
HAL Id: hal-03534092
https://hal.science/hal-03534092

Submitted on 19 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An assessment of actions with indeterminate and
indirect effects in some causal approaches

Andreas Herzig, Ivan Varzinczak

To cite this version:
Andreas Herzig, Ivan Varzinczak. An assessment of actions with indeterminate and indirect effects
in some causal approaches. [Research Report] IRIT/2004–08–R, IRIT : Institut de Recherche en
Informatique de Toulouse. 2004, pp.1-23. �hal-03534092�

https://hal.science/hal-03534092
https://hal.archives-ouvertes.fr

An assessment of actions with indeterminate

and indirect effects in some causal approaches

Andreas Herzig Ivan Varzinczak
IRIT – Université Paul Sabatier

118 route de Narbonne, F-31062
Toulouse Cedex 4, France

e-mail: {herzig,ivan}@irit.fr

Abstract

In this work we investigate the behavior of the main existing fluent-
indexed approaches to reasoning about actions in dealing with do-
mains that have actions with both indeterminate and indirect effects.
As they all fail in solving this kind of scenarios, we argue for an action-
indexed causal notion in order to deal with the frame and ramifica-
tion problems. This is achieved by defining a weak form of causality
in terms of a dependence relation involving actions, literals and for-
mulae. This relation allows the literals to change their truth value
without forcing or causing it. Once integrated in the framework of a
propositional logic close to PDL, it gives us a simple and powerful for-
malism to reasoning about actions and a decision procedure in terms
of tableau methods. We also show how our approach can deal with
scenarios involving indeterminate and indirect effects without being
subjected to the same problems of other formalisms. In order to help
the knowledge engineer in describing domains, we give an interactive
algorithm for generating the required dependence information.
Keywords: Reasoning about actions, causality, dependence relation.

Technical Report IRIT/2004–08–R

May 2004

1

1 Introduction

In the recent literature on reasoning about actions, the concept of causality
has been studied as a means of overcoming the inadequacy of state constraints
in tackling the ramification problem. In this sense, many types of causal
notions have been proposed and causality has been considered in different
ways: strong or weak causality (if we always force or only permit something
to be caused); as a predicate, a relation or a modality; and primitive (built in
the logic) or derived (with the aid of some meta-logical information).

Many approaches consider that it is a change in some property that pro-
duces (causes) change of some other property. We call them fluent-indexed
approaches, for they always relate pairs of literals or formulae.

In this work we argue that fluent-indexed approaches are not enough for
dealing with the ramification problem. In special in domains involving ac-
tions with both nondeterministic and indirect effects. We do this by showing
an example of this class of action domain and trying to represent it in some
of the most recent formalisms.

Due to the nature of the problems presented by fluent-indexed approaches,
we conjecture that causality must be action-indexed, and we propose a weak
causal notion based on a contextual dependence relation for dealing with the
frame and ramification problems. This dependence relation, once integrated
in the framework of the logic of actions and plans LAP [1], gives us a simple
and powerful formalism to reason about actions and a decision procedure in
terms of semantic tableaux.

The present text is organized as follows: in Section 2 we present an
example of a scenario having actions with both indeterminate and indirect
effects, which leads to counterintuitive results when formalized in fluent-
indexed approaches. In Section 3 we compile some of the directives commonly
agreed on in the reasoning about actions field with respect to representation
of indirect and indeterminate effects. In Section 4 we show the representation
of the scenario of Section 2 in the most important formalisms found in the
literature, pointing at the problems they present. In Section 5 we propose
our action-indexed logical framework for reasoning about actions and present
an algorithm for automatically generating dependence relations. In the final
section we give some conclusions and future work.

2

2 The Mailboxes Scenario

In this section we sketch the Mailboxes Scenario, which was originally defined
in [2]. In essence, it combines Reiter’s “dropping a coin on a chessboard”
example with Sandewall’s argument against causality-based solutions to the
ramification problem [14].

In such a scenario, we reason about the status of a particular e-mail
message. The domain description is as follows: Suppose Mbox1 means “the
message is in mailbox 1”, and Mbox2 “the message is in mailbox 2”. We
represent the fact that the e-mail is saved in Mbox1 or in Mbox2 or in both
by the literal Saved.

Hence the static law (alias domain constraint) for this example is

Saved ↔ (Mbox1 ∨ Mbox2)

in formalisms that are not situation-indexed, and

Holds(Saved, s) ↔ (Holds(Mbox1, s) ∨ Holds(Mbox2, s))

in situation-indexed formalisms such as the situation calculus [11]. (As usual,
we assume all free variables denoting situations are universally quantified.)

Consider the actions save1 and save2, whose direct effects are to save an
e-mail message in Mbox1 and in Mbox2, respectively. Suppose we also have
a nondeterministic save action, whose direct effect is Saved, i.e. saving the
e-mail in one of the two mailboxes or in both. Hence save has the indirect
effect Mbox1 ∨ Mbox2. This is also an indeterminate effect. Note that, in
particular, after executing save it is also possible to have Mbox1 ∧ Mbox2.
This is just as in Reiter’s “dropping a coin on a chessboard” example, where
drop has the possible effect Black ∧ White.1

In the rest of this work, a domain description is a collection of formulae
that is made up of

• static laws as the above, that do not speak about actions;

• action laws, each of which relates an action to its effects and precondi-
tions.

1It is possible as well to rephrase our example in terms of Reiter’s: we can regard save

action as drop, which means putting a pin on a white, a black, or both squares (the pin
lying on the region between two squares). save1 (resp. save2) can be seen as analogous to
drop1 (resp. drop2), which means putting the pin in a black (resp. white) square.

3

3 Some postulates about effects of actions

In this section we recall some of the main directives commonly agreed on in
the reasoning about actions field with respect to the representation of the
effects of actions, stating them as postulates that are going to function as
guidelines for the analysis in the rest of this work.

3.1 Representing direct and indirect effects

In every paper in the reasoning about actions literature, it is more or less
tacitly supposed that action laws should obey some principles of parsimony
and modularity. In particular, the following seem to be commonly agreed:

P1 Do not state non-effects.

This means that there should be no frame axioms. For example, in the
Mailboxes Scenario, the action law for save1 should not mention Mbox2.
Postulate P1 stems from McCarthy and Hayes’ paper [11] and it can be said
to be at the origin of the work in reasoning about actions.

P2. Do not state indirect effects.

For instance the description of save should mention neither Mbox1 nor Mbox2.
Postulate P2 has been identified in Finger’s PhD thesis [3] and is the core of
the ramification problem.

3.2 Reasoning about indeterminate effects

In order to correctly reason about a nondeterministic action, we have to be
able of properly treating its set of indeterminate effects. This gives us the
following postulate:

P3. Do not systematically interpret effects described with the in-
clusive disjunction “∨” as the exclusive one “⊕”.

For example, in the Mailboxes Scenario, the effect of save should not be
equivalent to Mbox1⊕Mbox2. The motivation for such a postulate has been
originally suggested by Reiter.

4

As we will see along the following sections, the Mailboxes Scenario is
problematic for all the existing approaches allowing for the representation of
actions with both indirect and indeterminate effects, with respect to Postu-
lates P1–P3. In what follows, we discuss the approaches of Lin [7, 8], McCain
and Turner [9, 10], Thielscher [15, 16] and Zhang and Foo [18]. Indeed, it
can be shown that in all these frameworks either Postulate P1 is violated,
or Postulate P2, or, in order not to violate Postulate P3, the action save1
has the indirect indeterminate effect of changing Mbox2, which is clearly
counterintuitive.

4 Causal approaches to ramification

In this section we analyze how the most known causal approaches in the
literature perform in domains involving actions with indirect and indetermi-
nate effects. In order to do this, in all of them we formalize the example of
Section 2.

In the rest of this work we will use the following definitions: we de-
fine ACT = {α, β, . . .} as the set of actions, like shoot, load, etc. ATM =
{P, Q, . . .} is the set of atomic formulae, or atoms (fluents), for short. Ex-
amples of atoms are Loaded and Alive. LIT = ATM ∪ {¬P : P ∈ ATM} is
the set of literals. The set of classical propositional formulae will be denoted
by PFOR.

4.1 Minimization of causality

We here examine the behavior of Lin’s approach [7, 8] in solving the Mail-
boxes Scenario.

Roughly speaking, Lin proposes to add a predicate Caused to the situation
calculus to describe the appropriate relationships between fluents by means
of this predicate, and to circumscribe it. Caused(P, v, s) reads as “fluent P
is caused to have truth value v in situation s”.

In addition, the following axiom is assumed:

Caused(P, true, s) → Holds(P, s)

which states that something that is caused in a situation s must hold in such
a situation.

5

The way domain constraints and effect axioms are stated defines a fluent-
indexed strong causal notion.

In the example that follows we describe the Mailboxes Scenario using this
formalism.

Following the definitions in the original work, the effect axioms for this
scenario are:

Poss(save1, s) → Caused(Mbox1, true, do(save1, s)) (1)

Poss(save2, s) → Caused(Mbox2, true, do(save2, s)) (2)

Poss(save, s) → Caused(Saved, true, do(save, s)) (3)

Then, according to Lin, we have to supplement the static law Saved ↔
(Mbox1∨Mbox2) in the following way: as save1 (resp. save2) has effect Mbox1
(resp. Mbox2) and Mbox1 (resp. Mbox2) being true causes the truth of Saved,
then we must causally relate Mbox1 (resp. Mbox2) and Saved. This is done
stating the formulae:

Caused(Mbox1, true, s) → Caused(Saved, true, s) (4)

Caused(Mbox2, true, s) → Caused(Saved, true, s) (5)

The other way round, as an execution of save has the direct effect Saved
and a change in Saved means a change in Mbox1 and/or in Mbox2, we are
obliged to causally relate Saved with both Mbox1 and Mbox2. This is done
stating the formula:

Caused(Saved, true, s) → Caused(Mbox1, true, s) ∨ Caused(Mbox2, true, s)
(6)

Stating just these laws, according to the minimization process defined
in [8], we would get an exclusive interpretation of the disjunction in (6), i.e.
save would have the indirect effect Mbox1 ⊕ Mbox2. So, in order to capture
the possibility of save saving the e-mail in both mailboxes, in Lin’s approach
we have also to state the constraints:2

Caused(Saved, true, s) → Caused(Mbox1, true, s) ∨ Caused(Mbox1, false, s) (7)

Caused(Saved, true, s) → Caused(Mbox2, true, s) ∨ Caused(Mbox2, false, s) (8)

Thus, we have the following theorem:

2It is worth noting that both consequents of (7) and (8) are not tautologies (cf. [7]).

6

Theorem 4.1 From formulae (1)–(8) we can derive

Poss(save1, s) → Caused(Mbox2, true, do(save1, s))∨
Caused(Mbox2, false, do(save1, s))

Proof: Suppose that Poss(save1, s) is the case. Then, from Formula (1) we
obtain Caused(Mbox1, true, s′), where s′ stands for do(save1, s). From this
and Formula (4), we can get Caused(Saved, true, s′). Thus, constraint (7)
gives us Caused(Mbox1, true, s′)∨Caused(Mbox1, false, s′). Nevertheless, even
with the minimization policy defined in [8], it is still possible to derive an-
other extension: from Caused(Saved, true, s′) and constraint (8) we conclude
Caused(Mbox2, true, s′) ∨ Caused(Mbox2, false, s′).

So, we get that an execution of save1 can produce the indirect effect of
changing Mbox2. But we do not want such an indirect effect, for save1 would
be nondeterministic. A possible solution for this could be to state

(Poss(save1, s) ∧ ¬Holds(Mbox2, s)) → Caused(Mbox2, false, do(save1, s))

from which we derive

(Poss(save1, s) ∧ ¬Holds(Mbox2, s)) → ¬Holds(Mbox2, do(save1, s))

which would violate Postulate P1.
Another way of tackling the problem is stating

Poss(save1, s) → Caused(Mbox2, false, do(save1, s))

but, this is unintuitive, for in a situation where we already had Saved, with
the e-mail in Mbox2, saving again with save1 would make a change in Mbox2.

4.2 Causal laws approach

In this section, we formalize the Mailboxes Scenario using the base formalism
proposed by McCain and Turner [9]. Their approach considers that back-
ground knowledge about causation should be given in form of causal laws,
which are stated as sentences in a modal, conditional logic with the aid of a
causal modal operator ⇒.

A causal law of the form A ⇒ C, where A and C are propositional
formulae, is read as “A causes C”, or “the truth of A determines the truth
of C”. This is thus a fluent-indexed causal approach.

7

Let LAW be the set of all causal laws concerning a given domain. A set
of formulae Γ is closed under LAW if and only if whenever A ⇒ C is in LAW
and A ∈ Γ, then C ∈ Γ. Γ ⊢

LAW
A means that formula A belongs to the

smallest set of formulae containing Γ that is closed w.r.t. propositional logic
and also closed under LAW.3

In the formalization that follows, KB represents an initial knowledge base
and E a set of direct effects.

With the causal laws approach, the representation of the Mailboxes Sce-
nario is as follows:

LAW =

{

Saved ⇒ (Mbox1 ∨ Mbox2),
(Mbox1 ∨ Mbox2) ⇒ Saved

}

The causal law Saved ⇒ (Mbox1 ∨ Mbox2) is needed because the truth
of fluent Saved causes the truth of formula Mbox1 ∨ Mbox2. Analogously,
(Mbox1 ∨ Mbox2) ⇒ Saved is necessary because Mbox1 ∨ Mbox2 being true
causes Saved also to be true.4

Completing the domain description, we have a set of initial observations:

KB = {¬Mbox1,¬Mbox2,¬Saved}

and we suppose that Mbox1 was produced as a direct effect:

E = {Mbox1}

From this representation and according to McCain and Turner’s approach
defined in [9], after save action we get an exclusive interpretation of the
disjunction Mbox1 ∨ Mbox2, violating Postulate P3. This is shown by the
following theorem:

Theorem 4.2 After executing save we will get only the next two possible
states:

{

{Mbox1,¬Mbox2, Saved},
{¬Mbox1,Mbox2, Saved}

}

3Observe that this definition also uses a kind of minimization policy to determine the
possible states after execution of actions.

4Observe that instead of (Mbox1 ∨ Mbox2) ⇒ Saved one could have as well the causal
laws Mbox1 ⇒ Saved and Mbox2 ⇒ Saved, whose justifications are straightforward. On
the other hand, we could not replace Saved ⇒ (Mbox1 ∨ Mbox2) by Saved ⇒ Mbox1 and
Saved ⇒ Mbox2, for in this case save would always cause Mbox1 ∧ Mbox2.

8

Proof: Following the definitions in [9], for any knowledge base KB, any
direct effects E , and any set LAW of causal laws, the set of possible next
states after performing an action is the set of interpretations KB′ such that:

KB′ = {L : L is a literal and (KB ∩ KB′) ∪ E ⊢
LAW

L}

where ⊢
LAW

is derivability w.r.t. the causal laws defined in LAW.
After performing action save, we have the direct effect Saved. For the

case KB1 = {Mbox1,¬Mbox2, Saved}, we have KB ∩ KB1 = {¬Mbox2} and
{¬Mbox2} ∪ {Saved} ⊢

LAW
Mbox1, and this possible state is OK. In the

case KB2 = {¬Mbox1,Mbox2, Saved}, we have KB ∩ KB2 = {¬Mbox1} and
{¬Mbox1} ∪ {Saved} ⊢

LAW
Mbox2, and this possible state is OK, too. The

interpretation KB3 = {¬Mbox1,¬Mbox2, Saved} is not a possible state as
clearly KB3 is not closed under LAW. Now, considering the case KB4 =
{Mbox1,Mbox2, Saved}, we have KB∩KB4 = ∅ and neither ∅∪{Saved} 6⊢

LAW

Mbox1 nor ∅ ∪ {Saved} 6⊢
LAW

Mbox2, so KB4 is not closed under LAW. Thus,
the only possible states after performing save action are KB1 and KB2 and
from this the result follows.5

In order to avoid exclusive interpretation of disjunctions, we have to relax
inertia by increasing LAW with the following causal laws

(Saved ∧ Mbox1) ⇒ Mbox1
(Saved ∧ Mbox2) ⇒ Mbox2

However with this apparent solution we get that an execution of save1 could
make a change in Mbox2, for the interpretation {Mbox1,Mbox2, Saved} would
be closed under LAW.

4.3 Another version of causal laws

In this section, we use the improved version of causal laws as given in [10].
Basically, the difference is that in this approach actions are explicited and
each action, fluent and formula has an associated time point. So, for example,
save12 means that the action of saving the e-mail in mailbox 1 was executed
at time point 2, and having Mbox13 means that at time point 3, the e-mail is

5The reader is invited to verify that with the causal laws Mbox1 ⇒ Saved and Mbox2 ⇒
Saved instead of (Mbox1 ∨Mbox2) ⇒ Saved one obtains the same result.

9

saved in mailbox 1 (independently of the action that was executed to achieve
that).

Besides considering time, the following standard schemas are also assumed
(remembering that α stands for action names, P for atom (fluent) names,
and A for a formula):

αt ⇒ αt (9)

¬αt ⇒ ¬αt (10)

P0 ⇒ P0 (11)

¬P0 ⇒ ¬P0 (12)

At ∧ At+1 ⇒ At+1 (13)

Schema (9) (resp. (10)) states that the occurrence (resp. non-occurrence)
of action α at time t is caused whenever α occurs (resp. does not occur) at t.
The Schemas (11) and (12) represent facts about the initial values of each
fluent. Schema (13) formalizes the common sense law of inertia, representing
the fact that whenever an inertial fluent holds at two successive time points,
its truth at the second time point is taken to be caused simply by virtue of
its persistence.

Using this approach, we formalize the Mailboxes Scenario in the following
way. LAW, KB and E are as in section 4.2, except that they are time-indexed:

LAW =

save1t ∧ ¬Mbox1t ⇒ Mbox1t+1,
save2t ∧ ¬Mbox2t ⇒ Mbox2t+1,

savet ⇒ Savedt+1,
Savedt ⇒ (Mbox1t ∨ Mbox2t),
(Mbox1t ∨ Mbox2t) ⇒ Savedt

KB = {¬Mbox10,¬Mbox20,¬Saved0}

So, we can state the theorem below:

Theorem 4.3 LAW and KB above violate Postulate P3: we get an exclusive
interpretation of the nondeterminism of save action.

Proof: Analogous to that of Theorem 4.2, just considering time points in
each fluent.

As before, if we relax inertia by means of some extra causal laws, we will
also get that save1 may cause a change in Mbox2.

10

4.4 Postprocessing approach

In this section we examine the postprocessing generation of ramifications
presented by Thielscher in [15].

The basic idea of this approach consists in admitting states not satisfying
the domain constraints, which are seen as “intermediate states”. “Stable”
states are obtained after successive applications of the so called causal re-
lations. A causal relation L1 causes L2 if A, where L1, L2 are literals, and
A is a formula, is the way a fluent indexed causal notion is defined in this
approach.

In what follows, an action law is a triple 〈C, α, E〉, where α is an action,
C its preconditions and E its effects, such that |C| = |E| (C and E have
the same atoms). An influence relation is a relation between atoms (fluents)
that is used to automatically generate the causal relations. Saying that a
pair (P1, P2), where P1 and P2 are atoms, is in the influence relation means
that a change in the truth value of P1 may cause a change in the truth value
of P2.

A state of the world (not necessarily satisfying the domain constraints)
is a pair (KB, E), where KB is a knowledge base and E a set of direct effects.
Performing an action α in a state of affairs KB corresponds to applying its
associated action law 〈C, α, E〉 to the pair (KB, E), giving us a new pair
(KB′, E ′), where KB′ = (KB \ C) ∪ E and E ′ = E ∪ E.

With this approach, we define the following action laws:

〈{¬Mbox1}, save1, {Mbox1}〉 (14)

〈{¬Mbox2}, save2, {Mbox2}〉 (15)

〈{¬Saved}, save, {Saved}〉 (16)

Action law (14) expresses that “in a state where Mbox1 is false, after
executing save1, Mbox1 will be true”.6 For action laws (15) and (16) the
reading is analogous.

The set of domain constraints is the singleton:

{Saved ↔ (Mbox1 ∨ Mbox2)}

6Note that according to the definitions in [15], if we had a state where the e-mail is
already saved in mailbox 1, it would not be possible to save it again with save1, which is a
limitation of this approach. A possible solution for this problem should be stating an action
law as 〈{Mbox1}, save1, {Mbox1}〉. Note, however, that this would violate Postulate P1
stated in Section 2.

11

According to Thielscher’s approach, as for this example a change in Mbox1
(resp. Mbox2) may cause a change in Saved and vice-versa, we have to define
the influence relation for this scenario as follows:

(Mbox1, Saved),
(Mbox2, Saved),
(Saved,Mbox1),
(Saved,Mbox2)

From this influence information and Algorithm 1 given in [15], we obtain
the following set of causal relations:

Mbox1 causes Saved if ⊤,
Mbox2 causes Saved if ⊤,
Saved causes Mbox1 if ⊤,
Saved causes Mbox2 if ⊤

Thus, with this domain description, we get the following theorem:

Theorem 4.4 With Thielscher’s approach, action save1 is nondeterministic
with the indirect effect of possibly causing a change in Mbox2.

Proof: Suppose an initial state where we have {¬Mbox1,¬Mbox2,¬Saved}.
Then, if we apply the action law

〈{¬Mbox1}, save1, {Mbox1}〉

to the pair
({¬Mbox1,¬Mbox2,¬Saved}, {})

we will get the resulting pair

({Mbox1,¬Mbox2,¬Saved}, {Mbox1})

As this state is inconsistent w.r.t. the domain constraint, we apply the causal
relations to it and obtain

({Mbox1,¬Mbox2, Saved}, {Mbox1, Saved})

which is a successor state [15].

12

However we can apply the causal relation Saved causes Mbox2 if ⊤ to this
pair as well, obtaining

({Mbox1,Mbox2, Saved}, {Mbox1, Saved,Mbox2})

that is a successor state, too.
So, we have two possible successor states for action save1, one of them

making a change in Mbox2.

Then, we get that with Thielscher’s approach we cannot solve the Mail-
boxes Scenario, for it is possible to derive an unintuitive result (save1 causing
a change in Mbox2). At first glance, we see no way of overcoming this prob-
lem inside the original definitions made in [15, 16]. Just in the same way as in
the previously discussed approaches, if we do not state the relation between
Saved and Mbox2, it would not be possible to obtain the nondeterminism of
save action.

4.5 EPDL approach

We now formalize the Mailboxes Scenario using the base logic EPDL [18].
Such a logic is an extension of PDL [5] that allows a proposition as a modality
for specifying the indirect effects of actions. In this sense, we are able to write
formulae like [Mbox1]Saved, which states that in all possible worlds in which
Mbox1 is true, Saved is caused to be true.

The action description of the Mailboxes Scenario in EPDL is given bellow:

〈save〉⊤, 〈save1〉⊤, 〈save2〉⊤,
Saved ↔ (Mbox1 ∨ Mbox2),
[save]Saved,
[save1]Mbox1,
[save2]Mbox2,
[Saved](Mbox1 ∨ Mbox2),
[Mbox1]Saved,
[Mbox2]Saved

It is easy to verify that with this representation we would get that an ex-
ecution of save1 can produce a change in Mbox2. As far as we are concerned,
the only way of avoiding this is deriving a frame axiom at inference time, at

13

the price of not having a satisfactory solution neither to the mathematical
frame problem nor to the inferential one.

In the next section we present our logical framework for reasoning about
actions, which is not fluent-indexed.

5 The framework of LAPD

In this section we develop an action-indexed logical framework for reasoning
about actions based on the logic of actions and plans LAP [1] combined with
the notion of dependence relations.

5.1 The base logic LAP

LAP is a simple multimodal logic where formulae are constructed in the
following way: We use an S4 operator 2 to characterize laws (static or
dynamic ones). 2A is read “henceforth A” or “always A”. We use a collection
of K operators [α], one for each action α, in order to state the behavior of
actions. [α]C is read as “after executing α, C”.

Given α an action and A, C classical propositional formulae, the formula
2〈α〉⊤ is read as “α is executable”. 2(A → [α]C) as “if A, then after α
C”. 2[α]C is an abbreviation for 2(⊤ → [α]C). For example, in the Yale
shooting scenario (YSS) [4], the formula 2(Loaded → [shoot]¬Alive) states
that, in every situation (possible world), shooting will kill the victim if the
gun is loaded. In the same scenario, the formula 2(Walking → Alive) is a
static law saying that it is always true that someone who is walking must be
alive.

In LAP, every action α has the modal logic K, and the modal operator
2 has logic S4. Actions and the 2 operator are linked by an axiom I(2, [α])
stating that 2A → [α]A.

Despite its expressive power, in LAP the frame problem is not solved.
In order to do this, we augment LAP with a metalogical causal information
represented by a dependence relation.

14

5.2 Causality expressed by dependence

We present here our causal notion based on a dependence relation capable
of capturing the contexts in which actions are executed. We define a ternary
dependence relation involving actions, literals and formulae7. The role of the
latter formulae is to characterize the particular circumstances in which the
actions may influence the truth values of literals.

Saying that a literal L depends on a certain action α in a given context C
means that if C is true, then, after the execution of α, L may be caused. We
shall say that α may cause L in the context C and this will be represented
by the expression α may cause L if C.

Consider the action shoot and the literals Alive and Loaded. As the action
shoot may cause ¬Alive in a circumstance where Loaded is true, then the
expression

shoot may cause ¬Alive if Loaded

must be in our contextual dependence relation.

An important point to be highlighted here is the fact that the notion
of dependence only permits change, and does not necessarily cause it. This
can be better seen in nondeterministic domains, like the Russian turkey sce-
nario [13], where, after shooting, the victim might die, and might as well
keep on being alive.

Definition 5.1 A contextual dependence relation is a ternary relation D ⊆
ACT × LIT × PFOR.

The triples (α, L, C) will be written α may cause L if C and represent the
fact that “L may be caused by α in the context C”. In other words, this
means that “the execution of action α may change the truth value of the
literal L, as long as the formula C is true”.

Remark 5.1 Disjunctive contexts seem to be rare. We conjecture that, in
practice, the formula denoting the context C will in general be a conjunction
of literals. Anyway, the expression α may cause L if C1 ∨ C2 could be sub-
stituted by α may cause L if C1 and α may cause L if C2. Therefore we can
suppose w.l.o.g. that contexts are conjunctions of literals.

7Formulae of Classical Propositional Logic, without modal operators.

15

5.3 A new logic of actions and plans

Combining the logic of actions and plans LAP with the new dependence
relation D defined so far, we obtain the new logic LAPD. The LAP-models
must satisfy that whenever all the contexts in which an action may cause a
given literal L are false, then the falsehood of L must be preserved along the
execution of that action.

As an example, consider the action shoot and the literal ¬Alive in the
YSS. The only way of shoot causing ¬Alive is when Loaded is true. Hence
D = {shoot may cause ¬Alive if Loaded}. Thus, in a circumstance in which
we have ¬Loaded, the persistence of Alive will be guaranteed by the falsehood
of the context Loaded.

For the same scenario, consider the action wait and the literal Loaded.
wait may never cause ¬Loaded, whatever the circumstances are. Therefore
there will not be in D any expression of the form wait may cause ¬Loaded if C,
for any context C. In this case, we guarantee the persistence of Loaded
through the execution of wait.

With this dependence-based condition, one eliminates the LAP-models
in which non-intuitive changes occur in the following way: suppose that we
are in a particular situation w in which the literal L is false. First, imagine
that the only element of D involving both α and L is α may cause L if C.
Thus, as long as C is true, the execution of α may cause, or not, a change in
the truth value of L, since our causal notion only allows change, not forcing
it. But surely α will not change the value of L if C is false. Suppose now
that there is no C ∈ PFOR such that α may cause L if C ∈ D. Then, the
execution of α may never make L true, and hence L will still be false after α.

Definition 5.2 Let D be a ternary dependence relation. We define a model
of LAPD as a LAP-model µ = 〈W, {Rα : α ∈ ACT}, R2, τ〉, such that
whenever wRαw′ then for every α and for every L ∈ LIT, if, for all C ∈ PFOR
such that α may cause L if C, w 6|= C, then w ∈ τ(L) only if w′ ∈ τ(L) and
w′ /∈ τ(L) only if w /∈ τ(L).

Given a dependence relation D, we say that a formula A is true in a
LAPD-model µ = 〈W, {Rα : α ∈ ACT}, R2, τ〉 if w |= A (A is true in w)
for every w ∈ W . A is LAPD-valid (noted |=

LAPD

A) if A is true in all

LAPD-models.

16

5.4 Avoiding conditional frame axioms

An important criticism to the dependence-based approach of LAP; defined
in [1] is the need for writing down conditional frame axioms. As an example,
the formula below is needed for correctly dealing with the YSS:

2((¬Loaded ∧ Alive) → [shoot]Alive) (17)

Formulae of the type of (17) establish that if a given condition is true,
then some literal persists along the execution of a given action. Without
considering such conditional frame axioms, it is not possible to derive the
intended conclusions in LAP;.

In what follows we show that with the ternary dependence relation D we
do not need to state any conditional frame axiom.

Definition 5.3 Let α ∈ ACT, L ∈ LIT and D a dependence relation. We
define

PreD(α, L) =
∨

{C : α may cause L if C ∈ D}

In other words, PreD(α, L) is the disjunction of all the contexts in which
α may cause literal L, given a dependence relation D.

Theorem 5.1 |=
LAPD

2((¬PreD(α, L) ∧ ¬L) → [α]¬L).

Proof: Suppose that 2((¬PreD(α, L) ∧ ¬L) → [α]¬L) is false, i.e. there is
a possible world w such that w |= ¬PreD(α, L) and w |= ¬L, and it is not
the case that w |= [α]¬L, that is to say w |= 〈α〉L. Suppose now that α is
executable, at least when ¬PreD(α, L) and ¬L are true in w. Then there is
a possible world w′ such that wRαw′ and w′ |= L. As w |= ¬PreD(α, L), we
have that for all expression α may cause L if C in D, w 6|= C, and as w |= ¬L,
by the definition of D, we shall have w′ |= ¬L, which is an absurd.

With this result, we can see that in a domain description using a depen-
dence relation D there is no need for a set of conditional frame axioms, since
all the conclusions that are obtained with the aid of the latter can also be
inferred with the former.

As an example, consider the action shoot and the literals Alive and ¬Loaded,
and suppose D = {shoot may cause ¬Alive if Loaded}. Then the conditional
frame axiom (17) is LAPD-valid. In other words, the persistence of Alive
when ¬Loaded is true follows from the dependence information in D, mak-
ing completely unnecessary, thus, the statement of the conditional frame
axiom (17).

17

5.5 Axiomatics and complexity

Given a dependence relation D, we axiomatize the class of LAPD-models in
the same way as done for LAP in [1, Section 4.2], adding an axiom scheme
founded on the dependence relation:

• Persist([α]) : ¬L → [α]¬L, if ¬PreD(α, L).

In order to show the soundness and completeness of LAPD with respect
to its semantics, we have the following result:

Theorem 5.2 For all dependence relation D over ACT × LIT × PFOR,
the axiomatics of LAPD is sound and complete with respect to the class of
LAPD-models.

Proof: The proof is in [17].

The theorem below shows that the complexity of LAPD is the same as
that of LAP.

Theorem 5.3 LAPD is decidable, and the satisfiability problem in LAPD

is exptime-complete.

Proof: The proof is in [17].

This theorem guarantees that the inclusion of the ternary dependence
relation D in LAP does not increase the computational complexity of the
basic logic.

5.6 The Mailboxes Scenario in LAPD

We present here the representation of the Mailboxes Scenario in the formalism
of LAPD. KB represents the set of observations and LAW that of static,
effect and executability laws in LAPD.

LAW =

2〈save〉⊤, 2〈save1〉⊤, 2〈save2〉⊤,
2(Saved ↔ Mbox1 ∨ Mbox2),
2[save]Saved,
2[save1]Mbox1,
2[save2]Mbox2

18

D =

save may cause Saved if ⊤,
save may cause Mbox1 if ⊤,
save may cause Mbox2 if ⊤,
save1 may cause Mbox1 if ⊤,
save2 may cause Mbox2 if ⊤,
save1 may cause Saved if ⊤,
save2 may cause Saved if ⊤

KB = {¬Saved,¬Mbox1,¬Mbox2}

With this representation, we can conclude

|=
LAPD

(KB ∧ LAW) → [save](Mbox1 ∨ Mbox2)

as intended.

5.7 Designing dependence relations

In this section we propose an interactive algorithm for aiding the knowledge
engineer to generate a dependence relation for a given domain description.

Let E be a set of effect laws, S a set of domain constraints, and let
S2 = {A : 2A ∈ S}. NewConsA(B) is a function that computes the set of
strongest clauses that follow from A∧B, but do not follow from A alone (cf.
e.g. [6]). The following algorithm generates a dependence relation:

Algorithm 5.1 (Generating dependence information)

input: S, E
output: a dependence relation D
D:= ∅
for all 2(A → [α]C) ∈ E do

for all Ci in C do
for all B ∈ NewConsS2(Ci) do

for all L in B do
γ:= context in which α causes L
D:= D ∪ {α may cause L if γ}

19

Example 5.1 (The Mailboxes Scenario) The input of algorithm 5.1 is

E =

2[save]Saved,
2[save1]Mbox1,
2[save2]Mbox2

S = {2(Saved ↔ Mbox1 ∨ Mbox2)}

We only give the case of 2[save]Saved. First of all, one computes the
relevant prime implicates of Saved ∧ Saved ↔ Mbox1 ∨ Mbox2, which is
{Saved,Mbox1 ∨ Mbox2}. After that, we ask for the contexts in which save
may cause Saved. Intuitively, the user should answer ⊤, so we add the de-
pendence save may cause Saved if ⊤ to D. The next round, we ask about
the context in which save may cause Mbox1. Again the user answers ⊤ and
we add the dependence save may cause Mbox1 if ⊤. Analogously we obtain
save may cause Mbox2 if ⊤.

6 Conclusions

We have presented a typical scenario involving actions with both indetermi-
nate and indirect effects and seen the difficulties that arise when we try to
formalize it with fluent-indexed approaches.

The problem with all these formalisms is that in this scenario there is a
fluent (Saved) that can be caused in two different ways (directly with save or
indirectly with save1 or save2) and that can or cannot cause nondeterministic
ramifications depending on the way it was generated. With fluent-indexed
approaches we cannot record this subtlety and this is the main reason they
all fail in formalizing this example.

The problems shown in Sections 4.2 and 4.3 arise because the inertial/non-
inertial classification, for this scenario, depends on the action that is exe-
cuted. With the approach presented in [9, 10] we cannot capture this prop-
erty, for causality is fluent-indexed.

So, with all this discussion, we have seen that with the approaches pre-
sented in [7, 8, 9, 10, 15] we cannot deal with indirect and implicit inde-
terminate effects without referring to actions. This supports the thesis that
causality must be action indexed and motivated us to define our action-based
framework.

20

In the LAPD representation of the Mailboxes Scenario, Postulate P3
is satisfied. Moreover, as we neither need to explicitly state non-effects of
actions nor relate actions with their indirect effects, Postulates P1 and P2 are
satisfied, too. Nevertheless, we still need to write down indirect dependences,
e.g. save1 may cause Saved if ⊤, in order to be able to infer ramifications. At
one hand, doing things this way will require us to write more information than
commonly used, but we argue this is the only way of avoiding unintended
conclusions, at least for the known classes of problems.

The interactive algorithm proposed for aiding the conception of domain
descriptions can be useful for realistic scenarios. A disadvantage of its imple-
mentation, however, resides in the fact that the degree of interaction with the
user is too high, in the sense that too many possibilities must be evaluated
in order to generate the good dependences.

With the tableau method for LAP; given in [1] and the translation of
LAPD into LAP; presented in [17], we automatically have a proof procedure
for domain descriptions in LAPD.

Acknowledgements

Ivan Varzinczak has been supported by a fellowship from the government of
the Federative Republic of Brazil. Grant: CAPES BEX 1389/01-7.

References

[1] M. A. Castilho, O. Gasquet, and A. Herzig. Formalizing action and
change in modal logic I: the frame problem. J. of Logic and Computation,
9(5):701–735, 1999.

[2] M. A. Castilho, A. Herzig, and I. J. Varzinczak. It depends on the
context! a decidable logic of actions and plans based on a ternary de-
pendence relation. In S. Benferhat and E. Giunchiglia, editors, Proc.
Int. Conf. on Non-Monotonic Reasoning (NMR’02), pages 343–348,
Toulouse, 2002.

[3] J. J. Finger. Exploiting constraints in design synthesis. PhD thesis,
Stanford University, Stanford, 1987.

21

[4] S. Hanks and D. McDermott. Default reasoning, nonmonotonic logics,
and the frame problem. In Proc. 5th Nat. Conf. on Artificial Intelligence
(AAAI’86), pages 328–333, Philadelphia, 1986. Morgan Kaufmann Pub-
lishers.

[5] D. Harel. Dynamic logic. In D. M. Gabbay and F. Günthner, editors,
Handbook of Philosophical Logic, volume II, pages 497–604. D. Reidel,
Dordrecht, 1984.

[6] K. Inoue. Linear resolution for consequence finding. Artificial Intelli-
gence, 56(2–3):301–353, 1992.

[7] F. Lin. Embracing causality in specifying the indirect effects of actions.
In Mellish [12], pages 1985–1991.

[8] F. Lin. Embracing causality in specifying the indeterminate effects of
actions. In Proc. 13th Nat. Conf. on Artificial Intelligence (AAAI’96),
pages 670–676, Portland, 1996. AAAI Press/MIT Press.

[9] N. McCain and H. Turner. A causal theory of ramifications and quali-
fications. In Mellish [12], pages 1978–1984.

[10] N. McCain and H. Turner. Causal theories of action and change. In
Proc. 14th Nat. Conf. on Artificial Intelligence (AAAI’97), pages 460–
465, Providence, 1997. AAAI Press/MIT Press.

[11] J. McCarthy and P. J. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In B. Meltzer and D. Mitchie, edi-
tors, Machine Intelligence, volume 4, pages 463–502. Edinburgh Univer-
sity Press, 1969.

[12] C. Mellish, editor. Proc. 14th Int. Joint Conf. on Artificial Intelligence
(IJCAI’95), Montreal, 1995. Morgan Kaufmann Publishers.

[13] E. Sandewall. Features and Fluents. Oxford University Press, 1994.

[14] E. Sandewall. Assessments of ramifications methods that use static do-
main constraints. In L. C. Aiello, J. Doyle, and S. Shapiro, editors, Proc.
6th Int. Conf. on Knowledge Representation and Reasoning (KR’96),
pages 99–110, Cambridge, MA, 1996. Morgan Kaufmann Publishers.

22

[15] M. Thielscher. Computing ramifications by postprocessing. In Mellish
[12], pages 1994–2000.

[16] M. Thielscher. Ramification and causality. Artificial Intelligence, 89(1–
2):317–364, 1997.

[17] I. J. Varzinczak. Causalidade e dependência em racioćınio sobre ações.
Master’s thesis, Depto. Informática — Universidade Federal do Paraná,
Curitiba, 2002.

[18] D. Zhang and N. Y. Foo. EPDL: A logic for causal reasoning. In
B. Nebel, editor, Proc. 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI’01), pages 131–138, Seattle, 2001. Morgan Kaufmann Publish-
ers.

23

