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Abstract. We investigate a simple modal logic of probability with a
unary modal operator expressing that a proposition is more probable
than its negation. Such an operator is not closed under conjunction, and
its modal logic is therefore non-normal. Within this framework we study
the relation of probability with other modal concepts: belief and action.

1 Introduction

Several researchers have investigated modal logics of probability. Some have
added probability measures to possible worlds semantics, most prominently Fa-
gin, Halpern and colleagues [1]. They use modal operators of knowledge, Kφ
expressing that the agent knows that φ, and they introduce modal operators of
the kind w(φ) ≥ b expressing that “according to the agent, formula φ holds with
probability at least b”.

Others have studied the properties of comparative probability, following
Kraft, Pratt, and Seidenberg, and Segerberg. They use a relation φ > ψ (that can
also be viewed as a binary modal construction) expressing “φ is more probable
than ψ”.

Only few have studied a still more qualitative notion, viz. the modal logic of
constructions of the kind Pφ expressing that φ is more probable than ¬φ (or at
least as probable as ¬φ). Among those are Hamblin [2], Burgess [3], and T. Fine
[4]. Halpern and colleagues have studied the similar notion of likelihood [5, 6].
Also related is research on modal logics allowing to count the accessible worlds
[7, 8]. One can also read Pφ as “probability of φ is high”, and interpret “high”
as “greater than b”, for 1 > b ≥ 0.5. We then basically get the same account as
for b = 0.5.1

1 As suggested by one of the reviewers, another option is to interpret Pφ not as a
two-valued modal proposition but as a many-valued modal proposition, as it is done
in [9, Chapter 8] and [10]. There, the truth degree of Pφ is taken as Prob(φ), so the
bigger is the probability of φ, the ‘more true’ is the proposition Pφ. One can then
express that φ is more probable for the agent than ¬φ by a non-classical implication
P¬φ → Pφ.



Probably one of the reasons for the lack of interest in such approaches is
that the corresponding logical systems are very poor, and do not allow to obtain
completeness results w.r.t. the underlying probability measures.2

We here investigate the logic of the modal operator P . We start by analyzing
its properties, in particular in what concerns the interplay with the notion of
belief. Contrarily to comparative possibility, such an operator is not closed under
conjunction, and therefore its modal logic is non-normal [14].

We then turn to semantics. While probability distributions over sets of acces-
sible worlds are helpful to explain modal constructions such as Pφ, it is known
that they do not allow complete axiomatizations. We here study a semantics
that is closer to the set of properties that we have put forward. Our models are
minimal models in the sense of [14], that are based on neighborhood functions
instead of probability distributions. The logic is a non-normal, monotonic modal
logic. 3

Within this framework our aim is to study the relation of probability with
other modal concepts such as belief and action. We propose principles for the
interplay between action, belief, and probability, and formulate successor state
axioms for both belief and probability. While there is a lot of work on proba-
bilistic accounts of belief and action, as far as we are aware there is no similar
work relating modal probability to belief and action.

2 Preliminaries

For the time being we do not consider interactions between several agents, and
therefore we only consider a single agent.

2.1 Atomic Formulas, Atomic Actions

We have a set of atomic formulas Atm = {p, q, . . .}. Our running example will be
in terms of playing dice; we thus consider atomic formulas d1, d2, . . ., respectively
expressing “the dice shows 1”, etc.

We have set of atomic actions Act = {α, β, . . .}. In our example we have the
throw action of throwing the dice, and the actions observe1, observe2, . . . of the
agent observing that the dice shows 1, etc.

Actions are not necessarily executed by the agent under concern, but may be
executed by other agents or by nature. (So we might as well speak about events
instead of actions.)

We could have considered complex actions, but for the sake of simplicity we
shall not do so here.
2 Note that things are simpler if we do not take probability theory but possibility

theory: As shown in [11, 12], Lewis’ operator of comparative possibility [13] provides
a complete axiomatization of qualitative possibility relations.

3 Hence our semantics is rather far away from probabilities. This might be felt to be
at odds with intuitions, but as a matter of fact what we have done is to exactly
capture all that can be formally said about the property P of being probable.



¿From these ingredients complex formulas will be built together with modal
operators in the standard way.

2.2 Modal Operators

We have a standard doxastic modal operator B, and the formula Bφ is read
“the agent believes that φ”, or “φ is true for the agent”. For example ¬Bd6

expresses that the agent does not believe that some dice shows “6”. The formula
B(d1 ∨ d2 ∨ d3 ∨ d4 ∨ d5 ∨ d6) expresses that the agent believes the dice shows
one of 1, 2, 3, 4, 5, or 6.

Moreover we have a modal operator P where Pφ is read “φ is probable for
the agent”. The dual ¬P¬φ expresses that φ is not improbable. (This operator
has been considered primitive in some papers in the literature.) For example,
P(d1∨d2∨d3∨d4) expresses that it is probable for the agent that the dice shows
one of 1, 2, 3, or 4. ¬Pd6 expresses that it is improbable for the agent that the
dice shows “6”.

Finally, for every action α ∈ Act we have a dynamic logic operator [α].
The formula [α]φ is read “φ holds after every execution of α”. For example
¬[throw ]¬d6 expresses that the dice may show 6 after the throwing action.
¬P [throw ]d6 expresses that this is improbable for the agent. [throw ]P¬d6 ex-
presses that after throwing the dice it is probable for the agent that it did not
fall 6. [throw ][observe6]Bd6 expresses that after throwing the dice and observing
that it fell 6 the agent believes that it fell 6.

2.3 Relations Agreeing with a Probability Measure

P can also be viewed as a relation on formulas. Let Prob be any subjective
probability measure defined on formulas that is associated to the agent. When
it holds that

Pφ iff Prob(φ) > Prob(¬φ)

we say that P agrees with Prob.

2.4 Hypotheses about Action

We make some hypotheses about actions and their perception by the agent. They
permit to simplify the theory.

Public Action Occurrences. We suppose that the agent perceives action
occurrences completely and correctly. For example whenever a dice is thrown
the agent is aware of that, and whenever the agent believes a dice is thrown then
indeed such an action has occurred. (One might imagine that action occurrences
are publicly announced to all agents.)



Public Action Laws. We suppose that the agent knows the laws governing
the actions. Hence the agent knows that after throwing a dice the effect always is
that 1, 2, 3, 4, 5, or 6 show up, and that 1 and 2 cannot show up simultaneously,
etc.

Non-informativity. We suppose that all actions are non-informative. Non-
informative actions are actions which are not observed by the agent beyond
their mere occurrence. In particular the agent does not observe the outcome of
nondeterministic actions such as that of throwing a dice. Upon learning that such
an action has occurred the agent updates his belief state: he computes the new
belief state from the previous belief state and his knowledge about the action
laws. Hence the new belief state neither depends on the state of the world before
the action occurrence, nor on the state of the world after the action occurrence.

In our example we suppose that the throw action is non informative: the
agent throws the dice without observing the outcome. If the agent learns that
the action of throwing a dice has been executed then he does not learn which
side shows up.

Clearly, the action observe of observing the outcome of the throw action is
informative: the new belief state depends on the position of the dice in the real
world. Other examples of informative actions are that of looking up a phone
number, testing if a proposition is true, telling whether a proposition is true,
etc.

Nevertheless, the agent is not disconnected from the world: he may learn that
some proposition is true (i.e. that some action of observing that some proposition
has some value has occurred). For example, when he learns that it has been
observed that the dice fell 6 (i.e. he learns that the action of observing 6 has
been executed) then he is able to update his belief state accordingly. Indeed,
the observe i actions are non-informative according to our definition: when the
agent learns that observe i has occurred then he is able to update his belief state
accordingly, and there is no need to further observation of the world. Other
examples of noninformative actions are that of learning that the phone number
of another agent is N , testing that a proposition is true (in the sense of Dynamic
Logic tests), telling that a proposition is true, etc.

3 Axioms for Probability

In this section we give an axiomatization for P .
The inference rule for P is

if φ→ ψ then Pφ→ Pψ (RMP )

and the axioms are as follows:

P� (NP )
Pφ→ ¬P¬φ (DP )



These axioms match those that have been put forward in the literature,
e.g. those in [4]. As stated there, it seems that there are no other principles of
probability that could be formulated using P .

Clearly such an axiomatization is sound w.r.t. the intended reading:

Theorem 1. Let Prob be any probability measure, and suppose the property P
agrees with P, i.e. Pφ iff Prob(φ) > Prob(¬φ). Then P satisfies (RMP), (NP),
(DP).

Another way of expressing this is that whenever we define Pφ by Prob(φ) > 0.5
then P satisfies (RMP ), (NP), (DP ).4

Nevertheless, such an axiomatics is not complete w.r.t. probability measures.
This will be illustrated in Section 9.

4 Axioms for Belief

Following [15] we suppose a standard KD45 axiomatics for B: we have the infer-
ence rule

if φ→ ψ then Bφ→ Bψ (RMB)

and the following axioms:

B� (NB)
Bφ→ ¬B¬φ (DB)

(Bφ ∧ Bψ) → B(φ ∧ ψ) (CB)
Bφ→ BBφ (4B)

¬Bφ→ B¬Bφ (5B)

Hence the set of beliefs is closed under logical consequences, and we suppose
agents are aware of their beliefs and disbeliefs, i.e. we suppose introspection.

5 Axioms Relating Belief and Probability

What is the relation between P and B? According to our reading we should
have that things that are believed are also probable for an agent, i.e. we expect
Bφ→ Pφ to hold. The following main axiom will allow us to derive that:

(Bφ ∧ Pψ) → P(φ ∧ ψ) (C-MIX)

Just as for the case of beliefs and disbeliefs, agents are aware of probabilities.
This is expressed by the following two axioms:

Pφ→ BPφ (4-MIX)
¬Pφ→ B¬Pφ (5-MIX)

Other principles of introspection for P will be derived from them in the sequel.
4 This can be strengthened: if for some b > 0.5, Pφ is defined as Prob(φ) > b then
P satisfies (RMP), (NP), (DP). Note that thus our axioms do not conflict with the
view of Pφ as “probability of φ is high”.



5.1 Some Provable Formulas

1. if � φ ≡ ψ then � Pφ ≡ Pψ
This can be derived from (RMP ).

2. � ¬(Pφ ∧ P¬φ)
This is an equivalent formulation of (DP ).

3. � ¬P⊥
By (DP ), P⊥ → ¬P¬⊥. Then P⊥ → ⊥ by (NP).

4. � Bφ→ Pφ
This follows from (NP) and (C-MIX), putting ψ = �.

5. � (Bφ ∧ ¬P¬ψ) → ¬P¬(φ ∧ ψ)
From (C-MIX) together with (RMP) it follows � (Bφ∧P¬(φ∧ψ) → P¬ψ).

6. � Pφ→ ¬B¬φ
This follows from the next formula.

7. � (Pφ ∧ Pψ) → ¬B¬(φ ∧ ψ)
This can be proved as follows: first, (C-MIX) together with (RMP ) entails
� (Pφ ∧ B¬(φ ∧ ψ)) → P¬ψ. Then with (D) we get � (Pφ ∧ B¬(φ ∧ ψ)) →
¬Pψ, from which the theorem follows by classical logic.

8. � (B(φ→ ψ) ∧ Pφ) → Pψ
This follows from (C-MIX) together with (RMP).

9. � Pφ ≡ BPφ
The “→” direction follows from (4-MIX). The other direction follows from
(5-MIX) and (DP ).

10. � ¬Pφ ≡ B¬Pφ
The “→” direction follows from (5-MIX). The other direction follows from
(4-MIX) and (DP ).

11. � Pφ ≡ PPφ
The “→” direction follows from (4-MIX). The other direction follows from
(5-MIX) and (DP ).

12. � ¬Pφ ≡ P¬Pφ
The “→” direction follows from (5-MIX) and � Bφ→ Pφ. The other direc-
tion follows from (4-MIX) and (DP ).

13. PBφ→ Pφ
From � Bφ → Pφ it follows that PBφ → PPφ. And as we have seen,
PPφ→ Pφ.

5.2 Some Formulas that Cannot Be Proved

The following formulas will not be valid in our semantics. Non-deducibility will
follow from soundness.

1. Pφ→ Bφ
This would in fact identify P and B.

2. Pφ→ PBφ
Indeed, given that we expect Pφ ∧ ¬Bφ to be consistent, such a formula
would even lead to inconsistency (due to axioms (5B) and (C-MIX).



3. (Pφ ∧ Pψ) → P(φ ∧ ψ)
This would clash with the probabilistic intuitions: Prob(φ) > Prob(¬φ) and
Prob(ψ) > Prob(¬ψ) does not imply Prob(φ ∧ ψ) > Prob(¬(φ ∧ ψ)).

4. (Pφ ∧ P(φ→ ψ)) → Pψ
The reasons are the same as for the preceding formula.

6 Axioms for Action

We suppose the logic of action is just K. We therefore have the inference rule

if φ→ ψ then [α]φ→ [α]ψ (RMα)

and the following axioms:

[α]� (Nα)
([α]φ ∧ [α]ψ) → [α](φ ∧ ψ) (Cα)

Hence our logic of action is a simple version of dynamic logic [16].

7 Axioms Relating Belief and Action

We recall that we have stated in Section 2.4

– that the agent perceives action occurrences completely and correctly,
– that he knows the laws governing the actions, and
– that actions are non-informative, i.e. the agent does not learn about partic-

ular effects of actions beyond what is stipulated in the action laws.

As action effects are not observed, when the agent learns that the action of
throwing a dice has been executed then he does not learn whether it fell 6 or
not.

In [17, 18] we have argued that under these hypotheses the following axioms
of “no forgetting” (NF) and “no learning” (NL) are plausible. They express that
the agent’s new belief state only depends on the previous belief state and the
action whose occurrence he has learned.

(¬[α]⊥ ∧ [α]Bφ) → B[α]φ (NLB)
(¬B[α]⊥ ∧ B[α]φ) → [α]Bφ (NFB)

For the “no learning” axiom, we must suppose that the action α is executable
(else from [α]Bφ) we could not deduce anything relevant). Similarly, for the “no
forgetting” axiom we must suppose that the agent does not believe α to be
inexecutable (else from B[α]φ we could not deduce anything relevant). When the
agent believes α to be inexecutable and nevertheless learns that it has occurred
then he must revise his beliefs. In [19, 18] it has been studied how AGM style
belief revision operations [20] can be integrated. We do not go into details here,
and just note that both solutions can be added in a modular way.



(NFB) and (NLB) together are equivalent to

(¬[α]⊥ ∧ ¬B[α]⊥) → ([α]Bφ ≡ B[α]φ)

Axioms having this form have been called successor state axioms in cognitive
robotics, and it has been shown that (at least in the case of deterministic actions)
they enable a proof technique called regression [21, 22].

8 Axioms Relating Probability and Action

Suppose before you learn that a dice has been thrown it is probable for the
agent that the dice will not fall 6: P [throw ]¬d6. When the agent learns that the
dice-throwing action has been executed (without learning the outcome, cf. our
hypotheses) then it is probable for him that the dice does not show 6. Therefore
the following no-learning axiom for P is plausible for non-informative actions:

(¬[α]⊥ ∧ [α]Pφ) → P [α]φ (NLP )

The other way round, when it is probable for the agent that 6 shows up
after throw then (as we have supposed that he does not observe the outcome
of throwing) it was already probable for the agent that 6 would show up before
learning that the action has been executed. This is expressed by the following
no-forgetting axiom.

(¬P [α]⊥ ∧ P [α]φ) → [α]Pφ (NFP )

Again, both axioms are conditioned by executability of α (respectively belief
of executability of α).

9 Semantics

Actions are interpreted as transition systems: truth of a formula [alpha]φ in a
state (alias possible world) means truth of φ in all states possibly resulting from
the execution of α.

Truth of the formula Bφ means truth of φ in all worlds that are possible for
the agent.

In what concerns the formula Pφ, the intuition is that to every possible world
there is associated a probability measure over the set of epistemically accessible
worlds, and that Prob(φ) > Prob(¬φ). Sometimes the intuition is put forward
that among the set of accessible worlds there are more worlds where φ is true
than worlds where φ is false. We shall show in the sequel that such an explanation
is misleading.

A frame is a tuple 〈W,B,P, {Rα : α ∈ Act}〉 such that



– W is a nonempty set of possible worlds
– B : W −→ 2W maps worlds to sets of worlds
– P : W −→ 22W

maps worlds to sets of sets of worlds
– Rα : W −→ 2W maps worlds to sets of worlds, for every α ∈ Act

Thus for every possible world w ∈ W , B(w) and Rα(w) are sets of accessible
worlds as usual.

By convention, for a set of possible worlds V ⊆ W we suppose Rα(V ) =⋃
v∈V Rα(v), etc.
P (w) is a set of sets possible worlds. Although intuitively P collects ‘big’

subsets of B (in the sense that for V ∈ P , V contains more elements than its
complement w.r.t. W , W \ V ), there is no formal requirement reflecting this.

Every frame must satisfy some constraints : for every w ∈W ,

(dB) B(w) �= ∅
(45B) if w′ ∈ B(w) then B(w′) = B(w)
(nP) P (w) �= ∅
(dP) if V1, V2 ∈ P (w), V1 ∩ V2 �= ∅
(c-mix) if V ∈ P (w) then V ⊆ B(w)
(45-mix) if w ∈ B(w) then P (w′) = P (w)
(nf-nlB) if w′ ∈ Rα(w) and Rα(B(w)) �= ∅ then B(w′) = Rα(B(w)).
(nf-nlP ) if w′ ∈ Rα(w) then P (w′) = {Rα(V ) : V ∈ P (w) and Rα(V ) �= ∅}

As usual a model is a frame together with a valuation: M = 〈F , V 〉, where
V : Atm −→ 2W maps every atom to the set of worlds where it is true. To
formulate the truth conditions we use the following abbreviation:

||φ||M = {w ∈W : M, w |= φ}
Then given a model M, the truth conditions are as usual for the operators of
classical logic, plus:

– M, w |= φ if φ ∈ Atm and w ∈ V (φ)
– M, w |= Bφ if B(w) ⊆ ||φ||M
– M, w |= Pφ if there is V ∈ P (w) such that V ⊆ ||φ||M
– M, w |= [α]φ if Rα(w) ⊆ ||φ||M

9.1 An Example

Let us give an example. It will at the same time illustrate that the intuition of
P (w) ‘collecting more than 50% of the accessible worlds’ is misleading.

Let the agent learn in w0 that a dice has been thrown. Then we might
suppose that after throw the situation is described by a possible world w where
B(w) = {v1, . . . , v6} such that vi ∈ V (dj) iff i = j, and where P (w) is the
set of all subsets of B(w) containing more than half of the worlds in B(w), i.e.
P (w) = {V ⊆ B(w) : card(V ) > 3}.

Now suppose we are in a game where a player is entitled to throw his dice a
second time if (and only if) his first throw was a 6. Let throwif6 describe that



deterministic conditional action. We have thus Rthrowif6 (v6) = {v′61
, . . . , v′66

}
with v′6i

∈ V (dj) iff i = j. For i ≤ 5, we have Rthrowif6 (vi) = {v′i} with v′i ∈ V (dj)
iff vi ∈ V (dj). According to our semantics, the situation after a completed turn
can be described by a possible world w′ where

– Rthrowif6 (w) = {w′}
– B(w′) = Rthrowif6 (v6) ∪

⋃
i≤5Rthrowif6 (vi).

– The neighborhood P (w′) of w′ contains in particular {v′1, v′2, v′3, v′4}, although
this set contains much less than half of the worlds in B(w′).

9.2 Soundness and Completeness

Our axiomatization is sound w.r.t. the present neighborhood semantics:

Theorem 2. If φ is provable from our axioms and inference rules, then φ is
valid in neighborhood semantics.

We conjecture that we have completeness, too. The only nonstandard part
of the Henkin proof concerns the neighborhood semantics: In principle, for all
w ∈ W and V ∈ P (w) our axiom (C-MIX) only enforces that there is some
V ′ ∈ P (w) such that V ′ ⊆ V ∩ B(w). What we would like our model to satisfy
is that V ∈ B(w). In order to guarantee that frames must be transformed in the
following way:

Lemma 1. Let 〈F , V 〉 be any model satisfying all the constraints except (c-
mix). If F |= (C-MIX) and 〈F , V 〉, w |= φ then there is a model 〈F ′, V ′〉 such
that 〈F ′, V ′〉 satisfies the constraints and such that 〈F ′, V ′〉, w |= φ.

Proof. We define W ′ = W , V ′ = V , B′ = B, R′
α = Rα, and P ′(w) = {V ∈

P (w) : V ⊆ B(w) } As for every V ∈ P (w) there is some V ′ ∈ P (w) such that
V ′ ⊆ V ∩B(w), P (w) is nonempty. Moreover, we can prove by induction that for
every w ∈W and every formula ψ, we have 〈F , V 〉, w |= ψ iff 〈F ′, V ′〉, w |= ψ.

9.3 The Relation with Probability Measures

In any case, our neighborhood semantics differs from the standard semantics
in terms of probability measures. The latter is not complete w.r.t. probability
measures, as announced in Section 3.

Theorem 3 ([4]). : Let Atm = {a, b, c, d, e, f, g}. Take a model M where

– W = 2Atm

– for every w ∈ W , N(w) = {efg, abg, adf, bde, ace, cdg, bcf}, where efg is
used to denote {e, f, g}, etc.

– V (p) = {w ∈ W : p ∈W}
Then M satisfies the above constraints on neighborhood frames, but their is no
agreeing probability measure.



10 Conclusion

We have investigated a ‘very qualitative’ notion of probability, that of a formula
being more probable than its negation. We have presented the axioms governing
its relation with belief, and we have proposed principles for the interplay between
action, belief, and probability.

While there is a lot of work on probabilistic accounts of belief and action, as
far as we are aware there is no similar work relating modal probability to belief
and action.

While we provide a probabilistic account of belief, we do not consider prob-
abilistic action here. Therefore (and just as in the logics of belief and action)
uncertainty can only diminish as actions occur, and on the long run probabili-
ties will converge towards belief, in the sense that we will have P (w) = {B(w)}.
Just as in the case of shrinking belief states, this is unsatisfactory. In future
work we shall introduce misperception (as already done for beliefs in [18]) and
probabilistic actions in order to improve the account.
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