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We investigate a modal logic of probability with a unary modal operator expressing that a proposition is more probable than its negation. Such an operator is not closed under conjunction, and its modal logic is therefore non-normal. Within this framework we study the relation of probability with other modal concepts: belief and action. We focus on the evolution of belief, and propose an integration of revision. For that framework we give a regression algorithm.

Introduction

Several researchers have investigated modal logics of probability. Some have added probability measures to possible worlds semantics, most prominently Fagin, Halpern and colleagues [START_REF] Fagin | Reasoning about knowledge and probability[END_REF]. They use modal operators of knowledge, Kφ expressing that the agent knows that φ, and they introduce modal operators of the kind w(φ) ≥ b expressing that fiaccording to the agent, formula φ holds with probability at least bfl.

Others have studied the properties of comparative probability, following Kraft, Pratt, and Seidenberg, and Segerberg [START_REF] Segerberg | Qualitative probability in a modal setting[END_REF]. They use a relation φ >ψ(that can also be viewed as a binary modal construction) expressing φ is more probable than ψfl.

Only few have studied a still more qualitative notion, viz. the modal logic of constructions of the kind Pφ expressing that φ is more proba ble than ¬φ (or dually, at least as probable as ¬φ). Among Address for correspondence: Andreas Herzig, IRIT, 118 route de Narbonne, F-31062 Toulouse Cedex 04, France; herzig@irit.fr, www.irit.fr/∼Andreas.Herzig * The present paper continues work started in [START_REF] Herzig | On modal probability and belief[END_REF]. Thanks to Dominique Longin, Didier Dubois, Henri Prade, Jér ome Lang, Luis Godo, Ivan Varzinczak, and Andrzej Szalas for useful comments and discussions. Thanks to Joseph Halpern for indicating an error in the axiomatics of a previous version, and explaining the link with his work in [START_REF] Friedman | Modeling belief in dynamic systems. Part I: foundations[END_REF]. those are Hamblin [START_REF] Hamblin | The modal `probably[END_REF], Burgess [START_REF] Burgess | Probability logic[END_REF], and T. Fine [START_REF] Walley | Varieties of modal (classi catory) and comparative probability[END_REF]. Lenzen [START_REF] Lenzen | Recent work in epistemic logic[END_REF][START_REF] Lenzen | On the semantics and pragmatics of epistemic attitudes, in: Knowledge and belief in philosophy and AI[END_REF] has identi ed weak belief with being probable, and he has argued that a comprehensive account of knowledge and belief requires such a notion of weak belief. Halpern and colleagues have studied the similar notion of likelihood [START_REF] Halpern | A logic to reason about likelihood[END_REF][START_REF] Halpern | Likelihood, probability, and knowledge[END_REF].

Probably one of the reasons for the lack of interest in such approaches is that the corresponding logical systems are very poor, and are dif cult to characterize w.r.t. the underlying probability measures.

(Things are different if we do not take probability theory but possibility theory: as shown in [START_REF] Fari Nas Del Cerro | A modal analysis of possibility theory[END_REF][START_REF] Fari Nas Del Cerro | A modal analysis of possibility theory[END_REF], Lewis' operator of comparative possibility [START_REF] Lewis | Counterfactuals[END_REF] provides a simple and complete axiomatization of qualitative possibility relations.)

A related but different research topic is the investigation of modal logics allowing to count accessible worlds [START_REF] Fattorosi-Barnaba | Graded modalities I[END_REF][START_REF] Van Der Hoek | On the semantics of graded modalities[END_REF]. Yet another option is to interpret Pφ not as a two-valued modal proposition but as a many-valued modal proposition, as it is done in [START_REF] Hajek | Metamathematics of fuzzy logic[END_REF]Chapter 8] and [START_REF] Godo | A fuzzy modal logic for belief functions[END_REF]. There, the truth degree of Pφ is taken as Prob(φ), so the bigger is the probability of φ, the `more true' is the proposition Pφ. One can then express that for the agent φ is more probable than ¬φ by a non-classical implication P¬φ ⇒ Pφ.

In this paper we investigate the logic of the modal operator P and its interactions with belief and action. After some preliminary de nitions and notions (section 2) we introduce a standard modal logics of action (section 3) and belief (section 4). In the same section we also study the modal logic of `probable' and its relation to belief. Contrarily to comparative possibility, P is not closed under conjunction.

Therefore its modal logic is non-normal, and our models are minimal models in the sense of [START_REF] Chellas | Modal logic: An introduction[END_REF], that are based on neighborhood functions (as opposed to probability distributions).

We then turn to the relation of probability with action (section 5), and propose principles for the interplay between action, belief, and probability. As we are speaking about belief and not knowledge, we have to integrate belief revision into our framework (section 6). Our simple account allows us to identify so-called successor state axioms for both belief and probability (section 6.3), which enable us to use regression (section 7).

Preliminaries

In this article we only consider the case of a single agent for the sake of simplicity, the main reason being that for the time being there are no relevant interactions between several agent in our approach.

Atomic Formulas, Atomic Actions

We have a set of atomic formulas Atm = {p, q, . . .}. We have a set of atomic actions Act = {α, β, . . .}. In the YSP we have load , shoot, and wait. In the other example we have the throw action of throwing the die, the action wait of waiting, and the actions obs d 1 , obs d 2 , . . . of the agent observing that the die shows 1, etc.

Actions are not necessarily executed by the agent under concern, but may be executed by other agents or by nature. (So we might as well speak about events instead of actions.)

We do not consider complex actions here. We just note that tests and nondeterministic compositions cannot behave in the standard dynamic logic way if we want to reason about knowledge or belief, and refer to [START_REF] Herzig | A logic for planning under partial observability[END_REF][START_REF] Herzig | A modal logic for epistemic tests[END_REF] for a more detailed analysis.

From these ingredients complex formulas will be built together with modal operators in the standard way.

Modal Operators

We have a standard doxastic modal operator B, and the formula Bφ is read the agent believes that φ, or φ is true for the agent. For example, Bd 6 expresses that the agent believes that the die shows 6.

The formula B(d

1 ∨ d 2 ∨ d 3 ∨ d 4 ∨ d 5 ∨ d 6 )
expresses that the agent believes the die shows one of 1, 2, 3, 4, 5, or 6.

Moreover we have a modal operator P where Pφ is read φ is probable for the agent. 1 The dual ¬P¬φ expresses that φ is not improbable. (This operator has been considered primitive in some papers in the literature.) For example, P(

d 1 ∨ d 2 ∨ d 3 ∨ d 4 )
expresses that it is probable for the agent that the die shows one of 1, 2, 3, or 4. ¬Pd 6 expresses that it is improbable for the agent that the die shows 6.

Finally, for every action α ∈ Act we have a dynamic logic operator [α]. The formula [α]φ is read φ holds after every execution of α. For example, [throw ]d 6 expresses that the die shows 6 after the throwing action. ¬[throw ]⊥ expresses that throw cannot be executed, and ¬[throw ]¬d 6 expresses that the die may show 6 after the throwing action. ¬P[throw ]d 6 expresses that this is improbable for the agent.

[throw ]P¬d 6 expresses that after throwing the die it is probable for the agent that it did not fall 6.

[throw ][obs d 6 ]Bd 6 expresses that after throwing the die and observing that it fell 6 the agent believes that it fell 6.

Models for Modal Operators

A frame is composed of a nonempty set of possible worlds W together with some structure on W . For normal modal logics such structures are accessibility relations, while for non-normal modal logics we will have neighborhood functions.

A model is a frame together with a valuation Val , where Val : W -→ 2 Atm associates to every world w the set of atoms that are true in w. Models are denoted by M.

The truth conditions are formulated in terms of the forcing relation |= linking models, worlds, and formulas. Given a model M and a world w of M, the truth condition for an atomic formula φ ∈ Atm is:

• |= M,w φ if φ ∈ Val (w)
The truth conditions for the standard operators of classical logic are as usual. When de ning those for the modal operators we shall make use of the truth set for φ, de ned as:

||φ|| M = {w ∈ W : |= M,w φ}
We de ne truth in a model |= M φ as |= M,w φ for every w ∈ W . And φ is valid in the class of models C, noted |= C φ, if |= M φ for every M ∈ C.

2.4.

Relations Agreeing with a Probability Measure P can also be viewed as a property of formulas. Let Prob be any subjective probability measure de ned on formulas. When it holds that Pφ iff Prob(φ) > Prob (¬φ) we say that P agrees with Prob.

Hypotheses about Action

We make some hypotheses about actions and their perception by the agent. They permit to simplify the theory.

Public Action Occurrences

We suppose that the agent perceives action occurrences completely and correctly. For example, whenever a die is thrown the agent is aware of that, and whenever the agent believes a die is thrown then indeed such an action has occurred. One might imagine that action occurrences are publicly announced.

Public Action Laws

We suppose that the agent knows the laws governing the actions. Hence the agent knows that after throwing a die the effect always is that 1, 2, 3, 4, 5, or 6 show up, and that 1 and 2 cannot show up simultaneously, etc.

Non-informativity

We suppose that all actions are non-informative. Non-informative actions are actions whose instances are not observed by the agent beyond their mere occurrence. In particular the agent does not observe the outcome of nondeterministic actions such as that of throwing a die. Upon learning that such an action has occurred the agent updates his beliefs: he computes the new beliefs from his previous beliefs and his knowledge about the action laws. Hence the new beliefs neither depend on the state of the world before the action occurrence, nor on the state of the world after the action occurrence.

In our example we suppose that the throw action is non informative: the agent throws the die without observing the outcome. If the agent learns that the action of throwing a die has been executed then he does not learn which side shows up.

Clearly, the action of checking the outcome of the throw action is informative: the new beliefs depends on the position of the die in the real world. Other examples of informative actions are that of looking up a phone number, testing if a proposition is true, informing whether a proposition is true, etc.

Nevertheless, to suppose all actions are uninformative does not mean that the agent is disconnected from the world: he may learn that some proposition is true, or more precisely that some action of observing that some proposition has some value has occurred. For example, when he learns that it has been observed that the die fell 6 (i.e., he learns that the action of observing 6 has been executed) then he is able to update his beliefs accordingly. Indeed, the obs d i actions are non-informative according to our de nition: when the agent learns that obs d i has occurred then this information enables him to adjust his beliefs in a complete way, and there is no need for further observation of the world. Other examples of uninformative actions are that of learning that the phone number of another agent is N , testing that a proposition is true (in the sense of dynamic logic tests), informing that a proposition is true, etc.

Models of Action

Our logic of action is a simple version of dynamic logic [START_REF] Harel | Dynamic Logic[END_REF]. Within that logic we recast Reiter's solution to the frame problem of [START_REF] Reiter | The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression[END_REF].

3.1.

A-Models

Actions are viewed as transition systems. In such a system, truth of a formula [α]φ in a state (alias possible world) means truth of φ in all states possibly resulting from the execution of α.

A frame is a tuple W, {R α : α ∈ Act} such that for every α ∈ Act:

• R α : W -→ 2 W maps worlds to sets of worlds R α (w) is the set of worlds accessible from w. We call A-models the set of models of action de ned in this way.

The truth condition for the modal operator is:

• |= M,w [α]φ if R α (w) ⊆ ||φ|| M Validity of φ in A-models is noted |= A φ.
Theorem 3.1. ( [START_REF] Harel | Dynamic Logic[END_REF][START_REF] Chellas | Modal logic: An introduction[END_REF])

|= A φ iff φ is provable from the inference rule if φ → ψ then [α]φ → [α] (RM α )
and the axioms:

[α]

(N α ) ([α]φ ∧ [α]ψ) → [α](φ ∧ ψ) (C α ) 3.2.

Reiter Action Theories

The reasoning about actions community focuses on deductions from a theory describing a given set of actions in terms of preconditions and effects. We here present the case of action theories in Reiter's style, as transposed to dynamic logic in [START_REF] Demolombe | Regression in modal logic[END_REF].

In such theories, all actions are deterministic, and it is supposed that the following pieces of information are given, about which some assumptions of complete information are made.

Action preconditions

For each atomic action α there is a classical formula Poss(α) describing the action preconditions of α, i.e., the condition under which α can be executed. For example Poss(shoot) = HasGun, Poss(toss) = HasCoin, and Poss(wait) = . In terms of dynamic logic, this means that for every α ∈ Act we have

a global axiom Poss(α) → ¬[α]⊥.
It is supposed that the action preconditions are complete: α is executable if and only if Poss(α) is true. Hence the global axiom can be strengthened from an implication to an equivalence Poss(α) ↔ ¬[α]⊥.

Set of possible causes

For each literal L there is a nite set of actions Cause(L) describing the causes of L. (In Reiter's presentation this function is not given explicitly, but it can be retrieved from his functions γ + and γ -.) Cause(L) contains the actions in Act which under some circumstances cause L to become true. For example, Cause(Alive) = ∅ (no action makes an agent alive), Cause(¬Alive) = {shoot, strangle}, and Cause(¬Loaded ) = {shoot}. As wait is an action without any effect, there is no L such that wait ∈ Cause(L). By convention, if L = ¬p is a negative literal then we identify Cause(¬L) with Cause(p).

We (and Reiter) suppose that Cause(L) is not only nite (while Act might be in nite) but also small, in the sense that the cardinality of Cause(L) is much smaller than that of Act.

Moreover, we suppose that every Cause(L) is complete: whenever α ∈ Cause(L) then the execution of α can never make L true. In terms of dynamic logic, causal completeness means that we have a global axiom ¬L → [α]¬L in that case. Axioms of that form are called frame axioms. In our example, as strangle ∈ Cause(¬Loaded ), we have Loaded → [strangle]Loaded .

The next piece of information speci es the causal relation in more detail.

Effect preconditions

For every literal L and every atomic action α ∈ Cause(L) there is a classical formula Cond (α, L) describing the effect preconditions of action α. (This function corresponds to Reiter's γ + and γ -.) Again by convention, if L = ¬p then Cond (α, ¬L) = Cond (α, p). For example, Cond (strangle, ¬Alive) = , and Cond (shoot, ¬Alive) = Loaded . In terms of dynamic logic, to every effect precondition Cond (α, L) there is associated a global axiom Cond (α, L) → [α]L. As an example, consider the formula Loaded → [shoot]¬Alive.

It is supposed that the effect preconditions are complete: in situations where the formula Cond (α, L) does not hold the execution of α can never make L true. This means that we moreover have a global axiom (¬Cond (α, L) ∧ ¬L) → [α]¬L for every α ∈ Cause(L). For example, we have (¬Loaded ∧ Alive) → [shoot]Alive.

3.2.4.

Models for a Reiter action theory R

A Reiter action theory R is made up of the three functions Poss(.), Cause(.), Cond (., .). We call models for R the set of A-models satisfying the following constraints:

(δ [α] ) every R α is a partial function: for every w ∈ W , card (R α (w )) ≤ 1; (Indep) if p ∈ Atm and w ∈ R α (w) then • α ∈ Cause(p) and p ∈ Val (w) implies p ∈ Val (w ), and • α ∈ Cause(¬p) and p ∈ Val (w) implies p ∈ Val (w ); (Exec) for every w ∈ W , |= w Poss(α) ↔ ¬[α]⊥; (Effect) for every w ∈ W , • |= w Cond (α, L) → [α]L, and • |= w (¬Cond (α, L) ∧ ¬L) → [α]¬L.
We de ne R |= A φ as |= M φ for every model M for R. We have e.g. determinism of every action:

R |= A [α]φ ∨ [α]¬φ Remark 3.1.
Note that although we suppose that every α is deterministic, we can nevertheless represent incomplete knowledge about the effects of α. For example, for the action toss of tossing a coin we can write Poss(toss) = , Cause(Heads) = Cause(¬Heads) = {toss}, Cond (toss, Heads) = , Cond (toss, ¬Heads) = .

3.2.5.

Reiter's Regression Theorem Lemma 3.1. Let R a Reiter action theory. Then the following are valid in Rmodels.

1. [α]L ↔ ¬Poss(α) ∨ L if α ∈ Cause(L) and α ∈ Cause(¬L); 2. [α]L ↔ ¬Poss(α) ∨ (L ∧ ¬Cond (α, ¬L)) if α ∈ Cause(L) and α ∈ Cause(¬L); 3. [α]L ↔ ¬Poss(α) ∨ Cond (α, L) ∨ L if α ∈ Cause(L) and α ∈ Cause(¬L); 4. [α]L ↔ ¬Poss(α) ∨ Cond (α, L) ∨ (L ∧ ¬Cond (α, ¬L)) if α ∈ Cause(L) and α ∈ Cause(¬L).
Proof:

The proof can be found in [START_REF] Demolombe | Regression in modal logic[END_REF]. We just sketch the proof of the second item from the left to the right. It To sum it up, in order to decide whether R |= A φ it suf ces to regress φ to some classical formula φ , and then to apply any decision procedure for classical logic.

suf ces to show that R |= ([α]L ∧ ¬L) → ¬Poss(α) and R |= ([α]L ∧ Cond (α, ¬L)) → ¬Poss(α). First, R |= ¬L → [α]¬L because α ∈ Cause(L). It follows by standard modal principles that R |= (¬L ∧ [α]L) → [α]⊥, from which R |= (¬L ∧ [α]L) → ¬Poss(α) by the laws in R. Second, R |= Cond (α, ¬L) → [α]¬L by the laws in R, from which R |= ([α]L∧Cond (α, ¬L)) → ¬Poss

4.

Models of Belief and Probability 4.1.

Principles for Belief

Full belief, or strong belief, can be identi ed with having probability 1. Following [START_REF] Hintikka | Knowledge and belief[END_REF] we suppose standard principles for B: we have the inference rule

if φ → ψ then Bφ → B (RM B )
and the following axioms:

B (N B ) (Bφ ∧ Bψ) → B(φ ∧ ψ) (C B )
Bφ → BBφ (4 B ) ¬Bφ → B¬Bφ (5 B ) Hence the set of beliefs is closed under logical consequences (RM B ) and contains tautologies (N B ).

Moreover beliefs are closed under conjunction (C B ), and agents are aware of their beliefs (4 B ) and disbeliefs (5 B ). The latter two principles are called positive and negative introspection. It will follow from the axioms linking belief and probability that beliefs are consistent, i.e. we will deduce ¬(Bφ ∧ B¬φ).

Principles for Probability

There are much less principles for P. Following [START_REF] Burgess | Probability logic[END_REF] we accept the inference rule if φ → ψ then Pφ → P

(RM P )
and the axioms:

P (N P )
¬(Pφ ∧ P¬φ)

(D P )
Hence just as for belief, the set of probabilities is closed under logical consequences, contains tautologies, and is consistent. In opposition to belief, probabilities are not closed under conjunctions: (Pφ ∧ Pψ) → P(φ ∧ ψ) is not always the case. We will give introspection principles for P in section 4.4.

Our axioms match those that have been put forward in the literature, e.g. those in [START_REF] Walley | Varieties of modal (classi catory) and comparative probability[END_REF]. As stated there, it seems that there are no other natural properties of `being probable' that could be formulated using P. These properties are only sound w.r.t. probability measures (cf. section 4.5).

Principles for Belief and Probability

What is the relation between P and B? According to our reading things that are believed should also be probable for an agent, i.e., we expect Bφ → Pφ to hold. The following main axiom will allow us to derive that:

(Bφ ∧ Pψ) → P(φ ∧ ψ) (C-MIX)
Just as for the case of beliefs and disbeliefs, agents are aware of probabilities and improbabilities. This is expressed by the following two axioms:

Pφ → BPφ 

BP -Models

Truth of the formula Bφ means truth of φ in all worlds that are possible for the agent.

In what concerns the formula Pφ, one might imagine that to every possible world there is associated a probability measure over the set of epistemically accessible worlds, and that Prob(φ) > Prob(¬φ).

Sometimes the intuition is put forward that among the set of accessible worlds there are more worlds where φ is true than worlds where φ is false. We shall show in section 5.4 that such an explanation is not entirely correct.

A frame is a tuple W, B, P such that

• B : W -→ 2 W • P : W -→ 2 2 W
Thus for every possible world w ∈ W , B(w) is a set of accessible worlds as usual. P (w) is a set of sets of possible worlds, alias neighborhoods. Intuitively P collects `big' subsets of B (in the sense that for V ∈ P (w), V contains more elements than its complement w.r.t. W , W \ V ). Nevertheless, there is no formal requirement re ecting this. (Condition (d P ) below is in this spirit but is weaker.) Every frame must satisfy some constraints: for every w ∈ W , (45 B ) if w ∈ B(w) then B(w ) = B(w)

(n P ) P (w) = ∅ (d P ) if V 1 , V 2 ∈ P (w), then V 1 ∩ V 2 = ∅ (c-mix) if V ∈ P (w) then V ⊆ B(w) (45-mix) if w ∈ B(w) then P (w ) = P (w)
We call BP -models the set of models of belief and probability de ned in this way. Note that it follows from (n P ), (d P ), and (c-mix) that B(w) = ∅.

The truth conditions are:

• |= M,w Bφ if B(w) ⊆ ||φ|| M • |= M,w Pφ if there is V ∈ P (w) such that V ⊆ ||φ|| M Validity of φ in BP -models is noted |= BP φ.
Theorem 4.1. |= BP φ iff φ is provable from the inference rules (RM B ) and (RM P ), and the following axioms: (N B ), (C B ), (4 B ), (5 B ), (N P ), (D P ), (C-MIX), (4-MIX), (5-MIX).

The proof is essentially Burgess' in [START_REF] Burgess | Probability logic[END_REF]. The logic he investigates in this paper differs from ours only in that he considers knowledge instead of belief, which is irrelevant for his central results.

Burgess has also established a S5-like normal form theorem, whose proof is just the same in our case.

Call a formula primitive if it is either of the form B or ¬B followed by a disjunction of literals, or of the form P or ¬P followed by a disjunction of conjunction of literals. Theorem 4.2. For every formula φ there exists a formula φ such that |= BP φ ↔ φ , and φ is a disjunction of conjunctions of primitive formulas.

Burgess has given a decision procedure for his logic that is based on this normal form, which carries over almost unchanged: Theorem 4.3. BP -validity is decidable.

Provability of φ in our axiomatics for BP is noted BP φ. Here are some provable formulas:

1. if BP φ ↔ ψ then BP Pφ ↔ P 2. BP ¬P⊥ 3. BP Bφ → Pφ 4. BP ¬(Bφ ∧ B¬φ) 5. BP (Bφ ∧ ¬P¬ψ) → ¬P¬(φ ∧ ψ) 6. BP Pφ → ¬B¬φ 7. BP (Pφ ∧ Pψ) → ¬B¬(φ ∧ ψ) 8. BP (B(φ → ψ) ∧ Pφ) → P 9.
BP Pφ ↔ BPφ 10. 

BP ¬Pφ ↔ B¬Pφ

BP PBφ → Pφ

And here are some formulas that cannot be proved:

1. BP Pφ → Bφ 2.
BP Pφ → PBφ 3.

BP (Pφ ∧ Pψ) → P(φ ∧ ψ)

4.

BP (Pφ ∧ P(φ → ψ)) → P

Note that neither of them is valid w.r.t. probability measures. It is straightforward to establish that our axiomatics is sound w.r.t. probability measures: whenever we de ne Pφ by Prob(φ) > 0.5 then P satis es (RM P ), (N P ), (D P ).

Nevertheless and as announced in Section 4.2, our axioms are incomplete w.r.t. probability measures. • for every w ∈ W , P (w) = {ef g, abg, adf, bde, ace, cdg, bcf }, where ef g is a shorthand for {e, f, g}, etc.

• for p ∈ Atm, V (p) = {w ∈ W : p ∈ w}
Then M is a BP -model, but there is no agreeing probability measure.

Therefore our neighborhood semantics is strictly weaker than probability measures. We note that based on Segerberg's axiomatization of comparative probability, Lenzen [START_REF] Lenzen | Recent work in epistemic logic[END_REF] has proposed complex but complete axiomatizations of the concept `having probability greater than 0.5'.

5.

ABP -Models of Action, Belief, and Probability

We recall the hypotheses we have stated in Section 2.5:

• the agent perceives action occurrences completely and correctly;

• the agent knows the laws governing the actions;

• actions are non-informative, i.e., the agent does not learn about particular effects of actions beyond what is stipulated in the action laws.

As action effects are not observed, when the agent learns that the action of throwing a die has been executed then he does not learn whether it fell 6 or not.

Observations

We suppose that Act contains observation actions of the form obs φ, where φ is any formula. We postulate that φ can be observed if and only if φ is true:

(pre obs φ) R obs φ (w) = ∅ iff |= M,w φ.
This validates

¬[obs φ]⊥ ↔ φ (Pre obs φ )
Idealizing a bit we consider that observations have no physical effect. This means that the valuations before and after obs φ should be identical:

(eff obs φ ) if w ∈ R obs φ (w) then Val (w ) = Val (w).

This validates:

φ → [obs ψ]φ for every classical formula φ

(Eff obs φ )
It follows from (Pre obs φ ) and (Eff obs φ ) that [obs φ]φ whenever φ is a classical formula. It also follows that B[obs φ]φ. We shall prove in section 6.3 that [obs φ]Bφ.

We do not say anything about the effects of observations on the agent's beliefs. This will follow from the more general principles below.

Principles for Action and Belief

A lot of researchers have proposed principles for the interaction between belief and action that might be called no forgetting (NF) and no learning (NL). Starting with [START_REF] Moore | A formal theory of knowledge and action[END_REF] and [START_REF] Scherl | The frame problem and knowledge producing actions[END_REF], there is work by [START_REF] Gerbrandy | Dynamic epistemic logic[END_REF][START_REF] Gerbrandy | Reasoning about information change[END_REF][START_REF] Gerbrandy | Bisimulations on Planet Kripke[END_REF][START_REF] Baltag | The Logic of Public Announcements, Common Knowledge, and Private Suspicions[END_REF][START_REF] Baltag | A Logic of Epistemic Actions[END_REF][START_REF] Schmidt | Multi-Agent Logic of Dynamic Belief and Knowledge[END_REF][START_REF] Schmidt | Combining Dynamic Logic with Doxastic Modal Logics[END_REF]. We here follow our exposition in [START_REF] Herzig | A logic for planning under partial observability[END_REF][START_REF] Herzig | Sensing and revision in a modal logic of belief and action[END_REF]. The basic idea is that the agent's new beliefs only depends on the previous beliefs and the event whose occurrence he has learned. Being con ned to his set of possibilities, when the agent learns that an event α has occurred then he `mentally executes' α in each of his possible worlds. He then collects the resulting set of worlds to form his new set of possibilities.

For sets of possible worlds V ⊆ W we de ne R α (V ) = v∈V R α (v). This allows us to de ne more concisely the following constraint: for every w ∈ W ,

(nf-nl B ) if w ∈ R α (w) and R α (B(w)) = ∅, then B(w ) = R α (B(w)).
Such models validate:

(¬[α]⊥ ∧ [α]Bφ) → B[α]φ (NL B ) (¬B[α]⊥ ∧ B[α]φ) → [α]Bφ (NF B ) [α]Bφ ∨ [α]¬Bφ (e∆ B )
For the no learning axiom, we must suppose that the action α is executable (¬[α]⊥), because else [α]Bφ) would follow from [α]⊥, and we could not deduce anything relevant. Similarly, for the no forgetting axiom we must suppose that the agent does not believe α to be inexecutable (¬B[α]⊥). The last principle e∆ B of epistemic determinism says that the agent has no means to distinguish the different possible outcomes of a nondeterministic action whose occurrence he is informed of.

If φ is a classical formula then ¬B¬φ → [obs φ]Bφ follows from (Pre obs φ ), (Eff obs φ ), and (NF B ): the agent believes observations except if he believes the contrary.

When the agent believes α to be inexecutable and nevertheless learns that it has occurred then he must revise his beliefs. This is investigated in section 6. 

Principles for Action and Probability

Similar considerations lead to the following constraint: for every w ∈ W ,

(nf-nl P ) if w ∈ R α (w) and R α (V ) = ∅ for all V ∈ P (w), then P (w ) = {R α (V ) : V ∈ P (w)}
This validates a no forgetting axiom:

(¬P[α]⊥ ∧ P[α]φ) → [α]Pφ (NF P )
To illustrate this suppose before learning that a die has been thrown it is probable for the agent that the die will not fall 6: P[throw ]¬d 6 . When the agent learns that the die-throwing action has been executed

(without learning the outcome, cf. our hypotheses) then it is probable for him that the die does not show 6. Therefore we should have P[throw ]¬d 6 → [throw ]P¬d 6 . We have to condition this: if it is probable that throw is inexecutable (because e.g. it is probable that there is no die around), i.e., P[throw ]⊥, then P[throw ]¬d 6 follows by principles of monotonic modal logics. This should be excluded.

The other way round, when it is probable for the agent that the die fell 6 after throw then (as we have supposed that he does not observe the outcome of throwing) it was already probable for the agent that 6 would show up before learning that the action has been executed. This is expressed by the following no learning axiom:

(¬[α]⊥ ∧ [α]Pφ) → P[α]φ (NL P )
The last principle that is validated by (nf-nl P ) is similar to epistemic determinism for belief:

[α]Pφ ∨ [α]¬Pφ

(e∆ P )

Example

Let us illustrate that the intuition of P (w) `collecting more than 50% of the accessible worlds' is misleading.

Let the agent learn in w 0 that a die has been thrown. Then we might suppose that after throw the situation is described by a possible world w where B(w) = {v 1 , . . . , v 6 } such that v i ∈ V (d j ) iff i = j, and where P (w) is the set of all subsets of B(w) containing more than half of the worlds in B(w), i.e., P (w) = {V ⊆ B(w) : card (V ) > 3}.

Now suppose we are in a game where a player is entitled to throw his die a second time if (and only if) his rst throw was a 6. Let throw2 describe that complex action. (In terms of dynamic logic it could be written throw ; if d 6 then throw else wait.) We have thus

R throw2 (w) = R throw (w) ∪ {v 6 1 , . . . , v 6 6 } = {v 1 , . . . , v 5 , v 6 1 , . . . , v 6 6 }, with v 6 i ∈ V (d j ) iff i = j.
According to our semantics, the situation after throw2 might be described by a possible world w ∈ R throw2 (w) such that

• B(w ) = R throw2 (w), i.e., card (B (w )) = 11;

• The neighborhood P (w ) of w contains in particular {v 1 , . . . , v 5 }, i.e., P (w ) has sets containing much less than half of the worlds in B(w ).

5.5.

ABP -Models

An ABP -model is a tuple W, B, P, {R α : α ∈ Act}, Val such that W, {R α : α ∈ Act}, Val is an A-model, W, B, P, Val is a BP -model, and the constraints (nf-nl B ), (nf-nl P ), (pre obs φ), (eff obs φ) are satis ed. Note that observations are insensitive to the syntactical form of the formula under concern: if

||φ|| M = ||ψ|| M then R obs φ = R obs ψ .
Validity of φ in ABP -models is noted |= ABP φ. Our axioms are sound w.r.t. ABP -validity:

Theorem 5.1. If φ is provable from (1) the inference rules and axioms of the logic of actions A, (2) the inference rules and axioms of the logic of belief and probability BP, and (3) the axioms (NL B ), (NF B ), (NL P ), (NF P ), (e∆ B ), (e∆ P ), (Pre obs φ ), (Eff obs φ ), then |= ABP φ.

We conjecture that we have completeness, too, but do not pursue this here. Instead, in the rest of the paper we will focus on the case of revision and its integration into Reiter action theories.

First, note that from the axioms (NF B ) and (NL B ) we get:

ABP ¬B[α]⊥ → ([α]Bφ ↔ ([α]⊥ ∨ B[α]φ)).
From the latter we get with (e∆ B ):

ABP ¬B[α]⊥ → ([α]¬Bφ ↔ ([α]⊥ ∨ ¬B[α]φ)),
This is almost a so-called successor state axiom (SSA) as studied in cognitive robotics. Such axioms allow us to permute [α] and B, and they are important because they enable the regression proof technique [START_REF] Reiter | The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression[END_REF][START_REF] Levesque | GOLOG: A logic programming language for dynamic domains[END_REF] in the case of deterministic actions without indirect effects.

So what can we say about the contexts B[α]⊥? This will be the subject of the next section.

6.

ABP -Models and Revision

Most of the approaches in the literature have worked with modal operators of knowledge K. For this concept there are no surprising events because K

[α]⊥ implies [α]⊥. It follows that the SSA for knowl- edge is just [α]Kφ ↔ ([α]⊥ ∨ K[α]φ).
But for the weaker belief operator, B[α]⊥ does not imply [α]⊥, and we therefore have to investigate the case B[α]⊥ if we want to speak about belief (and a fortiori about weak belief, alias probability). Can we de ne a permutation principle for such contexts?

In the case of B[α]⊥ the event α comes as a surprise for the agent, while in the case of P[α]⊥ the occurrence of α was perhaps just improbable for him before he learned about it. In the rst case, the agent has to revise his beliefs, and in the second case he has to revise his probabilities.

In [START_REF] Shapiro | Iterated Belief Change in the Situation Calculus[END_REF] and [START_REF] Herzig | Sensing and revision in a modal logic of belief and action[END_REF] it has been investigated how belief revision in the style of AGM [START_REF] Gärdenfors | Knowledge in Flux: Modeling the Dynamics of Epistemic States[END_REF] can be integrated. We here follow the ideas in [START_REF] Herzig | Sensing and revision in a modal logic of belief and action[END_REF].

Enabling Actions

Let v ∈ B(w). If R α (v) = ∅ then the preconditions of α do not hold in v. When the agent subsequently learns that α has nevertheless occurred, he cannot just mentally execute α to form his new beliefs: he has to revise his beliefs about α's preconditions Poss(α) rst. We suppose that the agent does this by adjusting v so as to make the preconditions true, and that he achieves this by mentally executing a particular action whose effect is Poss(α).

Formally, we associate to every atomic action α a new construction α, and we say that α makes α executable.

First, we postulate that for every action, α can always be executed: for every w ∈ W ,

(d α ) R α (w) = ∅
Second, what are the effects of α? As α makes α executable, we must have:

(d2 α ) R α (R α (w)) = ∅
Finally, if α is already executable then α does nothing:

(triv α )

if R α (w) = ∅ then for every w ∈ R α (w), Val (w ) = Val (w).

Remark 6.1. Actions that are never executable cannot be enabled. This is our main reason to exclude dynamic logic action composition. To witness, consider a slightly modi ed version of our tossing example where Poss(toss) = HasCoin, Cause(¬HasCoin) = {toss}, and Cond (toss, ¬HasCoin) = .

Then the complex action toss; toss of executing toss twice cannot be enabled.

6.2.

ABP -Models

Using enable-actions we are now ready to de ne supplementary constraints of no forgetting:

(nf-nl B ) if w ∈ R α (w), then B(w ) = R α (R α (B(w))).
(nf-nl P ) if w ∈ R α (w), then P (w ) = {R α (R α (V )) : V ∈ P (w)}

They say that when the agent learns that α has occurred then he rst mentally enables executability of α, and then mentally executes α and collects the resulting states.

Figure 1 illustrates the kind of models we obtain by a variation of the tossing example where the coin falls tails and the agent wrongly believes that the coin fell heads, and then observes that it fell tails. We call ABP -models the set of ABP -models satisfying (nf-nl B ) and (nf-nl P ), and the constraints (d α ), (d2 α ), (triv α ) for enabling actions. Beyond the axioms for ABP -models, ABP -models validate principles for enabling:

¬[ α]⊥ (D α ) [ α]¬[α]⊥ (D2 α ) (¬[α]⊥ ∧ φ) → [ α]φ if φ is a classical formula (Triv α )
and two new no forgetting principles:

B[ α][α]φ → [α]Bφ ( NF B ) P[ α][α]φ → [α]Pφ ( NF P )
As announced in section 5.1, we can establish now that if φ is a classical formula then |= ABP [obs φ]Bφ. For example, for a classical formula φ we have seen in section 5.1 that ABP [obs φ]φ. As for ABP, we conjecture that we have completeness, but do not pursue this issue.

What is the relation with AGM belief revision? Let us de ne revision by φ as enabling the observation of φ: (obs φ), and identify the deduction problem of whether the revision ψ φ of ψ by φ implies ξ with ψ → [ obs φ]ξ, then it can be shown that most of the AGM postulates are satis ed [START_REF] Herzig | Sensing and revision in a modal logic of belief and action[END_REF].

6.3.

Successor State Axioms for Belief and Probability

Putting ( NF B ) and ( NF P ) together with the no learning principles we obtain:

ABP [α]Bφ ↔ ([α]⊥ ∨ B[ α][α]φ) ABP [α]Pφ ↔ ([α]⊥ ∨ P[ α][α]φ)
From the latter we get with (e∆ B ):

ABP [α]¬Bφ ↔ ([α]⊥ ∨ ¬B[ α][α]φ) ABP [α]¬Pφ ↔ ([α]⊥ ∨ ¬P[ α][α]φ)
Thus we have succeeded in nding successor state axioms for belief and probability.

For example, [shoot]P¬Alive is equivalent to [shoot]⊥ ∨ P[ shoot][shoot]¬Alive.

In the rest of the paper we focus on the integration of B and P into Reiter action theories.

Regression

In this section we investigate how Reiter's regression can be extended to ABP -logic. Therefore we restrict our attention to deterministic actions. In order to guarantee determinism of enable-actions we need two hypotheses:

• for every α, Poss(α) is a conjunction of literals;

• the argument φ of obs φ is a conjunction of literals.

Augmented Reiter Action Theories

The rst thing we do is to augment our Reiter action theories R of section 3.2 by laws for observations and enable-actions. We hence do `double work' because the preconditions and effects of these two particular classes of actions have already been established in sections 5.1 and 6.1, but we prefer to do so for the sake of uniformity.

Given a theory R without obs and , we add:

• Poss( α) = ;

• Poss(obs φ) = φ;

• α ∈ Cause(L) iff L appears in Poss(α);

• obs φ ∈ Cause(L) for any literal L;

• Cond ( α, L) = for every L appearing in Poss(α);

Note that the condition Cond (obs φ, L) need not be de ned because Cause(L) never contains obs φ.

For example, Cause(HasGun) = shoot, and Cause(HasCoin) = toss. The items we have added guarantee that the expected preconditions and effects already follow in ABP -logic, such as ¬[ obs φ]⊥ ↔ φ, for observations, and ¬[ α]⊥ for enabling.

Let us call R the resulting augmentation of R. Then R -models are de ned to be particular ABPmodels just in the same way as R-models are de ned from A-models.

Separation Theorem

The successor state axioms for belief and probability of section 6.3 allow us to `move in' action operators. 

Conclusion

We have investigated a `very qualitative' notion of probability, that of a formula being more probable than its negation. We have presented principles governing its relation with belief, and we have proposed principles for the interplay between action, belief, and probability. The resulting logic is a fairly standard non-normal, monotonic modal logic. Hence our semantics is rather far away from probabilities. This might be felt to be at odds with intuitions, but as a matter of fact it matches the formal properties of P that we have put forward. We have stated regression within our modal logic, taking over Reiter's solution.

In our general framework we have allowed for nondeterministic actions (while we have restricted

Reiter action theories and thus the regression algorithm to deterministic actions). In fact the general account is not entirely satisfying because we did not consider probabilistic action: in our framework uncertainty can only diminish as actions occur. This means that probability will converge towards belief on the long run, in the sense that we will end up with P (w) = {B(w)}. The problem is the same for belief in the existing logics of belief and action of the literature, and just as in their case, this is unsatisfactory.

Concerning related work, as noted in [START_REF] Bacchus | Reasoning about noisy sensors in the situation calculus[END_REF] in AI there is a lot of work on uncertainty within probabilistic formalisms on the one hand, and on reasoning about actions, update and revision on the other hand.

But only very little approaches offer an integrated account of uncertainty and action. (For example, while BDI-style approaches provide a ne-grained analysis of agents' proactive attitudes in terms of desires and intentions, in most of the approaches there is only one mental attitude, viz. that of full belief.)

Friedman and Halpern [START_REF] Friedman | Modeling belief in dynamic systems. Part I: foundations[END_REF] have generalized both probability and possibility measures to plausibility measures. In terms of our approach, for each possible world w ∈ W there is a measure Plaus w mapping subsets of B(w) to some partially ordered set such that Plaus w (V ) ≤ Plaus w (V ) whenever V ⊆ V . Such plausibility orderings provide truth conditions for their conditional operator ⇒: |= M,w φ ⇒ ψ if Plaus w (||φ ∧ ψ|| M ∩ B(w)) > Plaus w (||φ ∧ ¬ψ|| M ∩ B(w))

If we moreover suppose that there are V and V such that Plaus w (V ) > Plaus w (V ), then Pφ can be expressed in their framework as ⇒ φ. Semantically, the neighborhood P (w) can be de ned from Plaus w by P (w) = {V : Plaus(V ) > Plaus(B(w) \ V )}. Less obviously, 2 a given P (w) de nes a plausibility ordering Plaus w by: Plaus w (V ) > Plaus w (V ) iff there is V ∈ P (w) such that V ⊆ V and V ⊆ B(w) \ V

Albeit this semantical correspondence it seems that there is no syntactical way to express Friedman and

Halpern's conditional ⇒ by means of P. Friedman and Halpern go on to de ne updating in terms of conditioning. When doing this they constrain their plausibility measures Plaus in a way such that they are closed under conjunction.

2 Joseph Halpern has pointed this out to me.

In [START_REF] Bacchus | Reasoning about noisy sensors in the situation calculus[END_REF][START_REF] Bacchus | Reasoning about noisy sensors in the situation calculus[END_REF] Bacchus et al. have integrated probability measures into a logic of action. While being thus more quantitative in spirit, their approach is similar to ours in what concerns the integration of action.

The differences are as follows. First, they have probabilistic actions, and allow for (at least some form of) misperception by means of a special predicate OI(α, α ) similar to Baltag's account. OI(α, α ) expresses that action α is observation indistinguishable from action α by the agent. We note that α must be among the actions that are observation indistinguishable from α because the approach is in terms of knowledge. This leads us to the second difference: as we have said, an approach in terms of knowledge simpli es the account a lot. If we considered knowledge then our approach can be translated to theirs by stating (1) that the only action that is observation indistinguishable from α is α itself, and (2) that for every state there is exactly one α whose likelihood is 1, while that of all the other actions is 0. There seems to be no other similar work relating modal probability to belief and action.

In future work we would like to improve our account by introducing misperception and studying probabilistic actions. The former has been done for beliefs in [START_REF] Herzig | Sensing and revision in a modal logic of belief and action[END_REF], following the ideas of [START_REF] Baltag | The Logic of Public Announcements, Common Knowledge, and Private Suspicions[END_REF][START_REF] Baltag | A Logic of Epistemic Actions[END_REF]. Such a solution should apply here without dif culties. The latter is a much harder task, which probably requires abandoning our `extremely qualitative' account.

  (α) follows by standard modal principles. For example, R |= A [shoot]¬Alive ↔ ¬HasGun ∨ Loaded ∨ ¬Alive. Theorem 3.2. Let R be a Reiter action theory. For every formula φ there exists a classical formula φ such that R |= A φ ↔ φ . Proof: First we put φ in negation normal form. Second, as all α are deterministic [α] distributes over ∧ and ∨. Hence we end up with the innermost [α] having only literals in their scope. Finally, by the above lemma 3.1 these can be eliminated. Iterating this we obtain an equivalent formula without modal operators. For example, consider the formula (¬Loaded ∧ Alive) → [wait][shoot]Alive of our running example. Its negation normal form is Loaded ∨ ¬Alive ∨ [wait][shoot]Alive. In the rst regression step [shoot]Alive is replaced by ¬HasGun ∨ (Alive ∧ ¬Loaded ). The negation normal form of the result is Loaded ∨ ¬Alive ∨ [wait]¬HasGun ∨ ([wait]Alive ∧ [wait]¬Loaded ). The three modal subformulas are then regressed to the formula Loaded ∨ ¬Alive ∨ ¬HasGun ∨ (Alive ∧ ¬Loaded ). And the latter is valid in classical propositional logic.

4. 5 .

 5 Incompleteness w.r.t. Probability Measures BP -models differs from the standard semantics in terms of probability measures. What is the relation between them?

Theorem 4 . 4 .

 44 ([40]) Let Atm = {a, b, c, d, e, f, g} and Act = ∅. Take a model M where • W = 2 Atm

Remark 5 . 1 .

 51 We can illustrate now what we have said in Section 2.1 about complex actions. First, we cannot have the standard dynamic logic equivalence for tests [φ?]ψ ↔ (φ → ψ) if we suppose that tests are performed by agents. In this case we expect [φ?]Bφ, to hold, while φ → Bφ is in general false. Second, we cannot have [α ∪ β]ψ ↔ ([α]φ ∧ [β]φ) either: for example, [throw 1 ∪ . . . ∪ throw 6 ]¬Bd 6 should not be equivalent to [throw 1 ]¬Bd 6 ∧ . . . ∧ [throw 6 ]¬Bd 6 : while the former is plausible given that we have supposed the agent does not learn about the outcome of throw 1 ∪ . . . ∪ throw 6 , the latter should not hold under our hypothesis of public action.

  Figure 1.the toss example

Hence

  ABP [obs φ]φ, too. By ABP -principles we obtain ABP B[ obs φ][obs φ]φ. It follows from our successor state axioms that ABP [obs φ]Bφ. Theorem 6.1. If φ is provable from the inference rules and axioms of the logic ABP together with the axioms (D α ), (D2 α ), (Triv α ), ( NF B ), ( NF P ), then |= ABP φ.

  One of our running example is the Yale Shooting Problem (YSP), having atoms Loaded , Alive, HasGun. Another one will be in terms of playing dice; we thus consider atomic formulas d 1 , d 2 , . . ., respectively expressing the die shows 1, etc. The set of classical formulas Class is constructed from Atm with the connectives ¬, ∧, ∨. Literals are atomic formulas or negations of atomic formulas. Implications φ → ψ and equivalences φ ↔ ψ are considered to be abbreviations as usual.

  Theorem 7.1. For any formula φ there exists a formula φ such that |= ABP φ ↔ φ , and φ has no action operators in the scope of B and P. For any formula φ there exists a formula without action operators φ such that R |= ABP φ ↔ φ . As the regressed formula φ contains no action operators, we have R |= ABP φ iff |= BP φ . Now whether |= BP φ is the case can be established using the decision procedure for BP -validity (theorem 4.3 section 4.4). Theorem 7.3. Logical consequence from a Reiter action theory R in ABP is decidable. Then the innermost [shoot]¬Alive is replaced by ¬HasGun ∨ Loaded ∨ ¬Alive. The negation normal form of the result is [ shoot]¬HasGun is regressed to ⊥, [ shoot]Loaded to Loaded , and [ shoot]¬Alive to ¬Alive. The latter is valid in BP -logic. Therefore we have shown R |= ABP PLoaded → [shoot]P¬Alive

	We thus obtain
		¬PLoaded ∨ ¬HasGun ∨ P(⊥ ∨ Loaded ∨ ¬Alive).
	as expected.
	section 6.3.
	7.3.	Regression Theorem
	Now we are ready for the grand nale.
	Theorem 7.2. Proof:
	This follows from the previous separation theorem and Reiter's regression theorem (theorem 3.2 of sec-
	tion 3.2.5).
	For example, consider the formula
		PLoaded → [shoot]P¬Alive.
	Its negation normal form is ¬PLoaded ∨ [shoot]P¬Alive. Using the separation theorem this is trans-
	formed into
		¬PLoaded ∨ ¬HasGun ∨ P[ shoot][shoot]¬Alive.

Proof:

As every α is deterministic, [α] distributes over ∧ and ∨. And it can be moved inwards for formulas of the form [α]Bφ, [α]Pφ, [α]¬Bφ, [α]¬Pφ by the successor state axioms for belief and probability of ¬PLoaded ∨ ¬HasGun ∨ P([ shoot]¬HasGun ∨ [ shoot]Loaded ∨ [ shoot]¬Alive).

Now

As several authors noted, we get the same account if we read Pφ as probability of φ is high, and interpret `high' as greater than b, for 1 > b ≥ 0.5.