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Modal Probability, , , Belief,   and Actions

Andreas   Herzig∗
Institut de Recherche en Informatique de Toulouse (CNRS-INP-UPS) Toulouse, France

Abstract. We investigate a modal logic of probability with a unary  modal operator  expressing that  a proposition  
is more  probable than  its negation. Such an operator  is not  closed under  conjunction,  and  its modal logic is 
therefore non-normal.  Within  this framework we study the relation of probability with other  modal concepts: 
belief and  action. We focus on the evolution of belief, and  propose an integration  of revision. For that  
framework we give a regression algorithm.
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1. Introduction
Several researchers have investigated modal logics of probability. Some have added probability measures
to possible worlds semantics, most prominently  Fagin, Halpern  and  colleagues [10]. They use modal
operators  of knowledge, Kφ expressing that  the agent knows that  φ, and  they introduce  modal operators  
of the kind w(φ) ≥ b expressing that  fiaccording to the agent, formula φ holds with probability at least
bfl.

Others  have studied the properties  of comparative probability, following Kraft, Pratt,  and  Seidenberg,
and  Segerberg [38]. They use a relation φ >ψ(that  can also be viewed as a binary modal construction)
expressing �φ is more  probable thanψfl.

Only few have studied a still more  qualitative notion,  viz. the modal logic of constructions  of the
kind Pφ expressing that  φ is more  proba

ble than  ¬φ (or dually, at least as probable as ¬φ). Among
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those are Hamblin [21], Burgess [5], and T. Fine [40]. Lenzen [29, 30] has identi�ed weak belief with
being probable, and he has argued that a comprehensive account of knowledge and belief requires such
a notion of weak belief. Halpern and colleagues have studied the similar notion of likelihood [20, 19].

Probably one of the reasons for the lack of interest in such approaches is that the corresponding
logical systems are very poor, and are dif�cult to characterize w.r.t. the underlying probability measures.
(Things are different if we do not take probability theory but possibility theory: as shown in [6, 7], Lewis'
operator of comparative possibility [32] provides a simple and complete axiomatization of qualitative
possibility relations.)

A related but different research topic is the investigation of modal logics allowing to count accessible
worlds [11, 28]. Yet another option is to interpret Pφ not as a two-valued modal proposition but as a
many-valued modal proposition, as it is done in [18, Chapter 8] and [17]. There, the truth degree of Pφ
is taken as Prob(φ), so the bigger is the probability of φ, the `more true' is the proposition Pφ. One can
then express that for the agent φ is more probable than ¬φ by a non-classical implication P¬φ⇒ Pφ.

In this paper we investigate the logic of the modal operator P and its interactions with belief and
action. After some preliminary de�nitions and notions (section 2) we introduce a standard modal logics
of action (section 3) and belief (section 4). In the same section we also study the modal logic of `prob-
able' and its relation to belief. Contrarily to comparative possibility, P is not closed under conjunction.
Therefore its modal logic is non-normal, and our models are minimal models in the sense of [8], that are
based on neighborhood functions (as opposed to probability distributions).

We then turn to the relation of probability with action (section 5), and propose principles for the
interplay between action, belief, and probability. As we are speaking about belief and not knowledge,
we have to integrate belief revision into our framework (section 6). Our simple account allows us to
identify so-called successor state axioms for both belief and probability (section 6.3), which enable us to
use regression (section 7).

2. Preliminaries
In this article we only consider the case of a single agent for the sake of simplicity, the main reason being
that for the time being there are no relevant interactions between several agent in our approach.

2.1. Atomic Formulas, Atomic Actions
We have a set of atomic formulas Atm = {p, q, . . .}. One of our running example is the Yale Shooting
Problem (YSP), having atoms Loaded , Alive, HasGun . Another one will be in terms of playing dice;
we thus consider atomic formulas d1, d2, . . ., respectively expressing �the die shows 1�, etc. The set
of classical formulas Class is constructed from Atm with the connectives ¬,∧,∨. Literals are atomic
formulas or negations of atomic formulas. Implications φ→ ψ and equivalences φ↔ ψ are considered
to be abbreviations as usual.

We have a set of atomic actions Act = {α, β, . . .}. In the YSP we have load , shoot , and wait . In the
other example we have the throw action of throwing the die, the action wait of waiting, and the actions
obs d1, obs d2, . . . of the agent observing that the die shows 1, etc.

Actions are not necessarily executed by the agent under concern, but may be executed by other agents
or by nature. (So we might as well speak about events instead of actions.)



We do not consider complex actions here. We just note that tests and nondeterministic compositions
cannot behave in the standard dynamic logic way if we want to reason about knowledge or belief, and
refer to [23, 24] for a more detailed analysis.

From these ingredients complex formulas will be built together with modal operators in the standard
way.

2.2. Modal Operators
We have a standard doxastic modal operator B, and the formula Bφ is read �the agent believes that φ�,
or �φ is true for the agent�. For example, Bd6 expresses that the agent believes that the die shows �6�.
The formula B(d1 ∨ d2 ∨ d3 ∨ d4 ∨ d5 ∨ d6) expresses that the agent believes the die shows one of 1, 2,
3, 4, 5, or 6.

Moreover we have a modal operator P where Pφ is read �φ is probable for the agent�.1 The dual
¬P¬φ expresses that φ is not improbable. (This operator has been considered primitive in some papers
in the literature.) For example, P(d1 ∨ d2 ∨ d3 ∨ d4) expresses that it is probable for the agent that the
die shows one of 1, 2, 3, or 4. ¬Pd6 expresses that it is improbable for the agent that the die shows �6�.

Finally, for every action α ∈ Act we have a dynamic logic operator [α]. The formula [α]φ is read
�φ holds after every execution of α�. For example, [throw ]d6 expresses that the die shows 6 after the
throwing action. ¬[throw ]⊥ expresses that throw cannot be executed, and ¬[throw ]¬d6 expresses that
the die may show 6 after the throwing action. ¬P[throw ]d6 expresses that this is improbable for the
agent. [throw ]P¬d6 expresses that after throwing the die it is probable for the agent that it did not fall
6. [throw ][obs d6]Bd6 expresses that after throwing the die and observing that it fell 6 the agent believes
that it fell 6.

2.3. Models for Modal Operators
A frame is composed of a nonempty set of possible worlds W together with some structure on W . For
normal modal logics such structures are accessibility relations, while for non-normal modal logics we
will have neighborhood functions.

A model is a frame together with a valuation Val , where Val : W −→ 2Atm associates to every
world w the set of atoms that are true in w. Models are denoted byM.

The truth conditions are formulated in terms of the forcing relation |= linking models, worlds, and
formulas. Given a modelM and a world w ofM, the truth condition for an atomic formula φ ∈ Atm
is:

• |=M,w φ if φ ∈ Val(w)

The truth conditions for the standard operators of classical logic are as usual. When de�ning those for
the modal operators we shall make use of the truth set for φ, de�ned as:

||φ||M = {w ∈W : |=M,w φ}
We de�ne truth in a model |=M φ as |=M,w φ for every w ∈ W . And φ is valid in the class of

models C, noted |=C φ, if |=M φ for everyM∈ C.
1As several authors noted, we get the same account if we read Pφ as �probability of φ is high�, and interpret `high' as �greater
than b�, for 1 > b ≥ 0.5.



2.4. Relations Agreeing with a Probability Measure
P can also be viewed as a property of formulas. Let Prob be any subjective probability measure de�ned
on formulas. When it holds that

Pφ iff Prob(φ) > Prob(¬φ)

we say that P agrees with Prob.

2.5. Hypotheses about Action
We make some hypotheses about actions and their perception by the agent. They permit to simplify the
theory.

2.5.1. Public Action Occurrences

We suppose that the agent perceives action occurrences completely and correctly. For example, whenever
a die is thrown the agent is aware of that, and whenever the agent believes a die is thrown then indeed
such an action has occurred. One might imagine that action occurrences are publicly announced.

2.5.2. Public Action Laws

We suppose that the agent knows the laws governing the actions. Hence the agent knows that after
throwing a die the effect always is that 1, 2, 3, 4, 5, or 6 show up, and that 1 and 2 cannot show up
simultaneously, etc.

2.5.3. Non-informativity

We suppose that all actions are non-informative. Non-informative actions are actions whose instances
are not observed by the agent beyond their mere occurrence. In particular the agent does not observe the
outcome of nondeterministic actions such as that of throwing a die. Upon learning that such an action
has occurred the agent updates his beliefs: he computes the new beliefs from his previous beliefs and his
knowledge about the action laws. Hence the new beliefs neither depend on the state of the world before
the action occurrence, nor on the state of the world after the action occurrence.

In our example we suppose that the throw action is non informative: the agent throws the die without
observing the outcome. If the agent learns that the action of throwing a die has been executed then he
does not learn which side shows up.

Clearly, the action of checking the outcome of the throw action is informative: the new beliefs
depends on the position of the die in the real world. Other examples of informative actions are that of
looking up a phone number, testing if a proposition is true, informing whether a proposition is true, etc.

Nevertheless, to suppose all actions are uninformative does not mean that the agent is disconnected
from the world: he may learn that some proposition is true, or more precisely that some action of ob-
serving that some proposition has some value has occurred. For example, when he learns that it has been
observed that the die fell 6 (i.e., he learns that the action of observing 6 has been executed) then he is
able to update his beliefs accordingly. Indeed, the obs di actions are non-informative according to our
de�nition: when the agent learns that obs di has occurred then this information enables him to adjust his
beliefs in a complete way, and there is no need for further observation of the world. Other examples of



uninformative actions are that of learning that the phone number of another agent is N , testing that a
proposition is true (in the sense of dynamic logic tests), informing that a proposition is true, etc.

3. Models of Action

Our logic of action is a simple version of dynamic logic [22]. Within that logic we recast Reiter's solution
to the frame problem of [34].

3.1. A-Models

Actions are viewed as transition systems. In such a system, truth of a formula [α]φ in a state (alias
possible world) means truth of φ in all states possibly resulting from the execution of α.

A frame is a tuple 〈W, {Rα : α ∈ Act}〉 such that for every α ∈ Act :

• Rα : W −→ 2W maps worlds to sets of worlds

Rα(w) is the set of worlds accessible from w. We call A-models the set of models of action de�ned in
this way.

The truth condition for the modal operator is:

• |=M,w [α]φ if Rα(w) ⊆ ||φ||M

Validity of φ in A-models is noted |=A φ.

Theorem 3.1. ([22, 8])
|=A φ iff φ is provable from the inference rule

if φ→ ψ then [α]φ→ [α] (RMα)

and the axioms:

[α]> (Nα)
([α]φ ∧ [α]ψ)→ [α](φ ∧ ψ) (Cα)

3.2. Reiter Action Theories

The reasoning about actions community focuses on deductions from a theory describing a given set of
actions in terms of preconditions and effects. We here present the case of action theories in Reiter's style,
as transposed to dynamic logic in [9].

In such theories, all actions are deterministic, and it is supposed that the following pieces of infor-
mation are given, about which some assumptions of complete information are made.



3.2.1. Action preconditions

For each atomic action α there is a classical formula Poss(α) describing the action preconditions of α,
i.e., the condition under which α can be executed. For example Poss(shoot) = HasGun , Poss(toss) =
HasCoin , and Poss(wait) = >. In terms of dynamic logic, this means that for every α ∈ Act we have
a global axiom Poss(α)→ ¬[α]⊥.

It is supposed that the action preconditions are complete: α is executable if and only if Poss(α) is
true. Hence the global axiom can be strengthened from an implication to an equivalence Poss(α) ↔
¬[α]⊥.

3.2.2. Set of possible causes

For each literal L there is a �nite set of actions Cause(L) describing the causes of L. (In Reiter's
presentation this function is not given explicitly, but it can be retrieved from his functions γ+ and γ−.)
Cause(L) contains the actions in Act which under some circumstances cause L to become true. For
example, Cause(Alive) = ∅ (no action makes an agent alive), Cause(¬Alive) = {shoot , strangle},
and Cause(¬Loaded) = {shoot}. As wait is an action without any effect, there is no L such that
wait ∈ Cause(L). By convention, if L = ¬p is a negative literal then we identify Cause(¬L) with
Cause(p).

We (and Reiter) suppose that Cause(L) is not only �nite (while Act might be in�nite) but also small,
in the sense that the cardinality of Cause(L) is much smaller than that of Act .

Moreover, we suppose that every Cause(L) is complete: wheneverα 6∈ Cause(L) then the execution
of α can never make L true. In terms of dynamic logic, causal completeness means that we have a global
axiom ¬L → [α]¬L in that case. Axioms of that form are called frame axioms. In our example, as
strangle 6∈ Cause(¬Loaded), we have Loaded → [strangle]Loaded .

The next piece of information speci�es the causal relation in more detail.

3.2.3. Effect preconditions

For every literal L and every atomic action α ∈ Cause(L) there is a classical formula Cond(α,L) de-
scribing the effect preconditions of action α. (This function corresponds to Reiter's γ+ and γ−.) Again
by convention, if L = ¬p then Cond(α,¬L) = Cond(α, p). For example, Cond(strangle,¬Alive) =
>, and Cond(shoot ,¬Alive) = Loaded . In terms of dynamic logic, to every effect precondition
Cond(α,L) there is associated a global axiom Cond(α,L) → [α]L. As an example, consider the
formula Loaded → [shoot ]¬Alive.

It is supposed that the effect preconditions are complete: in situations where the formula Cond(α,L)
does not hold the execution of α can never make L true. This means that we moreover have a global
axiom (¬Cond(α,L) ∧ ¬L) → [α]¬L for every α ∈ Cause(L). For example, we have (¬Loaded ∧
Alive)→ [shoot ]Alive.

3.2.4. Models for a Reiter action theoryR
A Reiter action theoryR is made up of the three functions Poss(.),Cause(.),Cond(., .). We call models
forR the set of A-models satisfying the following constraints:

(δ[α]) every Rα is a partial function: for every w ∈W , card(Rα(w)) ≤ 1;



(Indep) if p ∈ Atm and w′ ∈ Rα(w) then

• α 6∈ Cause(p) and p 6∈ Val(w) implies p 6∈ Val(w′), and
• α 6∈ Cause(¬p) and p ∈ Val(w) implies p ∈ Val(w′);

(Exec) for every w ∈W , |=w Poss(α)↔ ¬[α]⊥;

(Effect) for every w ∈W ,

• |=w Cond(α,L)→ [α]L, and
• |=w (¬Cond(α,L) ∧ ¬L)→ [α]¬L.

We de�ne R |=A φ as |=M φ for every model M for R. We have e.g. determinism of every action:
R |=A [α]φ ∨ [α]¬φ

Remark 3.1. Note that although we suppose that every α is deterministic, we can nevertheless represent
incomplete knowledge about the effects of α. For example, for the action toss of tossing a coin we
can write Poss(toss) = >, Cause(Heads) = Cause(¬Heads) = {toss}, Cond(toss,Heads) = >,
Cond(toss,¬Heads) = >.

3.2.5. Reiter's Regression Theorem

Lemma 3.1. LetR a Reiter action theory. Then the following are valid inR�models.

1. [α]L↔ ¬Poss(α) ∨ L if α 6∈ Cause(L) and α 6∈ Cause(¬L);

2. [α]L↔ ¬Poss(α) ∨ (L ∧ ¬Cond(α,¬L)) if α 6∈ Cause(L) and α ∈ Cause(¬L);

3. [α]L↔ ¬Poss(α) ∨ Cond(α,L) ∨ L if α ∈ Cause(L) and α 6∈ Cause(¬L);

4. [α]L↔ ¬Poss(α) ∨ Cond(α,L) ∨ (L ∧ ¬Cond(α,¬L))
if α ∈ Cause(L) and α ∈ Cause(¬L).

Proof:
The proof can be found in [9]. We just sketch the proof of the second item from the left to the right. It
suf�ces to show thatR |= ([α]L ∧ ¬L)→ ¬Poss(α) andR |= ([α]L ∧ Cond(α,¬L))→ ¬Poss(α).

First, R |= ¬L → [α]¬L because α 6∈ Cause(L). It follows by standard modal principles that
R |= (¬L ∧ [α]L)→ [α]⊥, from whichR |= (¬L ∧ [α]L)→ ¬Poss(α) by the laws inR.

Second,R |= Cond(α,¬L)→ [α]¬L by the laws inR, from whichR |= ([α]L∧Cond(α,¬L))→
¬Poss(α) follows by standard modal principles.

ut

For example,R |=A [shoot ]¬Alive ↔ ¬HasGun ∨ Loaded ∨ ¬Alive.

Theorem 3.2. Let R be a Reiter action theory. For every formula φ there exists a classical formula φ′
such thatR |=A φ↔ φ′.



Proof:
First we put φ in negation normal form. Second, as all α are deterministic [α] distributes over ∧ and ∨.
Hence we end up with the innermost [α] having only literals in their scope. Finally, by the above lemma
3.1 these can be eliminated. Iterating this we obtain an equivalent formula without modal operators. ut

For example, consider the formula (¬Loaded ∧ Alive) → [wait ][shoot ]Alive of our running ex-
ample. Its negation normal form is Loaded ∨ ¬Alive ∨ [wait ][shoot ]Alive. In the �rst regression step
[shoot ]Alive is replaced by ¬HasGun ∨ (Alive ∧ ¬Loaded). The negation normal form of the result is
Loaded ∨ ¬Alive ∨ [wait ]¬HasGun ∨ ([wait ]Alive ∧ [wait ]¬Loaded). The three modal subformulas
are then regressed to the formula Loaded ∨¬Alive ∨¬HasGun ∨ (Alive ∧¬Loaded). And the latter is
valid in classical propositional logic.

To sum it up, in order to decide whether R |=A φ it suf�ces to regress φ to some classical formula
φ′, and then to apply any decision procedure for classical logic.

4. Models of Belief and Probability
4.1. Principles for Belief
Full belief, or strong belief, can be identi�ed with having probability 1. Following [27] we suppose
standard principles for B: we have the inference rule

if φ→ ψ then Bφ→ B (RMB)

and the following axioms:

B> (NB)
(Bφ ∧ Bψ)→ B(φ ∧ ψ) (CB)

Bφ→ BBφ (4B)
¬Bφ→ B¬Bφ (5B)

Hence the set of beliefs is closed under logical consequences (RMB) and contains tautologies (NB).
Moreover beliefs are closed under conjunction (CB), and agents are aware of their beliefs (4B) and
disbeliefs (5B). The latter two principles are called positive and negative introspection. It will follow
from the axioms linking belief and probability that beliefs are consistent, i.e. we will deduce ¬(Bφ ∧
B¬φ).

4.2. Principles for Probability
There are much less principles for P . Following [5] we accept the inference rule

if φ→ ψ then Pφ→ P (RMP )

and the axioms:

P> (NP )
¬(Pφ ∧ P¬φ) (DP )



Hence just as for belief, the set of probabilities is closed under logical consequences, contains tautologies,
and is consistent. In opposition to belief, probabilities are not closed under conjunctions: (Pφ∧Pψ)→
P(φ ∧ ψ) is not always the case. We will give introspection principles for P in section 4.4.

Our axioms match those that have been put forward in the literature, e.g. those in [40]. As stated
there, it seems that there are no other natural properties of `being probable' that could be formulated
using P . These properties are only sound w.r.t. probability measures (cf. section 4.5).

4.3. Principles for Belief and Probability
What is the relation between P and B? According to our reading things that are believed should also be
probable for an agent, i.e., we expect Bφ → Pφ to hold. The following main axiom will allow us to
derive that:

(Bφ ∧ Pψ)→ P(φ ∧ ψ) (C-MIX)

Just as for the case of beliefs and disbeliefs, agents are aware of probabilities and improbabilities.
This is expressed by the following two axioms:

Pφ→ BPφ (4-MIX)
¬Pφ→ B¬Pφ (5-MIX)

4.4. BP -Models
Truth of the formula Bφ means truth of φ in all worlds that are possible for the agent.

In what concerns the formula Pφ, one might imagine that to every possible world there is associated
a probability measure over the set of epistemically accessible worlds, and that Prob(φ) > Prob(¬φ).
Sometimes the intuition is put forward that among the set of accessible worlds there are more worlds
where φ is true than worlds where φ is false. We shall show in section 5.4 that such an explanation is not
entirely correct.

A frame is a tuple 〈W,B,P 〉 such that

• B : W −→ 2W

• P : W −→ 22W

Thus for every possible world w ∈ W , B(w) is a set of accessible worlds as usual. P (w) is a set of sets
of possible worlds, alias neighborhoods. Intuitively P collects `big' subsets of B (in the sense that for
V ∈ P (w), V contains more elements than its complement w.r.t. W , W \ V ). Nevertheless, there is no
formal requirement re�ecting this. (Condition (dP ) below is in this spirit but is weaker.)

Every frame must satisfy some constraints: for every w ∈W ,

(45B) if w′ ∈ B(w) then B(w′) = B(w)

(nP ) P (w) 6= ∅
(dP ) if V1, V2 ∈ P (w), then V1 ∩ V2 6= ∅
(c-mix) if V ∈ P (w) then V ⊆ B(w)



(45-mix) if w′ ∈ B(w) then P (w′) = P (w)

We call BP -models the set of models of belief and probability de�ned in this way. Note that it follows
from (nP ), (dP ), and (c-mix) that B(w) 6= ∅.

The truth conditions are:

• |=M,w Bφ if B(w) ⊆ ||φ||M
• |=M,w Pφ if there is V ∈ P (w) such that V ⊆ ||φ||M

Validity of φ in BP -models is noted |=BP φ.

Theorem 4.1. |=BP φ iff φ is provable from the inference rules (RMB) and (RMP ), and the following
axioms: (NB), (CB), (4B), (5B), (NP ), (DP ), (C-MIX), (4-MIX), (5-MIX).

The proof is essentially Burgess' in [5]. The logic he investigates in this paper differs from ours only
in that he considers knowledge instead of belief, which is irrelevant for his central results.

Burgess has also established a S5-like normal form theorem, whose proof is just the same in our case.
Call a formula primitive if it is either of the form B or ¬B followed by a disjunction of literals, or of the
form P or ¬P followed by a disjunction of conjunction of literals.

Theorem 4.2. For every formula φ there exists a formula φ′ such that |=BP φ↔ φ′, and φ′ is a disjunc-
tion of conjunctions of primitive formulas.

Burgess has given a decision procedure for his logic that is based on this normal form, which carries over
almost unchanged:

Theorem 4.3. BP -validity is decidable.

Provability of φ in our axiomatics for BP is noted `BP φ. Here are some provable formulas:

1. if `BP φ↔ ψ then `BP Pφ↔ P
2. `BP ¬P⊥
3. `BP Bφ→ Pφ
4. `BP ¬(Bφ ∧ B¬φ)

5. `BP (Bφ ∧ ¬P¬ψ)→ ¬P¬(φ ∧ ψ)

6. `BP Pφ→ ¬B¬φ
7. `BP (Pφ ∧ Pψ)→ ¬B¬(φ ∧ ψ)

8. `BP (B(φ→ ψ) ∧ Pφ)→ P
9. `BP Pφ↔ BPφ

10. `BP ¬Pφ↔ B¬Pφ



11. `BP Pφ↔ PPφ

12. `BP ¬Pφ↔ P¬Pφ

13. `BP PBφ→ Pφ

And here are some formulas that cannot be proved:

1. 6`BP Pφ→ Bφ

2. 6`BP Pφ→ PBφ

3. 6`BP (Pφ ∧ Pψ)→ P(φ ∧ ψ)

4. 6`BP (Pφ ∧ P(φ→ ψ))→ P

Note that neither of them is valid w.r.t. probability measures.

4.5. Incompleteness w.r.t. Probability Measures

BP -models differs from the standard semantics in terms of probability measures. What is the relation
between them?

It is straightforward to establish that our axiomatics is sound w.r.t. probability measures: whenever
we de�ne Pφ by Prob(φ) > 0.5 then P satis�es (RMP ), (NP ), (DP ).

Nevertheless and as announced in Section 4.2, our axioms are incomplete w.r.t. probability measures.

Theorem 4.4. ([40])
Let Atm = {a, b, c, d, e, f, g} and Act = ∅. Take a modelM where

• W = 2Atm

• for every w ∈ W , P (w) = {efg, abg, adf, bde, ace, cdg, bcf}, where efg is a shorthand for
{e, f, g}, etc.

• for p ∈ Atm , V (p) = {w ∈W : p ∈ w}

ThenM is a BP -model, but there is no agreeing probability measure.

Therefore our neighborhood semantics is strictly weaker than probability measures. We note that based
on Segerberg's axiomatization of comparative probability, Lenzen [29] has proposed complex but com-
plete axiomatizations of the concept `having probability greater than 0.5'.



5. ABP -Models of Action, Belief, and Probability
We recall the hypotheses we have stated in Section 2.5:

• the agent perceives action occurrences completely and correctly;

• the agent knows the laws governing the actions;

• actions are non-informative, i.e., the agent does not learn about particular effects of actions beyond
what is stipulated in the action laws.

As action effects are not observed, when the agent learns that the action of throwing a die has been
executed then he does not learn whether it fell 6 or not.

5.1. Observations
We suppose that Act contains observation actions of the form obs φ, where φ is any formula.

We postulate that φ can be observed if and only if φ is true:

(preobs φ) Robs φ(w) 6= ∅ iff |=M,w φ.

This validates

¬[obs φ]⊥ ↔ φ (Preobs φ)

Idealizing a bit we consider that observations have no physical effect. This means that the valuations
before and after obs φ should be identical:

(effobs φ) if w′ ∈ Robs φ(w) then Val(w′) = Val(w).

This validates:

φ→ [obs ψ]φ for every classical formula φ (Effobs φ)

It follows from (Preobs φ) and (Effobs φ) that [obs φ]φ whenever φ is a classical formula. It also
follows that B[obs φ]φ. We shall prove in section 6.3 that [obs φ]Bφ.

We do not say anything about the effects of observations on the agent's beliefs. This will follow from
the more general principles below.

5.2. Principles for Action and Belief
A lot of researchers have proposed principles for the interaction between belief and action that might
be called �no forgetting� (NF) and �no learning� (NL). Starting with [33] and [35], there is work by
[14, 16, 15, 4, 3, 36, 37]. We here follow our exposition in [23, 25]. The basic idea is that the agent's
new beliefs only depends on the previous beliefs and the event whose occurrence he has learned. Being
con�ned to his set of possibilities, when the agent learns that an event α has occurred then he `mentally
executes' α in each of his possible worlds. He then collects the resulting set of worlds to form his new
set of possibilities.

For sets of possible worlds V ⊆W we de�ne Rα(V ) =
⋃
v∈V Rα(v). This allows us to de�ne more

concisely the following constraint: for every w ∈W ,



(nf-nlB) if w′ ∈ Rα(w) and Rα(B(w)) 6= ∅, then B(w′) = Rα(B(w)).

Such models validate:

(¬[α]⊥ ∧ [α]Bφ)→ B[α]φ (NLB)
(¬B[α]⊥ ∧ B[α]φ)→ [α]Bφ (NFB)

[α]Bφ ∨ [α]¬Bφ (e∆B)

For the �no learning� axiom, we must suppose that the action α is executable (¬[α]⊥), because else
[α]Bφ) would follow from [α]⊥, and we could not deduce anything relevant. Similarly, for the �no
forgetting� axiom we must suppose that the agent does not believe α to be inexecutable (¬B[α]⊥). The
last principle e∆B of epistemic determinism says that the agent has no means to distinguish the different
possible outcomes of a nondeterministic action whose occurrence he is informed of.

If φ is a classical formula then ¬B¬φ → [obs φ]Bφ follows from (Preobs φ), (Effobs φ), and (NFB):
the agent believes observations except if he believes the contrary.

When the agent believes α to be inexecutable and nevertheless learns that it has occurred then he
must revise his beliefs. This is investigated in section 6.

Remark 5.1. We can illustrate now what we have said in Section 2.1 about complex actions. First, we
cannot have the standard dynamic logic equivalence for tests [φ?]ψ ↔ (φ→ ψ) if we suppose that tests
are performed by agents. In this case we expect [φ?]Bφ, to hold, while φ → Bφ is in general false.
Second, we cannot have [α ∪ β]ψ ↔ ([α]φ ∧ [β]φ) either: for example, [throw1 ∪ . . . ∪ throw6]¬Bd6

should not be equivalent to [throw1]¬Bd6∧ . . .∧ [throw6]¬Bd6: while the former is plausible given that
we have supposed the agent does not learn about the outcome of throw1∪ . . .∪ throw6, the latter should
not hold under our hypothesis of public action.

5.3. Principles for Action and Probability

Similar considerations lead to the following constraint: for every w ∈W ,

(nf-nlP ) if w′ ∈ Rα(w) and Rα(V ) 6= ∅ for all V ∈ P (w), then P (w′) = {Rα(V ) : V ∈ P (w)}

This validates a no forgetting axiom:

(¬P[α]⊥ ∧ P[α]φ)→ [α]Pφ (NFP )

To illustrate this suppose before learning that a die has been thrown it is probable for the agent that the
die will not fall 6: P[throw ]¬d6. When the agent learns that the die-throwing action has been executed
(without learning the outcome, cf. our hypotheses) then it is probable for him that the die does not show
6. Therefore we should have P[throw ]¬d6 → [throw ]P¬d6. We have to condition this: if it is probable
that throw is inexecutable (because e.g. it is probable that there is no die around), i.e., P[throw ]⊥, then
P[throw ]¬d6 follows by principles of monotonic modal logics. This should be excluded.

The other way round, when it is probable for the agent that the die fell 6 after throw then (as we have
supposed that he does not observe the outcome of throwing) it was already probable for the agent that 6



would show up before learning that the action has been executed. This is expressed by the following no
learning axiom:

(¬[α]⊥ ∧ [α]Pφ)→ P[α]φ (NLP )

The last principle that is validated by (nf-nlP ) is similar to epistemic determinism for belief:

[α]Pφ ∨ [α]¬Pφ (e∆P )

5.4. Example
Let us illustrate that the intuition of P (w) `collecting more than 50% of the accessible worlds' is mis-
leading.

Let the agent learn in w0 that a die has been thrown. Then we might suppose that after throw the
situation is described by a possible world w where B(w) = {v1, . . . , v6} such that vi ∈ V (dj) iff i = j,
and where P (w) is the set of all subsets of B(w) containing more than half of the worlds in B(w), i.e.,
P (w) = {V ⊆ B(w) : card(V ) > 3}.

Now suppose we are in a game where a player is entitled to throw his die a second time if (and only
if) his �rst throw was a 6. Let throw2 describe that complex action. (In terms of dynamic logic it could
be written throw ; if d6 then throw else wait .) We have thus

Rthrow2 (w) = Rthrow (w) ∪ {v′61
, . . . , v′66

} = {v1, . . . , v5, v
′
61
, . . . , v′66

},
with v′6i ∈ V (dj) iff i = j. According to our semantics, the situation after throw2 might be described
by a possible world w′ ∈ Rthrow2 (w) such that

• B(w′) = Rthrow2 (w), i.e., card(B(w ′)) = 11;

• The neighborhood P (w′) of w′ contains in particular {v1, . . . , v5}, i.e., P (w′) has sets containing
much less than half of the worlds in B(w′).

5.5. ABP -Models
An ABP -model is a tuple 〈W,B,P, {Rα : α ∈ Act},Val〉 such that 〈W, {Rα : α ∈ Act},Val〉 is an
A-model, 〈W,B,P,Val〉 is a BP -model, and the constraints (nf-nlB), (nf-nlP ), (preobs φ), (effobs φ) are
satis�ed. Note that observations are insensitive to the syntactical form of the formula under concern: if
||φ||M = ||ψ||M then Robs φ = Robs ψ.

Validity of φ in ABP -models is noted |=ABP φ. Our axioms are sound w.r.t. ABP -validity:

Theorem 5.1. If φ is provable from (1) the inference rules and axioms of the logic of actions A, (2) the
inference rules and axioms of the logic of belief and probability BP, and (3) the axioms (NLB), (NFB),
(NLP ), (NFP ), (e∆B), (e∆P ), (Preobs φ), (Effobs φ), then |=ABP φ.

We conjecture that we have completeness, too, but do not pursue this here. Instead, in the rest of the
paper we will focus on the case of revision and its integration into Reiter action theories.

First, note that from the axioms (NFB) and (NLB) we get:
`ABP ¬B[α]⊥ → ([α]Bφ↔ ([α]⊥ ∨ B[α]φ)).

From the latter we get with (e∆B):



`ABP ¬B[α]⊥ → ([α]¬Bφ↔ ([α]⊥ ∨ ¬B[α]φ)),
This is almost a so-called successor state axiom (SSA) as studied in cognitive robotics. Such axioms
allow us to permute [α] and B, and they are important because they enable the regression proof technique
[34, 31] in the case of deterministic actions without indirect effects.

So what can we say about the contexts B[α]⊥? This will be the subject of the next section.

6. ABP?-Models and Revision
Most of the approaches in the literature have worked with modal operators of knowledge K. For this
concept there are no surprising events because K[α]⊥ implies [α]⊥. It follows that the SSA for knowl-
edge is just [α]Kφ ↔ ([α]⊥ ∨ K[α]φ). But for the weaker belief operator, B[α]⊥ does not imply [α]⊥,
and we therefore have to investigate the case B[α]⊥ if we want to speak about belief (and a fortiori about
weak belief, alias probability). Can we de�ne a permutation principle for such contexts?

In the case of B[α]⊥ the event α comes as a surprise for the agent, while in the case of P[α]⊥ the
occurrence of α was perhaps just improbable for him before he learned about it. In the �rst case, the
agent has to revise his beliefs, and in the second case he has to revise his probabilities.

In [39] and [25] it has been investigated how belief revision in the style of AGM [13] can be inte-
grated. We here follow the ideas in [25].

6.1. Enabling Actions
Let v ∈ B(w). If Rα(v) = ∅ then the preconditions of α do not hold in v. When the agent subsequently
learns that α has nevertheless occurred, he cannot just mentally execute α to form his new beliefs: he
has to revise his beliefs about α's preconditions Poss(α) �rst. We suppose that the agent does this
by adjusting v so as to make the preconditions true, and that he achieves this by mentally executing a
particular action whose effect is Poss(α).

Formally, we associate to every atomic action α a new construction ?α, and we say that ?α makes α
executable.

First, we postulate that for every action, ?α can always be executed: for every w ∈W ,

(d?α) R?α(w) 6= ∅

Second, what are the effects of ?α? As ?α makes α executable, we must have:

(d2?α) Rα(R?α(w)) 6= ∅

Finally, if α is already executable then ?α does nothing:

(triv?α) if Rα(w) 6= ∅ then for every w′ ∈ R?α(w), Val(w′) = Val(w).

Remark 6.1. Actions that are never executable cannot be enabled. This is our main reason to exclude
dynamic logic action composition. To witness, consider a slightly modi�ed version of our tossing exam-
ple where Poss(toss) = HasCoin , Cause(¬HasCoin) = {toss}, and Cond(toss,¬HasCoin) = >.
Then the complex action toss; toss of executing toss twice cannot be enabled.



6.2. ABP?-Models
Using enable-actions we are now ready to de�ne supplementary constraints of no forgetting:

(nf-nl?B) if w′ ∈ Rα(w), then B(w′) = Rα(R?α(B(w))).

(nf-nl?P ) if w′ ∈ Rα(w), then P (w′) = {Rα(R?α(V )) : V ∈ P (w)}
They say that when the agent learns that α has occurred then he �rst mentally enables executability of α,
and then mentally executes α and collects the resulting states.

Figure 1 illustrates the kind of models we obtain by a variation of the tossing example where the coin
falls tails and the agent wrongly believes that the coin fell heads, and then observes that it fell tails.

B

toss

toss
¬Heads¬Heads ¬Heads

B

obs ¬Heads

obs ¬Heads?obs ¬Heads

¬Heads ¬Heads

B

Heads¬Heads

¬Heads

Figure 1. the toss example

We callABP?-models the set ofABP -models satisfying (nf-nl?B) and (nf-nl?P ), and the constraints
(d?α), (d2?α), (triv?α) for enabling actions. Beyond the axioms for ABP -models, ABP?-models vali-
date principles for enabling:

¬[?α]⊥ (D?α)
[?α]¬[α]⊥ (D2?α)

(¬[α]⊥ ∧ φ)→ [?α]φ if φ is a classical formula (Triv?α)

and two new no forgetting principles:

B[?α][α]φ→ [α]Bφ (?NFB)
P[?α][α]φ→ [α]Pφ (?NFP )

As announced in section 5.1, we can establish now that if φ is a classical formula then |=ABP?

[obs φ]Bφ. For example, for a classical formula φ we have seen in section 5.1 that `ABP [obs φ]φ.
Hence `ABP? [obs φ]φ, too. By ABP -principles we obtain `ABP? B[?obs φ][obs φ]φ. It follows from
our successor state axioms that `ABP? [obs φ]Bφ.

Theorem 6.1. If φ is provable from the inference rules and axioms of the logic ABP together with the
axioms (D?α), (D2?α), (Triv?α), (?NFB), (?NFP ), then |=ABP? φ.



As for ABP, we conjecture that we have completeness, but do not pursue this issue.
What is the relation with AGM belief revision? Let us de�ne revision by φ as enabling the observa-

tion of φ: ?(obs φ), and identify the deduction problem of whether the revision ψ ? φ of ψ by φ implies
ξ with ψ → [?obs φ]ξ, then it can be shown that most of the AGM postulates are satis�ed [25].

6.3. Successor State Axioms for Belief and Probability
Putting (?NFB) and (?NFP ) together with the no learning principles we obtain:

`ABP? [α]Bφ↔ ([α]⊥ ∨ B[?α][α]φ)

`ABP? [α]Pφ↔ ([α]⊥ ∨ P[?α][α]φ)

From the latter we get with (e∆B):

`ABP? [α]¬Bφ↔ ([α]⊥ ∨ ¬B[?α][α]φ)

`ABP? [α]¬Pφ↔ ([α]⊥ ∨ ¬P[?α][α]φ)

Thus we have succeeded in �nding successor state axioms for belief and probability.
For example, [shoot ]P¬Alive is equivalent to [shoot ]⊥ ∨ P[?shoot ][shoot ]¬Alive.
In the rest of the paper we focus on the integration of B and P into Reiter action theories.

7. Regression
In this section we investigate how Reiter's regression can be extended to ABP?-logic. Therefore we
restrict our attention to deterministic actions. In order to guarantee determinism of enable-actions we
need two hypotheses:

• for every α, Poss(α) is a conjunction of literals;

• the argument φ of obs φ is a conjunction of literals.

7.1. Augmented Reiter Action Theories
The �rst thing we do is to augment our Reiter action theories R of section 3.2 by laws for observations
and enable-actions. We hence do `double work' because the preconditions and effects of these two
particular classes of actions have already been established in sections 5.1 and 6.1, but we prefer to do so
for the sake of uniformity.

Given a theoryR without obs and ?, we add:

• Poss(?α) = >;

• Poss(obs φ) = φ;

• ?α ∈ Cause(L) iff L appears in Poss(α);

• obs φ 6∈ Cause(L) for any literal L;



• Cond(?α, L) = > for every L appearing in Poss(α);

Note that the condition Cond(obs φ,L) need not be de�ned because Cause(L) never contains obs φ.
For example, Cause(HasGun) = ?shoot , and Cause(HasCoin) = ?toss . The items we have

added guarantee that the expected preconditions and effects already follow in ABP -logic, such as
¬[?obs φ]⊥ ↔ φ, for observations, and ¬[?α]⊥ for enabling.

Let us callR? the resulting augmentation ofR. ThenR?-models are de�ned to be particularABP?-
models just in the same way asR-models are de�ned from A-models.

7.2. Separation Theorem
The successor state axioms for belief and probability of section 6.3 allow us to `move in' action operators.

Theorem 7.1. For any formula φ there exists a formula φ′ such that |=ABP? φ ↔ φ′, and φ′ has no
action operators in the scope of B and P .

Proof:
As every α is deterministic, [α] distributes over ∧ and ∨. And it can be moved inwards for formulas
of the form [α]Bφ, [α]Pφ, [α]¬Bφ, [α]¬Pφ by the successor state axioms for belief and probability of
section 6.3. ut

7.3. Regression Theorem
Now we are ready for the grand �nale.

Theorem 7.2. For any formula φ there exists a formula without action operators φ′ such that
R? |=ABP? φ↔ φ′.

Proof:
This follows from the previous separation theorem and Reiter's regression theorem (theorem 3.2 of sec-
tion 3.2.5). ut

As the regressed formula φ′ contains no action operators, we have R? |=ABP? φ
′ iff |=BP φ′. Now

whether |=BP φ′ is the case can be established using the decision procedure for BP -validity (theorem
4.3 section 4.4).

Theorem 7.3. Logical consequence from a Reiter action theoryR? in ABP? is decidable.

For example, consider the formula
PLoaded → [shoot ]P¬Alive.

Its negation normal form is ¬PLoaded ∨ [shoot ]P¬Alive. Using the separation theorem this is trans-
formed into

¬PLoaded ∨ ¬HasGun ∨ P[?shoot ][shoot ]¬Alive.
Then the innermost [shoot ]¬Alive is replaced by ¬HasGun ∨ Loaded ∨ ¬Alive. The negation normal
form of the result is

¬PLoaded ∨ ¬HasGun ∨ P([?shoot ]¬HasGun ∨ [?shoot ]Loaded ∨ [?shoot ]¬Alive).



Now [?shoot ]¬HasGun is regressed to ⊥, [?shoot ]Loaded to Loaded , and [?shoot ]¬Alive to ¬Alive.
We thus obtain

¬PLoaded ∨ ¬HasGun ∨ P(⊥ ∨ Loaded ∨ ¬Alive).
The latter is valid in BP -logic. Therefore we have shown

R? |=ABP? PLoaded → [shoot ]P¬Alive
as expected.

8. Conclusion

We have investigated a `very qualitative' notion of probability, that of a formula being more probable
than its negation. We have presented principles governing its relation with belief, and we have proposed
principles for the interplay between action, belief, and probability. The resulting logic is a fairly standard
non-normal, monotonic modal logic. Hence our semantics is rather far away from probabilities. This
might be felt to be at odds with intuitions, but as a matter of fact it matches the formal properties ofP that
we have put forward. We have stated regression within our modal logic, taking over Reiter's solution.

In our general framework we have allowed for nondeterministic actions (while we have restricted
Reiter action theories and thus the regression algorithm to deterministic actions). In fact the general
account is not entirely satisfying because we did not consider probabilistic action: in our framework
uncertainty can only diminish as actions occur. This means that probability will converge towards belief
on the long run, in the sense that we will end up with P (w) = {B(w)}. The problem is the same
for belief in the existing logics of belief and action of the literature, and just as in their case, this is
unsatisfactory.

Concerning related work, as noted in [2] in AI there is a lot of work on uncertainty within probabilis-
tic formalisms on the one hand, and on reasoning about actions, update and revision on the other hand.
But only very little approaches offer an integrated account of uncertainty and action. (For example, while
BDI-style approaches provide a �ne-grained analysis of agents' proactive attitudes in terms of desires
and intentions, in most of the approaches there is only one mental attitude, viz. that of full belief.)

Friedman and Halpern [12] have generalized both probability and possibility measures to plausibility
measures. In terms of our approach, for each possible world w ∈W there is a measure Plausw mapping
subsets of B(w) to some partially ordered set such that Plausw(V ) ≤ Plausw(V ′) whenever V ⊆ V ′.
Such plausibility orderings provide truth conditions for their conditional operator ⇒:

|=M,w φ⇒ ψ if Plausw(||φ ∧ ψ||M ∩B(w)) > Plausw(||φ ∧ ¬ψ||M ∩B(w))
If we moreover suppose that there are V and V ′ such that Plausw(V ) > Plausw(V ′), then Pφ can be
expressed in their framework as > ⇒ φ. Semantically, the neighborhood P (w) can be de�ned from
Plausw by P (w) = {V : Plaus(V ) > Plaus(B(w) \ V )}. Less obviously,2 a given P (w) de�nes a
plausibility ordering Plausw by:

Plausw(V ) > Plausw(V ′) iff there is V ′′ ∈ P (w) such that V ′′ ⊆ V and V ′ ⊆ B(w) \ V ′′
Albeit this semantical correspondence it seems that there is no syntactical way to express Friedman and
Halpern's conditional ⇒ by means of P . Friedman and Halpern go on to de�ne updating in terms of
conditioning. When doing this they constrain their plausibility measures Plaus in a way such that they
are closed under conjunction.

2Joseph Halpern has pointed this out to me.



In [1, 2] Bacchus et al. have integrated probability measures into a logic of action. While being thus
more quantitative in spirit, their approach is similar to ours in what concerns the integration of action.
The differences are as follows. First, they have probabilistic actions, and allow for (at least some form
of) misperception by means of a special predicate OI(α, α′) similar to Baltag's account. OI(α, α′)
expresses that action α is observation indistinguishable from action α′ by the agent. We note that α must
be among the actions that are observation indistinguishable from α because the approach is in terms of
knowledge. This leads us to the second difference: as we have said, an approach in terms of knowledge
simpli�es the account a lot. If we considered knowledge then our approach can be translated to theirs
by stating (1) that the only action that is observation indistinguishable from α is α itself, and (2) that for
every state there is exactly one α whose likelihood is 1, while that of all the other actions is 0. There
seems to be no other similar work relating modal probability to belief and action.

In future work we would like to improve our account by introducing misperception and studying
probabilistic actions. The former has been done for beliefs in [25], following the ideas of [4, 3]. Such a
solution should apply here without dif�culties. The latter is a much harder task, which probably requires
abandoning our `extremely qualitative' account.
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