characterized as having the property B → AfteraB for every objective
formula B, and objective formula being a formula without occurrences
of the doxastic modal operator Bel .

According to our definitions the distinction between non-sensing and
perceptive actions is not exclusive, and at the intersection there is a class
of actions that do not change the world: their effect laws only specify
when they are inexecutable. Such actions can be seen as test actions :
the action of testing that A fails if A is false, and succeeds else. In
the latter case, the agent learns that A. Such actions are the simplest
perception actions.

We note test(A) the action of testing that A.2 Testing-that actions
can be characterised by the following logical axioms (cf. [7, 8]).

A→ Feasible test(A)⊤ (TestAct1)
¬A→ After test(A)⊥ (TestAct2)

After test(A)A (TestAct3)

C → After test(A)C if C is objective (TestAct4)

Feasible test(A)C → After test(A)C (TestAct5)

The first two axioms together say that test(A) is executable iff A is true.
Therefore learning that test(A) has been executed amounts to learning
that A. (TestAct3) says that A holds after testing that A. Together with
the more general principles of section 4 it will guarantee that testing that
A leads to believing that A. (TestAct4) expresses that test actions are
perception actions, and the fifth says they are deterministic.

Note that we have formulated the principles for tests as logical axioms.
They are thus known by the agent. (This is obtained by the rule of
necessitation of KD45.)

Testing-that actions behave as expansions in the AGM-theory: they
make shrink the belief state by ‘throwing out’ possible states.

test(A) is indeed a non-sensing action: the reason is that when noti-
fied that test(A) has been executed the agent already can immediately

2test(A) is similar to the PDL test “A?”. The difference is that for the latter
AfterA?C is defined as A → C. Hence such tests validate B → AfterA?B for every
formula. However, consider B = ¬BelIfA: the formula ¬BelIfA → AfterA?¬BelIfA
should not be valid. Therefore such a principle must be restricted to factual B’s,
which is what we did here.
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conclude that A is true in the environment, without further sensing. In
some sense perception of A is ‘encoded’ in the public announcement of
actions.

Nondeterministic composition of test(A) and test(¬A) can ‘simulate’
the perhaps more intuitive action testIf (A) of testing-if A: testing if the
coin is heads amounts to nondeterministically choose between test(A)
and test(¬A) and execute the chosen action. Therefore testing-if can be
viewed as an abbreviation of testing-that:

After testIf (A)B
def.
= After test(A)B ∧ After test(¬A)B

It can then be proved that Feasible testIf (A)⊤ holds, as well as After testIf (A)BelIfA
and A→ After testIf (A)BelA. Note that while test(A) is a non-sensing ac-
tion, testIf (A) is not.

We have provided a detailed analysis of the relationship between
these two classes of test actions in [7]. We just note that an action
testIfCond(A,C) of testing whether A that is only executable under con-
dition C can be simulated as well: After testIfCond(A,C)B can be viewed as
an abbreviation of C → After testIf (A)B. Testing-that is thus expressive
enough to capture a large class of perception actions.

For example, checking whether the outcome of tossing is heads or not
is done by executing testIf (Heads). Hence we should have After testIf (Heads)BelIf Heads,
or equivalently After test(Heads)BelIf Heads ∧ After test(¬Heads)BelIf ¬Heads.
This will be derived from the above axioms for testing-that by means of
the axioms of the next section.

4 Solving the frame problem
From now on we make three hypotheses:

• All atomic actions are non-sensing actions (allowing thus for testing-
that actions).

• Actions are public: their occurrence is perceived both correctly and
completely. This means that (1) if an agent believes that some
action a occurred then a indeed occurred (correctness), and (2) if
a occurred then the agent believes a occurred (completeness).

This is supposed in many approaches, e.g. [16, 20, 22]. Intuitively,
we can think of such actions as being publicly announced to all
agents. Note that this makes that perception of testing-that actions
is accurate.
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• Non-sensing actions do not affect the agent’s cognition. Hence we
exclude actions such as modifying the agent’s memory.

This hypothesis is related to our definition of effect laws for non-
sensing actions, where the Bel cannot occur in postconditions.

Under these hypotheses simple and uniform axioms can be defined.
In particular, revision can be reduced to the problem of accommodating
executability of actions that were believed to be inexecutable: the agent
believed that a is inexecutable, and learns that a has been executed.

4.1 The axiom for updates

The basic axiom accounting for updates has been given in [8]. It is the
generalisation of the successor state axiom for knowledge of [16] to non-
deterministic actions.

(¬Aftera⊥ ∧ ¬BelAftera⊥)→
(FeasibleaBelA↔ BelAfteraA)

(SSA1)

Semantically, this means that the possible states after a are obtained by
‘mentally executing a’, i.e. applying a to the states that were possible
before a, and collecting the resulting states.

Consider e.g. a = toss. If we read the equivalence from the left to the
right, (SSA1) expresses that the agent’s uncertainty about the nondeter-
ministic result of toss is preserved through its execution: before executing
toss the agent ignores whether heads or tails will result, and this disbe-
lief ¬BelIf Heads is preserved through the execution of toss. (Remember
toss is non-sensing.) From the right to the left, (SSA1) expresses that
for non-sensing actions there are no a posterioribeliefs the agent didn’t
already hold a priori: if the agent believes that the coin is heads after
toss then – as he had no means to check whether Heads is true – he must
have believed before that the coin is biased, i.e. BelAfter tossheads.

As said in section 3, (SSA1) is intuitive for testing-that actions, too:
if after testing that Heads I believe that Heads ∧ A′ for some A′, and
test(Heads) is executable, then I believe before test(Heads) that Heads∧A′

will be true afterwards.
As announced in the end of section 3, from (SSA1) we can prove

After test(Heads)BelHeads and After test(¬Heads)Bel¬Heads using (TestAct3)
and standard modal principles.
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Remark 1 The only case where the → direction of the equivalence in
(SSA1) cannot be accepted is when a erases all or part of the memory of
the agent (e.g. taking off the batteries of a robot). The ← direction is
counter-intuitive only if the agent knows that a adds unjustified informa-
tion to his memory. This is the case e.g. when he is hypnotized or takes
drugs. We have excluded such extreme cases by hypothesis.

Remark 2 The plausibility of (SSA1) heavily relies on our hypothesis
that actions are public. For example, suppose Bel(¬Heads∧¬Tails). Sup-
pose that a toss-action takes place but the agent isn’t notified. Hence we
have After tossBel(¬Heads ∧ ¬Tails). But from axiom (SSA1) and the ac-
tion laws for toss it follows that
After tossBel(Heads ∨ Tails), which is contradictory.

Remark 3 (SSA1) does not hold for testing-if actions. Indeed, suppose
A∧¬BelA. From our axioms for testing we get the theorem After testIf (A)BelA,
as well as Feasible testIf (A)⊤ (cf. section 3.3) and BelFeasible testIf (A)⊤ (ob-
tained from the preceding by necessitation). Then with (SSA1) we would
get the counter-intuitive BelAfter testIf (A)A.

4.2 Enabling actions and the axiom for revision

Suppose the agent believes a is inexecutable, and learns that a has nev-
ertheless been executed. Axiom (SSA1) says nothing about that case.
Such surprising occurrences of actions are indeed problematic, because
the agent cannot just mentally execute a, but must first change his beliefs
about a’s preconditions.

We propose to formalize the operation of changing beliefs about pre-
conditions by the mental execution of a particular action whose effect
is to make the executability preconditions of a true. Formally, we asso-
ciate to every atomic action a an action enablea, and we say that enablea
makes a executable. We suppose that the action laws for every enablea
are known by the agent.

We postulate that enablea can occur in every state. Hence we have
the executability laws

AlwaysFeasibleenablea⊤ (DefAlwaysX(enablea))
BelAlwaysFeasibleenablea⊤ (DefBelAlwaysX(enablea))
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This means that for every action there is at least one state where it
is executable, which amounts to excluding from our actions the action
test(⊥) which is always inexecutable.

As enablea makes a executable, the set of executability laws for a
determines the effect laws for enablea. Let the set of objective and sub-
jective executability laws for a respectively be

{Always(A1 → Feasiblea⊤), . . . ,Always(An → Feasiblea⊤)}
{BelAlways(A′

1 → Feasiblea⊤), . . . ,BelAlways(A′
m → Feasiblea⊤)}

Then we have:

AlwaysAfter enablea(A1 ∨ . . . ∨ An) (DefE(enablea)1)
BelAlwaysAfter enablea(A

′
1 ∨ . . . ∨ A′

m) (DefE(enablea)2)

For example, for the above version of the toss action we get After enabletossHasCoin.
The precondition of executability of test(A) being A, to make A exe-

cutable amounts to updating the actual state by A. Hence we have the
axiom

After enabletest(A)
A (TestAct6)

Then we postulate the following axiom for revision:

(BelAftera⊥ ∧ ¬Aftera⊥)→
(FeasibleaBelA↔ BelAfter enableaAfteraA)

(SSA2)

Semantically, this means that if the agent believes a is inexecutable
then the possible states after a are obtained by first enabling a in the pos-
sible states before a, then applying a to these states, and finally collecting
the resulting states.

Let us illustrate (SSA2) by our running example. Suppose the agent
believes that some coin is biased: BelAlwaysAfter tossHeads, and suppose
he executes toss. toss being non-sensing, we obtain After tossBelHeads
from (SSA1) and the executability laws for toss.

Now suppose the agent subsequently perceives that ¬Heads via learn-
ing the occurrence of test(¬Heads) (figure 1). As he believes test(¬Heads)
to be inexecutable, we have BelAfter test(¬Heads)⊥, and (SSA2) applies.
Therefore

After test(¬Heads)Bel¬BelHeads↔ BelAfter enabletest(¬Heads)
After test(¬Heads)¬BelHeads

This illustrates that the agent has a consistent belief state after learning
that Heads.

9



RBel

toss

toss
¬Heads¬Heads ¬Heads

RBel

test(¬Heads)

test(¬Heads)enable test(¬Heads)

¬Heads ¬Heads

RBel

Heads¬Heads

¬Heads

Figure 1: believing the coin is biased

From (SSA1) and (SSA2) it can be proved
FeasibleaBelA→ AfteraBelA

expressing what may be called doxastic determinism of non-sensing ac-
tions.

4.3 Solving the non-doxastic frame problem

Given our successor state axioms we can reuse non-epistemic solutions
to the frame problem. Just as Scherl and Levesque have applied Reiter’s
solution [16] we use the solution of [2] in order to stay within propositional
logic.

Which truths can be preserved after the performance of a non-sensing
action? Our key concept is that of the influence of an action. If there
exists a relation of influence between the action and an atom p, then
p cannot be preserved. The relation a ; p is read “the action a influ-
ences the truth value of p”. In our example, ;= {toss ; Heads, toss ;
Tails, toss ; HasCoin}. Note that ; is in the metalanguage. We extend
; to formulas by stipulating that a ; A if there is an atom p occurring
in A such that a ; p.

The concept of influence (or dependence) is close to notions that have
recently been studied in the field of reasoning about actions in order to
solve the frame problem, e.g. Sandewall’s [15] occlusion, Thielscher’s [21]
influence relation, or the ‘possibly changes’ operators of Giunchiglia et
al. [5].

The preservation of formulas that are not influenced by an action is
formalized by the influence-based logical axiom

A→ AfteraA if a ̸; A and A is factual (Preserv)
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This expresses that if a does not influence A then A is preserved. The
restriction that A be factual avoids e.g. Feasiblea′⊤ → AfteraFeasiblea′⊤,
which is not necessarily the case because a might modify the executability
preconditions of a′.

Remark 4 As we have formulated (Preserv) as an axiom, it is not only
true, but also believed by the agent. It might nevertheless be the case that
the alleged influence of an action can differ from its real influence. We
therefore should have an objective relation ;obj and a subjective relation
;subj.

We can code these relations into our framework by putting ; = ;obj

∩ ;s, and adding frame axioms for those atoms where the relations
differ: e.g. if a ;obj p and a ̸;subj p, then we add to the set of effect
axioms of a that p and ¬p are believed to persist, i.e. BelAlways(p →
Afterap) and BelAlways(¬p→ Aftera¬p).

It can also be argued that influence should be conditional. This can be
encoded in a similar way by means of conditional frame axioms.

5 Discussion and related work
We have defined a modal logic of belief and nondeterministic actions
where the agent’s beliefs about the action laws might be inaccurate. Our
central axioms (SSA1) and (SSA2) have the form of successor state ax-
ioms. When actions are deterministic, (SSA1) is exactly the syntactic
counterpart of the successor state axiom of [16].

In our framework belief-contravening information can be restricted to
learning that some action a has been executed. Inconsistency with the
agent’s beliefs means that the agent believes a to be inexecutable, and
learns that a has occurred. We have shown that such a revision operation
can be implemented by an updating operation enabling the execution of
a. Our second axiom (SSA2) is a new solution that does not resort to
orderings of plausibility.

When restricted to deterministic actions our axioms allow for regres-
sion. In the case of nondeterministic actions it is not clear how this could
be done. An alternative is to use the famous modular completeness result
due to Sahlqvist [14], which applies here almost immediately (because
our axioms are of the required form). We thus get for free soundness
and completeness results, as well as a tableau algorithm. If the tableau
algorithm terminates then we get a decision procedure for our logic. We
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are currently working on that, aiming at applying recent results on modal
axioms of confluence and permutation (of which our SSA1 and SSA2 are
instances).

In [20], Shapiro et col. add to the Scherl and Levesque framework
a revision-like operation based on plausibility orderings. They define
BelA as truth of A in the most plausible among the possible states. If a
sensing action eliminates the most plausible of the possible states, then
previously less plausible states become the most plausible ones. The
plausibility ordering should be kept fixed.

While being intuitively appealing, such a solution has several draw-
backs. (1) As the authors note, it is restricted to deterministic actions.
(2) “The specification of [the plausibility ordering] over the initial situ-
ation is the responsibility of the axiomatizer of the domain.” [20] This
is particularly demanding because (3) in order to guarantee that after
a the set of possible states is nonempty, the authors require the set of
possible states to contain enough situations initially, restricting thus the
agent’s ‘doxastic freedom’. (4) As pointed out in [3], such a solution
to the problem of revision endangers the solution to the frame problem:
suppose you firmly believe p ∧ q, say that the printer is on (p), and that
the proceedings of KR’00 are on your shelf (q). Hence the set of most
plausible states is the singleton {{p, q}}. Conforming to the recommen-
dations of [20] you nevertheless consider the states {p,¬q}, {¬p, q}, and
{¬p,¬q} to be plausible, too. As you firmly believe p∧q, it seems natural
not to distinguish these three states and to associate to them the same
very low plausibility. Now suppose you learn that ¬p: according to [20]
you then not only abandon your belief that p, but also your belief that
q. It might be argued that the state {¬p, q} should be more plausible
than {¬p,¬q}. It nevertheless seems to be fair to say that specifying
a satisfactory plausibility ordering is a delicate task, involving a lot of
imponderabilities in what concerns the relative plausibility of indepen-
dent propositions. (5) The approach is unsatisfactory when applied to
communication. Consider the following example: agent k is competent
at p, and j is not. Agent i is completely ignorant initially: Hence all pos-
sible states are equally plausible for i. Then (under adequate hypotheses
of cooperation) we can expect that when j asserts p, then i adopts p,
i.e. Afterasserts(j,p)Belp. Moreover, as all states were equally plausible, p
holds in every state possible for i. Therefore when subsequently k asserts
¬p, i will unavoidably move to an empty set of possible states.

It seems to us that another problem will show up if one tries to extend
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the approach of [20] to account for imperfect knowledge about laws, which
is what we have supposed here.

We have supposed that actions are public. Almost all the approaches
make that assumption. It has been relaxed in [3], where drawbacks of the
earlier solution in [10] are pointed out. We can integrate their solution
via the introduction of particular atoms Observable(a), for every action
a. Observable(a) is true in a state when the agent is able to observe
a. Now Observable(a) conditions axioms (SSA1) and (SSA2). In turn, if
Observable(a) is false then the agent’s belief state doesn’t change:

¬Observable(a)→ (AfteraBelA↔ BelA)
which has the form of a successor state axiom.

The normative framework for belief revision being the AGM theory
[1], which of their postulates do we satisfy? It can be shown that just
as Shapiro et col. we satisfy the basic postulates (K*1) – (K*4), and
(K*6). (The names of the postulates are as in [20]). If we define update
actions as in [20] we satisfy the update postulates (K⋄1), (K⋄2), (K⋄4),
and (K⋄5) just as there. If we define updating by A as enable test(A) then
we moreover satisfy (K⋄3).
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