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Supervised Nonlinear Spectral Unmixing Using
a Postnonlinear Mixing Model for
Hyperspectral |magery

Yoann Altmann, Sudent Member, |IEEE, Abderrahim Halimi, Sudent Member, |EEE,
Nicolas Dobigeon, Member, IEEE, and Jean-Yves Tourneret, Senior Member, IEEE

Abstract—This paper presentsanonlinear mixing model for hy-
per spectral image unmixing. Theproposed model assumesthat the
pixel reflectances are nonlinear functions of pure spectral compo-
nents contaminated by an additive white Gaussian noise. These
nonlinear functions are approximated using polynomial functions
leading to a polynomial postnonlinear mixing model. A Bayesian
algorithm and optimization methods are proposed to estimate the
parameters involved in the model. The performance of the un-
mixing strategies is evaluated by simulations conducted on syn-
thetic and real data.

Index Terms—Hyperspectral imagery, postnonlinear model,
spectral unmixing (SU).

|. INTRODUCTION

PECTRAL UNMIXING (SU) is one of the major issues

when analyzing hyperspectral images. SU consists of iden-
tifying the macroscopic materials present in an hyperspectral
image and quantifying the proportions of these materialsin the
image pixels. Most SU strategies assume that pixel reflectances
arelinear combinations of pure component spectra[1]-{5]. The
resulting linear mixing model (LMM) has been widely used
in the literature and has provided interesting results. However,
as explained in [6], the LMM can be inappropriate for some
hyperspectral images, such as those containing sand, trees, or
vegetation areas. Nonlinear mixing models provide an inter-
esting alternative for overcoming the inherent limitations of the
LMM. They have been proposed in the hyperspectral image
literature for specific kinds of nonlinearities. More precisely,
the bidirectional reflectance-based model proposed in [7] has
been introduced for hyperspectral images including intimate
mixtures. Conversely, the bilinear models recently studied
in [8]-11] address the problem of scattering effects, mainly
observed in vegetation areas. Other more flexible unmixing
techniques have been also proposed to handle a wider class of
nonlinearity, including radial basisfunction networks[12], [13]
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and kernel-based models[14], [15]. This paper considersaclass
of nonlinear mixing models referred to as postnonlinear mixing
models (PNMMs). PNMMs are flexible generalizations of the
standard LMMs that have been introduced in [16] and [17] for
source separation problems. The main advantage of PNMMsis
that they can accurately model many different nonlinearities (as
will be shown in this paper). This paper addresses the problem
of supervised SU of hyperspectral images using PNMMs. Note
that “supervised” means that the endmembers contained in
the image have been estimated by an endmember extraction
algorithm (EEA). As a consequence, the only parameters to be
estimated are the abundances and the nonlinearity coefficients
for al pixels of the image. In the last decades, many EEAS
have been developed to identify the pure spectral components
contained in a hyperspectral image (the reader is invited to
consult [18] for arecent review of these methods). Most EEAS
implicitly rely on the LMM and might be inappropriate for
nonlinear models such as PNMMs. However, as noticed in [6],
geometric EEASs are still adapted to identify endmembers and
can be reasonably employed when the mixing model involves
nonlinearities. Therefore, this paper proposes to extract the
endmembers contained in the hyperspectral image using a geo-
metric EEA, known as vertex component analysis (VCA) [19].
The recent nonlinear EEA introduced in [20] is also considered.
Once the endmembers have been extracted from the image,
we propose to estimate the abundances and the nonlinearity
parametersinvolved in the PNMM using estimation algorithms
based on Bayesian and least-square (LS) methods.

In the Bayesian framework, appropriate prior distributions
are chosen for the unknown PNMM parameters. The joint pos-
terior distribution of these parametersisthen derived. However,
the classical Bayesian estimators cannot be easily computed
from this joint posterior. To alleviate this problem, a Markov-
chain Monte Carlo (MCMC) method is used to generate sam-
ples according to the posterior of interest. Asin any Bayesian
algorithm, the joint posterior distribution can be aso used to
compute confidenceintervalsfor the parameter estimates. How-
ever, the resulting computational complexity can be too heavy
for practical applications. In order to reduce this computational
complexity, we propose to study LS methods that have already
received considerable attention in the hyperspectral imagery [2],
[10], [14]. A first method based on Taylor series expansions is
proposed to iteratively solvethe L S criterion associated with the
PNMM observation model. The Taylor approximations allow
quadratic optimization problems to be solved at each iteration.



A second approach is based on aclassical gradient method ded-
icated to constrained problems.

This paper is organized as follows: Section Il introduces the
PNMM for hyperspectral image analysis. Section |11 presents
a Bayesian unmixing agorithm associated with the proposed
PNMM. Section IV studies the two aternative unmixing algo-
rithmsbased on L Smethods. Some simulation results conducted
on synthetic and real data are shown and discussed in Section V.
Conclusions are finally reported in Section V1.

Il. POLYNOMIAL PNMM

This section defines the nonlinear mixing model used for hy-
perspectral image SU. More precisely, the L-spectrum y =
[y1,-.-,yz]T of amixed pixel is defined as a nonlinear trans-
formation g of alinear mixture of R spectram, contaminated
by additive noisg, i.e.,

R
y=g (Z armr> +n=g(Ma)+n )
r=1

wherem, = [m,.1,...,m.1]" isthe spectrum of the rth ma-
terial present in the scene, a.- isits corresponding proportion, R
is the number of endmembers contained in the image, and g is
an appropriate nonlinear function. Moreover, L is the number
of spectral bands, and n is an additive independent and identi-
cally distributed zero-mean Gaussian noise sequence with vari-
anceo?, denoted asn ~ N(0.,0%I;), whereIy, isthe L x L
identity matrix. Note that the usual matrix and vector notations
M = [mi,...,mg]anda = [a1,...,ar]” have been usedin
the right-hand side of (1).

The choice of an appropriate nonlinearity g deserves a
specific attention. Polynomials, sigmoids, and combinations
of polynomia and sigmoidal nonlinearities have shown inter-
esting properties for source separation [17]. This paper focuses
on second-order polynomial nonlinearities g, defined by

g, : [0,1]F = RE

S [.51+bsg,...,sL+bs%]T (2
withs = [s1,...,s7]7. Aninteresting property of the resulting
nonlinear model referred to as polynomia PNMM (PPNMM)
is that it reduces to the classical LMM for & = 0. Thus, we
can expect unmixing results at least as good as those presented
in [21] and [2] where Bayesian and LS methods were investi-
gated. Another motivation for using the PPNMM is the Weier-
strass approximation theorem, which states that any continuous
function defined on a bounded interval can be uniformly ap-
proximated by a polynomial with any desired precision [22, p.
15]. Asexplainedin[9], it isreasonableto consider polynomials
with first- and second-order terms (since higher order terms can
generally be neglected), which leads to (2). Higher order terms
could be considered in the presence of more than two reflec-
tions. However, the resulting interaction spectra are, in prac-
tice, of low amplitude and are hardly distinguishable from the
noise. Straightforward computations allow the PPNMM obser-
vation vector (for agiven pixel of theimage) to be expressed as
follows:

y = g,(Ma) +n=Ma+bMa)®(Ma) +n (3

where © denotes the Hadamard (term-by-term) product. Note
that the resulting PPNMM includes bilinear terms such as those
considered in [8]-{11]. However, the nonlinear terms are char-
acterized by a single amplitude parameter b, leading to a less
complex model when compared with the models introduced in
[8], [9], and [11]. Note that endmember m, (contained in M)
can be obtained in the noisefree case (n = 0y, ) by settingb = 0
anda = [0,_1,1,0g_,]7 in(3).

Due to physical considerations, the abundance vector a sat-
isfy the following positivity and sum-to-one constraints:

R
d a=1,0,>0Vre{l,....R}. (4)

r=1

It is straightforward to show that the function s — g, (s) is
noninjective for a fixed b. However, the unmixing problem is
identifiable since the application

g:REXxR =R
(a,b) — Ma+ b(Ma) & (Ma)

isinjective under specific conditions related to the pure compo-
nent spectra (see [23] for details).

I1l. BAYESIAN ESTIMATION

This section generalizes the hierarchical Bayesian model in-
troduced in [21] to the PPNM M. The unknown parameter vector
associated with the PPNMM contains the pixel abundances a
[satisfying constraints (4)], the nonlinearity parameter b, and the
additive noise variance o2. This section summarizes the likeli-
hood and the parameter priors associated with the proposed hi-
erarchical Bayesian PPNMM.

A. Likelihood

Equation (3) shows that y|a, b, o2 are distributed according
to a Gaussian distribution with mean g, (IMa) and covariance
matrix oI, (denoted asy|a, b, 02 ~ N(g,(Ma), c?1;)). As
aconseguence, thelikelihood function of the observation vector

y can be expressed as
z _ 2
202

where ||x|| = vxTx isthe standard ¢2 norm.

B. Parameter Priors

In order to satisfy the sum-to-one constraint, the abundance
vector can be rewritten! a = [a\g.ap]" withap = 1 —
Zf?;ll a, and where notation a\  indicates that the Fth com-
ponent of a has been removed, i.e, a\r = [a1,...,ar1]".
The positivity constraintsin (4) impose that a\  belongs to the
following simplex &

S = {a\R

INote that the proposed parameterization is chosen for notation simplicity.
However, the component to be discarded can be randomly chosen.

R—-1

a,.zo,vr;éR,Za,.gl}. (6)

r=1




A uniform prior distribution on S is chosen for a\  to reflect
the absence of prior knowledge about the abundance vector. A
Jeffreys prior is chosen for o2

f(0%) 5T (%) U

which also reflects the absence of knowledge for this param-
eter (see [24] for details). A conjugate Gaussian prior isfinaly
chosen for the nonlinearity parameter b, i.e.,

bloy ~ N (0,07) . (8)

The Gaussian prior is zero mean since the value of b can be
equally likely positive or negative. Moreover, it favors small
values of b and is a conjugate prior for parameter b, which will
simplify the computations.

C. Hyperparameter Prior
The hyperparameter o7 is also included within the Bayesian
model. A conjugate inverse-gamma prior is assigned to o7

ag ~ZIG(y,v) 9

where(, ) arefixed to obtain aflat prior, reflecting the absence
of knowledge about variance o7 [(, v) will be setto (1, 10~2)
in the simulation section].

D. Posterior Distribution of 8

The joint posterior distribution of the unknown parameter
vector 8 = {a\p,b,0%, 07} can be computed using the fol-
lowing hierarchical structure:

FBly) o f(y10)f (ar.b.0%|07) £ (oF)  (10)
where «« means “proportional to” and f(y|#) is defined in (5).
By assuming that parameters o, b, and a, 5 are a priori inde-
pendent, the joint prior distribution of the unknown parameter
vector can be expressed as

1(8) = f(ayn)f (o) (bloi) f (o7) -

Thejoint posterior distribution f (8, 7|y ) canthen be computed
up to amultiplicative constant, i.e.,

(11)

Sy
o) x 5 () flanet

b

b2 + 20
X exp ( 952 > 15(a\R).
b

(12)

Unfortunately, it is difficult to obtain closed form expressions
of the standard Bayesian estimators [including the maximum a
posteriori (MAP) and the minimum mean square error (MM SE)
estimators] associated with (12). The last part of this section
studies an MCMC method that can be used to generate samples
asymptotically distributed according to (12). These generated
samplesarethen used to computethe MAP or MM SE estimators
of the unknown parameter vector 8.

E. Metropolis-Wthin-Gibbs Sampler

The principle of the Gibbs sampler is to sample according
to the conditional distributions of the posterior of interest [25,
Chap. 10]. The probability density functions (pdf) associated
with (12) are studied below.

1) Conditional pdf f(a,|y,8\., ): Straightforward computa-
tions lead to

Ny — gy (Ma)|]?
202

f (a,,|y,0\a,r) X exp ( ) 1s(ayg) (13)
wherer = 1,..., R—1. Sinceitisnot easy to sample according
to (13) [mainly because of theindicator function 1s(a\ g)], we
propose to update the abundance a,- using aM etropolis-Hasting
move. More precisely, a new abundance coefficient is proposed
following a Gaussian random walk procedure (the variance of
the proposal distribution has been adjusted to obtain an accep-
tancerate closeto 0.5, asrecommended in[26, p. 8]). The gener-
ated abundance is accepted or rejected with an appropriate prob-
ability provided in Algorithm 1.

2) Conditional pdf f(bly,8;): Using (5), it can be easily
shown that b is distributed according to the following Gaussian
distribution:

by, ~N (mb, sg) 14

where

o (y — Ma)Th(a) 2 _ ota?
ozh(a)Th(a) + o2 b ozh(a)"h(a) + o2

my =

and h(a) = (Ma) @ (Ma). As a consequence, sampling ac-
cording to (14) is straightforward.

3) Conditional pdf f(o2|y, 6\,2): Looking carefully at (12),
it can be shown that 2|y, 6~ is distributed according to the
following inverse-gamma distribution:

L w>

(15

O'2|y70\0_2NIg({), 9

from which it is easy to sample.

4) Conditional pdff(of\y,a\(,g): Finally, by looking at the
posterior distribution (12), it can be seen that o7y, 0\05 isdis
tributed according to the following inverse-gammadistribution:

olly.b\,2 ~IG 1+ g+ 16
b1Y: \o} ~ 2 e 9 v. ( )

The resulting Metropolis-within-Gibbs sampler used to
sample according to (12) is summarized in Algorithm 1.

After generating samples using the procedures defined pre-
viously, the MM SE estimator of the unknown parameters can
be approximated by computing the empirical averages of these
samples, after an appropriate burn-in period.2 Even if the sam-
pling strategy has been observed to converge very fast, its com-
putational complexity can be heavy for practical applications.
The next section studies LS estimators, which allow this com-
putational complexity to be significantly reduced.

2Thelength of the burn-in period has been determined using appropriate con-
vergence diagnoses [26].



ALGORITHM 1

Gibbs Sampler

1: Initialization (¢ = 0)

Sample a(®, b, 520 52

2: Iterations (¢ = 1)

T (t—1)

3: SEtC:[(.'|._...._(!;;_|] :a\n

4: forr=1: R—1do

according to their prior distributions.

5:  Sample a candidate ¢, using a Gaussian proposal distribution A (G.Ef'_”, 0,2)

Compute p = min{

¢r with probability
Set ¢, =
¢ with probability
6: end for
7: Set a(\?i, = [m feees (.';e_l]'r

8: Set (I,E,:_) =1- fo_ 1] al?
9: Sample b*) from (14)
. Sample a?®) from (15)

11: Sample af“] from (16)
s Sett=1+1.

f(Gly.b.eye, 0%, 07) 1}
f((--'r'|Y.~ b? Cyry 0'2." Gﬁ) ’

P
1—p

IV. LS METHODS

L S methods have been successfully used for linear SU [2].
The LS method associated with the observation equation (3)
consists of minimizing the following criterion:

T 8)= iy - gy (M)’ = [y~ Ma—b(Ma) © (Ma)|’
an

under the positivity and sum-to-one constraints (4). This opti-
mization problem is not easy to handle mainly because of con-
straints (4). However, the cost function .J(a, b) isquadratic with
respect to parameter 5. As a consequence, by differentiating
J(a, b) with respect to b, the following closed-form expression
for b can be obtained

(y — Ma)"h(a)

b= h(a)Th(a) = ((a). (18)
After replacing (18) in J(a, b), we abtain
Ha)= Tl d@) =g ly - g@I°  (19)
where
¢(a) = Ma + g(a)(Ma) @ (Ma). (20)

We introduce below two strategies to compute the optimal
abundance vector

a=argmin J(a)

under constraints (4). Note that, once a has been computed, the
nonlinearity parameter b can be estimated as follows:

b= p(a). (21)

A. Taylor Approximation

Motivated by the method introduced in [10], we propose to
approximate function ¢(-) defined in (20) using the first-order
terms of a Taylor series expansion. Let at”) denotes the esti-
mated abundance vector estimate at the ¢th iteration, and its
corresponding estimated spectrum ¢(a(®)) following (20). The
Taylor approximation of ¢(-) at at*) can be written

b(a) ~ ¢ (a(t)) LV (a<t)) (a - a<t)> (22)

where Vg (a®)) isthe gradient matrix of ¢(al”)) of size L x R
and a isthe unknown parameter vector to be estimated. The rth
column of Vé(a®) can be derived from (3) as

0¢(a)

da,.

Oh(a)
da,

98(a)
P h(m) + B()

.

m, + (23)



wherer =1,..., R and the partial derivativesof 53(-) and h(-)
are available in [23]. Approximating ¢(-) in (19) using (22),
vector al**1) can be estimated by solving the following con-
strained LS problem:

. 2
al* = argmin ||z — MmaH (24)
under constraints (4), where
20 =y ¢ (a(t)) +Vé (a(t)) a® (25)

and M®) = Vg(a®) isthe L x R gradient matrix. Problem
(24) can befinally solved by the FCL S algorithm [2]. More pre-
cisely, the sum-to-one constraint of the abundances is consid-
ered by penalizing (24), leading to

. 2
a* = argmin [ ‘z(t) - M(t)aH + 6 (1 - 1£a) 2] (26)

subject to the nonnegativity constraints for the parameter
vector a, where § € R™ controls the impact of the sum-to-one
constraint. Procedure (26) is repeated until convergence. The
convergence of this iterative procedure to the global minimum
of the objective function (21) is difficult to prove because of
constraints (4) in (24). The next section introduces an alter-
native subgradient-based algorithm whose convergence (to a
local minimum of the associated objective function) is ensured.

B. Subgradient-Based Optimization

A gradient approach could be used to solve the cost func-
tion defined in (19) in the absence of constraints. However,
the problem is more complicated when constraints (4) have to
be considered. The estimation method studied in this section
is based on a subgradient optimization (SO) algorithm [27, p.
339] that is appropriate for constrained problems. More pre-
cisely, subgradient-based optimization allows each abundance
ai, - .., ar tobeindependently updated. Due to the sum-to-one

constraint of the abundance vector, the cost function (19) can be

expressed as afunction of a\ g by settingar = 1 — S0 a,.
In that case, the cost function (19) can be rewritten as

_ 1 _ 2
J(ar) = 7 ”y - ¢(a\R)” (27)
where
R-1
7(a\R):J<a1j...,aR1,1—2%) (28)
) e
dlap) =¢ (alv coeyar_1,1— Z fLr) . (29)
r=1

At agiven point a\ z, the SO algorithm performs sequential
line searches along directions d,. defined by the partial deriva
tiveswithrespecttoa,. (forr=1,..., R —1),i.e,

_ 07(3\1?) . T 33(3\3)

d, = ———" =
da, da,

[y - 3(3\1—2)}

where the partia derivatives of E(a\ r) ae provided in [23].
Finally, the line search procedure solves the following problem:

Ar = arg n}in J(a\g — Au,) (30)
whereu, = [0,...,sign(d,),0,...,0]T isadirection vector of
sze(R—-1)x 1,0 < . < Ar M and A, ns € Rt (for r =
1,..., R — 1) are upper bounds for the line search parameters.
More precisely, upper bounding X, according to therule

0, ifd. =0
A = 4§ Or; ifd, >0
ar = Y, a0 ifd, <0

ensures that constraints (4) are satisfied. Problem (30) can be
solved using the golden section method [27, p. 270]. The abun-
dances are then updated component by component (see[23] for
more details about the algorithm). Here again, the procedure is
repeated until convergence. The next section presents the per-
formance of the proposed algorithms on synthetic and real hy-
perspectral images.

V. SIMULATIONS

A. Synthetic Data

The performance of the proposed nonlinear SU algorithmsis
first evaluated by unmixing four synthetic images of size 50 x
50 pixels. The R = 3 endmembers contained in these images
have been extracted from the spectral libraries provided with
the ENVI software [28] (i.e., green grass, olive-green paint, and
galvanized steel metal). The first synthetic image /; has been
generated using the standard LMM. A second image /> hasbeen
generated according to the bilinear mixing model introduced in
[10], referred to as* Fan model” (FM). A thirdimage I3 hasbeen
generated according to the generalized bilinear mixing model
(GBM) presented in [11], whereas a fourth image 7, has been
generated according to the PNMM. For each image, the abun-
dance vectors a,,, p = 1,...,2500, have been randomly gen-
erated according to a uniform distribution over the admissible
set defined by the positivity and sum-to-one constraints. All im-
ages have been corrupted by an additive white Gaussian noise
of variances? = 2.8 x 103, corresponding to asignal-to-noise
ratio SNR = L 1o ~2||g,(a)||? = 15 dB. The nonlinearity co-
efficients are uniformly drawn in the set (0, 1) for the GBM,
and parameter b has been uniformly generated in the set (—0.3,
0.3) for the PPNM M. Different estimation procedures have been
considered for the four mixing models.

1) For the LMM, we have considered the standard FCL S al-

gorithm [2] and the Bayesian algorithm of [21].

2) TheFM hasbeen unmixed using the L S method introduced
in [10] and aBayesian algorithm similar to the one derived
in [11] but assuming al the nonlinearity coefficients are
equal to 1.

3) The unmixing strategies used for the GBM are the three
algorithmspresentedin[29], i.e., aBayesian algorithm and
two LS methods.



TABLE |
ABUNDANCE RMSES ( x10~2): SYNTHETIC IMAGES

I Ia I3 14
(LMM) | (FM) | (GBM) [ (PPNMM)
LMM Bayesian [21] 1.58 | 27.54 | 15.16 18.88
FCLS [2] 1.58 |24.72 | 9.49 16.87
FM Bayesian 22.67 1.51 13.63 16.84
Taylor [10] 22,67 | 149 | 12.61 26.33
Bayesian [29] 3.24 | 17.49 | 9.09 16.18
GBM Taylor [29] 6.32 | 14.67 | 7.07 15.61
Gradient [29] 4.28 4.26 3.01 15.05
Bayesian 2.75 3.43 3.22 293
PPNMM Taylor 2.70 3.83 3.26 3.33
Gradient 2.93 3.43 3.43 2.93

4) The Bayesian and LS algorithms presented in Sections |11
and IV have been used for unmixing the proposed
PPNMM. Note that all results presented in this paper have
been obtained using the Bayesian MM SE estimator.

The quality of the unmixing procedures can be measured by
comparing the estimated and actual abundance vector using the
root mean square error (RMSE) defined by

r
RMSE = | >[4, — oyl (3
p=1

where a,, and &, are the actual and estimated abundance vec-
tors for the pth pixel of the image and P is the number of
image pixels. Table | shows the RM SEs associated with images
Ii,...,1, for the different estimation procedures. Note that the
best results (in terms of RM SE) for each image have been repre-
sented in underlined bold, whereas the second best results have
been depicted in bold. Table | shows that the abundances esti-
mated by the Bayesian algorithm and the LS methods are similar
for the PPNMM. Moreover, for these four images, the PPNMM
seems to be more robust than the other mixing models to de-
viations from the actual model. Indeed, the PPNMM provides
small abundance RM SEs for the four images 1, .. ., 1.

Theunmixing quality can bealso evaluated by the reconstruc-
tion error (RE) defined as

P

RE=\| 7 295 — 9’ (32
p=1

where y,, is the pth observation vector and y, is its estimate.
Table Il compares the REs obtained for the different synthetic
images. These results show that the REs are close for the
different unmixing algorithms. Again, the proposed PPNMM
seems to be more robust than the other mixing models to
deviations from the actual model in terms of RE.

Fig. 1 shows the estimated distributions of & for images
Iy, ..., 1, using the three presented algorithms (i.e., Bayesian,
linearization, and subgradient). This figure shows that the algo-
rithms similarly perform for the estimation of the nonlinearity
parameter b.

Table Il shows the execution times of MATLAB implemen-
tationson a 1.66-GHz Dual Core of the proposed algorithmsfor
unmixing the proposed images (2500 pixels for each image).
The linearization-based algorithm has the lowest computational

TABLE Il
REs (x10~?): SYNTHETIC IMAGES
I Iz Is Iy
(LMM) | (FM) | (GBM) | (PPNMM)
Bayesian [21] 5.28 6.54 5.65 5.89
LMM e
FCLS [2] 528 | 5.74 | 5.42 5.48
M Bayesian 5.61 5.29 5.38 5.76
Taylor [10] 5.61 528 | 5.38 5.75
Bayesian [29] 5.29 5.49 5.33 5.44
GBM Taylor [29] 5.31 5.40 5.30 5.42
Gradient [29] 5.29 5.30 5.28 5.41
Bayesian 528 | 520 | 528 5.28
PPNMM Taylor 5.29 5.29 5.28 5.28
Gradient 5.29 5.29 5.28 5.28
I Iy
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Fig. 1. Histograms of the estimated nonlinearity parameterlB for the four syn-
thetic images estimated by the (black) Bayesian, (red) linearization-based and
(blue) subgradient-based algorithms.

TABLE Il
COMPUTATIONAL TIMES OF THE UNMIXING ALGORITHMS FOR 2500 PIXELS
(IN SECOND)
I I I3 Iy
Bayesian 5960 | 6200 | 6600 | 5970
Taylor 5 10 8 7
Subgradient 84 102 96 101

cost and also provides accurate estimations. Note that the com-
putational cost of the Bayesian algorithm (which allows prior
knowledge to be included in the unmixing procedure) can be
prohibitivefor larger images and ahigh number of endmembers.
However, the computational cost of the two proposed optimiza-
tion methods (linearization and gradient based) is very reason-
able, which make them very useful for practical applications.
The next set of simulations analyzes the performance of the
proposed nonlinear SU algorithmsfor different numbers of end-
members (R € {3,6,9,12}) by unmixing four synthetic im-
ages of 500 pixels. The endmembers contained in these images
have been randomly selected from the 14 endmembers extracted
by VCA from the full Cuprite scene described in [30]. For each
image, the abundance vectors a,,, (p = 1,. .., 500), have been
randomly generated according to auniform distribution over the
admissible set defined by the positivity and sum-to-one con-
straints. All images have been corrupted by an additive white



TABLE IV
AVERAGE RMSES (x 1072): SYNTHETIC IMAGES
Bayesian Taylor | Gradient
MMSE | MAP
R=3 12.99 18.06 | 16.34 16.31
R=6 18.46 27.86 | 30.99 29.79
R=9 17.07 28.68 | 35.69 34.24
R=12 16.38 2798 | 38.66 36.66
TABLEV
AVERAGE RES (x1072): SYNTHETIC IMAGES
Bayesian Taylor | Gradient
MMSE | MAP
R=3 4.18 4.22 4.17 4.17
R=6 4.22 4.24 4.20 4.20
R=9 4.27 4.29 4.24 4.24
R=12 4.18 4.19 4.13 4.13

Gaussian noise corresponding to a signal-to-noiseratio SNR =
20 dB. The nonlinearity coefficient b is uniformly drawn in the
set (—0.3,0.3). Tables1V and V compare the performance of the
three proposed methods in terms of abundance estimation and
RE. These results show that the three methods similarly perform
in terms of RE. The Bayesian estimators tend to provide more
accurate abundance estimations (i.e., smaller RM SEs) for large
values of R. Indeed, the Taylor and gradient algorithms may be
trapped in local minima of the LS criterion (17) for large values
of R.

B. Real Data

The first real image considered in this section is composed
of . = 189 spectral bands and was acquired in 1997 by the
airborne visible infrared imaging spectrometer (AVIRIS) over
the Cuprite mining site in Nevada. A subimage of size 50 x 50
pixels has been chosen here to evaluate the proposed unmixing
procedures. The scene is mainly composed of muscovite, alu-
nite, and kaolinite, as explained in [31]. The endmembers ex-
tracted by VCA [19] and the nonlinear EEA proposed in [20]
(referred to as “Heylen”), with I? = 3, are depicted in Fig. 2.
The endmembers obtained by the two methods have similar
shapes. This result confirms the fact that the geometric EEAs
(such as VCA) can be used as a first approximation for end-
member estimation [6]. The estimation algorithms presented in
Sections |11 and 1V have been applied to each pixel of the scene
using the endmembers extracted by the two EEAs. Examples
of abundance maps obtained for endmembers estimated using
Heylen's method are presented in Fig. 3 (see [23] for similar
results obtained with endmembers estimated by VCA]. The ad-
vantage of the PPNMM is that it alows the nonlinearities be-
tween the observations and the abundance vectors to be ana-
lyzed. For instance, Fig. 4 shows the estimated maps of 4 for
the Cuprite image. These results show that the observations are
nonlinearly related to the endmembers (since b # 0). However,
the nonlinearity isweak since the estimated values of b are close
to 0.

The second real image considered in this section is composed
of . = 189 spectral bands and was acquired in 1997 by the
satellite AVIRIS over the Moffett Field, CA. A subimage of size
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Fig. 22 R = 3 endmembers estimated by (blue lines) VCA and (red lines)
Heylen for the Cuprite scene.
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Fig. 5. R = 3 endmembers estimated by (blue lines) VCA and (red lines)
Heylen for the Moffett scene.

50 x 50 pixels has been also chosen here to evaluate the pro-
posed unmixing procedures. The scene is mainly composed of
water, vegetation, and soil. The endmembers extracted by VCA
and the Heylen's method with 2 = 3 are depicted in Fig. 5.
Again, the endmembers obtained by the two methods are sim-
ilar. Examples of abundance maps estimated by the proposed
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Fig. 6. Abundance maps estimated by the Bayesian, linearization, and subgra-
dient methods for the Moffett scene.
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Fig. 7. Maps of the nonlinearity parameter # estimated by the Bayesian, lin-
earization, and subgradient methods for the Moffett scene.

TABLE VI
REs (x10~2): CUPRITE AND MOFFETT IMAGES

VCA Heylen

Cuprite | Moffett | Cuprite | Moffett

LMM Bayesian [21] 2.14 2.70 2.35 2.02
FCLS [2] 2.11 2.62 2.10 2.00

M Bayesian 7.36 2.31 2.30 1.92
Taylor [10] 3.05 2.29 2.29 1.92

Bayesian [29] | 2.24 2.57 2.11 1.99
GBM Taylor [29] 2.34 2.41 2.03 2.01
Gradient [29] 2.02 2.30 2.04 1.93

Bayesian 1.19 1.59 1.91 1.85

PPNMM Taylor 1.19 1.54 1.90 1.84
Gradient 1.19 1.55 1,90 1.87

algorithms are presented in Fig. 6 (endmembers have been es-
timated using Heylen's method). They are similar to the abun-
dance maps obtai ned with estimation algorithms associated with
the LMM (available in [21]). Fig. 7 shows the estimated maps
of b for the Moffett image. In the water area, the observations
are nonlinearly related to the endmembers (since b # 0). These
nonlinearities can be dueto the low amplitude of the water spec-
trum and possible nonlinear bathymetric effects.

The quality of unmixing is finaly evaluated using the REs
for both real images. These REs are compared in Table VI
with those obtained by assuming other mixing models. The
proposed PPNMM provides smaller REs when compared with
other models, which is a very encouraging result. Additional
results on the full Cuprite scene are availablein [23].

VI. CONCLUSION AND FUTURE WORKS

A Bayesian and two least squares algorithms were presented
for nonlinear spectral unmixing of hyperspectral images. These
algorithms assumed that the hyperspectral image pixels are re-
|ated to the endmembers by apolynomial post-nonlinear mixing
model. In the Bayesian framework, the constraints related to
the unknown parameters were ensured by using appropriate
prior distributions. The posterior distribution of the unknown
parameter vector was then derived. The corresponding min-
imum mean sguare error estimator was approximated from
samples generated using Markov chain Monte Carlo methods.
Least squares methods were also investigated for unmixing
the PPNMM. These methods provided results similar to the
Bayesian algorithm with areduced computational cost, making
them very attractive for hyperspectral image unmixing. Results
obtained on synthetic and real images illustrated the accuracy
of the PPNMM and the performance of the corresponding esti-
mation a gorithms. Future worksinclude the study of nonlinear
EEAs appropriate for the proposed parametric PPNMM. De-
riving nonlinearity detectors based on the proposed parametric
PPNMM is also under investigation.
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